
Discrete Comput Geom 16:121-134 (1996) Discrete & Computational Geometry
O 1996 Springcr-Verlag New York Inc.

A Near-Quadratic Algorithm for Planning the Motion of a
Polygon in a Polygonal Environment*

D. Ha lpe r in 1* and M. Shar i r 2

J Robotics Laboratory, Department of Computer Science,
Stanford University, Stanford, CA 94305, USA
halperin @cs.stanford.edu

2School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
sharir @ math.tau.ac.il
and
Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

A b s t r a c t . We consider the problem of planning the motion of an arbitrary k-sided poly-
gonal robot B, free to translate and rotate in a polygonal environment V bounded by n

edges. We present an algorithm that constructs a single component of the free configuration
space of B in time O ((kn)2+~), for any e > 0. This algorithm, combined with some standard
techniques in motion planning, yields a solution to the underlying motion-planning problem,
within the same running time.

* Work on this paper by Dan Halperin has been supported by a Rothschild Postdoctoral Fellowship, by a
grant from the Stanford Integrated Manufacturing Association (SIMA), by NSF/ARPA Grant IR1-9306544,
and by NSF Grant CCR-9215219. Work on this paper by Micha Sharir has been supported by NSF Grants
CCR-91-22103 and CCR-93-11127, by a Max-Planck Re,arch Award, and by grants from the U.S.-Israeli
Binational Science Foundation, the Israel Science Fund administered by the Israeli Academy of Sciences,
and the G.I.E, the German-Israeli Foundation for Scientific Research and Development. A preliminary and
extended version of the paper has appeared as: D. Halperin and M. Sharir, Near-quadratic bounds for the
motion planning problem for a polygon in a polygonal environment, Proc. 34th IEEE Syrup. on Foundations
of Computer Science, 1993, pp. 382-391. Part of the work on the paper was carried out while Dan Halperin
was at Tel Aviv University.

t Current address: Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

122 D. Halperin and M. Sharir

1. Introduction

Let B be an arbitrary polygonal object with k sides, and let V be an open planar polygonal
region bounded by n edges. The configuration space C of B is a three-dimensional
parametric space, each point of which represents a possible placement of B by the
parametrization (x, y, 0), where (x, y) are the coordinates of some fixed reference point
on B, and 0 is the orientation of B (the angle between some fixed ray attached to B and
the positive x-axis). We call a placement of B a free placement if at this placement B
does not intersect the complement V c of V. The free configuration space of B, denoted
FP, is the set of all free placements of B, and is clearly an open subset of C.

The boundary of FP consists of so-called semifree placements, where B makes one
or more contacts with V c but the interior of B remains disjoint from V c. We can describe
FP by defining in C a collection E of contact surfaces, each being either the locus of all
placements of B at which some specific comer of B touches some specific edge of V,
or the locus of placements at which some side of B touches some vertex of V. Clearly,
each contact surface is a two-dimensional manifold with boundary (a "surface patch"),
and, if we replace 0 by tan(0/2), the contact surfaces, as well as their bounding curves,
are all algebraic of small (constant) maximum degree. The number of contact surfaces
is clearly O(kn).

If B is placed at a free placement Z and moves continuously from Z, then it remains
free as long as the corresponding path traced in C does not hit any contact surface.
Moreover, once this path crosses a contact surface, B becomes nonfree. (For this we need
to assume, as is customary in other treatments of this problem, the generalposition of B
and V; see [11] for a more precise definition of this notion.) It follows that the connected
component of FP that contains Z is the cell that contains Z in the arrangement ,A(E)
of the contact surfaces. (The entire FP is the union of a collection of certain cells in this
arrangement.)

The first problem that arises is to obtain a sharp upper bound on the combinatorial
complexity of a single connected component of FP, that is, of a single cell of ,4(E). The
combinatorial complexity of such a cell is defined as the number of vertices, edges, and
faces of .A(Z) that appear on the boundary of the cell. The problem has been studied in
[11] (see also [3], [9], [10], and [15]) in the case where B is convex. It was shown there
that the complexity of the entire free configuration space FP is O(kn~.6(kn)), where
~q (m) is the maximum length of Davenport-Schinzel sequences of order q composed
of m symbols, and is nearly linear in m for any fixed q (see [14] for more details). In
other words, the complexity of FP is only nearly quadratic in kn, as opposed to a naive
bound O((kn)3), which is a (worst-case tight) bound on the overall number of vertices
in any three-dimensional arrangement of O(kn) algebraic surface patches of constant
maximum degree.

