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Abstract-A method of local modeling for pre-
dicting time series generated by nonlinear dynam-
ic systems is proposed that incorporates a weight-
ed Euclidean metric and a novel ρ-steps ahead cross-
validation error to assess model accuracy. The tradeoff
between the cost of computation and model accuracy
is discussed in the context of optimizing model param-
eters. A fast nearest neighbor algorithm and a novel
modification to find neighboring trajectory segments
are described.

I. Introduction

This paper proposes a nonparametric forecasting
method for univariate time series that contain little
or no noise. For practical purposes it is assumed that
the time series is generated by a nonlinear dynamic
system governed by the following equations,

zt+1 = h(zt, ut) (1)
yt = g(zt)

where h(zt, ut) and g(zt) are nonlinear time-invariant
functions with continuous derivatives, ut ∈ R

ds is a
deterministic function of t, yt ∈ R

1 and zt ∈ R
ds .

It is assumed that h(zt, ut), g(zt), ut, and ds are un-
known and the prediction must be based solely on a
time series of points, [y1, y2, . . . , yn], generated by the
system.

II. Discussion on Local Modeling

Local models generate predictions by finding local por-
tions of the time series that closely resemble a portion
of the points immediately preceding the point to be
predicted. The prediction is an estimate of the average
change that occurred immediately after these similar
portions of points.
Previous studies have shown that forecasting meth-

ods based on local models produce predictions that are
better than or comparable to competing models and
they have a number of favorable properties not shared
by other methods [5, 8, 9, 25, 34].
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To use local models for time series prediction there
are many decisions that one must make. For exam-
ple, how should local be defined mathematically, how
should the input vector be constructed, what should
the model be designed to predict, what type of local
model should be used, and how should the model ac-
curacy be evaluated.
Individually, researchers have offered suggestions on

how to make each of these decisions. However, a com-
prehensive method that combines the successful inno-
vations of various researchers has not emerged and the
tradeoff between model accuracy and the computa-
tional costs has often been overlooked. This paper
attempts to fill these gaps and offers some new sug-
gestions on how to use local models for time series
prediction.

A. Computational Limitations

Virtually all nonlinear models (local and global) have
parameters that must be chosen before the model can
be constructed or tested. When working with black
box systems nothing is known about the process that
could help the analyst choose values for these parame-
ters. Ideally, the parameter values would be chosen so
as to maximize some measure of model accuracy. Al-
though computation is cheaper and more widely avail-
able than ever before, a global maximization over all
of the model parameters is almost never viable. The
natural alternative, nonlinear optimization, is usually
not feasible because of numerous local minima1.
In some instances efficient methods may exist that

find good values for some of the parameters. Existing
theory may also provide good estimates or, more often,
bounds on parameter values. Unfortunately, these op-
tions are virtually never applicable to all of the model
parameters.
In most cases the accuracy of the model will be much

less sensitive to some parameters than others. An ex-
perienced analyst will often be able to choose good val-

1The model accuracy is often convex in some of the param-
eters and, if the remaining parameters are fixed, the model ac-
curacy can be efficiently maximized. However, the problem of
numerous local minima usually still exists for the remaining pa-
rameters.



ues for these parameters. Unfortunately, the process
by which an analyst chooses the values for parameter-
s is often subjective and does not admit of a general
purpose recipe. Consequently the accuracy of a model
may greatly depend upon the skill and experience of
the analyst2.
Often a coarse optimization is performed by measur-

ing the model accuracy for several values of the model
parameters. The extent of this optimization is limit-
ed by computational resources and, as a result, model
accuracy is sacrificed. The remainder of this discus-
sion suggests how parameters of local models may be
chosen in the context of this tradeoff.

