
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 133

JANUARY 1976, PAGES 48-57

A Nearest Point Algorithm

for Convex Polyhedral Cones

and Applications to Positive Linear Approximation

By Don R. Wilhelmsen

Abstract. Suppose K is a convex polyhedral cone in En and is defined in terms of some

generating set {ej, e2.eW' ^ Procedure is devised so that, given any point q G

En, the nearest point p in K to q can be found as a positive linear sum of jV* < n points

from the generating set. The procedure requires at most finitely many linear steps.

The algorithm is then applied to find a positive representation

N*

Lf=Y, M&*i>' \- > o, /e *,
í=i

for a positive linear functional L acting on a suitable finite-dimensional function space i>.

1. Introduction. Let K be a closed, convex set in Euclidean space En and q an

arbitrary point in En. Given the usual inner product and associated Euclidean norm,

we may speak of the unique point p = piq, K) in K which is nearest to q.

Consider the case in which K is a polyhedral cone generated by a finite set of

points E = {ej, e2, . . . , eN}. That is,

K = K(E)= J Ç \¡e¡: \ > 0, i = 1.N j.

Then it is possible, using the algorithm of this paper, to find p in a finite number of

linear steps.f More importantly, the algorithm gives the barycentric coordinates of p

with respect to TV* < n linearly independent points of E.

This latter feature makes application to positive linear approximation possible.

Given a linear functional L defined on a finite-dimensional function space 4?, the func-

tions having a common domain D, the positive linear approximation problem consists

of finding points xx, x2, . . . , x^» in D, N* < n, and positive weights X,, X2, . . . ,

)\Nt so that

(1) Lf=Zhf(xi)
i=i

for all /G <J>. Positivity of the weights is not necessary to achieve a representation (1),

Received March 11, 1974; revised March 4, 1975.

AMS (MOS) subject classifications (1970). Primary 52A25, 65D15; Secondary 65D30.

Key words and phrases. Convex set, nearest point, projection, positive linear approximation,

linear algorithm, cubature.

fThe algorithm can easily be modified to apply to convex polytopes (i.e., SL = 1). It be-

comes, then, identical to a method developed independently by Wolfe [8].

Copyright © 1976. American Mathematical Society

48

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CONVEX POLYHEDRAL CONES 49

but it is necessary if the representation is to be a good one with respect to convergence

and computational stability (see Davis [2, p. 352]).

If ip,,<fi2, ... ,<pn is a. basis for <I>, then the imbedding

M = (¿.¿j, . . . , Lipn)T and e(x) = (^(x), . . . , <p„(x))r, x G D,

converts the positive approximation problem into a two-part representation problem

in/v
A. Find an integer N and vectors e¡ = e(x(), i = 1,2, . . . ,N,iif they exist) so

that M is contained in the convex cone they generate.

B. Find the barycentric coordinates X,, X2, . . . , \N, of M with respect to N*

< n points of the generating set E = {e,, . . . , eN}.

The existence question implicit in A can be answered affirmatively under quite

general conditions which we shall state in the next section.

Given existence of E, the algorithm may be used to solve A-B. At no point is

there need to handle a linear system larger than n x n, and each pass through the algo-

rithm produces an intermediate solution. Each intermediate solution is itself an approx-

imation to the final solution of A—B. This will be discussed in more detail in Sec-

tion 5.

A related method for solving A—B has been given by Wilson [6]. It employs a

sequence of applications of the simplex algorithm to progressively larger and larger

systems. It can be shown, as in Wilson [6], [7] and Wilhelmsen [5], that the size of

such systems in certain cases is asymptotically proportional to n2. Furthermore, no

intermediate solutions are obtained.

We discuss some background for the approximation problem and describe the

tools needed for the algorithm in the next section. The algorithm is described in Sec-

tion 3 and stated in Section 4. Section 5 contains some remarks on the application

to A-B, and Section 6 has numerical examples.

2. Background and Preliminaries. Most interest in the positive approximation

problem centers on the integration functional

(2) Lf = jD co(x)/(x)dx, cü(x) > 0.