Unfortunately, if B is not convex, the entire free configuration space of B can have
O ((kn) 3) vertices in the worst case, as is illustrated in Fig. 1. Hence, to obtain a subcubic
bound, it makes sense to focus on just a single cell of the arrangement, as we have indeed
indicated above. After the original submission of this paper, the authors have shown in
[8] that the complexity of a single cell in any arrangement of N algebraic surface patches
in R 3 of constant maximum degree, bounded by algebraic arcs which also have constant
maximum degree, is O(N2+E), for any e > 0, where the constant of proportionality

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 123

�9 o o

o

o

e

o

o

o

o

o

o

o

o

o

o

Fig. 1. An example where the entire free configuration space of a nonconvex polygon has cubic complexity.

depends on e and on the maximum degree and shape of the given surfaces and of their
boundaries. Prior to this, slightly better bounds have been obtained for certain special
cases, including the case of spheres, where a (worst-case tight) quadratic bound is known
[13], the case of triangles, where an O (N 2 log N) bound is known [2], and several special
cases that arise in motion planning for various robot systems B with three degrees of
freedom, including several restricted cases of the polygon motion-planning problem that
we consider here, where the shape of B and/or the shape of V is further restricted;
these latter bounds are also all close to quadratic, and are reported in [6]. See also two
recent surveys [5] and [7] for more details concerning motion-planning problems and
arrangements of surfaces.

In this paper we exploit the new bounds derived in [8], introduce a special cell
decomposition scheme for the cell arising in our motion-planning problem, and obtain
an efficient algorithm for constructing such a cell. The algorithm runs in time O ((kn)2+~),
for any e > 0, where k and n are as above. The new cell decomposition technique that
we develop here for the algorithm may be useful for other applications as well.

We also mention that in the preliminary version of this paper, which appeared before
the bounds of [8] were obtained, we showed that the complexity of a single cell in the

3 "~ O f l o g / n l arrangement that arises in our motion-planning problem is k n-2 "~: . When k is
constant, this is slightly better than the general bound of [8]. In fact, the analysis of [8]
adapted and extended the technique that we used in the earlier version of this paper.

2. Efficient Construction of a Single Cell

In this section we obtain an efficient randomized algorithm (which can also be made
deterministic) for constructing a single cell of the free configuration space of a moving

124 D. Halperin and M. Sharir

k-sided polygon B. The general approach is similar to that of [1] and [2]. That is, let
denote the collection of contact surfaces induced by the problem, and let Z be a given
free placement of B; our goal is to compute the cell containing Z in .A(E). We choose a
random sample R of r surfaces of Z, where r is some sufficiently large integer constant.
We construct (e.g., by brute force) the cell Co containing Z in .A(R), and decompose
Co, in a manner to be described shortly, into subcells, each having "constant description
complexity" (meaning that each cell is defined by a constant number of polynomial
equalities and inequalities of constant maximum degree). The standard theory of e-nets
and finite VC-dimension implies that, with high probability, none of the subcells in the
decomposition is crossed by more than O ((n/r) log r) surfaces of Z (see, e.g., Appendix
7.2 of [14]). For each subcell f we find the subcollection E~ of surfaces that cross f ,
and compute recursively the cell C~ containing Z in the arrangement of these surfaces.
We then form the desired cell C containing Z in .A(E) by "gluing" together pieces of
these cells. Specifically, we start with the subcell f containing Z, and take the connected
component K of f A C~ that contains Z (note that f tq C~ need not be connected). If that
component is disjoint from 0f, then this is the entire desired cell C. Otherwise, let f be
a connected face of C~ tq 0f. We find the other subcell(s) f~ whose boundary contains
or overlaps f (since our decomposition will not necessarily be a cell complex, there
might be several such subcells f ') . We find the connected component of f ' A C~, whose
boundary contains (or overlaps) f , and glue that component to K along f . We continue
this gluing procedure in, say, a breadth-first style, across all subcells of Co, until no more
gluing is possible, in which case we have obtained the desired cell C. We refer the reader
to [1] and [2] for more details. (We note that C can also be constructed using the recent
randomized incremental technique of [4]. Both methods, however, rely on the existence
of an efficient cell decomposition scheme, like the one about to be described.)

