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1. Introduction 

Let B be an arbitrary polygonal object with k sides, and let V be an open planar polygonal 
region bounded by n edges. The configuration space C of B is a three-dimensional 
parametric space, each point of which represents a possible placement of B by the 
parametrization (x, y, 0), where (x, y) are the coordinates of some fixed reference point 
on B, and 0 is the orientation of B (the angle between some fixed ray attached to B and 
the positive x-axis). We call a placement of B a free placement if at this placement B 
does not intersect the complement V c of V. The free configuration space of B, denoted 
FP, is the set of all free placements of B, and is clearly an open subset of C. 

The boundary of FP consists of so-called semifree placements, where B makes one 
or more contacts with V c but the interior of B remains disjoint from V c. We can describe 
FP by defining in C a collection E of contact surfaces, each being either the locus of all 
placements of B at which some specific comer of B touches some specific edge of V, 
or the locus of placements at which some side of B touches some vertex of V. Clearly, 
each contact surface is a two-dimensional manifold with boundary (a "surface patch"), 
and, if we replace 0 by tan(0/2), the contact surfaces, as well as their bounding curves, 
are all algebraic of small (constant) maximum degree. The number of contact surfaces 
is clearly O(kn). 

If  B is placed at a free placement Z and moves continuously from Z, then it remains 
free as long as the corresponding path traced in C does not hit any contact surface. 
Moreover, once this path crosses a contact surface, B becomes nonfree. (For this we need 
to assume, as is customary in other treatments of this problem, the generalposition of B 
and V; see [11] for a more precise definition of this notion.) It follows that the connected 
component of FP that contains Z is the cell that contains Z in the arrangement ,A(E) 
of the contact surfaces. (The entire FP is the union of a collection of certain cells in this 
arrangement.) 

The first problem that arises is to obtain a sharp upper bound on the combinatorial 
complexity of a single connected component of FP, that is, of a single cell of ,4(E).  The 
combinatorial complexity of such a cell is defined as the number of vertices, edges, and 
faces of .A(Z) that appear on the boundary of the cell. The problem has been studied in 
[11] (see also [3], [9], [10], and [15]) in the case where B is convex. It was shown there 
that the complexity of the entire free configuration space FP is O(kn~.6(kn)), where 
~q (m) is the maximum length of Davenport-Schinzel sequences of order q composed 
of m symbols, and is nearly linear in m for any fixed q (see [14] for more details). In 
other words, the complexity of FP is only nearly quadratic in kn, as opposed to a naive 
bound O((kn)3), which is a (worst-case tight) bound on the overall number of vertices 
in any three-dimensional arrangement of O(kn) algebraic surface patches of constant 
maximum degree. 

Unfortunately, if B is not convex, the entire free configuration space of B can have 
O ((kn) 3) vertices in the worst case, as is illustrated in Fig. 1. Hence, to obtain a subcubic 
bound, it makes sense to focus on just a single cell of the arrangement, as we have indeed 
indicated above. After the original submission of this paper, the authors have shown in 
[8] that the complexity of a single cell in any arrangement of N algebraic surface patches 
in R 3 of constant maximum degree, bounded by algebraic arcs which also have constant 
maximum degree, is O(N2+E), for any e > 0, where the constant of proportionality 
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Fig. 1. An example where the entire free configuration space of a nonconvex polygon has cubic complexity. 

depends on e and on the maximum degree and shape of the given surfaces and of their 
boundaries. Prior to this, slightly better bounds have been obtained for certain special 
cases, including the case of spheres, where a (worst-case tight) quadratic bound is known 
[13], the case of triangles, where an O ( N  2 log N) bound is known [2], and several special 
cases that arise in motion planning for various robot systems B with three degrees of 
freedom, including several restricted cases of the polygon motion-planning problem that 
we consider here, where the shape of B and/or the shape of V is further restricted; 
these latter bounds are also all close to quadratic, and are reported in [6]. See also two 
recent surveys [5] and [7] for more details concerning motion-planning problems and 
arrangements of surfaces. 

In this paper we exploit the new bounds derived in [8], introduce a special cell 
decomposition scheme for the cell arising in our motion-planning problem, and obtain 
an efficient algorithm for constructing such a cell. The algorithm runs in time O ((kn)2+~), 
for any e > 0, where k and n are as above. The new cell decomposition technique that 
we develop here for the algorithm may be useful for other applications as well. 