The basic existence theorem is due to Tchakaloff [4]. Under rather general circum-

stances, there always exists a positive representation

(3) ¿/= £ V(x,.), /G<ï>,
/=i

where X(- > 0 and x¡ G D, i = 1, . . . , TV* < n.

We shall refer to Eq. (3) as a Tchakaloff representation for L. If T is a subset

of D and there exists a Tchakaloff representation for L which uses points only in T,

then we shall call it a Tchakaloff set. The Tchakaloff base TL, of L is the aggregate of

all Tchakaloff sets in D.

A constructive proof of the Tchakaloff theorem was given by Davis [1]. Al-

though his paper deals only with the integration functional (2), his results are easily

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

50 DON R. WILHELMSEN

adapted to more general functionals. We shall state his theorem and its conditions for

the more general case.

If ¡fi,, . . . ,<p are continuous and real-valued on D, we say q> satisfies the Krein

condition if there is at least one /£$ which does not vanish on D. A linear functional

L is said to be nonnegative if Lf > 0 whenever /(x) > 0 on D. L is (strictly) positive

if Lf> 0 whenever /(x) > 0 on D and / is not identically zero.

Theorem 1 (Davis). Let $ be the linear span of continuous, real-valued, linearly

independent functions <pl,<p2, . . . , yn defined on a compact set D. Assume <ï> satisfies

the Krein condition and that L is a positive linear functional on 4>. If {XjJJL,, is an

everywhere dense subset of D, then for sufficiently large m, the set {x$La is a Tchaka-

loff set.

What Theorem 1 says is that under suitable circumstances TL is nonempty. In

fact, there are at least as many Tchakaloff sets as there are mutually disjoint dense se-

quences in D.

Following are some well-known properties of nearest points and support hyper-

planes which are used in the algorithm. K is understood to be a convex polyhedral

cone in En, and int(AT) denotes its relative interior.

Property PI. For q $K, p = piq, K) if and only if H = {y G En : (q - p, y) —

0} is a support hyperplane of K and p G H C\K. That is, p G H D K and (q - p, fcX

0 for ail k G K. Observe that q -p LH.

Property P2. If p G int(/t), then K C H.

Property P3. If ex,. . ., eN are linearly independent and K = Ki{e1, . . . , eN}),

then

int(T) = |f; \¡e¡:\¡>0,i=l,...,N .

Let S be a linear subspace of En. The principal computational step in the algo-

rithm is to compute p = piq, S) as a linear sum of a given basis ev e2, . . . , eN of S.

This is a restricted form of the classical least squares problem and may be solved in a

variety of ways.

Property P4. If S is one-dimensional, then p = (q, e1>e1/lle1 II2 for any el G S.

Property P5. In general, p = E^Lj X,^., where Xj, X2, . . . , \N are the unique

solutions of the N x N linear system (known as the normal equations)

(4) £ \<e¡, e}) = (q, e¡>, / = 1, 2, . . . , TV.
i=i

3. Description of the Algorithm. We are given a point qGEn and a convex

polyhedral cone K C En generated by the set E — {et, . . . , eN}. The object is to

compute p = piq, K), the nearest point in K to q, in terms of E.

Briefly stated, the algorithm consists of computing a sequence of nearest points

Pj, p2, . . . , to q in subcones Kl, K2, . . . of K. Each subcone K¡ is chosen so that

p. G int(/v) and is closer to q than is p._j. Since there are at most finitely many sub-

cones, the sequence must terminate at some step with p = p .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CONVEX POLYHEDRAL CONES 51

Finding Kx and pt is simple. We examine E for a vector e, such that the scalar

product (q, e,) is positive and choose the half-ray containing e, as Kx. Then according

to Property P4, p, = (q, e1>e1/lle1 II2.