The performance of this algorithm crucially depends on the number of subcells f
in the decomposition of Co. We describe such a decomposition that has only O (r 2+~)
subcells, for any e > 0. A standard calculation then implies that the expected running
time of the algorithm is O((kn)2+~), for any e > 0; see below for details.

The decomposition proceeds as follows. Any 0-cross-section of .A(7"r consists of
r line segments. Indeed, when 0 is fixed, B can only translate, and the locus of all
translated placements of B at which it makes some specific edge-vertex contact is a line
segment. Moreover, if we sweep a plane parallel to the xy-plane through the arrangement,
the motion of the segments on the sweep plane is rather simple and has the following
properties (which are easy to verify): For any pair of segments s, s', an endpoint of s has
the same x-coordinate as an endpoint of s' at most a constant number of times; and an
endpoint of s intersects the interior of s' at most a constant number of times.

Now, fix a segment endpoint and, at every 0, extend a vertical segment (parallel to the
y-axis) up and down from that endpoint until it hits another segment, or else extends to
infinity. We consider the union of these extensions, over all values of 0, as a collection
of patches on an additional surface. A similar collection of patches is obtained for every
other segment endpoint, so we obtain a total of at most 2r additional "surfaces"

Arguing as in Lemma 6.12 of [6], it can be shown that at most O(r 2) new faces are
added to ~t (7-r by inserting these "extension surfaces" Specifically, as long as a segment
endpoint p remains in the same face f of the 0-cross-section of ~4(7r the extension
segment from p traces a single face 9 of the corresponding extension surface. Vertices

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 125

cross-section ~t0o-~ cross-section at Oo +

Fig. 2. The change in the extension segment as p crosses another segment at 00; both faces f and fr at 00
are added to the arrangement, each split into two subfaces by the extension segment.

of ~o arise when the extension segment hits a vertex of f , which may also be another
segment endpoint vertically visible from p (in the y-direction). Note that the collection of
extension segments within a face f of a 0-cross-section partition it into several subfaces,
and that as 0 varies some of these subfaces can shrink and disappear, and be replaced by
new subfaces, when pairs of extension segments overlap within f . Suppose that at some
00 the point p crosses into another face f ' of the 0-cross-section. Then ~0 terminates at
00, and a new face ~o' begins at this orientation along the extension surface. In this case
we also add to our three-dimensional arrangement ,A(S) all the "horizontal" subfaces of
f and of f ' within the 00-cross-section, which are adjacent to the respective extension
segments through p. See Fig. 2 for an illustration of this process.

It thus follows that the overall number of faces added is O (r 2); indeed, each crossing
of a segment endpoint through another segment induces only a constant number of new
faces, and the number of such crossings is O(r2). Note also that new subcells may start
and end at 0-cross-sections in which two segment endpoints become vertically visible
(in the y-direction) within a face of the cross section (see Fig. 3 for an illustration), but
the number of such events is also only O (r2). Consequently, a single cell is divided by
these extra surfaces into at most O (r 2) three-dimensional subcells.

As is easily verified, each of the resulting subcells r has the property that its 0-cross-
section is always a convex polygon, and it varies continuously (in the Hausdorff metric
of sets) with 0. This is easily seen to imply that every such subcell has a unique minimum
and maximum in 0. As discussed in [6], the minimum need not be restricted to a single

Fig. 3. A subcell whose cross section is f ' terminates at 00, and a new subcell whose cross section is f "
begins at 00.

126 D. Halperin and M. Sharir

point, and might be attained by a line segment or a two-dimensional face on the boundary
of the cell, but this will not affect our analysis. There is also the special case of minima
lying on the plane 0 = 0 (containing the marking point of the cell), since we want to
consider this plane as another surface in our arrangement. This way we may have added
up to O (r 2) additional local 0-minima of cells.

