
A near-Optimal Sublinear-Time Algorithm for
Approximating the Minimum Vertex Cover Size

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld.
2012. A near-optimal sublinear-time algorithm for approximating
the minimum vertex cover size. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '12).

As Published http://dl.acm.org/citation.cfm?id=2095204

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/72545

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72545
http://creativecommons.org/licenses/by-nc-sa/3.0/

A Near-Optimal Sublinear-Time Algorithm
for Approximating the Minimum Vertex Cover Size

Krzysztof Onak∗ Dana Ron† Michal Rosen‡ Ronitt Rubinfeld§

October 5, 2011

Abstract

We give a nearly optimal sublinear-time algorithm for approximating the size of a minimum vertex
cover in a graphG. The algorithm may query the degreedeg(v) of any vertexv of its choice, and for
each1 ≤ i ≤ deg(v), it may ask for theith neighbor ofv. Letting VCopt(G) denote the minimum
size of vertex cover inG, the algorithm outputs, with high constant success probability, an estimate
V̂C(G) such thatVCopt(G) ≤ V̂C(G) ≤ 2VCopt(G) + ǫn, whereǫ is a given additive approximation
parameter. We refer to such an estimate as a(2, ǫ)-estimate. The query complexity and running time
of the algorithm areÕ(d̄ · poly(1/ǫ)), whered̄ denotes the average vertex degree in the graph. The
best previously known sublinear algorithm, of Yoshida et al. (STOC 2009), has query complexity and
running timeO(d4/ǫ2), whered is the maximum degree in the graph. Given the lower bound ofΩ(d̄)
(for constantǫ) for obtaining such an estimate (with any constant multiplicative factor) due to Parnas and
Ron (TCS 2007), our result is nearly optimal.

In the case that the graph is dense, that is, the number of edges isΘ(n2), we consider another model,
in which the algorithm may ask, for any pair of verticesu andv, whether there is an edge between
u andv. We show how to adapt the algorithm that uses neighbor queries to this model and obtain an
algorithm that outputs a(2, ǫ)-estimate of the size of a minimum vertex cover whose query complexity
and running time arẽO(n) · poly(1/ǫ).

∗School of Computer Science, Carnegie Mellon University, E-mail: konak@cs.cmu.edu. Research supported by a Simons
Postdoctoral Fellowship and the NSF grant 0728645.

†School of Electrical Engineering, Tel Aviv University. E-mail: danar@eng.tau.ac.il. Research supported by the Israel
Science Foundation grant number 246/08.

‡Blavatnik School of Computer Science, Tel Aviv University,E-mail: micalros@post.tau.ac.il
§CSAIL, MIT, Cambridge MA 02139 and the Blavatnik School of Computer Science, Tel Aviv University. E-mail:

ronitt@csail.mit.edu. Research supported by NSF awards CCF-1065125 and CCF-0728645, Marie Curie Reintegration
grant PIRG03-GA-2008-231077 and the Israel Science Foundation grant nos. 1147/09 and 1675/09.

1 Introduction

Computing the size of a minimum vertex cover in a graph is a classic NP-hard problem. However, one can
approximate the optimal value of the solution to within a multiplicative factor of two, via a neat and simple
algorithm whose running time is linear in the size of the graph (this algorithm was independently discovered
by Gavril and Yanakakis, see e.g. [PS98]).

A natural question is whether it is possible to obtain a good approximation for thesizeof the optimal
vertex cover in time that issublinear in the size of the graphG. Since achieving a pure multiplicative
approximation is easily seen to require linear time, we focus on algorithms that compute an estimatêVC(G)

such that with high constant probability,VCopt(G) ≤ V̂C(G) ≤ α · VCopt(G) + ǫn, for α ≥ 1 and
0 ≤ ǫ < 1, whereVCopt(G) denotes the minimum size of a vertex cover inG. We refer to such an estimate
V̂C(G) as an(α, ǫ)-estimateof VCopt(G). Observe that in the special case when the vertex cover is very
large, namelyVCopt(G) = Θ(n) (which happens for example when the maximum degree and the average
degree are of the same order), then an(α, ǫ)-estimate yields an(α + O(ǫ))-multiplicative approximation.

Since an algorithm with complexity sublinear in the size of the graph cannot even read the entire graph,
it must havequery accessto the graph. In this work we consider two standard models of queries. In the first
model, the algorithm may query the degreedeg(v) of any vertexv of its choice, and it may also query the
ith neighbor ofv (where the the order on the neighbors is arbitrary). In the second model, more appropriate
when the graph is stored as an adjacency matrix, the algorithm can check in a single query whether there
is an edge between two verticesv andw chosen by the algorithm. We focus on the first model, but we
eventually show that our algorithm can be modified to work in the second model as well.

Previous work. The aforementioned question was first posed by Parnas and Ron[PR07], who showed how
to obtain a(2, ǫ)-estimate (for any given additive approximation parameterǫ) in time dO(log d/ǫ3), whered
is the maximum degree in the graph. The dependence on the maximum degreed can actually be replaced
by a dependence on̄d/ǫ, whered̄ is the average degree in the graph [PR07]. The upper bound ofdO(log d/ǫ3)

was significantly improved in a sequence of papers [MR09, NO08, YYI09], where the best result due to
Yoshida, Yamamoto, and Ito [YYI09] (who analyze an algorithm proposed by Nguyen and Onak [NO08]) is
an upper bound ofO(d4/ǫ2). Their analysis can also easily be adapted to give an upper bound ofO(d̄4/ǫ4)
for graphs with bounded average vertex degreed̄.

On the negative side, it was also proved in [PR07] that at least a linear dependence on the average
degree,d̄, is necessary. Namely,Ω(d̄) queries are necessary for obtaining an(α, ǫ)-estimate for anyα ≥ 1
andǫ < 1/4, provided thatd̄ = O(n/α), and in particular this is true forα = 2. We also mention that
obtaining a(2 − γ, ǫ)-estimate for any constantγ requires a number of queries that grows at least as the
square root of the number of vertices [PR07, due to Trevisan].

Our Result. In this work we describe and analyze an algorithm that computes a (2, ǫ)-estimate of
VCopt(G) in time Õ(d̄) · poly(1/ǫ). Note that since the graph contains̄dn/2 edges, our running time
is sublinear for all values of̄d. In particular, for graphs of constant average degree, the running time is inde-
pendent of the number of nodes and edges in the graph, whereasfor general graphs it is bounded by at most
the square root of the number of edges. In view of the aforementioned lower bound ofΩ(d̄), our algorithm
is optimal in terms of the dependence on the average degree upto a polylogarithmic factor. Since our algo-
rithm builds on previous work, and in particular on the algorithm proposed and analyzed in [NO08, YYI09],

1

we describe the latter algorithm first.1 We refer to this algorithm asApprox-VC-I .

The Algorithm Approx-VC-I. Recall that the size of a minimum vertex cover is lower-bounded by the
size of any (maximal) matching in the graph, and is upper-bounded by twice the size of any maximal match-
ing. This is indeed the basis of the aforementioned factor-two approximation algorithm, which runs in
linear-time. To estimate the size of an arbitrary such maximal matching, the algorithm follows the sampling
paradigm of Parnas and Ron [PR07]. That is, the algorithmApprox-VC-I selects, uniformly, independently
and at random,Θ(d2/ǫ2) edges. For each edge selected, it calls amaximal matching oracle, which we
describe momentarily, where the oracle’s answers indicatewhether or not the edge is in the maximal match-
ingM, for some arbitrary maximal matchingM (that is not a function of the queries to the oracle). The
algorithm then outputs an estimate of the size of the maximalmatchingM (and hence of a minimum vertex
cover) based on the fraction of sampled edges for which the maximal matching oracle returned a positive
answer. The number of sampled edges ensures that with high constant probability, the additive error of the
estimate isO((ǫ/d)m) ≤ ǫn, wherem is the number of edges in the graph.

The main idea of the algorithm follows the idea suggested in [NO08] which is to simulate the answers
of the standard sequential greedy algorithm. The greedy algorithm supposes a fixed ranking (ordering) of
the edges inG, which uniquely determines a maximal matching as follows: proceeding along the edges
according to the order determined by the ranking, add to the matching each edge that does not share an end-
point with any edge previously placed in the matching. The maximal matching oracle essentially emulates
this procedure while selecting a random ranking “on the fly”,but is able to achieve great savings in running
time by noting that to determine whether an edge is placed in the matching, it is only necessary to know
whether or not adjacent edges that are ranked lower than the current edge have been placed in the matching.
Namely, given an edge(u, v), it considers all edges that share an endpoint with(u, v) and whose (randomly
assigned) ranking is lower than that of(u, v). If there are no such edges, then the oracle returnsTRUE.
Otherwise it performs recursive calls to these edges, wherethe order of the calls is according to their ranking.
If any recursive call is answeredTRUE, then the answer on(u, v) is FALSE, while if all answers (on the
incident edges with a lower rank) is answeredFALSE, then the answer on(u, v) is TRUE.

Though the correctness of the above algorithm follows directly from the correctness of the greedy al-
gorithm, the query and runtime analysis are more difficult. The analysis of [NO08] is based on a counting
argument that shows that it is unlikely that there is a long path of recursive calls with a monotone decreas-
ing set of ranks. Their bound gives a runtime that is independent of the size of the graph, but exponential
in the degreed. However, using that the algorithm recurses according to the smallest ranked neighbor,
[YYI09] give an ingenious analysis that bounds byO(d) the total number of expected recursive calls when
selecting an edge uniformly at random, and when selecting a ranking uniformly at random. This is what
allows [YYI09] to obtain an algorithm whose query complexity and running time areO(d4/ǫ2).

Our Algorithm. In what follows we describe an algorithm that has almost linear dependence on the max-
imum degreed. The transformation to an algorithm whose complexity depends on the average degreēd is
done on a high level along the lines described in [PR07]. We first depart fromApprox-VC-I by performing
the following variation. Rather than sampling edges and approximating the size of a maximal matching by

1Yoshida et al. [YYI09] actually analyze an algorithm for approximating the size of a maximal independent set. They then apply
it to the line graph of a given graphG, so as to obtain an estimate of the size of a maximal matching,and hence of a minimum
vertex cover (with a multiplicative cost of2 in the quality of the estimate). For the sake of simplicity, we describe their algorithm
directly for a maximal matching (minimum vertex cover).

2

calling the maximal matching oracle on the sampled edges, wesample vertices (as in [PR07]), and we call
a vertex cover oracleon each selected vertexv. The vertex cover oracle calls the maximal matching oracle
on the edges incident tov according to the order induced by their ranking (where the ranking is selected
randomly). Once some edge returnsTRUE, the vertex cover oracle returnsTRUE, and if all incident edges
returnFALSE, the vertex cover oracle returnsFALSE. By performing this variation we can take a sample of
vertices that has sizeΘ(1/ǫ2) rather than2 Θ(d2/ǫ2).

Unfortunately, the analysis of [YYI09] is no longer applicable as is. Recall that their analysis bounds
the expected number of recursive calls to the maximal matching oracle, for a random ranking, and for a
randomly selected edge. In contrast, we select a random vertex and call the maximal matching oracle on
its (at mostd) incident edges. Nonetheless, we are able to adapt the analysis of [YYI09] and give a bound
of O(d) on the expected number of recursive calls to the maximal matching oracle, when selecting a vertex
uniformly at random.3

As a direct corollary of the above we can get an algorithm whose query complexity and running time
grow quadratically withd. Namely, whenever the maximal matching oracle is called on anew edge(u, v),
the algorithm needs to perform recursive calls on the edges incident tou andv, in an order determined by
their ranking. To this end it can query theO(d) neighbors ofu andv, assign them (random) rankings, and
continue in a manner consistent with the assigned rankings.

To reduce the complexity of the algorithm further, we show a method that for most of the edges that
we visit, allows us to query only a small subset of adjacent edges. Ideally, we would like to make only
k queries whenk recursive calls are made. One of the problems that we encounter here is that if we do
not query all adjacent edges, then for some edge(u, v), we could visit a different edge incident tou and a
different edge incident tov and make conflicting decisions about the ranking of(u, v) from the point of view
of these edges. This could result in an inconsistent execution of the algorithm with results that are hard to
predict. Instead, we devise a probabilistic procedure, that, together with appropriate data structures, allows
us to perform queries almost “only when needed” (we elaborate on this in the next paragraph). By this we
mean that we perform queries only on a number of edges that is apoly(log(d/ǫ)) factor larger than the total
number of recursive calls made to the maximal matching oracle. We next discuss our general approach.

As in previous work, we implement the random ranking by assigning numbers to edges independently,
uniformly at random from(0, 1] (or, more precisely, from an appropriate discretization of(0, 1]). For each
vertex we keep a copy of a data structure that is responsible for generating and assigning random numbers to
incident edges. For each vertex, we can ask the corresponding data structure for the incident edge with the
ith lowest number. How does the data structure work? Conceptually, the edges attached to each vertex are
grouped into “layers”, where the edges in the first layer haverandom numbers that are at most1/d, the edges
in layer i > 1 have random numbers in the range2i−1/d to 2i/d. The algorithm randomly chooses edges
to be in a layer for each vertex, one layer at a time, starting with the lowest layer. Each successive layer is
processed only as needed by the algorithm. If the algorithm decides that an edge is in the current layer, then
it picks a random number for the edge uniformly from the rangeassociated with the layer. In particular, it
is possible to ensure that the final random number comes from the uniform distribution on(0, 1]. In order
to make sure that the same decision is made at both endpoints of an edge(u, v), the data structures foru
andv communicate whenever they want to assign a specific random number to the edge. The algorithm

2We note that it is actually possible to save one factor ofd without changing the algorithmApprox-VC-I by slightly refining
the probabilistic analysis. This would reduce the complexity of Approx-VC-I to cubic ind.

3To be more precise, we first give a bound that depends on the ratio between the maximum and minimum degrees as well as on
the average degree, and later we show how to obtain a dependence ond (at an extra cost of1/ǫ) by slightly modifying the input
graph.

3

works in such a way so that vertices need query their incidentedges only when a communication regarding
the specific edge occurs. Our final algorithm is obtained by minimizing the amount of communication
between different data structures, and therefore, making them discover not many more edges than necessary
for recursive calls in the graph exploration.

Other Related Work. For some restricted classes of graphs it is possible to obtain a (1, ǫ)-estimate of
the size of the minimum vertex cover in time that is a functionof only ǫ. Elek shows that this is the case
for graphs of subexponential growth [Ele10]. For minor-free graphs, one obtains this result by applying the
generic reduction of Parnas and Ron [PR07] to local distributed algorithm of Czygrinow, Hańćkowiak, and
Wawrzyniak [CHW08]. Both of these results are generalized by Hassidim et al. [HKNO09] to any class of
hyperfinite graphs. In particular, for planar graphs, they give an algorithm that computes a(1, ǫ)-estimate
in 2poly(1/ǫ) time. While the running time must be exponential in1/ǫ, unless there exists a randomized
subexponential algorithm for SAT, it remains a neat open question whether the query complexity can be
reduced to polynomial in1/ǫ.

For bipartite graphs, a(1, ǫn)-estimate can be computed indO(1/ǫ2) time. This follows from the relation
between the maximum matching size and the minimum vertex size captured by König’s theorem and fast
approximation algorithms for the maximum matching size [NO08, YYI09].

Ideas similar to those discussed in this paper are used to construct sublinear time estimations of other
parameters of sparse combinatorial objects, such as maximum matching, set cover, constraint satisfaction
[NO08, YYI09, Yos11]. In the related setting of property testing, sublinear time algorithms are given for
testing any class of graphs with a fixed excluded minor and anyproperty of graphs with a fixed excluded
minor [CSS09, BSS08, Ele10, HKNO09, NS11].

There are also other works on sublinear algorithms for various other graph measures such as the mini-
mum weight spanning tree [CRT05, CS09, CEF+05], the average degree [Fei06, GR08], and the number of
stars [GRS10].