The key step, of course, is to find p.- f l, given p.. Suppose p- = p(c7, KA G

iat(Ks), where K is generated by some linearly independent subset E¡ C E. If p;- = ¿7,

then we are done. Otherwise, there is a hyperplane H which contains K- and is orthog-

onal to q - Pj. Now, either H is a support hyperplane of K, in which case p- = p, or

Hj is not, in which case at least one point e* G E lies on the near side of H. with re-

spect to q; i.e., (e*, q - p> > 0. In the latter case, we adjoin e* to E,- and begin a sub-

cycle of steps designed to extract from this union a generating subset E.+, for the next

subcone Kj+1.

In a given step of the subcycle we have a cone C, a smallest subspace S = 5(C)

containing C, and a point g G C Initially, for example, C = Ki(e*} U E;) and (2 =

Pj. Now, we compute P = piq, S). If PG C, then p.+ x = P and AT.+ ¡ is taken to be

the smallest subcone, or face, of C which contains P. E.+1 consists of the generators

of Kj+ j. If P $ C, then there is a unique point R in the interval (ß, i3) which inter-

sects the boundary of C in S. This can be computed, and we can determine the small-

est face C1 C C that contains R. Notice that II.? - R\\ < \\q - Q\\, and R G int(C').

Furthermore, the generating set of C' is a strict subset of the generating set of C. Fi-

nally, we make the «assignments C «— C', Q ■*— R, S <— SiC') and repeat the step.

Because {e*} U E¡ is finite and each step in the subcycle causes a reduction in

the number of retained generators, the subcycle must eventually terminate successfully

with Pj+ j and Kj+, determined.

4. The Algorithm. Begin with a point qGEn and a convex polyhedral cone

K C En generated by the set E = {e,, e2, . . . , eN).

Step 0. Find a point e¡ G E such that (q, e¡) > 0. Set E, = {e¡} and compute

p, ={q, e¡)e¡/\\e¡\\2. If no such point exists, then take the origin as the nearest point

in K to q. Otherwise, go to Step 1.

Step 1. Set t¡j = q - p.. If n, = 0, then q = p, so stop. Otherwise, find e* G

E such that (r¡., e*) > 0. If no such point exists, then p. = p, so stop. Otherwise, let

F = {f\, fi, ■ ■ ■ , fm} he a reindexing of {e*} U E.-, let X,, . . . , Xm be the barycen-

tric coordinates of p;- in terms of F; that is, p;- = 'Sm=1 \¡f¡, and go to Step 2.

Step 2. Denote 5 = span{/j, . . . ,fm} and compute (using Property P5, for ex-

ample) P = piq, S) = Z£ j /3,./;.. If /J, > 0, 1 = 1, . . . , m, then set E/+, - {/, € F:

0f > 0}, pj+1 = P, and go to Step 1. Otherwise, compute

U ßi>\,
p¡ = < i =),..., m,

(yíx,.-/?,.), ß,<\,

p = min \,
1 <i<m

and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

52 DON R. WILHELMSEN

7/ = O - P)X¿ + Pßi, i= I, . . . , m.

Go to Step 3.

Step 3. Set F' = {/■ G F: y¡ > 0} and T = {y¡: y¡ > 0, i = 1, . . . , m}. Reset

m as the cardinality of F', F = {/,,..., /m} as a reindexing of F', {X,, . . . , Xm} as

a reindexing of T, and go to Step 2.

When p is not the origin, it is clear that if the algorithm terminates successfully,

it will do so from Step 1. In this step we always have p. as a candidate known in terms

of its barycentric coordinates with respect to E¡ C E. That is, after reindexing,

«I

(5) p, = £ \¡e¡,
í=i

where X,, . . . , XN are positive constants, given by construction. For instance, if/ =

1, then Xj = (q, e1)/\\el II2. If / > 1, then the coefficients are supplied from Step 2.

What has to be shown is that Step 2 supplies the appropriate p,+ j and E.-+, in

a finite number of steps upon each successful completion of Step 1. If Step 1 cannot

be completed, then we must have a solution p = p, given by (5). The reason is obvious

if q = Pj. Otherwise, by Property PI, //• = {y G En: <rjy, y) = 0} is a support hyper-

plane of Kj with normal q - Pj. If e* cannot be found, then //■ is also a support hyper-

plane of K with normal q - p.. So, p = p..