It can also be shown that the combinatorial complexity of the faces that we have
added to ,A(R) by the extensions from segment endpoints is O (r)~6(r)). To see this, note
that a vertex of such a face ~o arises when the corresponding endpoint p sees a vertex
of the face f containing p in some 0-cross-section, in the vertical y-direction. We can
therefore define, for each of the given N surfaces or, a (partial) function Fo (0) which
is equal to the y-vertical distance from p to the segment tr0, the 0-cross-section of tr,
whenever this distance is defined and p lies, say, below that segment (in the y-direction).
It follows that each vertex of any face ~0 associated with p corresponds to a breakpoint
in the lower envelope of the functions F~ (0), or in the upper envelope of a symmetric
collection of functions, each defined when p lies above the corresponding segment tr0.
Using the analysis of [11], it can be shown that any pair of these functions intersect
in at most four points, so the number of breakpoints of the envelopes defined for each
endpoint p is O(~.6(r)) (see [14]), from which the claim follows easily.

In contrast, we do not have equally sharp bounds for the complexity of the "horizontal"
faces that are also added to .A(T~) in the above analysis. We suspect that their overall
complexity is also roughly quadratic in r, but so far we were not able to show this. Our
decomposition scheme will finesse this issue.

To recap, we have decomposed Co into O (r 2) subcells, each of which has the prop-
erty that all its 0-cross-sections are convex and vary continuously with 0. Moreover, it
follows from the above analysis, and from the general bound of [8] on the complexity
of (the undecomposed) Co, that the total combinatorial complexity of all these subcells,
excluding the complexity of the horizontal faces added in the decomposition, is O (r2+e),
for any e > 0.

We next further decompose each of these subcells as follows. Imagine that we sweep
(the decomposed) Co with a plane P parallel to the x y-plane, in the direction of increasing
O. Let Co(O) denote the cross section P t3 Co when P is at height 0. We maintain a
balanced triangulation of each convex face f of Co(O) and update it whenever P sweeps
over a vertex of f , or when faces of Co(O) disappear, newly appear, split, or merge.
The triangulations are balanced in the sense that the dual graph of each triangulation
is a balanced binary tree whose depth is thus only logarithmic. For specificity, we use
red-black trees, as described in Chapter 4 of [17]. (As defined, this dual tree is unrooted,
but we root it at some arbitrary triangle incident to at least one edge of f .) In particular,
no vertex of any face f is incident to more than O (log r) triangles, and the intersection of
any line with a face f meets no more than O (log r) triangles (in both cases, the triangles
form a path in the dual tree). For a discussion on the relation between triangulations and
binary trees, see, e.g., [16]. See also Fig. 4 for an illustration of a tree corresponding to
a balanced triangulation. Note that a balanced binary tree with n nodes corresponds to
a triangulation of a convex polygon with n + 2 vertices, having therefore n triangles.
We choose an appropriate edge of the polygon to be the root edge (so that the resulting
rooted tree is balanced), and label all the vertices not incident to the root edge, with an
increasing sequence of integers in counterclockwise order. The triangle incident to the

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 127

l 7

2 6

4
Fig. 4. A balanced triangulation of a convex polygon and the corresponding balanced binary gee: each
triangle is labeled by the vertex opposite to the side it shares with its parent.

root edge corresponds to the root of the tree, and the key attached to the root of the tree
is the number of the vertex of the root triangle not incident to the root edge. Each of the
two nonroot edges of the root triangle may have a child triangle incident to that edge; its
key is the number of the vertex of that triangle not incident to the parent (root) triangle.
The labeling of tree nodes continues recursively in this manner; see Fig. 4.

(Before proceeding, it is instructive to note that the need to maintain balanced trian-
gulations is forced on us by the fact that we do not have a near-quadratic bound on the
overall complexity of the horizontal faces added in the first decomposition step. If we had
such a bound, we could have afforded to use any triangulation of the faces of the cross
section, because the overall number of triangles would have also been near-quadratic.
We still need to triangulate these faces, to ensure that we get subcells with constant
description complexity.)