B. Embedding: Reconstructing the System
State

Takens has shown that the state of many dynamic sys-
tems can be accurately reconstructed by a finite win-
dow of the time series [39]. This window is called a
time delay embedding,

xt
�
= [yt, yt−τ , . . . , yt−(m−1)τ ] (2)

where m is the embedding dimension and τ is the em-
bedding delay. Takens’ work was later generalized and
shown to apply to a broader class of systems by Sauer
et al. [35].
Time delay embeddings are widely used as the in-

put vector to dynamic models, both linear and non-
linear. Takens’ theorem provides a sound theoretical
basis for this approach and has been applied success-
fully in many applications.
The theorem assumes that the time series is infinite-

ly long and noise-free; in practice, these conditions are
never met and the selection of τ and m may critically
affect how accurately the embedding reconstructs the
state of the system. Many researchers have recognized
this problem and proposed methods to find τ andm for
finite time series with and without noise [2, 3, 4, 21].
The goal of these methods is usually to find the val-
ues of these parameters that minimize the embedding
dimension m without sacrificing the accuracy of the
reconstruction. Although a compact reconstruction is
efficient computationally, it does not necessarily max-
imize accuracy.
Although Takens’ theorem only applies to infinite-

ly long time series there is evidence that the accuracy
of the reconstruction is not sensitive to the value of
m for finite noise-free time series so long as m is suf-
ficiently large. Kugiumtzis makes a strong case that
the most important consideration in choosing the em-
bedding parameters, m and τ , is the window length
[21].

w = mτ (3)
2See Friedman for a more thorough discussion on expert bias

[10].

As long as w is sufficiently large and m is not too
small, a wide range of values of τ and m will create an
accurate reconstruction of the system state.

C. Choosing a Metric

The local models discussed in this paper are construct-
ed using only the nearest points on the k nearest neigh-
boring trajectory segments.
Choosing an appropriate measure of nearness, or

metric3, is an important decision that is usually over-
looked. The most common metric is the square of the
Euclidean distance4 between an input vector xt and
the query vector q.

dE(qt, xt) = (qt − xt)T(qt − xt) (4)

In this case the only parameter is m, the embed-
ding dimension. Choosing a more general measure
with more parameters can drastically effect model ac-
curacy [13, 29, 40]. For example, a weighted Euclidean
distance,

dΛ(qt, xt) = (qt − xt)TΛ(qt − xt) (5)

could be used where Λ ∈ R
m×m is any positive

semidefinite matrix. However, short time series are
often too short to estimate m2 parameters and opti-
mizing over so many parameters is computationally
impractical for longer time series.
Murray proposed using a exponentially weighted di-

agonal metric5

Λ(i, j)
�
=

{
λi−1 i = j
0 otherwise (6)

where 0 < λ < 1 [29].
This metric is intuitively appealing because the

components of xt closest in time to the prediction are
given exponentially more weight. It is especially ap-
propriate for chaotic systems where neighboring states
are known to diverge exponentially with time. Since
the standard Euclidean metric, dE , is a subset of dλ

an appropriate choice of λ will not decrease model ac-
curacy and is likely increase it.
The metric dλ is defined by the parametersm and λ.

If m is sufficiently large and λ is sufficiently small the
influence of the most distant components of xt will be
negligible. Thus, in principle, if a model is construct-
ed with m sufficiently large, only λ will affect model
accuracy.

3In this paper metric means a measure of nearness between
two points. It may not have the usual metric properties.

4The square of the Euclidean distance is used to reduce com-
putation. The same nearest neighbors would be found with the
Euclidean distance.

5This metric is of a different form than that proposed by
Murray but it is mathematically equivalent.



Since the model accuracy is sensitive to λ it is gen-
erally worth the computational cost to find the best
value. This is a critical component of the method
proposed here. For many nonlinear models, such as
neural networks, the nonlinear optimization over the
adaptive parameters (weights) typically consumes too
much computation to enable a global optimization
over structural parameters, such as the number of neu-
rons in a hidden layer. In contrast, the model de-
scribed in this paper can be constructed and evaluat-
ed efficiently enough to enable a global optimization
over several of the model parameters which makes the
choice of the parameters to be optimized especially
crucial.