By showing E.- is always linearly independent, we obtain N¡<n. Finally, in show-

ing that \\q - p-+1II < \\q - p.II, we can conclude that the algorithm will terminate in

a finite time, since the number of distinct subsets E.- C E is finite.

Lemma 1. E.- is linearly independent for all j.

Proof. Using induction, we assume E.- is independent; certainly E! is. By Prop-

erty P3, Pj G int(/T), since its coefficients Xj, . . . , XN. are all positive. Property P2

implies Ej C H-, but e* $H-. Consequently, {e*} U E¡ is hnearly independent, and the

lemma follows because E.+ 1 C{e*}U[,

Step 2 consists of taking a point Q = £™ j \¡f¡ in C, the convex cone generated

by F, computing P = 2?L j fi¡f¡ as the nearest point to q in the subspace spanned by F,

and finding R = pQ + (1 - p)P as the unique point between P and Q which intersects

the relative boundary of C. This is repeated as often as possible, letting R be the new

Q and diminishing F by those generators which correspond to zero coefficients in the

expansion of R. The step terminates as soon as P G C. This must happen eventually,

since F cannot be diminished indefinitely.

The next lemma describes what happens in Step 2.

Lemma 2. If P ^ C, then 0<p<l,Risa nonzero point in the relative bound-

ary ofC, and \\q -R\\ < \\q - Q\\.

Proof. Notice that p is computed only if at least one ßt is negative, and each coef-

ficient X(- in the expansion of Q is positive except when Q = p.. In the latter case, X*

= 0, where X* is the coefficient of e*. In any event, p < 1. To show 0 < p, we must

show that j3* > 0 when Q = Pj. Hexe, ß* is the coefficient of e* in the expansion of P.

Recall that P = ß*e* + h, where h G H¡. If ß* < 0, then <1?/, P) < 0. If Q = p¡

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CONVEX POLYHEDRON CONES 53

= piq, Hj), it follows that lit? - P\\ > \\q - Q\\. But P is the nearest point to q in the

linear span of {e*} U E.- and is certainly as close or closer to q than any point on the

segment (ß, e*). Such a point, say U = pe* + (1 - p)ß, satisfies

\\q - U\\ = [HjW2 - 2(1 -p)(r¡j, e*) + (1 -p.)2 lie* - ßll2]1/2.

For small enough positive p, ll<? - Í/II < Ityl = lit? - ßll. Thus, II4 - Pll < \\q - ßll,

so ß* > 0.

It is clear from the definition of p that the coefficients in the expansion of R are

nonnegative but not all positive. Property P3 and Lemma 1 then imply that 7? belongs

to the relative boundary of C.

Now, q - P is normal to the linear span of F, so

\\q-R\\ = [Hc7-.Pll2 + (l-p)2llP-ßll2]'/2

<[\\q-P\\2+ \\P-Q\\2]'A

= Ht?-ßll.

Finally, if R = 0, then IL7II < II.7 - ßll < \\q - p.Il, a contradiction of the fact that p;.

- Pto, Kf).
The condition R + 0 is important. It shows that F, hence E,+ 1, is always non-

empty. At worst, Step 2 might reduce F to a singleton F = {fx}. In this event, we

obtain P = <<7, f1)f,/\\fl II2. If (q, /,> < 0, then R = 0. This cannot happen, of course,

soPGC and Step 2 terminates.

In summary, we have

Theorem 2. The algorithm described above supplies in a finite number of steps

positive constants Xj, X2, . . . , \N* ,N*<n, and points e,, . . . , eN, in E iafter re-

indexing) such that

(6) P = Z Vl-
<=i

Proof. Lemmas 1 and 2 and the arguments preceding this theorem.

5. The Positive Linear Approximation Problem. Suppose T is a known finite

Tchakaloff set. Then the positive linear approximation problem is solved by using the

algorithm in Section 4 with q = M and E = {e(xf): x, G r}.tf

In practice, however, all we know is that any given everywhere dense (in D) se-

quence S = ÍXjj-Jlj contains a finite Tchakaloff set. According to Theorem 1, given

suitable conditions on D, <ï> and L, each set T = {x,.}?^ is a Tchakaloff set for suffi-

ciently large m. Let m* be the smallest such number, and denote T* = {x,}^* . It

is not necessary to know what m* is, only that it exists.