For each triangle A we compute two critical orientations 01 < 02 at which A is
respectively "opened" (newly added to the triangulation) and "closed" (removed from
the triangulation). At any time during the sweep, we store with each triangle in the current
triangulation the critical orientation 01 at which it was opened. Such a triangle A induces
a subcell

~zx = {(x, y, 0) [01 <_ 0 _<< 02, (X, y) ~ A(0)},

where A(0) is the set of points occupied by A at the cross section Co(O). It is clear that
~,x has constant description complexity, 1 and that the collection of these subcells forms a
decomposition of Co (which is a refinement of the first decomposition, obtained above).
The main goal of the following analysis is to estimate the number of subcells ~,x that
are created by the sweeping process. As we will see, the fact that the triangulations that
we maintain are all balanced is crucial for the analysis. We also note that, even though
the subcell decomposition is described below algorithmically, we are only concerned
with its output size (namely, with the number of triangles being created), and not with
its running time, since we are dealing with a constant-size problem.

1 Strictly speaking, since this property requires that the subeell be represented by polynomial equalities
and inequalities, we should have replaced the third coordinate 0 by tan(0/2); however, for convenience of
presentation, we continue to denote this coordinate by 0.

128 D. Halperin and M. Sharir

A new face of Co(O) is formed either when a connected component of Co(O) newly
appears, or when a pair of adjacent convex faces of Co(O) merge into a new (convex)
face (when a y-vertical segment separating them is removed), or when a face of Co(O)
is split into two subfaces (when a y-vertical segment separating them is added). When
a new component of Co(O) appears, as 0 slightly increases, the component becomes a
triangle; thus initializing the triangulation for a new component is trivial. To initialize
the whole structure at 8 = 0, we simply triangulate each convex face of (the verti-
cally decomposed) Co (0) in a balanced manner, and open all the resulting triangles at
8 = 0 .

When the sweep plane P reaches a vertex u of some subcell r of Co at an orientation
Ou (excluding vertices that lie on an added horizontal face which delimits r from above
or from below), one of several types of combinatorial changes can occur at u: an edge of
the 8-cross-section r (8) may shrink to a point and disappear, or a new edge of r (0) may
appear, or, when we encounter at 0u an edge of r parallel to the xy-plane, an edge of r (8)
may be replaced by another edge, or the entire face r(0) may shrink to a long and thin
trapezoid which is finally "squashed" at Ou. Nevertheless, such a change at u affects only
a constant number of edges and vertices of r (0), and thus affects only O (log r) triangles
in the current triangulation of r (0). Each of these triangles is closed at 0u (so the subcells
corresponding to these triangles are now fully defined), and O(log r) new triangles are
formed as appropriate, replacing the old affected triangles; the new triangles are opened
at0, .

Of course, after each such update we need to rebalance the dual tree of the triangulation
of r(0), if necessary. For this, we can use any of the known techniques for maintaining
balanced binary trees; as already mentioned, we use, for specificity, the red-black tree
technique, as described in Chapter 4 of [17]. We observe that, since the triangulation that
we maintain is of a convex polygon, any rotation that we want to apply to the dual tree,
as an abstract structure, can be achieved by a straightforward retriangulation, in which
the few triangles whose corresponding nodes have to be rotated in the tree are replaced
by a few other triangles that represent these nodes after the rotation. Specifically, a single
rotation in the binary tree corresponds to an edgeflip in the triangulation; that is, for a
pair of triangles sharing a diagonal in the triangulation, an edge flip is carried out by
removing that diagonal--temporarily obtaining a (convex) quadrangle--and inserting
the other diagonal of that quadrangle. Figure 5 shows how single and double rotations are
implemented by edge flips. We denote the balanced tree corresponding to the triangulated
polygon f by T(f).

We begin by describing in detail the operations that need to be performed when
removing a vertex from the boundary of a convex face f . Adding a vertex to f can
be done in a similar fashion. (The actual updating of f , occurring when an edge of f
shrinks and disappears, or newly appears, can be implemented by removing two or one
vertices from f , and then adding one or two new vertices to f , respectively.) We then
describe how to update the triangulations when faces are merged or split.

Let u be the vertex of f that we are about to remove. By the above discussion, there are
at most O (log r) triangles of the triangulation of f that are incident to u, and the nodes
corresponding to these triangles in the tree form a path Jr of the tree. As is easily seen,
the triangles incident to u form a convex polygon, all of whose vertices are vertices of
f . If the path n contains the root node, then we denote this polygon by g. Otherwise, we

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 129

root root

rotation ~

t �9

root root

O O d o u b l e D

r o t a t i o n

first flip; , second flip.