2 The Oracle-Based Algorithm

Let G = (V,E) be an undirected graph withn vertices andm edges, where we allowG to contain parallel
edges and self-loops. Letd denote the maximum degree in the graph, and letd̄ denote the average degree.
Consider arankingπ : E → [m] of the edges inG = (V,E). As noted in the introduction, such a ranking
determines a maximal matchingMπ(G). GivenMπ(G), we define a vertex coverCπ(G) as the set of all
endpoints of edges inMπ(G). Therefore,VCopt ≤ |C

π(G)| ≤ 2VCopt, whereVCopt is the minimum size
of a vertex cover inG. We assume without loss of generality that there are no isolated vertices inG, since
such vertices need not belong to any vertex cover. We shall use the shorthandMπ andCπ for Mπ(G) and
Cπ(G), respectively, whenG is clear from the context.

Assume we have an oracleVOπ for a vertex cover based on a rankingπ of the edges, whereVOπ(v) =
TRUE if v ∈ Cπ(G),VOπ(v) = FALSE otherwise. The next lemma follows by applying an additive Chernoff
bound.

Lemma 2.1 For any fixed choice ofπ, let C = Cπ(G). Suppose that we uniformly and independently select
s = Θ(1

ǫ2
) verticesv from V . Let t be a random variable equal to the number of selected verticesthat

4

belong toC. With high constant probability,

|C| − ǫn ≤
t

s
· n ≤ |C|+ ǫn .

Algorithm 1, provided below, implements an oracleVOπ, that given a vertexv, decides whetherv ∈ Cπ.
This oracle uses another oracle,MOπ (described in Algorithm 2) that given an edgee, decides whether
e ∈ Mπ. Both oracles can determineπ(e) for any edgee of their choice. The oracleMOπ essentially
emulates the greedy algorithm for finding a maximal matching(based on the rankingπ). We assume that
once the oracle for the maximal matching decides whether an edgee belongs toMπ or not, it records this
information in a data structure that allows to retrieve it later. By Lemma 2.1, if we performΘ(1/ǫ2) calls to
VOπ, we can get an estimate of the size of the vertex coverCπ up to an additive error of(ǫ/2)n, and hence
we can obtain a(2, ǫ)-estimate (as defined in the introduction) of the size of a minimum vertex cover inG.
Hence our focus is on upper bounding the query complexity andrunning time of the resulting approximation
algorithm whenπ is selected uniformly at random.

Algorithm 1 : An oracleVOπ(v) for a vertex cover based on a rankingπ of the edges. Given a vertexv, the
oracle returnsTRUE if v ∈ Cπ and it returnsFALSE otherwise.

Let e1, . . . , et be the edges incident to the vertexv in order of increasing rank (that is,1

π(ei+1) > π(ei)).
for i = 1, . . . , t do2

if MOπ(ei) = TRUE then3

return TRUE4

return FALSE5

Algorithm 2 : An oracleMOπ(e) for a maximal matching based on a rankingπ of the edges. Given an edge
e, the oracle returnsTRUE if e ∈Mπ and it returnsFALSE otherwise.

if MOπ(e) has already been computedthen1

return the computed answer.2

Let e1, . . . , et be the edges that share an endpoint withe, in order of increasing rank (that is,3

π(ei+1) > π(ei)).
i← 1.4

while π(ei) < π(e) do5

if MOπ(ei) = TRUE then6

return FALSE7

else8

i← i + 1.9

return TRUE10

We start (in Section 3) by bounding the expected number of calls made to the maximal-matching oracle
MOπ in the course of the execution of a call to the vertex-cover oracle VOπ. This bound depends on
the average degree in the graph and on the ratio between the maximum degree and the minimum degree.
A straightforward implementation of the oracles would giveus an upper bound on the complexity of the

5

algorithm that is a factor ofd larger than our final near-optimal algorithm. In Section 4 wedescribe a
sophisticated method of simulating the behavior of the oracle MOπ for randomly selected rankingπ, which
is selected “on the fly”. Using this method we obtain an algorithm with only a polylogarithmic overhead (as
a function ofd) over the number of recursive calls. Thus, for graphs that are close to being regular, we get
an algorithm whose complexity is̃O(d/ǫ2). In Section 5 we address the issue of variable degrees, and in
particular, show how to get a nearly-linear dependence on the average degree.

3 Bounding the Expected Number of Calls to the Maximal-Matching Oracle

For a rankingπ of the edges of a graphG and a vertexv ∈ V , let N(π, v) = NG(π, v) denote the number
of different edgese such that a callMOπ(e) was made to the maximal matching oracle in the course of the
computation ofVOπ(v). Let Π denote the set of all rankingsπ over the edges ofG. Our goal is to bound
the expected value ofN(π, v) (taken over a uniformly selected rankingπ and vertexv). We next state our
first main theorem.

Theorem 3.1 LetG be a graph withm edges and average degreed̄, and let the ratio between the maximum
degree and the minimum degree inG be denoted byρ. The average value ofN(π, v) taken over all rankings
π and verticesv is O(ρ · d̄). That is:

1

m!
·
1

n
·
∑

π∈Π

∑

v∈V

N(π, v) = O(ρ · d̄) . (1)

If the graph is (close to) regular, then the bound we get in Theorem 3.1 isO(d̄) = O(d). However, for
graphs with varying degrees the bound can beΘ(d2). As noted previously, we later show how to deal with
variable degree graphs without having to pay a quadratic cost in the maximum degree.

As noted in the introduction, our analysis builds on the workof Yoshida et al. [YYI09]. While our
analysis does not reduce to theirs4, it uses many of their ideas. We start by making a very simple but useful
observation about the maximal matching oracleMOπ (Algorithm 2), which follows immediately from the
definition of the oracle.

Observation 3.2 For any edgee, consider the execution ofMOπ on e. If in the course of this execution,
a recursive call is made toMOπ on another edgee′, then necessarilyπ(e′) < π(e). Therefore, for any
consecutive sequence of (recursive) calls to edgeseℓ, . . . , e1, π(eℓ) > π(eℓ−1) > . . . > π(e1).

In order to prove Theorem 3.1 we introduce more notation. Forany edgee ∈ E, we arbitrarily label its
endpoints byva(e) andvb(e) (where ife is a self-loop thenva(e) = vb(e), and ife ande′ are parallel edges,
thenva(e) = va(e

′) andvb(e) = vb(e
′)). For a rankingπ and an indexk, let πk denote the edgee such that

π(e) = k.

We say that an edgee is visited if a call is made one either in the course of an oracle computation of
VOπ(va(e)) or VOπ(vb(e)) (that is, as a non-recursive call), or in the course of an oracle computation of

4Indeed, we initially tried to find such a reduction. The main difficulty we encountered is that the vertex cover oracle, when
executed on a vertexv, performs calls to the maximal matching oracle on the edges incident tov until it gets a positive answer (or
all the incident edges return a negative answer). While the analysis of [YYI09] gives us an upper bound on the expected number
of recursive calls for a given edge, it is not clear how to use such a bound without incurring an additional multiplicativecost that
depends on the degree of the vertices.

6

MOπ(e′) for an edgee′ that shares an endpoint withe (as a recursive call). For a vertexv and an edgee, let
Xπ(v, e) = Xπ

G(v, e) equal1 if e is visited in the course of the execution ofVOπ(v). Using the notation
just introduced, we have that

N(π, v) =
∑

e∈E

Xπ(v, e) . (2)

Observation 3.3 Let e = (v, u). If Xπ(v, e) = 1, then for each edgee′ that shares the endpointv with e
and for whichπ(e′) < π(e) we have thatMOπ(e′) = FALSE.

To verify Observation 3.3, assume, contrary to the claim, that there exists an edgee′ as described in the
observation andMOπ(e′) = TRUE. We first note that by Observation 3.2, the edgee cannot be visited in
the course of an execution ofMOπ on any edgee′′ = (v,w) such thatπ(e′′) < π(e) (and in particular this
is true fore′′ = e′). SinceVOπ(v) performs calls to the edges incident tov in order of increasing rank,
if MOπ(e′) = TRUE, thenVOπ(v) returnsTRUE without making a call toMOπ(e). This contradicts the
premise of the observation thatXπ(v, e) = 1.

The next notation is central to our analysis. Fork ∈ [m] and a fixed edgee:

Xk(e)
def
=
∑

π∈Π

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)
. (3)

That is,Xk(e) is the total number of calls made to the maximal matching oracle on the edgee when summing
over all rankingsπ, and performing an oracle call to the vertex-cover oracle from one of the endpoints of
πk. Observe that

m∑

k=1

Xk(e) =
∑

π∈Π

∑

v∈V

deg(v) ·Xπ(v, e) (4)

wheredeg(v) denotes the degree ofv in the graph, and for simplicity of the presenation we count each
self-loop as contributing2 to the degree of the vertex. We next give an upper bound onXk(e).

Lemma 3.4 For every edgee and everyk ∈ [m]:

Xk(e) ≤ 2(m− 1)! + (k − 1) · (m− 2)! · d . (5)

In order to prove Lemma 3.4, we establish the following lemma.

Lemma 3.5 For every edgee and everyk ∈ [m− 1]:

Xk+1(e)−Xk(e) ≤ (m− 2)! · d . (6)

Before proving Lemma 3.5, we show how Lemma 3.4 easily follows from it.

Proof of Lemma 3.4: We prove the lemma by induction onk. For the base case,k = 1,

X1(e) =
∑

π

(
Xπ(va(π1), e) + Xπ(vb(π1), e)

)
. (7)

By the definition of the vertex-cover oracle, when starting from eitherva(π1) or from vb(π1), only a single
call is made to the maximal matching oracle. This call is on the edgeπ1, which returnsTRUE without making

7

any further calls, because all edges (that share an endpointwith π1) have a larger rank. This implies that if
e = π1, thenXπ(va(π1), e) = Xπ(vb(π1), e) = 1, and otherwiseXπ(va(π1), e) = Xπ(vb(π1), e) = 0.
For any fixede, the number of rankingsπ such thate = π1 is simply(m− 1)! and soX1(e) = 2(m − 1)!,
as required.

We now turn to the induction step. Assuming the induction hypothesis holds fork − 1 ≥ 1, we prove it
for k > 1. This follows directly from Lemma 3.5 (and the induction hypothesis):

Xk(e) ≤ Xk−1(e) + (m− 2)! · d (8)

≤ 2(m− 1)! + (k − 2) · (m− 2)! · d + (m− 2)! · d (9)

= 2(m− 1)! + (k − 1) · (m− 2)! · d , (10)

and the lemma is established.

Proof of Lemma 3.5: Throughout the proof we fixk ande. For a rankingπ, let π′ be defined as follows:
π′

k+1 = πk, π′
k = πk+1 andπ′

j = πj for everyj /∈ {k, k + 1}.

Observation 3.6 If π and π′ are as defined above, then for each edgee whereπ(e) < k (and therefore,
π′(e) < k): MOπ(e) = MOπ′

(e).

Observation 3.6 is true due to the fact that ifπ(e) < k then by the definition ofπ′, we have thatπ′(e) = π(e).
Since in a recursive call we only go to an edge with a lower rank(see Observation 3.2), we get that the
execution ofMOπ(e) is equivalent to the execution ofMOπ′

(e).

We shall use the notationΠk for those rankingsπ in whichπk andπk+1 share a common endpoint. Note
that if π ∈ Πk, thenπ′ ∈ Πk as well (and ifπ /∈ Πk, thenπ′ /∈ Πk). For two edgese = (v1, v2) and
e′ = (v2, v3) (which share a common endpointv2), we letvc(e, e

′) = vc(e
′, e) = v2 (‘c’ for ‘common’)

andvd(e, e
′) = v1, vd(e

′, e) = v3 (‘d’ for ‘different’). If e ande′ are parallel edges, then we letvd(e, e
′) =

vd(e
′, e) beva(e) = va(e

′) andvc(e, e
′) = vc(e

′, e) bevb(e) = vb(e
′). If e is a self-loop on a vertexv1 that

is also an endpoint ofe′ (so thatv2 = v1), thenvd(e, e
′) = vc(e, e

′) = v1.

For any edgee and for1 ≤ k ≤ m− 1,

Xk+1(e)−Xk(e)

=
∑

π

(
Xπ(va(πk+1), e) + Xπ(vb(πk+1), e)

)
−
∑

π

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)
(11)

=
∑

π∈Πk

(
Xπ(va(πk+1), e) + Xπ(vb(πk+1), e)

)
−
∑

π∈Πk

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)

+
∑

π/∈Πk

(
Xπ(va(πk+1), e) + Xπ(vb(πk+1), e)

)
−
∑

π/∈Πk

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)
(12)

=
∑

π∈Πk

Xπ(vc(πk+1, πk), e) −
∑

π∈Πk

Xπ(vc(πk, πk+1), e) (13)

+
∑

π∈Πk

Xπ(vd(πk+1, πk), e)−
∑

π∈Πk

Xπ(vd(πk, πk+1), e) (14)

+
∑

π/∈Πk

(
Xπ(va(πk+1), e) + Xπ(vb(πk+1), e)

)
−
∑

π/∈Πk

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)
.(15)

8

By the definition ofvc(·, ·), for everyπ ∈ Πk we have thatvc(πk+1, πk) = vc(πk, πk+1) and so

Xπ(vc(πk+1, πk), e) = Xπ(vc(πk, πk+1), e) , (16)

implying that the expression in Equation (13) evaluates to0. Sinceπ′ ∈ Πk if and only if π ∈ Πk, we get
that ∑

π∈Πk

Xπ(vd(πk+1, πk), e) =
∑

π′∈Πk

Xπ′

(vd(π
′
k+1, π

′
k), e) =

∑

π∈Πk

Xπ′

(vd(π
′
k+1, π

′
k), e) , (17)

and
∑

π/∈Πk

(
Xπ(va(πk+1), e) + Xπ(vb(πk+1), e)] =

∑

π′ /∈Πk

(
Xπ′

(va(π
′
k+1), e) + Xπ′

(vb(π
′
k+1), e)

)

=
∑

π/∈Πk

(
Xπ′

(va(π
′
k+1), e) + Xπ′

(vb(π
′
k+1), e)

)
. (18)

Therefore,

Xk+1(e)−Xk(e) =
∑

π∈Πk

Xπ′

(vd(π
′
k+1, π

′
k), e) −

∑

π∈Πk

Xπ(vd(πk, πk+1), e)

+
∑

π/∈Πk

(
Xπ′

(va(π
′
k+1), e) + Xπ′

(vb(π
′
k+1), e)

)

−
∑

π/∈Πk

(
Xπ(va(πk), e) + Xπ(vb(πk), e)

)
. (19)

The next useful observation is that for everyπ /∈ Πk (and for everye andj ∈ {a, b}),

Xπ′

(vj(π
′
k+1), e) = Xπ(vj(πk), e) . (20)

This follows by combining the fact thatvj(π
′
k+1) = vj(πk) with Observations 3.2 and 3.6.

By combining Equation (19) with Equation (20) we obtain that

Xk+1(e)−Xk(e) =
∑

π∈Πk

Xπ′

(vd(π
′
k+1, π

′
k), e) −

∑

π∈Πk

Xπ(vd(πk, πk+1), e) . (21)

Therefore, we need only consider executions in which the underlying rankingsπ andπ′ belong toΠk,
and the execution starts from the vertexv1(π

′) = vd(π
′
k+1, π

′
k) = vd(πk, πk+1). We shall use the shorthand

notationv2(π
′) = vc(π

′
k+1, π

′
k) = vc(πk, πk+1), andv3(π

′) = vd(π
′
k, π

′
k+1) = vd(πk+1, πk). For an

illustration, see Figure 1. We shall make use of the following simple observation.

Observation 3.7 Let e be a self-loop. For any vertexv and rankingπ, if in the course of the execution of
VOπ(v) a call is made toMOπ(e), thenMOπ(e) = TRUE.