Suppose we apply the algorithm to the infinite set {eixi)}™=1 in an attempt to

tfNotice that this provides an alternative to the Steinitz algorithm used in [1] to reduce

the size of a positive representation of M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

54 DON R. WILHELMSEN

find M. If the search for e¡ in Step 0 and for e* in Step 1 is always carried out in the

order e(x,), e(x2)> • • • > then the fact that T* G JL guarantees that e¡ or e* will be

encountered within the set e(xj), e(x2), . . . , e(xm.). Since M is in the convex cone

of these points, the algorithm must terminate eventually with M = Pj, yielding a Tcha-

kaloff representation of L from the set T*.

When T* is large it might be profitable to stop the algorithm early; that is, accept

an approximation to L rather than carry out what might be time-consuming computa-

tions to find an exact representation. This is a feasible alternative due to the "inter-

mediate solution" characteristic of p1(p2,

For example, suppose we have computed p;. = 2£Lj X^x,). Let/G q> have the

expansion fix) = a,(¿ij(x) + • • • + anipnix). Denote the vector (at, . . . , an)T by An

and define the functional L¡ by

m

V= Z hf<*i)-i=\

Then, we have

l(L -Lj)f\ - \<A„, M-Pj)\ < WAJ \\M-Pj\\.

As; increases, llAf-p,.|l decreases (eventually vanishing), so at some stage a reasonable

approximation to L is given by L -. This reasonableness becomes more apparent if we

view the problem in a larger setting, that in which L is the restriction to i> of a larger

operator.

Let ip,, ip2, . . . be a basis for the infinite-dimensional linear space A. Assume

that evaluation functionals if —*■ fix)) are bounded and that each / G A has a uniformly

convergent expansion

fix) = E "kfkto-
k=\

Let L be the restriction to <J> of a bounded linear operator L on A, and define L by

L//=2^1X,./(xI.). Then

(7) (L -Lj)f=(An, M -Pj) + Rnlf,

where

*„//= Z "k(L-Lj)fk.
k=n + l

It is normally the case in practice that the order of magnitude of R„¡f is small

relative to that of L/ and changes very little as / increases. So in order to make

iL - Ly)/have approximately the same order of magnitude as that of (L - Lj)f, where

/ is such that Pj = M, it suffices to make (An,M- py> small. This, of course, happens

automatically as / increases; in fact, we have an estimate for the size of (An, M - p>,

since llM-pll is known.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CONVEX POLYHEDRAL CONES 55

The selection of e* in Step 1 should be made with some concern about the re-

sulting computational difficulties inherent in the finding of P. The smaller (17-, e*> is

with respect to the size of tj-, the more ill-conditioned will be the system whose solution

yields P. The next theorem states a guideline which can be used to maximize <t?;-, e*>.

Theorem 3. Assume that at least one function PG q> is bounded below by p >

0 on D. Choose any S G (0, 1), // T is a Tchakaloff set and t\j # 0, then it is always

possible to fine e* in Step 1 so that

(8) (rij, e*)>op\\i,j\\2lnL?.

Proof. The Tchakaloff representation (3) may be written as M = ZfJ, \c¡, where

c¡ = e(x,.), i = 1.N*. Since p;. = p(M, Kj), we have (i)f, p¡> = 0. But IIt?;.II2 =

(r\j, M - Pj) = (i),, M), or

Hj\\2 = ¿Z\^j,c¡).
1=1

At least one term in the sum must satisfy

(9) \<r]j,c¡)>\\Vj\\2/n.

Now,

N* N*

£P=£ \Píx¡)>pZ V
i= 1 /= 1

showing that no X,- can exceed LP/p. Using (9), we get

(Tlj, c¡)>pIInf II2/nL P > ÔpIIT7;. Il2lnL P.

It suffices to take e* = c¡.