C.1. Other Metrics: Previous Work

Although the choice of the metric can drastically af-
fect the accuracy of local models, very little has been
published on this topic in the field of time series pre-
diction. The only publications known to the author
are briefly summarized in this section.
Farmer and Sidorowich suggested a fixed λ = e−h,

where h is the metric entropy, which they report is in
some sense linearly optimal [8].
In addition to the metric used here Murray also

investigated a two-parameter metric that used a tri-
diagonal weighting matrix [29].
Kugiumtzis compared L2, L1 and L∞ norms, most-

ly for the purpose of estimating correlation dimension
[22]. Kugiumtzis also performed a brief analysis using
local linear models for prediction and reported that
there were not significant differences in the prediction
errors between each of the three norms.
Casdagli and Weigend reported that model accu-

racy is very sensitive to the choice of the embedding
dimension when the Euclidean metric is used [6].
Tanaka et al. developed an elegant approximation

to an optimal metric with a rank-1 weighting matrix
[40]. This metric has no user-specified parameters, is
computationally inexpensive, and reportedly is more
accurate than models that use the Euclidean metric
or Murray’s metric. The same metric was also devel-
oped by Garcia et al. [13]. Unfortunately there is no
obvious means of using this metric with existing near-
est neighbor algorithms. If this metric requires a brute
force nearest neighbor algorithm, it is computationally
impractical for moderate to large-sized data sets.

C.2. Choosing the Embedding Parameters

A good value for the window length, w, can often be
chosen by visual inspection of the time series. Typi-
cally, noise-free univariate time series generated by the
dynamic system in Equation (1) will contain period-
ic oscillations of roughly the same period. w should
be chosen to span several of these oscillations. Longer
windows usually require more computation with little

increase in accuracy. Longer windows may also signif-
icantly reduce the number of points,

nc = n−mτ (7)

that may be used to construct the model for short time
series. Conversely, choosing a window that is too short
will reduce model accuracy.
Once w has been selected, the embedding delay, τ ,

must be chosen. One justification for choosing the
smallest possible value for τ is that it increases the
accuracy of dλ. For example, if the time series was
sampled at a rate T from a continuous time system, dλ

approximates the weighted integrated squared error,
ISEλ.

ISEλ(qt, xt)
�
=

tT∫
tT−(m−1)τT

λv−tT (qv − xv)
2
dv (8)

dλ(qt, xt) =
m−1∑
i=0

λi (qt−iτ − xt−iτ )
2 (9)

≈ 1
T
ISEλ(qt, xt) (10)

For a fixed w, the choice of τ governs the accuracy of
the estimated ISEλ. Small values of τ will increase the
accuracy of the estimated ISEλ, though not necessarily
the model accuracy. However, small values of τ will
require a larger value of m and thereby increase the
computational cost. In light of this tradeoff, τ should
be chosen as small as possible within the limits of the
computational budget.

D. Iterated versus Direct Prediction

Suppose we are given a time series, [y1, y2, . . . , yn], and
asked to predict p steps ahead. Direct prediction is the
method by which a model is built to directly predict
yn+p from the input vector xn,

Iterated prediction is the method by which a model
is built to predict one step ahead p times. The mod-
el estimates ŷn+1 from xn which is used in turn to
estimate the first component of the input vector xn+1.

x̂n+1 =
[
ŷn+1, yn+1−τ , . . . , yn+1−(m−1)τ

]
(11)

This process is iterated for p steps finally producing
the prediction ŷn+p.
There has been much debate about which method

is superior [4, 5, 8, 9, 34]. There is strong empirical
evidence that iterated prediction performs better on
short term forecasts for a variety of nonlinear models
[4, 5, 8]. Sauer has suggested averaging the direct and
iterated predictions to reduce variance [34].
Direct prediction is questionable because for nonlin-

ear dynamic systems a function that maps p steps into
the future will usually be more complicated than one
that predicts a single step into the future [9].



Iterated prediction has the disadvantage that it does
not take into account the accumulated errors in the
input vector. After a model has been iterated further
than it is capable of accurately predicting, the input
vector will no longer be an accurate reconstruction of
the state of the system being modeled. In this case
the best least squares prediction is simply the mean of
the signal, ȳ.