Observation 3.7 is true since if a call is made toMOπ(e) wheree is a self-loop, i.e.,e = (v, v) for some
vertexv, then from Observation 3.3 we know that all other edges incident tov with ranks smaller thanπ(e)
returnFALSE. Therefore, by the definition ofMOπ we get thatMOπ(e) = TRUE.

We would like to understand whenXπ′
(v1(π

′), e) = 1 while Xπ(v1(π
′), e) = 0. We consider three

possible cases (for an illustration see Figure 2) :

9

(a)

(c)

π
′

k
= πk+1

v3(π′)

π
′

k+1
= πk

v1(π
′) v2(π

′) (b)

(d)

(f)

π
′

k
= πk+1

v1(π
′) v2(π′)

π
′

k+1
= πk

(e)
π
′

k+1
= πk

v2(π
′)v1(π′)

π
′

k
= πk+1

v2(π′)v1(π′)

π
′

k+1
= πk

π
′

k
= πk+1

v1(π
′)

π
′

k+1
= πk

π
′

k
= πk+1

π
′

k
= πk+1

v2(π′)v1(π′)

π
′

k+1
= πk

Figure 1:An illustration for the various cases in whichπ ∈ Πk (i.e.,π′

k
andπ′

k+1 share at least one endpoint) and we

need to compare the executions ofVOπ(v1(π
′)) andVOπ

′

(v1(π
′)) (wherev1(π

′) = vd(π
′

k+1, π
′

k
) = vd(πk, πk+1)).

We refer to the different cases (a)–(f) in the analysis.

1. e = (v1(π
′), v2(π

′)) (so thatπ′(e) = k + 1 andπ(e) = k). In this case, ifXπ′
(v1(π

′), e) = 1,
thenXπ(v1(π

′), e) = 1. To verify this, note that ifXπ′
(v1(π

′), e) = 1 then by Observation 3.3,
MOπ′

(e′) = FALSE for each edgee′ wherev1(π
′) is one of its endpoints andπ′(e′) < k + 1. By

applying Observation 3.6 we get that for each edgee′ such thatπ(e′) < k we have thatMOπ(e′) =
MOπ′

(e′). Therefore, for each edgee′ such thatπ(e′) < k andv1(π
′) is one of its endpoints we have

thatMOπ(e′) = MOπ′

(e′) = FALSE. HenceXπ(v1(π
′), e) = 1.

We note that ifπ′
k is a self-loop (see cases (c) and (f) in Figure 1), then by Observation 3.7 we have

thatMOπ′

(π′
k) = TRUE. By the definition ofVOπ′

this implies thatπ′
k+1 = e will not be visited in

the course of the execution ofVOπ′

(v1(π
′)), so thatXπ′

(v1(π
′), e) is necessarily0.

2. e = (v2(π
′), v3(π

′)), (so thatπ(e) = k + 1 andπ′(e) = k). In this case it is possible (though not
necessary) thatXπ′

(v1(π
′), e) = 1 andXπ(v1(π

′), e) = 0.

3. e /∈ {(v1(π
′), v2(π

′)), (v2(π
′), v3(π

′))}. In this case it is also possible (though not necessary) that
Xπ′

(v1(π
′), e) = 1 andXπ(v1(π

′), e) = 0.

Out of all cases illustrated in Figure 1, this is possible only in cases (a) and (b). We next explain why
it is not possible in all other cases.

• Case (c). IfVOπ′

(v1(π
′)) visits e before it visitsπ′

k, then so doesVOπ(v1(π
′)) (from Observa-

tion 3.6). Otherwise,VOπ′

(v1(π
′)) visitsπ′

k first, but since it is a self-loop, from Observation 3.7
we have thatMOπ′

(π′
k) = TRUE. By the definition ofVOπ′

we get thatXπ′
(v1(π

′), e) = 0.

• Case (d). IfVOπ′

(v1(π
′)) visits e before it visitsπ′

k+1, then so doesVOπ(v1(π
′)) (from Ob-

servation 3.6). Otherwise, ifVOπ′

(v1(π
′)) visits π′

k+1 ande in the same sequence of recur-
sive calls without visitingπ′

k, then so doesVOπ(v1(π
′)). If there is no such sequence, then

VOπ′

(v1(π
′)) will visit π′

k+1 andπ′
k. Sinceπ′

k is a self-loop, from Observation 3.7 we have that

10

MOπ′

(π′
k) = TRUE, implying thatMOπ′

(π′
k+1) = false. Therefore, the sequence of recur-

sive calls that visitse in the execution ofVOπ′

(v1(π
′)), starts from an edge incident tov1(π

′)
whose rank is greater thank + 1, and the same sequence of calls is made in the execution of
VOπ(v1(π

′)).

• Case (e). Since the edges are parallel, if there is a sequenceof recursive calls that visitse in
the execution ofVOπ′

(v1(π
′)), then there is such a sequence in the execution ofVOπ(v1(π

′)),
where the only difference is that the first sequence includesπ′

k while the second includesπk

(which are parallel edges).

• Case (f). IfVOπ′

(v1(π
′)) visitse in a sequence of recursive calls that starts with an edge having

rank smaller thank, then from Observation 3.6 so willVOπ(v1(π
′)). Otherwise, sinceπ′

k is a
self-loop, by Observation 3.7, if a call is made toMOπ′

(π′
k), then it returnsTRUE, causing the

execution ofVOπ′

(v1(π
′)) to terminate without visiting any additional edges (so thate cannot

be visited in a sequence of recursive calls that starts with an edge having rank at leastk).

v2(π
′)v1(π

′)

π
′

k+1
= πk

v3(π
′)

π
′

k
= πk+1

e

1.

e

π
′

k
= πk+1

v3(π
′)

π
′

k+1
= πk

v1(π
′) v2(π

′)

v2(π
′)v1(π

′)

π
′

k+1
= πk

v3(π
′)

π
′

k
= πk+1

e

2.

3.

Figure 2: An illustration for the three possible (sub-)cases whenπ′ ∈ Πk: 1. e = (v1(π
′), v2(π

′)); 2. e =
(v2(π

′), v3(π
′)); 3. e /∈ {(v1(π

′), v2(π
′)), (v2(π

′), v3(π
′))}. This illustration corresponds to Case (a) in Figure 1 (i.e.,

no self-loops and no parallel edges).

For a fixed edgee we shall use the following notation for the sets of rankings that correspond to the last
two cases described above. Specifically:

• Let Πe,1 = Πe,1
k denote the set of all rankingsπ′ ∈ Πk where e = (v2(π

′), v3(π
′)) and

Xπ′
(v1(π

′), e) = 1. (Here we shall make the worst case assumption thatXπ(v1(π
′), e) = 0).

• Let Π¬e = Π¬e
k denote the set of all rankingsπ′ ∈ Πk wheree /∈ {(v1(π

′), v2(π
′)), (v2(π

′), v3(π
′))}

andXπ′
(v1(π

′), e) = 1 while Xπ(v1(π
′), e) = 0.

Thus,Xk+1(e)−Xk(e) ≤ |Π
e,1|+ |Π¬e|. In order to upper bound|Πe,1|+ |Π¬e|, we consider another set

of rankings:

11

• Let Πe,0 = Πe,0
k denote the set of all rankingsπ′ ∈ Πk such thate = (v2(π

′), v3(π
′)) and

Xπ′
(v1(π

′), e) = 0.

By the definition ofΠe,1 andΠe,0, we have that

|Πe,1|+ |Πe,0| ≤ (m− 2)! · d . (22)

This is true since each rankingπ′ ∈ Πe,1 ∪ Πe,0 is determined by first settingπ′(e) = k, then selecting
another edge incident to the endpointv2(π

′) of e (if e is a self-loop thenv2(π
′) = v1(π

′)) and giving it rank
k+1 (where there are at mostdeg(v2(π

′))−1 ≤ d−1 such edges), and finally selecting one of the possible
(m − 2)! rankings for the remaining edges. We next prove that|Π¬e| ≤ |Πe,0|, from which Lemma 3.5
follows.

To this end we prove the next claim.

Claim 3.8 There is an injection fromΠ¬e to Πe,0.

The proof of Claim 3.8 is very similar to a proof of a corresponding claim in [YYI09], but due to our need to
extend the proof to a graph with self-loops and parallel edges, and also due to several additional differences,
we include it here for completeness.

Proof: We start by making the following observations:

Observation 3.9 If π′ ∈ Π¬e and we are in Case (a) as illustrated in Figure 1, then in the course of the
execution ofVOπ′

(v1(π
′)) there is a consecutive sequence of recursive calls that includesπ′

k+1, π′
k ande

at the end. That is, there is a sequence of recursive calls corresponding to a path of edges(eℓ, eℓ−1 . . . e1)
such thateℓ = π′

k+1, eℓ−1 = π′
k ande1 = e.

To verify Observation 3.9, note that sinceπ′ ∈ Π¬e we know thatXπ′
(v1(π

′), e) = 1 andXπ(v1(π
′), e) =

0. The only difference between the execution ofVOπ′

(v1(π
′)) andVOπ(v1(π

′)) is thatMOπ′

(π′
k+1) can

call MOπ′

(π′
k) but MOπ(π′

k+1) = MOπ(πk) cannot callMOπ(π′
k) = MOπ(πk+1). Thus, the only way

thatVOπ′

(v1(π
′)) andVOπ(v1(π

′)) will create different sequences of recursive calls is whenVOπ′

(v1(π
′))

callsMOπ′

(π′
k+1) and thenMOπ′

(π′
k+1) callsMOπ′

(π′
k). Furthermore, these two calls have to be one after

the other, since by Observation 3.2, the ranks can only decrease in a sequence of recursive calls.

Observation 3.10 If π′ ∈ Π¬e and we are in Case (b) as illustrated in Figure 1, then in the course of
the execution ofVOπ′

(v1(π
′)) there is a consecutive sequence of recursive calls that starts with π′

k, and
ends withe (so that, in particular, it does not includeπ′

k+1). That is, there is a sequence of recursive calls
corresponding to a path of edges(eℓ−1 . . . e1) such thateℓ−1 = π′

k ande1 = e.

To verify Observation 3.10, note that sinceπ′ ∈ Π¬e we know thatXπ′
(v1(π

′), e) = 1 andXπ(v1(π
′), e) =

0. The execution ofVOπ′

(v1(π
′)) cannot visite in the course of a sequence of recursive calls starting

from an edge incident tov1(π
′) where the edge has ranking smallerk. Otherwise, from Observation 3.6

we would get thatVOπ(v1(π
′)) also visitse which contradicts the premise thatπ′ ∈ Π¬e. We also

know thatVOπ′

(v1(π
′)) cannot visitπ′

k+1. If it would have, then since it is a self-loop, from Observa-

tion 3.7,MOπ′

(π′
k+1) = TRUE, causingVOπ′

(v1(π
′)) to terminate without visitinge, which contradicts

Xπ′
(v1(π

′), e) = 1.

12

We shall now prove Claim 3.8. Letπ1 be a ranking inΠ¬e (so thatπ1(e) /∈ {k, k + 1}). By the
definition ofΠ¬e and by Observations 3.9 and 3.10, we have the following. In Case (a), the execution of
VOπ1

(v1(π
1)) induces a sequence of (recursive) calls to the maximal matching oracle, where this sequence

corresponds to a pathP = (eℓ, . . . , e1) such thateℓ = π1
k+1, eℓ−1 = π1

k, ande1 = e. In Case (b), the

execution ofVOπ1

(v1(π
1)) induces a sequence of (recursive) calls to the maximal matching oracle, where

this sequence corresponds to a pathP ′ = (eℓ−1, . . . , e1) such thateℓ−1 = π1
k, ande1 = e. Since in Case

(b) P is also a path in the graph, we may refer to the pathP in both cases (and take into account, if needed,
that in Case (b)eℓ = π1

k−1 is a self-loop and is not part of the sequence of recursive calls that reachese).
While we do not know the rankings of the edgeseℓ−2, . . . e1, we know from Observation 3.2 that they are
in monotonically decreasing order, and that they are all smaller thank. We also know that the path does
not include any parallel edges. This is true since ifet andet−1 are adjacent edges in the pathP and they
are parallel edges, then from Observation 3.11π′(et−1) < π′(et). But since they are parallel, they have
the same endpoints, therefore, by the definition ofVOπ′

and ofMOπ′

, the vertex/edge from which the call
MOπ′

(et) was made, would have calledMOπ′

(et−1). Furthermore, with the exception ofπ′
k+1 in Case (b),

the the only edge along the pathP that might be a self-loop ise. Otherwise, from Observation 3.7, the
self-loop will return true, and thus pathP will not visit e.

We can writeP asP = (π1
σ(ℓ), . . . π

1
σ(1)) whereσ(i) = π1(ei), so thatσ(ℓ) = k + 1 andσ(ℓ− 1) = k.

We next define a mappingϕ between rankings, such thatϕ(π1) = π0, where we shall show thatπ0 ∈ Πe,0,
and thatϕ is one-to-one. The rankingπ0 is defined as follows by “rotating” the ranks of the edges onP (and
leaving the ranks of all other edges as inπ1). Namely,π0(e2) = k + 1, π0(e1) = k, andπ0(ej) = σ(j − 2)
for every3 ≤ j ≤ ℓ. For an illustration, see Table 1. We first verify thatϕ is a projection fromΠ¬e to Πe,0.

eℓ eℓ−1 . . . e3 e2 e1 = e

Rank inπ1 σ(ℓ) = k + 1 σ(ℓ− 1) = k . . . σ(3) σ(2) σ(1)

Rank inπ0 σ(ℓ− 2) σ(ℓ− 3) . . . σ(1) σ(ℓ) = k + 1 σ(ℓ− 1) = k

Table 1: Ranking ofP = (eℓ, . . . , e1) in π1 and inπ0

Namely, we need to show that:

• π0 ∈ Πk, i.e.,π0
k+1 andπ0

k share an endpointv2(π
0), ande = (v2(π

0), v3(π
0)).

• Xπ0

(v1(π
0), e) = 0 (that is, the execution ofVOπ0

(v1(π
0)) does not create a call toMOπ0

(e)). In
other words, (the execution of)VOπ0

(v1(π
0)) does not visite.

The first item directly follows from the definition ofπ0. We thus turn to the second item. Recall that by
our notational convention,v1(π

0) = vd(π
0
k+1, π

0
k) = vd(e2, e1) (i.e, it is the endpoint thate2 does not share

with e1) so that it is the common endpoint ofe2 ande3, i.e.,vc(e2, e3). Since

π0(e3) = σ(1) < σ(ℓ) = k + 1 = π0(e2) , (23)

the execution ofVOπ0

(v1(π
0)) will visit e3 before visitinge2. Sinceπ0(e) = k, during the execution of

VOπ0

(v1(π
0)), the call toMOπ0

(e3) will not cause a recursive call toMOπ0

(e).

Observe that in the execution ofVOπ1

(v1(π
1)), the call toMOπ1

(e3) creates a recursive call one2

(sincee2 follows e3 on the pathP). Therefore, it must be the case thatMOπ1

(e′)=FALSE for everye′ that
has a common endpoint withe3 and such thatπ1(e′) < σ(2). By the definition ofϕ, all edges that are not

13

on the pathP have the same ranks inπ0 and inπ1. Therefore, all edges with rank lower thanσ(1) have
the same rank inπ1 and inπ0. It follows that for everye′ that has a common endpoint withe3 and such
thatπ1(e′) < σ(2), MOπ0

(e′) = FALSE. We can conclude thatMOπ0

(e3) = TRUE and soVOπ0

(v1(π
0))

returnsTRUE without visitinge1 = e, as required.