We also mention that in the preliminary version of this paper, which appeared before 
the bounds of [8] were obtained, we showed that the complexity of a single cell in the 

3 "~ O f l o g  / n l  arrangement that arises in our motion-planning problem is k n-2 "~: . When k is 
constant, this is slightly better than the general bound of [8]. In fact, the analysis of [8] 
adapted and extended the technique that we used in the earlier version of this paper. 

2. Efficient Construction of a Single Cell 

In this section we obtain an efficient randomized algorithm (which can also be made 
deterministic) for constructing a single cell of the free configuration space of a moving 
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k-sided polygon B. The general approach is similar to that of [1] and [2]. That is, let 
denote the collection of contact surfaces induced by the problem, and let Z be a given 
free placement of B; our goal is to compute the cell containing Z in .A(E). We choose a 
random sample R of r surfaces of Z, where r is some sufficiently large integer constant. 
We construct (e.g., by brute force) the cell Co containing Z in .A(R), and decompose 
Co, in a manner to be described shortly, into subcells, each having "constant description 
complexity" (meaning that each cell is defined by a constant number of polynomial 
equalities and inequalities of constant maximum degree). The standard theory of e-nets 
and finite VC-dimension implies that, with high probability, none of the subcells in the 
decomposition is crossed by more than O ((n/r) log r) surfaces of Z (see, e.g., Appendix 
7.2 of [14]). For each subcell f we find the subcollection E~ of surfaces that cross f ,  
and compute recursively the cell C~ containing Z in the arrangement of these surfaces. 
We then form the desired cell C containing Z in .A(E) by "gluing" together pieces of 
these cells. Specifically, we start with the subcell f containing Z, and take the connected 
component K of f A C~ that contains Z (note that f tq C~ need not be connected). If that 
component is disjoint from 0f,  then this is the entire desired cell C. Otherwise, let f be 
a connected face of C~ tq 0f. We find the other subcell(s) f~ whose boundary contains 
or overlaps f (since our decomposition will not necessarily be a cell complex, there 
might be several such subcells f ') .  We find the connected component of f '  A C~, whose 
boundary contains (or overlaps) f ,  and glue that component to K along f .  We continue 
this gluing procedure in, say, a breadth-first style, across all subcells of Co, until no more 
gluing is possible, in which case we have obtained the desired cell C. We refer the reader 
to [1] and [2] for more details. (We note that C can also be constructed using the recent 
randomized incremental technique of [4]. Both methods, however, rely on the existence 
of an efficient cell decomposition scheme, like the one about to be described.) 

The performance of this algorithm crucially depends on the number of subcells f 
in the decomposition of Co. We describe such a decomposition that has only O (r 2+~) 
subcells, for any e > 0. A standard calculation then implies that the expected running 
time of the algorithm is O((kn)2+~), for any e > 0; see below for details. 

The decomposition proceeds as follows. Any 0-cross-section of .A(7"r consists of 
r line segments. Indeed, when 0 is fixed, B can only translate, and the locus of all 
translated placements of B at which it makes some specific edge-vertex contact is a line 
segment. Moreover, if we sweep a plane parallel to the xy-plane through the arrangement, 
the motion of the segments on the sweep plane is rather simple and has the following 
properties (which are easy to verify): For any pair of segments s, s', an endpoint of s has 
the same x-coordinate as an endpoint of s' at most a constant number of times; and an 
endpoint of s intersects the interior of s' at most a constant number of times. 

Now, fix a segment endpoint and, at every 0, extend a vertical segment (parallel to the 
y-axis) up and down from that endpoint until it hits another segment, or else extends to 
infinity. We consider the union of these extensions, over all values of 0, as a collection 
of patches on an additional surface. A similar collection of patches is obtained for every 
other segment endpoint, so we obtain a total of at most 2r additional "surfaces" 

Arguing as in Lemma 6.12 of [6], it can be shown that at most O(r 2) new faces are 
added to ~t (7-r by inserting these "extension surfaces" Specifically, as long as a segment 
endpoint p remains in the same face f of the 0-cross-section of ~4(7r the extension 
segment from p traces a single face 9 of the corresponding extension surface. Vertices 
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cross-section ~t0o-~ cross-section at Oo + 