Fig. 5. Realization of a rotation by retriangulation of a face.

follow a path Jr' from the root until it hits a node of : r , add the triangles corresponding to
the nodes o f : r ' to those incident to u, and let g denote the convex polygon covered by all
these triangles; again, the number of original triangles contained in g is at most O (log r).
Let h 1, h2 hm be the O (log r) connected components of f \ g . See Fig. 6(a,b) for an
illustration (the asterisks in Fig. 6(a) denote the triangles incident to u). In the example
depicted in Fig. 6, there is only one node on the path rr', namely the root node, which is
thus added to the triangles incident to u in order to form g. Clearly, each of the h i 'S is
represented by a subtree of T(f) , and hence their corresponding subtrees T(hi) are all
balanced.

We now remove the vertex u from the boundary of f and of g to obtain a new face
f ' and a new portion g ' thereof, respectively. Note that the polygons hi, h2 hm are
unaffected by this removal, and only g changes (into g'). Next, we retriangulate g ' into
O (log r) triangles such that each diagonal in this triangulation is incident to one of the
endpoints of the root edge to obtain T (g'); see Fig. 6(c). For each triangle in T (g') that
shares with some hi an edge not incident to the root edge, we add that triangle to hi
(making it the new root of T(hi)), and remove it from the collection T(g') (thus the
remaining triangles no longer form a triangulation of g'). It is easily verified that this
process has split the face f ' into subfaces fl fq, such that the numbers attached
to the vertices of each subface form a contiguous interval of the numbers in f ' , and
that these intervals have pairwise disjoint interiors. We number these faces in increasing
order of the corresponding intervals, which corresponds to their counterclockwise order
around f ' ; see Fig. 6(d) for an illustration.

We now proceed to perform a series of join operations, as in Chapter 4 of [17], taking
care that when we join two polygons Pl and P2, the numbers attached to vertices of Pt
are all smaller than those attached to vertices of P2. Thus, we join T (f l) to T(f2), then
we join the resulting tree to T(f3) , and so on, until all the trees T(f i) have been joined.
This way we obtain a balanced triangulation T(f ') of the updated face f ' . The cost
(i.e., the number of tree operations) of each join operation is O (log r), and we repeat it

130

root

(a)

D. Halperin and M. Sharir

ha

h
(b)

(c)

~ A

(d)

Fig, 6, Removing a vertex from a convex face.

O (log r) times. Thus the overall cost of this deletion is O (log 2 r); in other words, only
O (log 2 r) new triangles are created.

The addition of a new vertex to a face f is performed in a similar manner; it is
somewhat simpler, because it calls for adding just one new triangle to f .

Remarks. (1) The join operation join(s, , i, s2) described in Chapter4 of [17] is defined
for two trees Sl and s2, and for an additional element i, such that all the keys in sl are
smaller than key(i) and all the keys in s2 are greater than key(i). To conform to this
notation, we note that the diagonal shared by the two subfaces that we join can play the
role of the element i, by "thickening" it into a very thin triangle.

(2) An additional technical issue is that join(s1, i, s2) proceeds by "hanging" i as the
fight child of some node w lying on the rightmost path of sl, and by making the original
right child w' of w (if any) the left child of i. To implement this step via a retriangulation,
let Wl = w', w2 wt be the nodes on the rightmost path of Sl from'w ' downward. As
is easily seen, these nodes correspond to triangles, all of which are incident to a common
vertex u and arranged around u in counterclockwise order. Let Vl, 02 Vt+l be the
other vertices of these triangles, arranged in counterclockwise order around the face,
and let Or+2 be the other vertex of (the "thickened") i; see Fig. 7. We now perform one
"giant" edge flip: connect vl with or+2 by a diagonal, let i now denote the new triangle
spanned by u and by this diagonal, and form new triangles representing W 1 Wt by
connecting vt+2 with rio2 /)t/)t+l, respectively; see Fig. 7 for an illustration. The
remaining steps of the join are easy to implement by standard edge flips, as above.

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 131

root u

V3

Vl

4 7

$ 6

Wl

A

l
 v3

3 4 ~ 8 *)1

6
after

Fig. 7.

before
root u

tOl

2

The retriangulation corresponding to the hanging of a node i on a node w in the rightmost path of a tree.