It remains to show thatϕ is an injection fromΠ¬e to Πe,0. Assume, contrary to the claim, thatϕ is not
an injection. That is, there are two different rankingsπ1 6= π2 ∈ Π¬e whereϕ(π1) = ϕ(π2). Let P 1 =
(e1

ℓ1
, e1

ℓ1−1 . . . e1
1) andP 2 = (e2

ℓ2
, e2

ℓ2−1 . . . e2
1) be the paths that correspond to the sequence of recursive calls

to the maximal matching oracle, in the executions ofVOπ1

(v1(π
1)) andVOπ2

(v1(π
2)) respectively, where

e1
1 = e2

1 = e, π1(e1
ℓ1

) = π2(e2
ℓ2

) = k + 1 andπ1(e1
ℓ1−1) = π2(e2

ℓ2−1) = k (recall that ifπ1 corresponds to
Case (b), thene1

ℓ1
is a self-loop and is not actually part of the sequence of recursive calls that reachese, and an

analogous statement holds forπ2). Let s be the largest index such that(e1
s, e

1
s−1 . . . e1

1) = (e2
s, e

2
s−1 . . . e2

1).
We denote this common subsequence by(es, es−1 . . . e1). Observe thats ≥ 2. This is true since: (1) By the
definitions of the paths,e1

1 = e2
1 = e, and (2) given thatϕ(π1) = ϕ(π2) = π0 andπ0(e1

2) = π0(e2
2) = k+1,

it holds thate1
2 = e2

2.

By the definitions ofϕ ands we have thatπ1(ei) = π2(ei) for eachi ∈ [s − 2]. Thus,σ1(i) = σ2(i)
for eachi ∈ [s − 2], where we shall sometimes use the shorthandσ(i) for this common value. For an
illustration, see Table 2.

Rank fromϕ(π1) Rank fromϕ(π2)

π0(e1) σ1(ℓ1 − 1) = k σ2(ℓ2 − 1) = k

π0(e2) σ1(ℓ1) = k + 1 σ2(ℓ2) = k + 1

π0(e3) σ1(1) σ2(1)
...

...
...

π0(es−1) σ1(s− 3) σ2(s− 3)

π0(es) σ1(s− 2) σ2(s− 2)

Table 2:Ranks of edgese1
1 = e2

1 . . . e1
s−2 = e2

s−2 are equal inπ1 andπ2

.

The next observation will be useful.

Observation 3.11 For every edgee′, if π1(e′) < min{σ1(s − 1), σ2(s − 1)} or π2(e′) < min{σ1(s −

1), σ2(s− 1)}, thenπ1(e′) = π2(e′). Therefore,MOπ1

(e′) = MOπ2

(e′) for e′ such thatπ1(e′) = π2(e′) <
min{σ1(s − 1), σ2(s− 1)}.

We consider two cases:

1. P 2 is a suffix ofP 1 or P 1 is a suffix ofP 2. Without loss of generality, assume thatP 2 is a suffix of
P 1, so thats = ℓ2.

2. Otherwise (neither path is a suffix of the other), assume without loss of generality thatσ1(s − 1) <
σ2(s− 1).

In both cases, sincee1
s+1 is not onP 2, ϕ, when applied toπ2 does not change the ranking ofe1

s+1. That is,
π0(e1

s+1) = π2(e1
s+1). Since (by the definition ofϕ) π0(e1

s+1) = σ1(s− 1), we get that

π2(e1
s+1) = σ1(s − 1) = π1(e1

s−1) . (24)

14

In the first case (whereP 2 is a suffix ofP 1), we have thatσ2(s− 1) = k, while σ1(s− 1) < k, and so

σ1(s− 1) < σ2(s− 1) (= π2(e2
s−1)) . (25)

In the second case, this inequality was made as an explicit assumption.

(a)

(c)

π
′

k
= πk+1

v3(π′)

π
′

k+1
= πk

v1(π
′) v2(π

′) (b)

(d)

(f)

π
′

k
= πk+1

v1(π
′) v2(π′)

π
′

k+1
= πk

(e)
π
′

k+1
= πk

v2(π
′)v1(π′)

π
′

k
= πk+1

v2(π′)v1(π′)

π
′

k+1
= πk

π
′

k
= πk+1

v1(π
′)

π
′

k+1
= πk

π
′

k
= πk+1

π
′

k
= πk+1

v2(π′)v1(π′)

π
′

k+1
= πk

Figure 3:An illustration for the proof of Claim 3.8.

We thus have that the execution ofMOπ2

(e2
s) visits e1

s+1 before visitinge2
s−1. We would like to under-

stand what occurs in the call toMOπ2

(e1
s+1). If we are in Case (b) andP 1 = (π1

k+1, π
1
k, e), i.e.,s = k, then,

sincee1
s+1 = π1

k+1 is a self-loop, from Observation 3.7,MOπ2

(e1
s+1) = TRUE. HenceMOπ2

(e2
s = e1

s)
returnsFALSE without visitinge2

s−1 = e, but this stands in contradiction to the definition ofP 2. If we are in
Case (a), then since the pathP 1 corresponds to a sequence of recursive calls to the maximal-matching oracle,
we have that for every edgee′ that shares an end-point withe1

s+1 and such thatπ1(e′) < σ1(s) = π1(e1
s),

the call toMOπ1

(e′) returnsFALSE. Combining this with Observation 3.11, we get that for everyedge
e′ that shares an end-point withe1

s+1 and such thatπ2(e′) < σ1(s), the call toMOπ2

(e′) returnsFALSE.

By Equation (24) we get thatMOπ2

(e1
s+1) returnsTRUE. Hence,MOπ2

(e2
s = e1

s) returnsFALSE without
visiting e2

s−1, but this stands in contradiction to the definition ofP 2. (Claim 3.8)

Having established Claim 3.8, the proof of Lemma 3.5 is completed.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1: Recall thatd denotes the maximum degree,d̄ denotes the average degree andρ
denotes the ratio between the maximum degree and the minimumdegree, which is denoted bydmin (where
the latter is at least1 since we assumed without loss of generality that there are noisolated vertices). By
combining Equations (2) and (4) and applying Lemma 3.4 (as well as recalling that we counted each self-

15

loop as contributing2 to the degree of a vertex), we get that:

1

m!
·
1

n
·
∑

π∈Π

∑

v∈V

N(π, v)

≤
1

m!
·
1

n
·

1

2dmin

∑

e∈E

m∑

k=1

Xk(e) (26)

≤
1

m!
·
1

n
·

1

2dmin
·m ·

(
m · 2(m− 1)! +

m ·m− 1

2
· (m− 2)! · d

)
(27)

= O

(
m

n
·

d

dmin

)
= O(ρ · d̄) , (28)

and we obtain the bound claimed.

4 Limiting the Exploration of Neighbor Sets

The analysis in the previous section suffices to show an algorithm whose query complexity and running time
are a factor ofd larger than the number of oracle calls that it makes. The factor of d in this expression is
due to querying all edges that are incident to the endpoints of each edge for which a call to the maximal
matching oracle is made (where, as we explain momentarily, arandom ranking can be selected in an online
fashion).

This section is devoted to a method for selecting incident edges of low rank efficiently without querying
entire neighborhoods of relevant vertices. By applying themethod, we reduce the query complexity and the
running time by a factor of almostd. The main challenges here are to ensure that the ranks of encountered
edges indeed come from the uniform distribution over all permutations and that the same decision with
respect to a rank of an edge is made at both endpoints of the edges.

Replacing a random ranking with random numbers. The oracle construction described as Algorithm 1
and Algorithm 2 uses a random rankingπ : E → [m] of edges. We start by replacing a random ranking
of edges with random real numbers in(0, 1] selected uniformly and independently for every edgee ∈ E,
yielding a vectorσ : E → (0, 1] which we use in the same way as the rankingπ. Since the probability that
two edges are assigned the same real number is0, whenever the oracle compares the ranks of two edgese
ande′, it can check whetherσ(e) < σ(e′), instead of whetherπ(e) < π(e′), effectively yielding a random
ranking of edges. Since eachσ(e) is independent, this small conceptual shift allows one to generateσ(e) at
random in an easier manner and to simplify the analysis. Though it is not possible to generate and store real
numbers in(0, 1], we later introduce a proper discretization.

4.1 A Data Structure for Accessing Neighbors

The oracle described as Algorithms 1 and 2 always collects all edges around the vertex or edge being
considered and sorts them to explore them recursively in increasing order of their random numbers. In this
section we introduce a data structure that is responsible for generating the random numbers and providing
edges for further exploration in the desired order.

For every vertexv ∈ V , we have a copyneighbors[v] of the data structure. (In fact, a copy for a
given vertex is created when it is accessed for the very first time.) From the point of view of the exploration

16

algorithm, the data structureexposes only one operation: lowest(k), wherek is a positive integer. The
operationneighbors[v].lowest(k) lists edges incident tov in order of the random numbers assigned to
them, omitting all appearances of parallel edges or self-loops except the first one, which has been assigned
the lowest number. For each positivek, the operation returns a pair〈w, r〉, wherew is a vertex andr is a
number in(0, 1] ∪ {∞}. If r 6= ∞, then(v,w) is the edge with thekth lowest number in the above order,
andr is the number assigned to it. Otherwise, the list is shorter thank andr = ∞ indicates the query
concerned a non-existing edge. We present the implementation of the data structure in Section 4.4.

We rewrite Algorithms 1 and 2 to use the data structure, and present them as the oracleVOσ(v) in
Algorithm 3 and the oracleMOσ(e) in Algorithm 4, respectively.

Algorithm 3 : An oracleVOσ(v) for a vertex cover based on the input from the data structuresneighbors,
which assigns edgese random numbersσ(e) (online). Given a vertexv, the oracle returnsTRUE if v belongs
to the corresponding vertex cover and it returnsFALSE otherwise.

i:=11

〈w, r〉 := neighbors[v].lowest(i)2

while r 6=∞ do3

if MOσ((v,w)) = TRUE then4

return TRUE5

i := i + 16

〈w, r〉 := neighbors[v].lowest(i)7

return FALSE8

Algorithm 4 : An oracleMOσ((u, v)) for a maximal matching based on the input from the data structures
neighbors, which assigns edgese random numbersσ(e) (online). Given an edge(u, v), the oracle returns
TRUE if (u, v) belongs to the corresponding matching and it returnsFALSE, otherwise.

if MOσ((u, v)) has already been computedthen1

return the computed answer2

k1 := 1 andk2 := 13

〈w1, r1〉 := neighbors[u].lowest(k1)4

〈w2, r2〉 := neighbors[v].lowest(k2)5

while w1 6= v or w2 6= u do6

if r1 < r2 then7

if MOσ((u,w1)) = TRUE then return FALSE8

k1 := k1 + 19

〈w1, r1〉 :=neighbors[u].lowest(k1)10

else11

if MOσ((v,w2)) = TRUE then return FALSE12

k2 := k2 + 113

〈w2, r2〉 := neighbors[v].lowest(k2)14

return TRUE15

17

Claim 4.1 Let σ be an injection fromE to (0, 1]. Letπ : E → [|E|] be the corresponding ranking defined
in such a way that for every edgee, σ(e) is theπ(e)th lowest number in the set{σ(e′) : e′ ∈ E}.

For every vertexv, the answer returned byVOσ(v) (Algorithm 3) is the same as the answer returned
byVOπ(v) (Algorithm 1) provided the operationlowest works as specified and gives answers consistent
with σ.

Proof: It is easy to verify that the claim holds when there are no parallel
edges. This is true because when there are no parallel edges,a sequence of calls to
neighbors[v].lowest(1), . . . ,neighbors[v].lowest(k) simply returns the firstk edges inci-
dent tov in order of increasing rank. Furthermore, when called on an edge(u, v), Algorithm 4 effectively
merges the two corresponding lists of adjacent edges (i.e.,those incident tou and those incident tov) to
obtain a single list sorted according to rank, and makes recursive calls in the order dictated by the list.

It remains to verify that the same is true when there are parallel edges. For a fixed choice ofσ and
the induced rankingπ consider the two trees of recursive calls when callingVOπ(v) (Algorithm 1) and
VOσ(v) (Algorithm 3), where the former calls the oracleMπ (Algorithm 2), and the latter calls the oracle
Mσ (Algorithm 4). When we refer to an edge in in the tree we actually mean an occurence of an edge inG
on a path of recursive calls.

These trees are both rooted atv, and with each edge there is an associated rank (number) and an asso-
ciated answer computed by the corresponding maximal matching oracle. Recall that each path of recursive
calls from the root to a leaf passes through edges with decreasing ranks (numbers). Furthermore, in both
trees, if an edge(u, v) in the tree is associated with the answerFALSE, then there must be an edge(u,w) (or
(v,w)) adjacent to it in the tree with lower rank (a “child” of this edge) that is associated with the answer
TRUE, and it is the highest ranking child that(u, v) has. If(u, v) is associated with the answerTRUE, then
all the children of(u, v) in the tree are associated with the answerFALSE. It will actually be convenient to
consider the full recursion trees without the “memoization” rule that we employ (which says that once an
answer is determined for an edge it is not computed again). This in particular implies that for each edge that
is the last edge on a path of recursive calls, the answer associated with it must beTRUE.

By the definition ofVOσ(v) and the operationlowest, the tree corresponding toVOσ(v) contains
only edges that have minimal ranking among each set of parallel edges that connect a pair of vertices. We
claim that this tree is a “pruned” version of the tree that corresponds toVOπ(v), in the sense that all subtrees
containing non-minimally ranked parallel edges are removed, and the answers associated with the remaining
edges (and hence with the rootv) are exactly the same.

Let T π(v) denote the tree of recursive calls forVOπ(v), and leth be the height ofT π(v). Starting
from ℓ = h and going up the tree, we show that we can remove all non-minimally ranked parallel edges in
level ℓ of T π(v) without altering the answer for their parent edges. Forℓ = h, we claim that there are no
non-minimally ranked parallel edges in the last level ofT π(v), so that no pruning needs to be performed.
To verify this, assume in contradiction thate is a non-minimally ranked parallel edge between verticesu
andw wheree is at the end of a recursive path of lengthh in T π(v). Sincee is not minimally ranked, there
should be a “sibling” ofe in the tree which correspond to the minimally ranked edgee′ betweenu andw.
Sinceπ(e′) < π(e), it must be the case that the answer associated withe′, that is,Mπ(e′), is FALSE. But e′

also belongs to levelh, so thate′ is the last edge on a path of recursive calls, and hence cannotbe answered
FALSE.

Assuming we have performed the pruning successfully for alllevelsℓ < ℓ′ ≤ h, we show that we can
perform it for levelℓ. Consider a non-minimally ranked parallel edgee between verticesu andv in level ℓ
of T π(v). As argued above, there is a “sibling” ofe in the tree which correspond to the minimally ranked

18

edgee′ betweenu andw. Sinceπ(e′) < π(e), it must be the case that the answer associated withe′, that
is, Mπ(e′), is FALSE. This implies thate′ has a childe′′ in the tree resulting from pruning all non-minimal
parallel edges from levelsℓ′ > ℓ, such thatMπ(e′′) = TRUE. But sinceπ(e′′) < π(e′) < π(e), ande′′ is
also adjacent toe, we get thatMπ(e) is FALSE as well. Hence, it is possible to prunee from the tree without
altering the answer obtained for its parent.

4.2 Implementinglowest: The High-Level Idea

The pseudo-code for the procedurelowest as well as the data structure that it uses, are given in full detail
in Subsection 4.4. Here we give a high-level description. For the sake of simplicity of the presentation, in
this description we assume that there are no parallel edges.

Roughly speaking, the procedurelowest for a vertexv is implemented in “batches”. Namely, con-
sidering intervals of(0, 1] of the form (2−i, 2−i+1] (for i ∈ [d⋆], whered⋆ = ⌈log d⌉, as well as the
interval (0, 2−d⋆]), the procedure does the following. It first decides which edges incident tov should be
assigned a value in the current interval(2−i, 2−i+1]. In this stage each edge is identified with its label (in
{1, . . . ,deg(v)}). The procedure then determines the identity of the other endpoint of each of these edges
by performing a neighbor query, and it assigns the edge a value σ((v,w)), selected uniformly at random
from the interval. This assignment is performed unless a certain constraint is discovered due to information
held inneighbors[w], as we explain subsequently. Onceσ((v,w)) is determined, the other endpoint of
the edge,w, is “notified”. That is, the data structureneighbors[w] is updated with this new information.
The procedure “opens” a new interval(2−i+1, 2−i+2] if the indexk it is called with is such that the number
of neighborsw of v whose identity has been revealed and such thatσ((v,w)) ≤ 2−i+1 is strictly less thank.
Thus, the procedure performs queries and assigns valued to edges “on demand”, but it does so for “batches”
of edges. More precise details follow.