Fig. 2. The change in the extension segment as p crosses another segment at 00; both faces f and fr at 00 
are added to the arrangement, each split into two subfaces by the extension segment. 

of  ~o arise when the extension segment hits a vertex of  f ,  which may also be another 
segment endpoint vertically visible from p (in the y-direction). Note that the collection of  
extension segments within a face f of a 0-cross-section partition it into several subfaces, 
and that as 0 varies some of  these subfaces can shrink and disappear, and be replaced by 
new subfaces, when pairs of  extension segments overlap within f .  Suppose that at some 
00 the point p crosses into another face f '  of the 0-cross-section. Then ~0 terminates at 
00, and a new face ~o' begins at this orientation along the extension surface. In this case 
we also add to our three-dimensional arrangement ,A(S) all the "horizontal" subfaces of  
f and of f '  within the 00-cross-section, which are adjacent to the respective extension 
segments through p. See Fig. 2 for an illustration of  this process. 

It thus follows that the overall number of  faces added is O (r 2); indeed, each crossing 
of a segment endpoint through another segment induces only a constant number of  new 
faces, and the number of  such crossings is O(r2). Note also that new subcells may start 
and end at 0-cross-sections in which two segment endpoints become vertically visible 
(in the y-direction) within a face of  the cross section (see Fig. 3 for an illustration), but 
the number of such events is also only O (r2). Consequently, a single cell is divided by 
these extra surfaces into at most O (r 2) three-dimensional subcells. 

As is easily verified, each of the resulting subcells r has the property that its 0-cross- 
section is always a convex polygon, and it varies continuously (in the Hausdorff metric 
of sets) with 0. This is easily seen to imply that every such subcell has a unique minimum 
and maximum in 0. As discussed in [6], the minimum need not be restricted to a single 

Fig. 3. A subcell whose cross section is f '  terminates at 00, and a new subcell whose cross section is f "  
begins at 00. 
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point, and might be attained by a line segment or a two-dimensional face on the boundary 
of the cell, but this will not affect our analysis. There is also the special case of minima 
lying on the plane 0 = 0 (containing the marking point of the cell), since we want to 
consider this plane as another surface in our arrangement. This way we may have added 
up to O (r 2) additional local 0-minima of cells. 

It can also be shown that the combinatorial complexity of the faces that we have 
added to ,A(R) by the extensions from segment endpoints is O (r)~6(r)). To see this, note 
that a vertex of such a face ~o arises when the corresponding endpoint p sees a vertex 
of the face f containing p in some 0-cross-section, in the vertical y-direction. We can 
therefore define, for each of the given N surfaces or, a (partial) function Fo (0) which 
is equal to the y-vertical distance from p to the segment tr0, the 0-cross-section of tr, 
whenever this distance is defined and p lies, say, below that segment (in the y-direction). 
It follows that each vertex of any face ~0 associated with p corresponds to a breakpoint 
in the lower envelope of the functions F~ (0), or in the upper envelope of a symmetric 
collection of functions, each defined when p lies above the corresponding segment tr0. 
Using the analysis of [11], it can be shown that any pair of these functions intersect 
in at most four points, so the number of breakpoints of the envelopes defined for each 
endpoint p is O(~.6(r)) (see [14]), from which the claim follows easily. 

In contrast, we do not have equally sharp bounds for the complexity of the "horizontal" 
faces that are also added to .A(T~) in the above analysis. We suspect that their overall 
complexity is also roughly quadratic in r, but so far we were not able to show this. Our 
decomposition scheme will finesse this issue. 

To recap, we have decomposed Co into O (r 2) subcells, each of which has the prop- 
erty that all its 0-cross-sections are convex and vary continuously with 0. Moreover, it 
follows from the above analysis, and from the general bound of [8] on the complexity 
of (the undecomposed) Co, that the total combinatorial complexity of all these subcells, 
excluding the complexity of the horizontal faces added in the decomposition, is O (r2+e), 
for any e > 0. 