6. Numerical Results. We used the algorithm to obtain positive numerical inte-

gration rules of polynomial precision k = 3, 5,7 for the hexagon, k = 2, 3, 4, 5 for

the quarter disc, and k = 3 for the 3-simplex (Figures 1 -6).

Rather than use a dense sequence S = [x¡}™=1 (see Theorem 1), we employed a

set sequence St, S2, . . . such that \JJL „ S;- was dense in D. These sets are defined as

follows: when D is a bounded set in Er, then there is a hypercube (or "pie slice" for

polar coordinates) C = { sk < xk < sk + dk, k = 1, . . . , r} which contains D. We

denote by imd) the set of all points im,d,, . . . , mrdr) obtained asm = (mv m2,

. . . , mr) ranges through the lattice of points in Er which have nonnegative integer

coordinates. Taking s = (s1; . . . , sr), we can define

Sj = {s + oijimd)} n D,

where ay is a positive scalar. If ay —* 0, then U/=i ^/ *s dense in D. In applying the

algorithm, we arranged for the search in Step 1 to exhaust first the points in St, then

S2 and so on.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

56 DON R. WILHELMSEN

I -(-la-

tí = (2, 2)

a, =2>->

-•—•-

Figure 1 Figure 2

s = (0, 0)

d = (l,it/2)

oy= I/O +/)

Figure 3 Figure 4

s = (0, 0, 0)

í-(1.1.1)

a. = 3'-'

Figure 5 Figure 6

The test results can be found in Table 1 and the figures. The weights of the rules

have not been recorded, since these are easily computed once the points are known.

Observe the striking symmetry present in each example. This appears to occur when-

ever the sets Slt S2, . . . reflect the symmetry characteristics of D. Also, note that the

rule for the 3-simplex is a minimum point rule (see Stroud [3]).

In Table 1, k refers to the polynomial precision, n to the dimension of the poly-

nomial space 4>, and A7* to the number of points used in the rule. The number of

passes through Step 1 is denoted by N,. We found that Step 2 almost always yielded

p/+1 = P on the first try; consequently, each pass through Step 1 corresponded to the

solution of slightly more than one linear system on the average. The size of the largest

linear system encountered in Step 2 is given by Armax, and Nave denotes the average

system size. This average was computed as [(2N3)/Nl]1'3, where the sum ranges over

all systems solved in Step 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

convex polyhedral cones

Table 1

57

Figure Region A* N„ N. N,

1

not shown

2

not shown

3

4

5

6

Hex

Disc

Simplex

3

5

7

2

3

4

5

3

5

13

27

5

9

15

21

10

21

36

6

10

15

21

20

6

13

28

5

10

15

21

11

4

10

20

3

7

13

19

6

16

36

5

10

29

60

13

Department of Mathematics

The University of Georgia

Athens, Georgia 30602

1. P. J. DAVIS, "A construction of nonnegative approximate quadratures," Math. Comp., v.

21, 1967, pp. 578-582. MR 36 #5584.

2. P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963. MR 28 #393.

3. A. H. STROUD, Approximate Calculation of Multiple Integrals, Prentice-Hall Ser. in Auto-

matic Computation, Prentice-Hall, Englewood Cliffs, N. J-, 1971. MR 48 #5348.

4. V. TCHAKALOFF, "Formules de cubatures mécaniques à coefficients non-négatifs," Bull.

Sei. Math. (2), v. 81, 1957, pp. 123-134. MR 20 #1145.

5. D. R. WILHELMSEN, "Nonnegative cubature on convex sets," SIAM J. Numer. Anal., v.

11, 1974, pp. 332-346.

6. M. W. WILSON, "A general algorithm for nonnegative quadrature formulas," Math. Comp.,

V. 23, 1969, pp. 253-258. MR 39 #3705.

7. M. W. WILSON, "Necessary and sufficient conditions for equidistant quadrature formula,"

SIAM J. Numer. Anal, v. 7, 1970, pp. 134-141. MR 43 #8241.

8. P. WOLF, "Finding the nearest point in a polytope," Math. Programming.(To appear.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