The data structureneighbors maintains two values for each vertexv: lb, andnext lb (where the
latter is always twice the former). When a vertex is first encountered,lb is set to0 andnext lb is set
to 2−d⋆ . Second, the data structure maintains a dictionaryassigned number, which holds, for those
verticesw that are known to be neighbors ofv, the valueσ((v,w)) that was assigned to the edge between
them (initially, the dictionary is empty). The subset of indices in{1, . . . ,deg(v)} that correspond to edges
for which the other endpoint has not been revealed (and do notyet have an associated value), are considered
unassigned. Third, the data structure maintains a list of pairs〈w, r〉, wherew is a (known) neighbor ofv
andr = σ((v,w)). This list is sorted in ascending order ofr’s, and it contains exactly thosew for which
the correspondingr is at mostlb.

If a call is made toneighbors[v].lowest(k) with k > deg(v) then it returns5 〈v,∞〉. Otherwise, the
procedure does the following until the length ofsorted is at leastk. It first considers those edges(v,w)
incident tov that were already assigned a valuer and this value belongs to the interval(lb,next lb] (that
is, assigned number[w] ∈ (lb,next lb]). The setting of the valuer for each such edge(v,w) was
performed previously in the course of call toneighbors[w].lowest(·). Let the corresponding subset of
pairs〈w, r〉 be denotedS.

The procedure next selects a subsetT of {1, . . . ,deg(v)} containing the labels of those (additional)
edges that it will (tentatively) assign a value in (lb,next lb]. Putting aside for now the issue of time-
efficiency (which we return to later), this can be done by flipping a coin with biasnext lb−lb

1−lb indepen-

5Recall that we assume that there are no parallel edges, or else 〈v,∞〉 is returned ifk exceeds the “effective” degree ofv, that
is, counting parallel edges as a single edge.

19

dently for each edge label in the subset of unassigned edge labels. For eacht ∈ T , the procedure now
performs a neighbor query to obtain thetth neighbor ofv. Denoting this neighbor byw, let lb’ denote
the lower boundlb held byw, that is, in the data structureneighbors[w]. If lb′ ≤ lb, so that the
lower bound constraint imposed byw is no larger than that imposed byv, then the following operations are
performed.

First, a random numberr in the interval (lb,next lb] is selected uniformly at random, and
assigned number[w] is set tor. In addition, assigned number[v] is set tor in the data struc-
ture neighbors[w] (so that w is “notified” of the revealed edge(v,w) as well as the assignment
r = σ((v,w))). Finally, the pair〈w, r〉 is added toS.

If lb′ > lb, which means thatlb′ ≥ next lb (given the way the intervals are defined), then the lower
bound constraint imposed by the end pointw of the edge(v,w) does not allow the edge to be assigned a
value in the interval (lb,next lb], and so effectively its selection toT is retracted. Note that since the
decision whether an edge label is added toT is done independently for the different edges, the end effect (of
not assigning(v,w) a value in (lb,next lb]) is exactly the same as the one we would get if we had the
knowledge in advance (before selectingT), that the corresponding edge labelt should not be selected.

After going over all labelst in T , the resulting setS of pairs〈w, r〉 is sorted in ascending order ofr’s,
and it is appended to the end of the listsorted. Thus,sorted now includes all pairs〈w, r〉 such thatw is
a neighbor ofv, the value assigned to this edge isr, andr ≤ next lb. The variableslb andnext lb are
then updated so thatlb is set tonext lb andnext lb is set to2 ·next lb. Once the length ofsorted
is at leastk, the procedure returnssorted[k]. In Subsection 4.4 we formally establish that the distribution
of random numbers the data structuresneighbors[v] provide access to via the operationlowest(k) is
the same as assigning independently at random a number from the range(0, 1] to each edge.

4.3 Generating Random Numbers

In this subsection we describe a random process that generates random numbersσ(e) for edgese ∈ E. The
procedurelowest applies this process in the course of its executions. In the remainder of this section,|I|
denotes the length of an arbitrary real intervalI. We do not distinguish open and closed intervals here. For
instance,|(0, 1)| = |[0, 1]| = |(0, 1]| = |[0, 1)| = 1.

Let d be an upper bound on the maximum vertex degree. We setd⋆ = ⌈log d⌉. For every edgee, the
numberσ(e) should be selected independently, uniformly at random fromthe range(0, 1]. We partition this
range intod⋆ + 1 intervals. We set

Ii =

{
(2−i, 2−i+1] for i ∈ [d⋆],

(0, 2−d⋆] for i = d⋆ + 1.

Algorithm 5 : A Process for Selecting a Random Number Assigned to an Edge

for i← d∗ + 1 downto 2 do1

with probability |Ii|
P

1≤j≤i |Ij |
: return a number selected fromIi uniformly at random (and2

terminate)

return a number selected fromI1 uniformly at random3

We describe our process as Algorithm 5. The process first selects one of the intervalsIi, and then selects
a number uniformly at random from this interval. The selection of the interval is conducted as follows. We

20

consider the intervals in reverse order, fromId⋆+1 to I1. For a considered interval, we decide that the
number belongs to this interval with probability equal to the length of the interval over the sum of lengths of
all the remaining intervals. The process selects each interval with probability proportional to its length, and
since the lengths of all intervals sum up to 1, the number thatthe process returns is uniformly distributed on
the entire interval(0, 1].

Corollary 4.2 Algorithm 5 selects a random number from the uniform distribution on(0, 1].

Note that by simulating a few iterations of the loop in the above process, one can decide that the number
assigned to a given edge is either a specific number less than or equal to2−i, or that it is greater than2−i

without specifying it further, for somei. Later, whenever more information about the number is needed,
we may continue with consecutive iterations of the loop. As we see later, we use the process in our data
structuresneighbors[v] to lower the query and time complexity of the resulting vertex cover algorithm.

4.4 Data Structures

We now describe the data structuresneighbors[v]. Each data structureneighbors[v] simulates the
random process described in Section 4.3 for all edges incident to v in the course of the executions of
neighbors[v].lowest. The data structure simultaneously makes a single iteration of the loop in Al-
gorithm 5 for all incident edges. It may be the case that for some edge(v,w), the random number has
already been specified. In this case, the result of the iteration for this (v,w) is discarded. It may also be
the case that this iteration of the loop has already been taken care of byneighbors[w], the data structure
for the other endpoint of the edge. The data structures communicate to make sure that a second execution
of a given iteration does not overrule the first. The data structures are designed to minimize the amount of
necessary communication. Note that if a data structure doesnot have to communicate with a data structure
at the other endpoint of a given neighbor, it does not even have to know the neighbor it is connected to with
a given edge, which can be used to save a single query. By usingthis approach, we eventually save a factor
of nearlyd in the query complexity.

Each data structureneighbors[v] supports the following operations:

neighbors[v].lowest(k): As already mentioned, this is the only operation that is directly used by the
oracles (Algorithm 3 and Algorithm 4). It returns a pair〈w, r〉, where(v,w) is the edge with thekth

lowest random number assigned to edges incident tov, omitting a second and furher appearances for
parallel edges, andr is the random value assigned to(v,w). If r = ∞, thenk is greater than the
length of such a defined list.

neighbors[v].lower bound(): The operation returns the current lower bound the data structure im-
poses on the edges that are incident tov and have not been assigned a specific random number yet.
The set of possible values returned by the procedure is{0} ∪ {2i : −d⋆ ≤ i ≤ 0}. Let ℓv be the num-
ber returned by the operation. It implies that the data structure simultaneously simulated the random
process described in Section 4.3 for incident edges until itmade sure that the random numbers that
have not been fixed belong to(ℓv, 1].

Furthermore, let(v,w) be an edge in the graph. Letℓv and ℓw be the numbers returned by the
operation forneighbors[v] andneighbors[w], respectively. If no specific random number has
been assigned to(v,w), then we know that the random number will eventually be selected uniformly
at random from(max{ℓv, ℓw}, 1].

21

neighbors[v].set value(w, r): It is used to notify the data structureneighbors[v] that the ran-
dom value assigned to(v,w) has been set tor. This operation is used when the data structure
neighbors[w] assigns a specific random number to(v,w). Before assigningr, the data struc-
ture neighbors[w] has to make sure thatr > neighbors[v].lower bound(), i.e., it has not
been decided by the data structureneighbors[v] that the random number assigned tov is greater
thanr.

To implement the above operations, each data structureneighbors[v] maintains the following infor-
mation:

lb: The variable specifies the lower bound on the incident edges that were not assigned a random number
yet. This is the value returned by the operationneighbors[v].lower bound(). This is also the
value at which the simulation of the process generating random number for edges incident tov has
stopped.

next lb: If specific random numbers assigned to more edges are necessary, the next considered range of
random numbers will be(lb,next lb], andnext lb will become the new lower bound for the
edges that have not been assigned any random number. This variable is redundant, because its value
is implied by the value oflb, but using it simplifies the pseudocode.

assigned number: This is a dictionary that maps neighborsw of v to numbers in(0, 1]. Initially, the dic-
tionary is empty. Ifassigned number[w] = NONE, i.e., there is no mapping forw, then no specific
random number has been assigned to any of the edges(v,w) yet. Otherwise,assigned number[w]
is the lowest random number that has been assigned to any parallel edge(v,w).

sorted: This is a list consisting of pairs〈w, r〉, wherew is a neighbor ofv andr is the number assigned
to the edge(v,w). It is sorted in ascending order ofr’s, and it contains exactly thosew for which
the edge(v,w) (with the lowest assigned random number) has an assigned random number less than
or equal tolb. For all neighborsw that do not appear on the list, the lowest number assigned to any
edge(v,w) is greater thanlb.

We give pseudocode for all data structure operations as Algorithms 6, 7, 8, and 9. We postpone all issues
related to an efficient implementation of the data structureto Section 4.6. Three of them are straightforward,
and we only elaborate on the operationneighbors[v].lowest(k) (see Algorithm 9).

Algorithm 6 : The procedure for initializingneighbors[v]

lb := 01

next lb := 2−d⋆2

assigned number := {empty map}3

sorted := {empty list}4

Algorithm 7 : The procedureneighbors[v].set value(w, r)

assigned number[w] := r1

22

Algorithm 8 : The procedureneighbors[v].lower bound()

return lb1

As long as not sufficiently many lowest random numbers assigned to edges incident tov have been
determined, the operationlowest simulates the next iteration of the loop in the random process that we
use for generating random numbers. LetI be the interval(lb,next lb]. The operation wants to determine
all random numbers assigned to edges incident tov that lay inI. First, in Line 2, it determines the random
numbers inI that have already been assigned by the other endpoints of corresponding edges. In Line 3, the
operation simulates an iteration of the loop of the random process for all edges incident tov to determine
a subset of them that will have numbers inI (unless it has already been decided for a given edge that its
random number is not inI). In the loop in Line 4, the operation considers each of theseedges. Let(v,w)
be one of them, wherew is its other endpoint, queried by the operation. In Line 6, the operation generates
a prospective random numberr ∈ I for the edge. First, the operation makes sure that this iteration of the
has not been simulated by the other endpoint (the condition in Step 7). If this is the case, the operation
considers two further cases. Ifr is lower than the lowest number assigned to any parallel edge(v,w) so
far, the procedure updates the appropriate data structureswith this information (Steps 8–11). If no random
number has ever been assigned to any edge(v,w), the procedure assigns it and updates the data structures
appropriately (Step 12–15). When the operation finishes going over the list of all potentially selected edges
and eventually determines all incident edges with new lowest random numbers, it sorts them in order of
their random number and appends them in this order to the listsorted. Finally, when sufficiently many
edges with lowest numbers have been determined, the operation returns the identity of the edge with thekth

smallest number.

Lemma 4.3 The lists of incident edges that the data structuresneighbors[v] provide access to via the
operationlowest(k) are distributed in the same way as when each edge is assigned independently at
random a number from the range(0, 1].

Proof: We know from Corollary 4.2 that the random process generatesa random number from the distribu-
tion (0, 1]. Each data structureneighbors[v] simulates consecutive iterations of the loop in this process
for all edges incident tov. Consider a group of parallel edges(v,w). For each of these edges, the ran-
dom process is simulated by bothneighbors[v] andneighbors[w]. We have to show that until the
lowest number assigned to the edges in this group is determined (which happens when it is added to the
list sorted), then for each edge the decision made in the first simulationmatters. Why is this the case?
Recall that the random process considers intervalsId⋆+1, Id⋆

, . . . ,I1 as the sources of the random number
in this order. As long as bothneighbors[v] andneighbors[w] reject a given interval their decisions
are the same, so the first decision is in effect. Now suppose without loss of generality thatneighbors[w]
simulates a consecutive iteration of the loop in the random process and decides to useIi as the source of the
random number for a given edge(v,w) in Step 3 of the operationlowest. If neighbors[v] has already
simulated this iteration (the condition verified in Step 7),the operation does not proceed. Otherwise, the ran-
dom number assigned to the edge is considered for a new minimum random number assigned to this group
of parallel edges. Note that since the operation keeps simulating iterations even after a random number is
assigned, it could be the case for a specific copy of(v,w) that a new, higher random number is considered,
but it is ignored, because it is higher than the first decision, which is the only one that has impact on the list
that the operationlowest provides access to.

23

Algorithm 9 : The procedureneighbors[v].lowest(k)

while length(sorted) < k andlb < 1 do1

S := set of pairs〈w, r〉 such thatassigned number[w] = r andr ∈ (lb,next lb]2

T := subset of{1, . . . ,deg(v)} with each number included independently3

with probability next lb−lb
1−lb

foreach t ∈ T do4

w := tth neighbor ofv5

r := a number selected uniformly at random from(lb,next lb]6

if neighbors[w].lower bound() ≤ lb then7

if ∃〈w, r′〉 ∈ S s.t. r < r′ then8

assigned number[w] := r9

neighbors[w].set value(v, r)10

replace〈w, r′〉 with 〈w, r〉 in S11

if assigned number[w] = NONE then12

assigned number[w] := r13

neighbors[w].set value(v, r)14

S := S ∪ {〈w, r〉}15

SortS in ascending order of theirr, and append at the end ofsorted16

lb := next lb17

next lb := 2 · next lb18

if length(sorted) < k then return 〈v,∞〉19

else returnsorted[k]20

The correctness of the data structure follows from the fact that it extends the listsorted by always
adding all edges with random numbers in a consecutive interval, and it always takes into consideration
decisions already made by data structures for the other endpoints for these intervals.

4.5 Query Complexity

We now show that the number of queries that the algorithm makes is not much higher than the number of
recursive calls in the graph exploration procedures. The following simple lemma easily follows from the
Chernoff bound and will help us analyze the behavior of the algorithm.

Lemma 4.4 Let X1, . . . ,Xs be independent random Bernoulli variables such that eachXi equals1 with
probability p. It holds:

• For anyδ ∈ (0, 1/2), ∑

i

Xi ≤ 6 · ln(1/δ) ·max{1, ps}.

with probability at least1− δ.

24

• For anyδ ∈ (0, 1/2), if ps > 8 ln(1/δ), then

∑

i

Xi ≥
ps

2
.

with probability at least1− δ.