Things are not much different when the sweep reaches an event at which two faces of
Co(O) merge into a new face, or a face is split into two subfaces. Consider first the latter
situation, let f denote the face before splitting, and let fl and f2 denote the subfaces
formed by the split. A naive way of handling this configuration is to close all triangles in
the current triangulation of f , compute balanced triangulations of]'1 and f2 from scratch,
and open all these triangles. However, the cost of this approach would be proportional
to the complexity of f , and, as noted above, we do not have a near-quadratic bound
on the overall complexity of all such faces f . We thus use the following more refined
procedure. Let e denote the y-vertical segment that splits f . Since e cuts the boundary
of any triangle in at most two points, it easily follows, as noted above, that the set of
triangles in the triangulation of f which are crossed by e form a single path Jr in the
dual (unrooted) tree of the triangulation, or at most two paths in its rooted version T(f) .
Thus the number of such triangles is only 0 (log r). Let g denote the polygon covered
by these triangles. As before, let hi hm denote the connected components of f \ g ,
each of which is clearly a convex region. Some of the hi's are contained in fl while the
others are contained in f2. We split g into two subfaces gl and g% using the y-vertical
edge e. 2 The edge e splits the edges of f into two chains, one of which contains the root
edge, say the boundary of f i . In this case we extend g~ as before until it contains the

2 Note that the endpoints of e need not necessarily be vertices of f. To be precise, we first have to add the
endpoints of e as new vertices of f , and then proceed with the splitting operation as described above.

132 D. Halperin and M. Sharir

root edge, and update the hi's accordingly. Note that in fl the root edge is the same root
edge as in f , and in f2 the newly added y-vertical edge e is the root edge. From this
point, we proceed to handle each subface f l , f2 as in the case of deleting a vertex. A
similar, though slightly different, procedure is used if the root edge is split by e.

Next consider a merge of two faces f l , f2, into a common convex face f , caused by
removing a y-vertical edge e separating between f l and f2. Let ~rl (resp. rr2) denote the
path in T(f l) (resp. in T(f2)) from the root to the triangle incident to e in f l (resp. in f2).
The union of all O(log r) triangles in these two paths is a convex polygon g contained
in f . As above, let hi hm denote the connected components of f \ g , each of which
is a convex polygon. Let rl be the root edge of T(fl) . We renumber the vertices of
f so that they form an increasing sequence of integers in their counterclockwise order
along f , going from rl all the way around. (This is an expensive operation, but, as noted
above, we are only concerned with the number of triangles that the algorithm produces,
and not with its running time.) We now retriangulate g and perform a series of join
operations, exactly as in the case, described above, of deleting a vertex, where the joins
are performed according to the new order of the hi 's.

The final type of update occurs when a connected component of Co(O) shrinks to
a point and disappears. In this case we simply close the single triangle of its current
triangulation, and remove its singleton dual tree from our forest. This completes the
description of our triangulation of the cell Co.

Note that each vertex of Co (excluding those on the added horizontal faces) causes the
generation of only O (log 2 r) subcells, and the same holds for each added horizontal face
(whose number is only O (r z)). It follows that the number of subcells in the decomposition
of Co is O(r 2+~) �9 O(log 2 r) = O(r2+E), for any e > 0 (with a slightly larger e in the
second exponent), as claimed.

The analysis of the expected running time of the algorithm is now straightforward,
and similar to that in [1] and [2]. That is, if T (N) denotes the maximum expected running
time of the algorithm for a collection of N contact surfaces, then we have (recalling that
r is assumed to be a constant)

T(N) < Qr2+e . T (C~Nr logr) + O(N2+E) ,

for appropriate constants c and Cl (independent of r). With an appropriate choice o f r as a
function of e, it is easily verified that the solution of this recurrence is T (N) = O (N2+~'),
for any e' > e > 0, where the constant of proportionality depends on e and e'. We have
thus shown:

Theorem 2.1. A single connected component of the free configuration space of a k-
sided polygon, moving in a polygonal region bounded by n edges, can be computed by a
randomized algorithm with expected running time O ((kn)2+~),for any e > O, with the
constant of proportionality depending on e.

Remark. The algorithm can be made deterministic, using the deterministic (though
rather complicated) construction of t-nets given by Matou~ek [12]. The asymptotic
running time of the algorithm remains the same.