We next further decompose each of these subcells as follows. Imagine that we sweep 
(the decomposed) Co with a plane P parallel to the x y-plane, in the direction of increasing 
O. Let Co(O) denote the cross section P t3 Co when P is at height 0. We maintain a 
balanced triangulation of each convex face f of Co(O) and update it whenever P sweeps 
over a vertex of f ,  or when faces of Co(O) disappear, newly appear, split, or merge. 
The triangulations are balanced in the sense that the dual graph of each triangulation 
is a balanced binary tree whose depth is thus only logarithmic. For specificity, we use 
red-black trees, as described in Chapter 4 of [17]. (As defined, this dual tree is unrooted, 
but we root it at some arbitrary triangle incident to at least one edge of f . )  In particular, 
no vertex of any face f is incident to more than O (log r) triangles, and the intersection of 
any line with a face f meets no more than O (log r) triangles (in both cases, the triangles 
form a path in the dual tree). For a discussion on the relation between triangulations and 
binary trees, see, e.g., [16]. See also Fig. 4 for an illustration of a tree corresponding to 
a balanced triangulation. Note that a balanced binary tree with n nodes corresponds to 
a triangulation of a convex polygon with n + 2 vertices, having therefore n triangles. 
We choose an appropriate edge of the polygon to be the root edge (so that the resulting 
rooted tree is balanced), and label all the vertices not incident to the root edge, with an 
increasing sequence of integers in counterclockwise order. The triangle incident to the 
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Fig. 4. A balanced triangulation of a convex polygon and the corresponding balanced binary gee: each 
triangle is labeled by the vertex opposite to the side it shares with its parent. 

root edge corresponds to the root of the tree, and the key attached to the root of  the tree 
is the number of  the vertex of  the root triangle not incident to the root edge. Each of  the 
two nonroot edges of  the root triangle may have a child triangle incident to that edge; its 
key is the number of  the vertex of  that triangle not incident to the parent (root) triangle. 
The labeling of  tree nodes continues recursively in this manner; see Fig. 4. 

(Before proceeding, it is instructive to note that the need to maintain balanced trian- 
gulations is forced on us by the fact that we do not have a near-quadratic bound on the 
overall complexity of  the horizontal faces added in the first decomposition step. If  we had 
such a bound, we could have afforded to use any triangulation of the faces of the cross 
section, because the overall number of  triangles would have also been near-quadratic. 
We still need to triangulate these faces, to ensure that we get subcells with constant 
description complexity.) 

For each triangle A we compute two critical orientations 01 < 02 at which A is 
respectively "opened" (newly added to the triangulation) and "closed" (removed from 
the triangulation). At any time during the sweep, we store with each triangle in the current 
triangulation the critical orientation 01 at which it was opened. Such a triangle A induces 
a subcell 

~zx = {(x, y, 0) [ 01 <_ 0 _<< 02, (X, y) ~ A(0)}, 

where A(0) is the set of  points occupied by A at the cross section Co(O). It is clear that 
~,x has constant description complexity, 1 and that the collection of these subcells forms a 
decomposition of  Co (which is a refinement of the first decomposition, obtained above). 
The main goal of  the following analysis is to estimate the number of  subcells ~,x that 
are created by the sweeping process. As we will see, the fact that the triangulations that 
we maintain are all balanced is crucial for the analysis. We also note that, even though 
the subcell decomposition is described below algorithmically, we are only concerned 
with its output size (namely, with the number of triangles being created), and not with 
its running time, since we are dealing with a constant-size problem. 

1 Strictly speaking, since this property requires that the subeell be represented by polynomial equalities 
and inequalities, we should have replaced the third coordinate 0 by tan(0/2); however, for convenience of 
presentation, we continue to denote this coordinate by 0. 
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A new face of Co(O) is formed either when a connected component of Co(O) newly 
appears, or when a pair of adjacent convex faces of Co(O) merge into a new (convex) 
face (when a y-vertical segment separating them is removed), or when a face of Co(O) 
is split into two subfaces (when a y-vertical segment separating them is added). When 
a new component of Co(O) appears, as 0 slightly increases, the component becomes a 
triangle; thus initializing the triangulation for a new component is trivial. To initialize 
the whole structure at 8 = 0, we simply triangulate each convex face of (the verti- 
cally decomposed) Co (0) in a balanced manner, and open all the resulting triangles at 
8 = 0 .  