Proof: Let us first prove the first claim. If6 · ln(1/δ) · max{1, ps} ≥ s, the claim follows trivially.
Otherwise, there exist independent Bernoulli random variablesYi, 1 ≤ i ≤ s such that for eachi,

Pr[Yi = 1] = 3 · ln(1/δ) ·max{1/s, p} > p

since from the definition ofδ: 3 · ln(1/δ) > 1. ThereforePr[Xi = 1] < Pr[Yi = 1]. By this fact and by the
Chernoff bound,

Pr[
∑

Xi > 2E[
∑

Yi]] ≤ Pr[
∑

Yi > 2E[
∑

Yi]]

≤ exp(− ln(1/δ) ·max{1, ps})

≤ exp(− ln(1/δ)) ≤ δ.

The second claim also directly follows from the Chernoff bound:

Pr[
∑

Xi < ps/2] ≤ exp(−(1/2)2 · ps/2) ≤ δ.

Definition 4.5 DenoteJi =
⋃d⋆+1

j=i Ij, where1 ≤ i ≤ d⋆ + 1. For example:J1 = (0, 1] andJd⋆+1 =

(0, 1
d]. We expect that the number of incident edges tov with random numbers inJi to bedeg(v) · |Ji|.

We now define a property of vertices that is useful in our analysis. Intuitively, we say that a vertex is “usual”
if the numbers of incident edges with random numbers in specific subranges of(0, 1] are close to their
expectations.

Definition 4.6 Let α > 0. We say that a vertexv is α-usual if the random numbers assigned to edges
incident tov have the following properties for alli ∈ {1, . . . , d⋆ + 1}:

• Upper bound: The number of incident edges with random numbers inJi is

at mostmax{α,α · deg(v) · |Ji|}.

• Lower bound: Ifdeg(v) · |Ji| ≥ α, then the number of edges with random numbers inJi is

at leastdeg(v) · |Ji|/2.

We now basically want to show that the relevant vertices areα-usual, and later on we will use it to prove
a lower bound.

We define an additional quantity that is useful later in bounding the total running time of the algorithm.

25

Definition 4.7 For an execution of Step 3 of Algorithm 9 where the number of neighbors isk andp ∈ [0, 1]
is the probability of selecting each of them, we say that thetoll for running it iskp.

We now prove a bound on the query complexity of the algorithm and other quantities, which are useful
later to bound the running time. We start by introducing the main Lemma (Lemma 4.8), followed by proving
Lemma 4.9 which will help us prove Lemma 4.8.

Lemma 4.8 Consider an algorithmA that queries the input graph only via the oracle described asAlgo-
rithm 1. Lett ≥ 1 be the expected resulting number of calls inA to the oracles described as Algorithm 1
and Algorithm 2. Letd be an upper bound on the maximum degree of the input graph.

Suppose now that we run this algorithm replacing calls to Algorithm 1 with calls to Algorithm 3. The
following events hold all at the same time with probability1− 1/20:

1. The total number of calls to Algorithms 3 and 4 isO(t)

2. The operationlowest in data structuresneighbors[v] runs at mostO(t) times.

3. The query complexity ofA is O(t · log2(dt)).

4. The total toll for running Step 3 of Algorithm 9 isO(t · log(dt)).

Before proving Lemma 4.8 we establish the following Lemma:

Lemma 4.9 Assume the conditions of Lemma 4.8. Lett′ = 100t, δ = 1/(40000t(d + 1)(d⋆ + 1)), and
α = 8 · ln(1/δ). The following three events happen with probability less than 1

100 for each:

1. The total number of calls to Algorithm 3 and Algorithm 4 is bounded byt′.

2. The first2t′ vertices for which the operationlowest is called areα-usual.

3. For the first2t′ verticesv for which the operationlowest is called, the size of the setT generated
in thejth execution of Step 3 of the operation is bounded byα ·max{1,deg(v) · 2j−d⋆}.

Proof: For every group of parallel edges, the operationlowest lists only the edge with the lowest number.
For the purpose of this analysis we assume that the operationlists in fact all occurences of a given parallel
edge. The final complexity is only reduced because of the factthat some unnecessary calls are omitted.

1. Let us bound the probability that one of the above events does not occur. By Markov’s inequality the
probability that the first event does not occur is bounded by1

100 .

2. We shall now prove that the first2t′ vertices for which the operationlowest is called areα-usual.
The total number of vertices that have an incident edge for which the process generating random
numbers is simulated in the above calls is bounded by2t′ · (d + 1). The property of beingα-usual is
a function of only random numbers assigned to incident edges.
ForJi let X =

∑s
j=1 Xj wherep = Pr[Xj = 1] = |Ji|, s = deg(v), i.e. X is the number of all

incident edges tov with random numbers inJi. From Lemma 4.4 we get that:

Pr
[∑

i

Xi > α ·max{1, |Ji|deg(v)}
]

= Pr
[∑

i

Xi > 8 · ln(1/δ) ·max{1, ps}
]

≤ Pr[
∑

i

Xi > 6 · ln(1/δ) ·max{1, ps}] < δ

26

Also, from Lemma 4.4 we get that:

Pr
[∑

i

Xi <
deg(v) · |Ji|

2

]
= Pr

[∑

i

Xi <
ps

2

]
< δ

i.e. v is not α-usualbecause ofJi with probability less than2δ. From union bound on all alli ∈
[d⋆ + 1] we get that vertexv is notα-usualwith probability less than2δ(d⋆ + 1).
Using the union bound again, this time over the vertices incident to edges for which the random
process is run, the probability that any of them is notα-usual is bounded by

2t′ · (d + 1) · 2δ(d⋆ + 1) = 400tδ(d + 1)(d⋆ + 1) =
1

100
.

3. We need to prove that for the first2t′ vertices v for which the operationlowest is called,
the size of the setT generated in thejth execution of Step 3 of the operation is bounded by
α ·max{1,deg(v) · 2j−d⋆}.
Let v be one of the first2t′ vertices for which the operationneighbors[v].lowest is called. Ob-
serve that in thejth iteration of the loopwhile, (next lb−lb)/(1−lb) is at most2j−d⋆ . Therefore,
it follows from Lemma 4.4 that for eachj ∈ {1, . . . , d⋆ + 1}, the size of the setT in Algorithm 9
selected in thejth execution of Step 3 is bounded byα · max{1,deg(v) · 2j−d⋆} with probability
1− δ. By the union bound over allj and the first2t′ vertices, the probability that the third event does
not occur is bounded by

2t′(d⋆ + 1)δ = 200t(d⋆ + 1) · 1/(40000t(d + 1)(d⋆ + 1) <
1

100

Summarizing, the probability that at least one of the three events does not occur is bounded by

3

100
<

1

20

Let us now prove Lemma 4.8 assuming that the events in Lemma 4.9 occur.

Proof of Lemma 4.8:

1. We need to prove that the total number of calls to Algorithms 3 and 4 isO(t). This follows directly
from Lemma 4.9, we proved it there fort′ = O(t).

2. We need to show that the operationlowest in data structuresneighbors[v] runs at mostO(t)
times.
The total number of verticesv for which the operationneighbors[v].lowest is called is bounded
by 2t′, because a call to one of the oracles (Algorithms 3 and 4) requires calling the operation
lowest for at most two vertices. It follows from the implementationof the oracles that the op-
erationneighbors[v].lowest is executed at most3t′ = O(t) times if the number of oracle calls
is bounded byt′ (which was proved in Lemma 4.9). This is true because in Algorithm 3 we call
neighbors[v].lowest once and in Algorithm 4 we callneighbors[v].lowest twice.

27

3. We will now show that the query complexity ofA is O(t · log2(dt)).
For each vertexv, denotekv ∈ [0,deg(v)] the number of times we callneighbors[v].lowest(k)
on v. We assume that if the operation is not executed for a given vertex, thenkv = 0. It holds that:

∑

v∈V

kv ≤ 3t′

We now attempt to bound the query complexity necessary to execute the operation
neighbors[v].lowest for a givenv such thatkv > 0. Note that the expected number of edges with
random numbers in a givenJi is deg(v)/2i−1. Recall that from Lemma 4.9 we know that the first
2t′ vertices for which the operationlowest is called areα-usual. From the lower bound ofα-usual
(Definition 4.5) we get that Ifdeg(v) · |Ji| ≥ α, then the number of edges with random numbers in
Ji is at least

deg(v) · |Ji|/2.

Therefore, if
deg(v) · |Ji| = deg(v)/2i−1 ≥ max{2α, 2kv}

then the number of edges with random numbers inJi is at least

max{2α, 2kv}

2
= max{α, kv} ≥ kv

i.e. if i is such thatdeg(v)/2i−1 is at leastmax{2α, 2kv}, then at leastkv edges incident tov have
random numbers inJi. This also holds fori such thatdeg(v)/2i−1 ≥ 2αkv . Let iv be the largest
integeri such that2i ≤ deg(v)

αkv
(rememberi = d⋆+1, d⋆ · · ·). Sinceiv is the maximumi that satisfies

this, then

2iv+1 >
deg(v)

αkv
⇒ 2iv >

deg(v)

2αkv
⇒ 2−iv <

2αkv

deg(v)

The body of the loopwhile in Algorithm 9 is executed at mostd⋆ + 2 − iv times forv (remember
we start fromi = d⋆+1), independently of how many times the operation is executedfor v, because
all relevant edges incident tov are discovered during these iterations. From Lemma 4.9 we know
that the size of the setT in Algorithm 9 selected in thejth execution of this loop is bounded by
α ·max{1,deg(v) · 2j−d⋆}. Furthermore, the sum of sizes of all setsT generated forv is bounded by

d⋆+2−iv∑

j=1

α ·max{1,deg(v) · 2j−d⋆} ≤ α(d⋆ + 1) + 2α · deg(v) · 22−iv

≤ α(d⋆ + 1) + 16α2kv.

This also bounds the number of neighbor queries forv. Since these are the only neighbor queries in
the algorithm, by summing over allv with kv ≥ 0, the total number of neighbor queries is bounded
by

2t′ · α(d⋆ + 1) +
∑

v∈V

16α2kv ≤ 200αt(d⋆ + 1) + 16α2 · 300t = O(αt(d⋆ + α)) = O(t · log2(dt)).

(Recallt′ = 200t and that
∑

v∈V kv ≤ 3t′). Note that degree queries appear only in Step 3 of the
operationneighbors[v].lowestwith one query to discover the size of the set from which a subset
is selected. The number of degree queries is in this case bounded by the total number of executions of
Step 3, which is at mostO(t · log d). Summarizing, the total query complexity isO(t · log2(dt)).

28

4. Finally, we need to prove that the total toll for running Step 3 of Algorithm 9 isO(t · log(dt)). Recall
that the toll is defined askp wherek is the number of neighbors andp is the probability to selecting
each of them in an execution of Step 3 of Algorithm 9. Using arguments as above, the toll for running
Step 3 in the operationneighbors[v].lowest for a givenv is bounded by

d⋆+2−iv∑

j=1

deg(v) · 2j−d⋆ ≤ 2 · deg(v) · 22−iv ≤ 8 · deg(v) ·
2αkv

deg(v)
= 16αkv

By summing over all verticesv, we obtain a bound on the total toll:

∑

v∈V

16αkv ≤ 4800αt = O(t · log(dt)).

4.6 Efficient Implementation

We have already introduced techniques that can be used to show an approximation algorithm whose query
complexity has near-linear dependence on the maximum degree d. Unfortunately, a straightforward imple-
mentation of the algorithm results in a running time with approximately quadratic dependence ond. The
goal of this section is to remove a factor of approximatelyd from the running time of the algorithm. Our
main problem is how to efficiently simulate Step 3 in the operation lowest. Note that Step 3 is sampling
from a binomial distribution.
First, in Lemma 4.11, we prove that there is an algorithm thatcan simulate a binomial distribution which
runs in efficient time. Finally, in Theorem 4.13, we will showhow to use it in our algorithms and how to
bound the running time byO(t · log3(dt)).

We start by defining the binomial distribution.

Definition 4.10 We writeB(k, p), wherek is a positive integer andp ∈ [0, 1], to denote thebinomial
distribution with success probabilityp on{0, 1, . . . , k} distributed as

∑k
i=1 Xi, where eachXi, 1 ≤ i ≤ k,

is an independent random variable that equals1 with probabilityp, and0 with probability1− p.

It is well known that the probability that a value drawn from the binomial distributionB(k, p) equalsq
is
(k
q

)
pq(1− p)k−q. We now show how to efficiently sample from this distribution.

Lemma 4.11 Let a, b, k, andQ be positive integers, wherea ≤ b andQ > 1, that can be represented in
the standard binary form, using a constant number of machinewords. There is an algorithm that takesa,
b, k, andQ as parameters, runs inO(max{ka/b, 1} · log Q) time, and outputs an integer selected from a
distributionD on {0, 1, . . . , k} such that the total variation distance betweenD andB(k, a/b) is bounded
by1/Q.

Proof: If a = b, then the algorithm can return the trivial answer inO(1) time, so we can safely assume for
the rest of the proof thata < b. Let p = a/b and letqi =

(k
i

)
pi(1 − p)k−i be the probability of drawing

i from B(k, p). Let s = min{6 · ln(2Q) · max{1, ka/b}, k}. For eachi ≤ s, we compute a real number
q′i ∈ [0, 1] such thatqi − q′i ≤ 1/2(k + 1)Q and

∑s
i=0 q′i = 1 (details about how to compute thoseq′i are

29

given in Lemma 4.12). Then we select the output of the algorithm from the distribution given byq′i’s. We
writeD to denote this distribution.

Let us bound the total variation distance between this distribution andB(k, p). It suffices to show that
for every subsetsS of {0, . . . , k}, the probability of selecting an integer fromS in B(k, p) is not greater by
more than1/Q, compared to the probability of selecting an integer inS fromD. Consider an arbitrary such
setS. Let S1 be the subset ofS consisting of numbers at mosts. Let S2 be the subset ofS consisting of
integers greater thans. We have

∑

i∈S

q′i ≥
∑

i∈S1

q′i ≥
∑

i∈S1

(
qi −

1

2(k + 1)Q

)
≥

∑

i∈S1

qi

− 1

2Q
. (29)

Recall thatXi = 1 with probabilityp. If s = k then

Pr
[k∑

i=1

Xi > s
]

=
[k∑

i=1

Xi > k
]

= 0

If s = 6 · ln(2Q) ·max{1, ka/b} then we defineδ = 1
2Q , and from Lemma 4.4 we have that

Pr
[k∑

i=1

> 6 · ln(
1

δ
) ·max{1, pk}

]
< δ

Hence,

Pr
[k∑

i=1

> s
]

<
1

2Q

In other words: the probability that a number greater thans is being selected fromB(k, p) (i.e. sXi’s are
1) is bounded by1

2Q . Therefore,

∑

i∈S2

qi

 <

1

2Q
(30)

From 29 and 30 we get:

∑

i∈S

q′i ≥

∑

i∈S1

qi

− 1

2Q
+

∑

i∈S2

qi

− 1

2Q
≥

(
∑

i∈S

qi

)
−

1

Q
,

Therefore, ∑

i∈S

[qi − q′i] ≤
1

Q
,

which proves our Lemma. Next, in Lemma 4.12 we will also show that the running time of the algorithm is
O(s) = O(max{k a

b , 1} log(Q)).

We now describe how to compute valuesq′i that are approximation toqi.

Lemma 4.12 Recall: a < b, p = a/b and qi =
(
k
i

)
pi(1 − p)k−i (probability of drawingi from B(k, p)).

Lets = min{6 · ln(2Q) ·max{1, ka/b}, k}. For eachi ≤ s, we can compute a real numberq′i ∈ [0, 1] such
that qi − q′i ≤ 1/2(k + 1)Q and

∑s
i=0 q′i = 1. The total running time isO(max{ka/b, 1} · log Q).