An Algorithm for Planning the Motion of a Polygon in a Polygonal Environment 133

It is interesting to note that our algorithm constructs a representation of the cell C
which is suitable for point location. For this we maintain the entire recursive structure
that the algorithm computes, in the form of a rooted tree. That is, at the root of that
tree we store the decomposition of the cell Co into the subcells ~zx, as described above.
Each such subcell becomes a child of the root, and stores a similar cell decomposition in
the arrangement of the random sample constructed for the corresponding subproblem,
and so on. Now, given a query point q, we find, by brute force, the subcell ~a of the
top cell Co containing q. If no such subcell is found, we conclude that q is not in our
cell. Otherwise, we continue the search recursively at the child corresponding to ~zx.
Thus, we can determine whether q lies in our cell in O (log kn) time. In terms of the
motion-planning application, this means that we can determine in logarithmic time (using
O((kn) 2+~) preprocessing and storage, for any e > 0) whether a given placement of
the robot B is free and can be reached from Z via a collision-free path (this is the so-
called reachability problem). It is also easy to enhance our data structure with additional
information, so that actual motion planning between Z and a query placement can be
performed in O((kn) 2+e) time.

Acknowledgments

The authors wish to thank Jirka Matou~ek and Leo Guibas for helpful discussions con-
cerning the problem studied in this paper.

References

1. B. Aronov and M. Sharir, Triangles in space, or building (and analyzing) castles in the air, Combinatorica
10 (1990), 137-173.

2. B. Aronov and M. Sharir, Castles in the air revisited, Discrete Comput. Geom. 12 (1994), 119-150.
3. L. P. Chew and K. Kedem, A convex polygon among polygonal obstacles: placement and high-clearance

motion, Comput. Geom. Theory A ppl. 3(2) (1993), 59-89.
4. M. de Berg, K. Dobrindt, and O. Schwarzkopf, On lazy randomized incremental construction, Discrete

Comput. Geom. 14 (1995), 261-286.
5. L. Guibas and M. Sharir, Combinatorics and algorithms of arrangements, in New Trends in Discrete and

Computational Geometry (J. Pach, ed.), Springer-Verlag, New York, 1993, pp. 9-36.
6. D. Halperin, Algorithmic Motion Planning via Arrangements of Curves and of Surfaces, Ph.D. Dissertation,

Computer Science Department, Tel Aviv University, July 1992.
7. D. Halperin and M. Sharir, Arrangements and their applications in robotics: recent developments, in The

Algorithmic Foundations of Robotics (K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, eds.),
A. K. Peters, Boston, MA, 1995, pp. 495-511.

8. D. Halperin and M. Sharir, Almost tight upper bounds for the single cell and zone problems in three
dimensions, Discrete Comput. Geom. 14 (1995), 385-410.

9. K. Kedem and M. Sharir, An efficient motion-planning algorithm for a convex polygonal object in two-
dimensional polygonal space, Discrete Comput. Geom. 5 (1990), 43-75.

10~ K. Kedem, M. Sharir, and S. Toledo, On critical orientations in the Kedem-Sharir motion planning algorithm
for a convex polygon in the plane, Proc. 5th Canadian Conf. on Computational Geometry, 1993, pp. 204-
209.

11. D. Leven and M. Sharir, On the number of critical free contacts of a convex polygonal object moving in
2-D polygonal space, Discrete Comput. Geom. 2 (1987), 255-270.

134 D. Halperin and M. Sharir

12. J. Matou~ek, Approximations and optimal geometric divide-and-conquer, Proc. 23rdACM Syrup. on Theory
of Computing, 1991, pp. 506-511.

13. J. T. Schwartz and M. Sharir, On the two-dimensional Davenport-Schinzel problem, J. Symbolic Comput.
10 (1990), 371-393.

14. M. Sharir and P. K. Agarwa•• Davenp•rt--Schinze• Sequences and Their Ge•metric Applicati•ns• Cambridge
University Press, New York, 1995.

15. M. Sharir and S. Toledo, Exlxemal polygon containment problems, Comput. Geom. Theory Appl. 4 (1994),
99-118.

16. D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation distance, triangulations, and hyperbolic geometry,
J. Amer. Math. Soc. 1 (1988), 6474581.

17. R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

Received March 2, 1995, and in revised form December 29, 1995.