When the sweep plane P reaches a vertex u of some subcell r of Co at an orientation 
Ou (excluding vertices that lie on an added horizontal face which delimits r from above 
or from below), one of several types of combinatorial changes can occur at u: an edge of 
the 8-cross-section r (8) may shrink to a point and disappear, or a new edge of r (0) may 
appear, or, when we encounter at 0u an edge of r parallel to the xy-plane, an edge of r (8) 
may be replaced by another edge, or the entire face r(0) may shrink to a long and thin 
trapezoid which is finally "squashed" at Ou. Nevertheless, such a change at u affects only 
a constant number of edges and vertices of r (0), and thus affects only O (log r) triangles 
in the current triangulation of r (0). Each of these triangles is closed at 0u (so the subcells 
corresponding to these triangles are now fully defined), and O(log r) new triangles are 
formed as appropriate, replacing the old affected triangles; the new triangles are opened 
at0, .  

Of course, after each such update we need to rebalance the dual tree of the triangulation 
of r(0),  if necessary. For this, we can use any of the known techniques for maintaining 
balanced binary trees; as already mentioned, we use, for specificity, the red-black tree 
technique, as described in Chapter 4 of [17]. We observe that, since the triangulation that 
we maintain is of a convex polygon, any rotation that we want to apply to the dual tree, 
as an abstract structure, can be achieved by a straightforward retriangulation, in which 
the few triangles whose corresponding nodes have to be rotated in the tree are replaced 
by a few other triangles that represent these nodes after the rotation. Specifically, a single 
rotation in the binary tree corresponds to an edgeflip in the triangulation; that is, for a 
pair of triangles sharing a diagonal in the triangulation, an edge flip is carried out by 
removing that diagonal--temporarily obtaining a (convex) quadrangle--and inserting 
the other diagonal of that quadrangle. Figure 5 shows how single and double rotations are 
implemented by edge flips. We denote the balanced tree corresponding to the triangulated 
polygon f by T(f).  

We begin by describing in detail the operations that need to be performed when 
removing a vertex from the boundary of a convex face f .  Adding a vertex to f can 
be done in a similar fashion. (The actual updating of f ,  occurring when an edge of f 
shrinks and disappears, or newly appears, can be implemented by removing two or one 
vertices from f ,  and then adding one or two new vertices to f ,  respectively.) We then 
describe how to update the triangulations when faces are merged or split. 

Let u be the vertex of f that we are about to remove. By the above discussion, there are 
at most O (log r) triangles of the triangulation of f that are incident to u, and the nodes 
corresponding to these triangles in the tree form a path Jr of the tree. As is easily seen, 
the triangles incident to u form a convex polygon, all of whose vertices are vertices of 
f .  If  the path n contains the root node, then we denote this polygon by g. Otherwise, we 
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Fig. 5. Realization of a rotation by retriangulation of a face. 

follow a path Jr' from the root until it hits a node of : r ,  add the triangles corresponding to 
the nodes o f : r '  to those incident to u, and let g denote the convex polygon covered by all 
these triangles; again, the number of original triangles contained in g is at most O (log r).  
Let h 1, h2 . . . . .  hm be the O (log r) connected components of  f \ g .  See Fig. 6(a,b) for an 
illustration (the asterisks in Fig. 6(a) denote the triangles incident to u). In the example 
depicted in Fig. 6, there is only one node on the path rr', namely the root node, which is 
thus added to the triangles incident to u in order to form g. Clearly, each of  the h i 'S is 
represented by a subtree of  T( f ) ,  and hence their corresponding subtrees T(hi) are all 
balanced. 

We now remove the vertex u from the boundary of  f and of  g to obtain a new face 
f '  and a new portion g '  thereof, respectively. Note that the polygons hi,  h2 . . . . .  hm are 
unaffected by this removal, and only g changes (into g'). Next, we retriangulate g '  into 
O (log r) triangles such that each diagonal in this triangulation is incident to one of the 
endpoints of  the root edge to obtain T (g'); see Fig. 6(c). For each triangle in T (g') that 
shares with some hi an edge not incident to the root edge, we add that triangle to hi 
(making it the new root of  T(hi)), and remove it from the collection T(g') (thus the 
remaining triangles no longer form a triangulation of g'). It is easily verified that this 
process has split the face f '  into subfaces fl  . . . . .  fq, such that the numbers attached 
to the vertices of  each subface form a contiguous interval of  the numbers in f ' ,  and 
that these intervals have pairwise disjoint interiors. We number these faces in increasing 
order of  the corresponding intervals, which corresponds to their counterclockwise order 
around f ' ;  see Fig. 6(d) for an illustration. 