30

Proof: Observe that for1 ≤ i ≤ k:

qi = qi−1 ·
k + 1− i

i
·

p

1− p

Let ti = qi

q0
for 0 ≤ i ≤ s. It holds that for1 ≤ i ≤ s:

ti = ti−1 ·
k + 1− i

i
·

p

1− p
= ti−1 ·

k + 1− i

i
·

a

b− a
(31)

Note that for0 ≤ i ≤ s:
ti∑

j≤s tj
=

qi

q0

1
q0

∑
j≤s qj

≥ qi (32)

Suppose now that instead ofti, we uset′i ≥ 0, 0 ≤ i ≤ s, such that|ti − t′i| ≤
max0≤j≤s tj
4(k+1)2Q

. Then from the

definition oft′i we get:

t′i ≥ ti −
max0≤j≤s tj
4(k + 1)2Q

(33)

Also:

∑

j≤s

t′j ≤ s ·
(max0≤j≤s tj)

4(k + 1)2Q +
∑

j≤s tj
≤

max0≤j≤s tj
4(k + 1)Q +

∑
j≤s tj

≤
(
1 +

1

4(k + 1)Q

)
·
∑

j≤s

tj (34)

We have

t′i∑
j≤s t′j

≥
ti −

max0≤j≤s tj
4(k+1)2Q

(1 + 1
4(k+1)Q)

∑
j≤s tj

(From 32 and thatmax0≤j≤s tj ≤
∑

j≤s tj) ≥
qi ·
∑

j≤s tj

(1 + 1
4(k+1)Q) ·

∑
j≤s tj

−

P

j≤s tj
4(k+1)2Q

(1 + 1
4(k+1)Q) ·

∑
j≤s tj

(Since1 + 1
4(k+1)2Q

≥ 1) ≥
qi

(1 + 1
4(k+1)Q)

−
1

4(k + 1)2Q

≥ qi

(
1−

1

4(k + 1)Q

)
−

1

4(k + 1)2Q

≥ qi −
1

4(k + 1)Q
−

1

4(k + 1)2Q
≥ qi −

1

2(k + 1)Q
.

So eventually we get that

qi −
t′i∑

j≤s t′j
≤

1

2(k + 1)Q
(35)

Also, note that
∑s

i=0
t′i

Ps
j=0

t′j
= 1.

Therefore, in our distributionD, we will defineq′i =
t′i

P

j≤s t′j
.

It remains to show how we obtaint′i with the desired properties. For this purpose, we use floating-point
arithmetic. Each positive number that we obtain during the computation is stored as a pair〈S,E〉 repre-
sentingS · 2E . We require that2α ≤ S < 2α+1 and|E| ≤ β, for someα andβ to be set later. If we can

31

perform all standard operations on these integers inO(1) time, then we can perform the operations on the
represented positive real numbers inO(1) time as well. We callS asignificandandE anexponent.

In particular, to multiply two numbers〈S1, E1〉 and〈S2, E2〉 it suffices to multiplyS1 andS2, truncate
the least significant bits of the product, and set the new exponent accordingly. If these two numbers are
multiplicative (1 ± δ1)- and(1 ± δ2)-approximations to some quantitiesX1 andX2, respectively, then the
product ofS1 andS2 in our arithmetic is a multiplicative(1 ± (δ1 + δ2 + δ1δ2 + 2−α))-approximation to
X1X2. If δ1 < 1, then the product is a(1± (δ1 + 2δ2 + 2−α))-approximation.

For eachi of interest, one can easily compute a multiplicative(1±C ·2−α)-approximation fork+1−i
i · a

b−a
in our arithmetic, whereC > 1 is a constant. We make the assumption that3Ck2α ≤ 1, which we satisfy
later by setting a sufficiently largeα. Hence we use Equation 31 to obtain a sequence of multiplicative
(1 ± 3Ck2−α)-approximationst′i for ti, where0 ≤ i ≤ s. At the end, we find the maximumt′i, which
is represented as a pair〈Si, Ei〉. For all othert′i, we no longer require thatSi ≥ 2α and we modify their
representation〈Si, Ei〉 so thatEi is the same as in the representation of the maximumt′i. In the process we
may lose least significant bits of the somet′i or even all non-zero bits. Assuming again that3Ck2−α < 1,
the maximum additive error|ti − t′i| we get for eachi for the modified representation is bounded by

3Ck2−α · ti + 2−α ·max
j

t′j ≤ 3Ck2−α · ti + 2 · 2−α ·max
j

tj ≤ (3Ck + 2) · 2−α ·max
j

tj ,

where the first error term comes from the multiplicative error we obtain approximating eachti and the
second error term comes from making all exponents in the representation match the exponent of the largest
t′i. Finally, we setα = ⌈log((3Ck+2)·4(k+1)2Q)⌉. This meets the previous assumption that3Ck2−α < 1
and the guarantee on the error we may make on eacht′i is as desired. Note that sincek andQ can be
represented using a constant number of words, so can integers of size at most2α+1. To boundβ, observe
that everyk+1−i

i · a
b−a lies in the range[1/kb, kb], which implies that allti lie in [1/kbk, kbk], and the

maximum absolute value of an exponent we need is of orderO(k log(kb)), which can be stored using a
constant number of machine words.

To generate a random number fromD, we consider only the significandsSi in the final modified repre-
sentation oft′i’s, and select eachi with probability Si/

∑
j<s Sj = t′i/

∑
j<s t′j . The total running time of

the algorithm isO(s).

We are ready to prove that the entire algorithm can be implemented efficiently. We use the algorithm of
Lemma 4.11 for efficiently simulating Step 3 in the operationlowest.

Theorem 4.13 Consider an algorithmA that queries the input graph only via the oracle described as
Algorithm 1. Lett ≥ 1 be a bound on the expected resulting number of calls inA to the oracles described
as Algorithm 1 and Algorithm 2, and such thatt fits into a constant number of machine words using the
standard binary representation. Letd be an upper bound on the maximum degree of the input graph.

Suppose that calls to Algorithm 1 are replaced with calls to Algorithm 3. The oracles described as
Algorithm 3 and Algorithm 4 can be implemented in such a way that with probability4/5 all of the following
events hold:

• The number of queries to the graph isO(t · log2(dt)).

• The total time necessary to compute the answers for the queries to the oracles isO(t · log3(dt)).

• The distribution of the answers that the oracle gives isD such that for some other distributionD′ over
answers, the convex combination4

5 · D + 1
5 · D

′ is the distribution of answers of the oracle described
as Algorithm 1.

32

Proof: Let a⋆ = d · O(t), whereO(t) is the bound from Lemma 4.8 on the number of vertices for which
the operationlowest is called. If the event specified in Lemma 4.8 occurs, thena⋆ is an upper bound
on the number of edges for which the process for generating random numbers is simulated. Letb⋆ =
O(t) · (d⋆ + 1) = O(t log d), whereO(t) is the same bound as above. Thenb⋆ bounds the number of times
Step 3 in Algorithm 9 is run, provided the event specified in Lemma 4.8 occurs. LetQ = 20b⋆.

Let c⋆ = max{d⋆, ⌈log(20a2
⋆)⌉}. Since it is impossible to generate and store real numbers, we assign

to edges uniform random numbers from the set{i/2c⋆ : 1 ≤ i ≤ 2c⋆}, instead of the set(0, 1]. This can be
seen as selecting a random number from(0, 1] and then rounding it up to the next multiplicity of1/2c⋆ . In
particular, for everyi ∈ {1, . . . , 2c⋆}, all numbers in((i − 1)/2c⋆ , i/2c⋆] becomei/2c⋆ . Observe also that
each rangeIj is a union of some number of sets((i−1)/2c⋆ , i/2c⋆], becausec⋆ ≥ d⋆. This means that there
is no need to modify the process for generating random numbers, except for selecting a randomi/2c⋆ in a
specificIj, instead of an arbitrary real number fromIj. Observe also that as long we do not select the same
numberi/2c⋆ twice, the entire exploration procedure behaves in the sameway as in the idealized algorithm,
since the ordering of numbers remains the same.

Note that due to the assumption in the lemma statement,t can be represented in the standard binary form,
using a constant number of machine words. This is also the case for d, because of the standard assumption
that we can address all neighbors of all vertices in neighborqueries. This implies thatQ = O(t log d)

also has this property. Finally, the probabilitiesnext lb−lb
1−lb can easily be expressed using fractionsa/b,

wherea andb are of orderO(d), and therefore, fit into a constant number of machine words aswell. This
implies that we can use the algorithm of Lemma 4.11. Instead of directly simulating Step 3, we proceed as
follows. First, we run the algorithm of Lemma 4.11 with the error parameterQ to select a numbert of edges
in T . Then we select a random subset of edges of sizet. This can be done inO(t log d) time.

We show that the algorithms and data structures can be implemented in such a way that the main claim
of the theorem holds, provided the following events occur:

• the events described in the statement of Lemma 4.8,

• the rounded numbers assigned to the firsta⋆ edges for which the process for generating random
numbers is simulated are different,

• the firstb⋆ simulations of the algorithm described by Lemma 4.11 do not result in selecting a random
number from the part on which the output distribution of the algorithm and the binomial distribution
differ.

The first of the events does not happen with probability at most 1/10. This follows from Lemma 4.8.
Consider the second event. The probability that two random numbersi/2c⋆ are identical is bounded by
1/2c⋆ ≤ 1/(20a2

⋆). Consider the firsta⋆ edges for which the process generating random numbers is run.
The expected number of pairs of the edges that have the same random number is bounded bya2

⋆ ·1/(20a
2
⋆) =

1/20. By Markov’s inequality, the probability that two of the edges have the same random number assigned
is bounded by1/20. Finally, the probability that the last event does not occuris bounded by1/20 as well
via the union bound. Summarizing, the events occur with probability at least4/5.

We now bound the running time, provided the above events occur. We assume that we use a standard
data structure (say, balanced binary search trees) to maintain collections of items. The time necessary for
each operation in these data structures is of order at most the logarithm of the maximum collection size.
For instance, we keep a collection of data structuresneighbors[v] for v that appear in our algorithm. We
createneighbors[v] for a givenv only when it is accessed for the first time. Observe that the number of

33

v for which we have to createneighbors[v] is bounded by the query complexityO(t log2(dt)), because
of how we access vertices. Therefore, accessing eachneighbors[v] requires at mostO(τ) time, where
we writeτ to denote the logarithm of the bound on the query complexity.That is,τ = O(log t + log log d).

The time necessary to run Algorithm 3 is bounded byO(τ), which we need to locate the data structure
neighbors[v] for a givenv, plusO(1) time per each call to Algorithm 4 (we do not include the cost of
running Algorithm 4 or the operationlowest here; they are analyzed later). The amount of computation
in Algorithm 3 without the resulting calls to other procedures is bounded byO(t · τ).

Consider now Algorithm 4. In every run, we first spendO(log t) time to check if we have already com-
puted the answer for a given edge. Then locating the data structuresneighbors[u] andneighbors[v]
for the endpointsu andv costs at mostO(τ). The running time of the reminder of the algorithm requires
time proportional to the number of recursive calls. Therefore, the total amount of time spent executing
Algorithm 4 (without calls to other procedures) is bounded by O(t · τ).

We now bound the running time necessary to execute all operations of data structuresneighbors. The
initialization ofneighbors[v] (Algorithm 6) for a givenv can be doneO(1) time plusO(τ) time necessary
for inserting the data structure into the collection of allneighbors[v]. Overall, since at mostO(t log2(dt))
data structures are created, the total time necessary to initialize the data structuresneighbors[v] is O(t ·
log2(dt) · τ). Setting a value for some edge in Algorithm 7 takes at mostO(log d) time to insert the value
into the mapping. This operation is run at most once for everyneighbor query, so the total amount of
computation in this procedure isO(t · log2(dt) · log d). So far, the total computation time is bounded by
O(t log3(dt)).

Clearly, running the operation described by Algorithm 8 takesO(1) time, so overall the total amount
of computation in all executions of Algorithm 8 is not greater than some constant times the total amount
of computation in the operationlowest (Algorithm 9). Hence it suffices to bound the total amount of
computation in Algorithm 9, which we do next.

Recall that Algorithm 9 is run at mostO(t) times. Therefore all operations in the loopwhile are run
at mostO(t log d) times. The total size of setsS in Step 2 is bounded by the query complexity, and dis-
covering each element ofS costs at mostO(log d) time, if the data structure assignednumber is properly
implemented, using augmented balanced binary search trees. Therefore the total cost of running Step 2 is
at mostO(t · log d + t · log2(dt) · log d) = O(t · log2(dt) · log d). In Step 3, we use the algorithm of
Lemma 4.11. The total toll for running the algorithm isO(t · log(dt)). Therefore, the total time necessary
to simulate all executions of Step 2 is bounded byO((t · log d + t · log(dt)) · log Q) = O(t · log2(dt)). The
total number of executions of the body of the loopforeach in Step 4 is bounded by the query complexity
O(t · log2(dt)) times 2. The time required to execute the body of the loop is dominated by the following
two kinds of operations. One kind is querying and modifying the data structureassigned number[w]
and the data structure forS. With a proper implementation (say, augmented balanced binary search trees)
these operations take at mostO(log d) time each. The other kind of operation is locatingneighbors[w]
for the discovered neighborw, which takes mostO(τ) time. The total computation time for all executions
of the loopforeach is therefore bounded byO(t · log3(dt)).

Finally sortingS never takes more thanO(|S| log d) time, because|S| ≤ d, and each element ofS can
be added at the end of the listsorted in amortizedO(1) time if the list is implemented using extendable
arrays. This amounts toO(t · log2(dt) · log d) in all executions of Step 11. At the end of the operation, the
requestedkth adjacent edge can be returned inO(1) time.

Summarizing, the computation of the answers of the oracles takes at mostO(t · log3(dt)) time, if all
the desired events occur, which happens with probability atleast4/5. Note that when these events occur,

34

then also despite rounding random numbers assigned to edges, the implementation does not diverge from
the behavior of the idealized oracle.

5 The Near-Optimal Algorithms

Theorem 3.1 gives a bound on the expected number of recursivecalls to oracles, sufficient to compute an
answer when the vertex cover oracle is called for a random vertex. The expected number of calls isO(ρ · d̄),
whereρ is the ratio between the maximum degreed and the minimum degreedmin, and d̄ is the average
degree. (Recall that we assume without loss of generality that dmin ≥ 1. For isolated vertices, the oracle
answers that they are not in the vertex cover inO(1) time, and therefore, it suffices to focus on the subgraph
consisting of non-isolated vertices.)

A straightforward application of Theorem 3.1 gives a bound of O(d2) for graphs with maximum degree
bounded byd. We show a bound ofO(d/ǫ) for amodifiedgraph, which is preferable if1/ǫ < d, and we also
show how to use the modified graph to obtain an estimate for theminimum vertex cover size in the original
input graph. We combine the obtained bound with Theorem 4.13to get a fast and query-efficient algorithm.

Next we show how to obtain an efficient algorithm for the case when only the average degree of the
input graph is bounded. Finally, we show how to adapt the algorithm to the dense graph case, when only
vertex-pair queries are allowed.

5.1 Bounded Maximum Degree

As we have mentioned above, we can assume that1/ǫ < d. We transform our graph into one with large
minimum degree, so that the ratio of maximum to minimum degree is small. For a given graphG = (V,E)
with maximum degreed, consider a graph̃G = (Ṽ , Ẽ), such thatṼ = V ∪ V ′ andẼ = E ∪ E′ where
V ′ andE′ are defined as follows. The setV ′ contains a “shadow” vertexv′ for each vertexv ∈ V , andE′

contains⌊ǫd⌋ parallel edges betweenv andv′, and8d parallel self-loops forv′.

For a random ranking̃π overẼ, for the output vertex coverCπ̃(G̃) on the new graph̃G, we are interested
in bounding the size ofCπ̃(G̃) ∩ V as compared toVCopt(G) (the size of a minimum vertex cover ofG).
SinceCπ̃(G̃) ∩ V is a vertex cover ofG, we have that|Cπ̃(G̃) ∩ V | ≥ VCopt(G), and so we focus on an
upper bound for|Cπ̃(G̃) ∩ V |.