We now proceed to perform a series of  join operations, as in Chapter 4 of  [17], taking 
care that when we join two polygons Pl and P2, the numbers attached to vertices of  Pt 
are all smaller than those attached to vertices of  P2. Thus, we join T ( f l )  to T(f2), then 
we join the resulting tree to T(f3) ,  and so on, until all the trees T( f i )  have been joined. 
This way we obtain a balanced triangulation T(f ' )  of the updated face f ' .  The cost 
(i.e., the number of tree operations) of each join operation is O (log r), and we repeat it 
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Fig, 6, Removing a vertex from a convex face. 

O (log r) times. Thus the overall cost of this deletion is O (log 2 r); in other words, only 
O (log 2 r) new triangles are created. 

The addition of a new vertex to a face f is performed in a similar manner; it is 
somewhat simpler, because it calls for adding just one new triangle to f .  

Remarks.  (1) The join operation join(s, ,  i, s2) described in Chapter4 of [17] is defined 
for two trees Sl and s2, and for an additional element i, such that all the keys in sl are 
smaller than key(i) and all the keys in s2 are greater than key(i). To conform to this 
notation, we note that the diagonal shared by the two subfaces that we join can play the 
role of the element i, by "thickening" it into a very thin triangle. 

(2) An additional technical issue is that join(s1, i, s2) proceeds by "hanging" i as the 
fight child of some node w lying on the rightmost path of sl, and by making the original 
right child w' of w (if any) the left child of i. To implement this step via a retriangulation, 
let Wl = w', w2 . . . . .  wt be the nodes on the rightmost path of Sl from'w ' downward. As 
is easily seen, these nodes correspond to triangles, all of which are incident to a common 
vertex u and arranged around u in counterclockwise order. Let Vl, 02 . . . . .  Vt+l be the 
other vertices of these triangles, arranged in counterclockwise order around the face, 
and let Or+2 be the other vertex of (the "thickened") i; see Fig. 7. We now perform one 
"giant" edge flip: connect vl with or+2 by a diagonal, let i now denote the new triangle 
spanned by u and by this diagonal, and form new triangles representing W 1 . . . . .  Wt by 
connecting vt+2 with rio2 . . . . .  /)t/)t+l, respectively; see Fig. 7 for an illustration. The 
remaining steps of the join are easy to implement by standard edge flips, as above. 
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The retriangulation corresponding to the hanging of a node i on a node w in the rightmost path of a tree. 

Things are not much different when the sweep reaches an event at which two faces of  
Co(O) merge into a new face, or a face is split into two subfaces. Consider first the latter 
situation, let f denote the face before splitting, and let fl  and f2 denote the subfaces 
formed by the split. A naive way of handling this configuration is to close all triangles in 
the current triangulation of  f ,  compute balanced triangulations of ]'1 and f2 from scratch, 
and open all these triangles. However, the cost of this approach would be proportional 
to the complexity of  f ,  and, as noted above, we do not have a near-quadratic bound 
on the overall complexity of  all such faces f .  We thus use the following more refined 
procedure. Let e denote the y-vertical segment that splits f .  Since e cuts the boundary 
of  any triangle in at most two points, it easily follows, as noted above, that the set of 
triangles in the triangulation of  f which are crossed by e form a single path Jr in the 
dual (unrooted) tree of  the triangulation, or at most two paths in its rooted version T(f) .  
Thus the number of  such triangles is only 0 (log r). Let g denote the polygon covered 
by these triangles. As before, let hi . . . . .  hm denote the connected components of f \ g ,  
each of which is clearly a convex region. Some of  the hi's are contained in fl  while the 
others are contained in f2. We split g into two subfaces gl and g% using the y-vertical 
edge e. 2 The edge e splits the edges of  f into two chains, one of  which contains the root 
edge, say the boundary of  f i .  In this case we extend g~ as before until it contains the 

2 Note that the endpoints of e need not necessarily be vertices of f. To be precise, we first have to add the 
endpoints of e as new vertices of f ,  and then proceed with the splitting operation as described above. 
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root edge, and update the hi's accordingly. Note that in fl  the root edge is the same root 
edge as in f ,  and in f2 the newly added y-vertical edge e is the root edge. From this 
point, we proceed to handle each subface f l ,  f2 as in the case of deleting a vertex. A 
similar, though slightly different, procedure is used if the root edge is split by e. 

Next consider a merge of two faces f l ,  f2, into a common convex face f ,  caused by 
removing a y-vertical edge e separating between f l  and f2. Let ~rl (resp. rr2) denote the 
path in T(f l )  (resp. in T(f2)) from the root to the triangle incident to e in f l  (resp. in f2). 
The union of all O(log r) triangles in these two paths is a convex polygon g contained 
in f .  As above, let hi . . . . .  hm denote the connected components of f \ g ,  each of which 
is a convex polygon. Let rl be the root edge of T(fl) .  We renumber the vertices of 
f so that they form an increasing sequence of integers in their counterclockwise order 
along f ,  going from rl all the way around. (This is an expensive operation, but, as noted 
above, we are only concerned with the number of triangles that the algorithm produces, 
and not with its running time.) We now retriangulate g and perform a series of join 
operations, exactly as in the case, described above, of deleting a vertex, where the joins 
are performed according to the new order of the hi 's. 

The final type of update occurs when a connected component of Co(O) shrinks to 
a point and disappears. In this case we simply close the single triangle of its current 
triangulation, and remove its singleton dual tree from our forest. This completes the 
description of our triangulation of the cell Co. 

Note that each vertex of Co (excluding those on the added horizontal faces) causes the 
generation of only O (log 2 r) subcells, and the same holds for each added horizontal face 
(whose number is only O (r z)). It follows that the number of subcells in the decomposition 
of Co is O(r 2+~) �9 O(log 2 r) = O(r2+E), for any e > 0 (with a slightly larger e in the 
second exponent), as claimed. 

The analysis of the expected running time of the algorithm is now straightforward, 
and similar to that in [ 1 ] and [2]. That is, if T (N) denotes the maximum expected running 
time of the algorithm for a collection of N contact surfaces, then we have (recalling that 
r is assumed to be a constant) 

T(N) < Qr2+e . T (C~Nr logr)  + O(N2+E) , 

for appropriate constants c and Cl (independent of r). With an appropriate choice o f r  as a 
function of e, it is easily verified that the solution of this recurrence is T (N) = O (N2+~'), 
for any e' > e > 0, where the constant of proportionality depends on e and e'. We have 
thus shown: 

Theorem 2.1. A single connected component of the free configuration space of a k- 
sided polygon, moving in a polygonal region bounded by n edges, can be computed by a 
randomized algorithm with expected running time O ( (kn )2+~),for any e > O, with the 
constant of proportionality depending on e. 

Remark. The algorithm can be made deterministic, using the deterministic (though 
rather complicated) construction of t-nets given by Matou~ek [12]. The asymptotic 
running time of the algorithm remains the same. 
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It is interesting to note that our algorithm constructs a representation of the cell C 
which is suitable for point location. For this we maintain the entire recursive structure 
that the algorithm computes, in the form of a rooted tree. That is, at the root of that 
tree we store the decomposition of the cell Co into the subcells ~zx, as described above. 
Each such subcell becomes a child of the root, and stores a similar cell decomposition in 
the arrangement of the random sample constructed for the corresponding subproblem, 
and so on. Now, given a query point q, we find, by brute force, the subcell ~a of the 
top cell Co containing q. If no such subcell is found, we conclude that q is not in our 
cell. Otherwise, we continue the search recursively at the child corresponding to ~zx. 
Thus, we can determine whether q lies in our cell in O (log kn) time. In terms of the 
motion-planning application, this means that we can determine in logarithmic time (using 
O((kn) 2+~) preprocessing and storage, for any e > 0) whether a given placement of 
the robot B is free and can be reached from Z via a collision-free path (this is the so- 
called reachability problem). It is also easy to enhance our data structure with additional 
information, so that actual motion planning between Z and a query placement can be 
performed in O((kn) 2+e) time. 
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