Let F̃ be the set of all parallel edges connecting eachv with the correspondingv′. By the properties of
the construction ofCπ̃(G̃) ∩ V , we have

|Cπ̃(G̃) ∩ V | ≤ 2|Mπ̃(G̃) ∩ E|+ |Mπ̃(G̃) ∩ F̃ | ≤ 2VCopt(G) + |Mπ̃(G̃) ∩ F̃ |.

Consider an arbitrary ranking̃π of Ẽ. Observe that for eachv ∈ V , the matchingMπ̃(G̃) either includes
a parallel edge betweenv andv′ or it includes a self-loop incident tov′. For everyv′ ∈ V ′, if the lowest
rank of self-loops incident tov′ is lower than the lowest rank of edges(v, v′), thenMπ̃(G̃) contains one
of the self-loops, and does not contain any parallel edge(v, v′). If the ranking π̃ is selected uniformly
at random, the above inequality on ranks does not hold for each vertex independently with probability at
mostǫd/8d = ǫ/8. Therefore, the expected number of edges inMπ̃(G̃) ∩ F̃ is upper bounded byǫn/8.
Without loss of generality, we can assume thatǫn > 72, since otherwise we can read the entire input with
only O(1/ǫ2) queries and compute a maximal matching in it. It follows fromthe Chernoff bound that with
probability1− 1/20, |Mπ̃(G̃) ∩ F̃ | ≤ ǫn/4.

35

Observe that given query access toG, we can provide query access tõG (in particular, the edges inE′

that are incident to eachv ∈ V can be indexed starting fromdeg(v)+1). Every query toG̃ can be answered
in O(1) time, usingO(1) queries toG. Therefore, we can simulate an execution of the vertex-cover and the
maximal-matching oracles oñG.

Note that the expected number of recursive calls to the maximal matching oracle is bounded for a random
vertexv ∈ Ṽ by O(d/ǫ), because the maximum degree and the minimum degree are within a factor of
O(1/ǫ). Also note that since|V | = |Ṽ |/2, this expectation for a random vertexv ∈ V is at most twice as
much, i.e., it is stillO(d/ǫ).

For any rankingπ̃ of edges inẼ, if we sampleO(1/ǫ2) vertices fromV with replacement, then the
fraction of those inCπ̃(G̃) ∩ V is within an additiveǫ/8 of |Cπ̃(G̃) ∩ V |/|V | with probability at least
1− 1/20. Let µ be this fraction of vertices. Therefore, we have that

VCopt(G) − ǫn/4 ≤ µ · n ≤ 2VCopt(G) + ǫn/2

with probability at least1− 1/10. Thus(µ + ǫ/4) · n is the desired(2, ǫn)-estimate. The expected number
of calls to the vertex cover and maximal matching oracles is bounded byO(d/ǫ3). Note that without loss
of generality,ǫ ≥ 1/4n, because any additive approximation to within an additive factor smaller than1/4
yields in fact the exact value. Therefore the expected number of calls to the oracles is bounded byO(n4),
which can be represented with a constant number of machine words in the standard binary representation,
using the usual assumption that we can address all vertices of the input graph. By applying now Theo-
rem 4.13, we obtain an implementation of the algorithm. It runs in O(d/ǫ3 · log3(d/ǫ)) time and makes
O(d/ǫ3 · log2(d/ǫ)) queries. Moreover, the probability that the implementation diverges from the ideal
algorithm is bounded by1/5. Therefore, the implementation outputs a(2, ǫn)-estimate with probability
1− 1/10 − 1/5 ≥ 2/3.

Corollary 5.1 There is an algorithm that makesO(d
ǫ3
· log3 d

ǫ) neighbor and degree queries, runs inO(d
ǫ3
·

log3 d
ǫ) time, and with probability2/3, outputs a(2, ǫn)-estimate to the minimum vertex cover size.

5.2 Bounded Average Degree

In this section, we assume an upper boundd̄ on the average graph degree and show an efficient algorithm
in this case.6 To do this, we will transform the graph into a new graph for which the ratio of the maximum
degree to the minimum degree is small.

Our first transformation is to automatically add high degreevertices to the cover, and continue by finding
a cover for the graph that is induced by the remaining vertices. Given a graphG = (V,E) with average
degreed̄, let L denote the subset of vertices inG whose degree is greater than8d̄/ǫ. Hence,|L| ≤ ǫn/8.
Let E(L) denote the subset of edges inG that are incident to vertices inL, and letG = (V ,E) be defined
by V = V \ L andE = E \ E(L), so that the maximum degree inG is at most8d̄/ǫ. For any maximal
matchingM in G we have that

VCopt(G) ≤ 2|M |+ |L| ≤ 2VCopt(G) +
ǫ

8
n .

Thus, the first modification we make to the oracles is that if the vertex-cover oracle is called on a vertexv
such that the degree ofv is greater than(4/ǫ)d̄, then it immediately returnsTRUE.

6As shown in [PR07], we don’t actually need to know̄d for this purpose, but it suffices to get a bound that is not muchhigher
than(4/ǫ)d̄, and such that the number of vertices with a larger degree isO(ǫn), where such a bound can be obtained efficiently.

36

The remaining problem is that when we remove the high degree vertices, there are still edges incident
to vertices with degree at most(4/ǫ)d̄ whose other endpoint is a high degree vertex, and this is not known
until the appropriate neighbor query is performed. We deal with this by adding shadow vertices to replace
the removed high degree vertices. At the same time, we increase the minimum degree as in the previous
subsection. We now create a graphG̃ = (V ∪ Ṽ , E ∪ Ẽ) as follows. For everyv ∈ V , we add toṼ a vertex
v′ and verticesv′′i , where1 ≤ i ≤ ⌈degG(v)/d̄⌉ anddegG(v) is the degree ofv in G. Each of these new
vertices has32d̄/ǫ parallel self-loops. Moreover, we add̄d parallel edges betweenv andv′. Finally, partition
the edges incident tov in G into ⌈degG(v)/d̄⌉ groups, each of size at mostd̄. The first group corresponds
to the firstd̄ edges on the neighborhood list ofv, the second group corresponds to the nextd̄ edges, and so
on. LetEv,i ⊂ E be the set of edges in thei-th group. For everyi of interest, we add|Ev,i ∩E(L)| parallel
edges betweenv andv′′i and|Ev,i \ E(L)| parallel self-loops incident tov′′i . We add these edges so that we
are later able to simulate every query toG̃ using a constant number of queries toG.

Let us bound the total number of vertices inṼ . The number of verticesv′ is |V |. The number of vertices
v′′i is bounded by

∑

v∈V

⌈
degG(v)

d̄

⌉
≤
∑

v∈V

(
degG(v)

d̄
+ 1

)
≤

d̄ · |V |

d̄
+ |V | = 2|V |,

becausẽV has been created by removing vertices with highest degrees in G, and the average degree of
vertices inṼ in G cannot be greater than̄d, the initial average degree. This shows that|Ṽ | ≤ 3|V |.

We now repeat an argument from the previous section that despite the additional edges and vertices,
|Cπ̃(G̃) ∩ Ṽ | is likely to be a good approximation toVCopt(G) for a random ranking̃π. First,Cπ̃(G̃) ∩ Ṽ

is still a vertex cover forG, soVCopt(G) ≤ |Cπ̃(G̃) ∩ Ṽ |. Let F̃ be the set of edges connecting allv with
the correspondingv′ andv′′i . We have

|Cπ̃(G̃) ∩ V | ≤ 2|Mπ̃(G̃) ∩ E|+ |Mπ̃(G̃) ∩ F̃ | ≤ 2VCopt(G) + |Mπ̃(G̃) ∩ F̃ |.

Observe that if for some of the vertices iñV , the lowest rank of self-loops is lower than the lowest rank
of the parallel edges connecting this vertex to the corresponding vertex inV , then one of the self-loops is
selected for the maximal matching as opposed to the paralleledges. The inequality on ranks does not hold
with probability at mostd̄/(32d̄/ǫ) = ǫ/32 independently for each vertex iñV . It therefore follows from
the Chernoff bound that the number of edges inMπ̃(G̃) ∩ F̃ is not bounded byǫ|Ṽ |/16 with probability at
mostexp(−ǫ|Ṽ |/32), which is less than1/20 if |Ṽ | > 100/ǫ, and we can assume that this is the case. (To
circumvent the case of|Ṽ | ≤ 100/ǫ, we can modify the algorithm as follows. If a sampled vertex belongs
to a connected component inV of size at most100/ǫ, then we can read its connected component inG̃ and
deterministically find a maximal matching that uses only edges inE and self-loops inẼ. This all takes at
mostO(d̄/ǫ2) time, which as we see later, we are allowed to spend per each sampled vertex.) Therefore, we
have

|Cπ̃(G̃) ∩ V | ≤ 2VCopt(G) + ǫ|V |/4,

with probability at least1− 1/20.

Observe that given query access toG, we can efficiently provide query access toG̃. Degrees of vertices
in V are the same as inG. For associated vertices iñV it is easy to compute their degree inO(1) time, using
the degree of the corresponding vertex inV . To answer neighbor queries for verticesv in V , except for the
fixed connections tov′, it suffices to notice that if the corresponding edge inG is connected to a vertex inL,
this connection is replaced by a connection to an appropriate vertexv′′i . Otherwise, the edge remains inE.

37

For verticesv′′i some number of connections can either be a connection to the correspondingv or a self-loop.
This can be checked inO(1) time with a single query to the neighborhood list ofv. All the other edges are
fixed. Therefore, we can simulate an execution of the vertex-cover and the maximal-matching oracles on
G̃. Answering every query tõG requiresO(1) time andO(1) queries toG. Sampling vertices uniformly
at random from inV ∪ Ṽ is more involved, but in our algorithm, we only need to samplevertices fromV ,
which we assume we can do.

The expected number of recursive calls to the maximal matching oracle is bounded byO(d̄/ǫ2) for a
random vertexv ∈ V ∪ Ṽ , because the maximum degree and the minimum degree are within a factor of
O(1/ǫ) and the maximum degree is bounded byO(d̄/ǫ). Note that since3|V | ≥ |Ṽ |, this expectation for a
random vertexv ∈ V is at most twice as much, i.e., it is stillO(d̄/ǫ2).

For any rankingπ̃ of edges inG̃, if we sampleO(1/ǫ2) vertices fromV with replacement, then the
fraction of those for which the oracle answersTRUE is within an additive errorǫ/8 of the total fraction of
vertices for which the oracle answersTRUE. with probability1 − 1/20. Let µ be the fraction of sampled
vertices. We have

VCopt(G) − ǫn/8 ≤ µ · n ≤ 2VCopt(G) + ǫn/4 + ǫn/8 + ǫn/8

with probability 1 − 1/10. Then (µ + ǫ/8)n is the desired(2, ǫn)-estimate. The expected number of
calls to the vertex cover and maximal matching oracles is bounded byO(d/ǫ4). As before, without loss of
generality, this quantity can be bounded byO(n5), which fits into a constant number of machine words. By
applying now Theorem 4.13, we obtain an implementation of the algorithm. It runs inO(d/ǫ3 · log3(d/ǫ))
time and makesO(d/ǫ3 · log2(d/ǫ)) queries. Moreover, the probability that the implementation diverges
from the ideal algorithm is bounded by1/5. Therefore, the implementation outputs a(2, ǫn)-estimate with
probability at least1− 1/5 − 1/10 ≥ 2/3.

Corollary 5.2 There is an algorithm that makesO(d̄
ǫ4
· log2 d̄

ǫ) neighbor and degree queries, runs inO(d̄
ǫ4
·

log3 d̄
ǫ) time, and with probability2/3, outputs a(2, ǫn)-estimate to the minimum vertex cover size.

5.3 Adapting the Algorithm to the Vertex-Pair Query Model

The focus of this paper was on designing a sublinear-time algorithm whose access to the graph is via degree
queries and neighbor queries. In other words, we assumed that the graph was represented by adjacency
lists (of known lengths). When a graph is dense (i.e., when the number of edges isΘ(n2)), then a natural
alternative representation is by an adjacency matrix. Thisrepresentation supports queries of the form: “Is
there an edge between vertexu and vertexv?”, which we refer to asvertex-pairqueries.

We next show how to adapt the algorithm described in the previous section to an algorithm that per-
forms vertex-pair queries. The query complexity and running time of the algorithm are (with high constant
probability)Õ(n/ǫ4), which is linear in the average degree for dense graphs. As inthe previous section, the
algorithm outputs (with high constant probability) a(2, ǫ)-estimate of the size of the minimum vertex cover.
We recall that the linear lower bound in the average degree [PR07] also holds for the case that the average
degree isΘ(n) and when vertex-pair queries are allowed.

Given a graphG = (V,E), let G̃ = (Ṽ , Ẽ) be a supergraph ofG that is defined as follows. For
every vertexv ∈ V whose degree inG is less than7 n, there exists a vertexv′ ∈ Ṽ , where there are

7If there are no self-loops in the original graph, then the bound isn − 1.

38

n − degG(v) parallel edges betweenv andv′, and there are(8/ǫ)n self-loops incident tov′. As shown in
Subsection 5.1, with high probability over the choice of a ranking π̃ overG̃, we have that|Cπ̃(G̃) ∩ V | ≤
2VCopt(G) + (ǫ/4)n.

Note that we can emulate neighbor queries toG̃ given access to vertex-pair queries inG as follows. Let
the vertices inG be{1, . . . , n}. When thejth neighbor of vertexi is queried, then the answer to the query
is j when(i, j) ∈ E, and it isi′ (the new auxiliary vertex adjacent toi) when(i, j) /∈ E. The degree of
every vertex inV is n, so there is no need to perform degree queries. Since the ratio between the maximum
degree and the minimum degree iñG is at most1/ǫ, and the maximum and average degrees areO(n/ǫ), we
obtain an algorithm whose complexity is̃O(n/ǫ4), as claimed.

References

[BSS08] Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. InSTOC, pages 393–402, 2008.

[CEF+05] Artut Czumaj, Funda Ergun, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubinfeld,
and Christian Sohler. Approximating the weight of the euclidean minimum spanning tree in
sublinear time.SIAM Journal on Computing, 35(1):91–109, 2005.

[CHW08] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast distributed approx-
imations in planar graphs. InDISC, pages 78–92, 2008.

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time.SIAM J. Comput., 34(6):1370–1379, 2005.

[CS09] Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees
in sublinear time.SIAM Journal on Computing, 39(3):904–922, 2009.

[CSS09] Artur Czumaj, Asaf Shapira, and Christian Sohler. Testing hereditary properties of nonexpand-
ing bounded-degree graphs.SIAM J. Comput., 38(6):2499–2510, 2009.

[Ele10] Gábor Elek. Parameter testing in bounded degree graphs of subexponential growth.Random
Struct. Algorithms, 37(2):248–270, 2010.

[Fei06] Uriel Feige. On sums of independent random variables with unbounded variance, and estimat-
ing the average degree in a graph.SIAM Journal on Computing, 35(4):964–984, 2006.

[GR08] Oded Goldreich and Dana Ron. Approximating average parameters of graphs.Random Struc-
tures and Algorithms, 32(4):473–493, 2008.

[GRS10] Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in sub-
linear time. InSODA, pages 99–116, 2010.

[HKNO09] Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. InFOCS, pages 22–31, 2009.

[MR09] Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree and
general sparse graphs.ACM Transactions on Algorithms, 5(2), 2009.

39

[NO08] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. InFOCS, pages 327–336, 2008.

[NS11] Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. InSTOC,
2011. To appear.

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time and
a connection to distributed algorithms.Theor. Comput. Sci., 381(1-3):183–196, 2007.

[PS98] Christos Papadimitriou and Kenneth Steiglitz.Combinatorial Optimization: Algorithms and
Complexity. Dover publications, 1998.

[Yos11] Yuichi Yoshida. Optimal constant-time approximation algorithms and (unconditional) inap-
proximability results for every bounded-degree CSP. InSTOC, 2011.

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. InSTOC, pages 225–234, 2009.

40