ȳ =
1
n

n∑
i=1

yi (12)

Iterated prediction, however, will produce the same
prediction regardless of the accuracy of the input vec-
tor. As a result, predictions many steps ahead will
have the same variance as predictions a few steps a-
head and will consequently have a significantly larger
squared error than simply predicting ȳ or using direct
prediction6.
For global models direct prediction is more expen-

sive computationally because p models,

ŷn+1 = f1(xn)
ŷn+2 = f2(xn)

...
ŷn+p = fp(xn)

must be constructed to predict 1, 2, . . . , p steps ahead.
Iterated prediction requires that only one model be
constructed. However, for local models direct predic-
tion models can use the same k nearest trajectories as
the basis for all p predictions [8]. Since finding the
nearest trajectories is the most computationally ex-
pensive operation for local models, direct prediction
is much less expensive than iterated prediction, which
requires that the nearest trajectories be found for p
different input vectors.
Despite its computational cost, iterated prediction

is almost always used because of its superior short-
term accuracy. However, one should use this method
with caution since medium to long-term forecasts can
be worse than predicting ȳ.

E. A Nearest Trajectory Algorithm

One of the differences between a regression problem
and a time series prediction problem is that it is pos-
sible to increase the number of data points by up-
sampling, or interpolating, the time series; more data
can be generated without adding any new information.
This is problematic because a signal that is sampled
at a high enough rate will have all k of its nearest
neighbors adjacent to each other in the time series.

6To the best of the author’s knowledge, this disadvantage of
iterated prediction has not been recognized in previous discus-
sions on this topic.

qt

qt+1

Figure 1: Four trajectory segments and a predicted
trajectory in a two-dimensional embedding space. The
four nearest neighbors of qt are shown by squares. The
inner circle shows the distance to the fourth nearest
neighbor and the outer circle shows the distance to
the fourth nearest trajectory.

For example, in Figure 1 many of the points on the
nearest trajectory segment are closer than the points
on the fourth nearest trajectory segment.
This problem can be solved by finding the nearest

trajectory segments instead of the nearest neighbors
[8]. Fortunately, it is possible to modify existing n-
earest neighbor algorithms to find the nearest trajec-
tory segments. This is advantageous because much
research has gone into the development of efficient n-
earest neighbor algorithms (Section F.).
A novel nearest trajectory modification is as fol-

lows: suppose a nearest neighbor algorithm has found
a point xi that is closer than the k nearest points found
by the algorithm so far.

1. Calculate the distance to the points preceding
xi, {xi−1, xi−2, . . . }, until the nearest local min-
imum is found. Repeat this procedure for the
points succeeding xi. The local minimum that
is found by this procedure, xmin, is the closest
point in the trajectory segment.

2. Calculate the distance to the points preceding
xmin until either a maximum is found or the
distance becomes greater than the distance to
the kth nearest neighbor found so far. Call this
point xmax. Eliminate all of the points between
xmin and xmax from consideration by the nearest
neighbor algorithm.

3. Repeat the previous step for the points succeed-
ing xmin.



4. Replace the kth nearest neighbor found so far
with xmin and continue with the nearest neigh-
bor algorithm.

F. Nearest Neighbor Algorithms

Many nearest neighbor algorithms have been proposed
to overcome the high computational cost of the näıve
brute force approach7. Almost all of these algorithms
can be divided into two categories: axis-partitioning
algorithms and triangle inequality-based algorithms.
Axis-partitioning algorithms divide them-dimensional
input space into hypercubes and establish a lower
bound on the distance from the query point, q, to all
points contained in each hypercube. If the lower bound
is greater than the distance to the kth nearest neighbor
found so far, all of the points contained by the hyper-
cube can be eliminated without explicitly calculating
the distance to each point [11, 20, 30, 32, 38].
Triangle inequality-based algorithms use the trian-

gle inequality to find lower bounds on the distance to
points. If the lower bounds is greater than the dis-
tance to the kth nearest neighbor found so far, the
point can be eliminated from consideration without
explicitly calculating the distance to that point. Sub-
sets of points can also be eliminated by finding a low-
er bound on the distance to an enclosing hypersphere
[1, 12, 17, 18, 27, 42].
In low-dimensional spaces both types of nearest

neighbor algorithms have been shown to perform dras-
tically better than the brute force approach. In low
dimensions most of these algorithms achieve O(log nc)
search time and require only O(nc log nc) preprocess-
ing time and storage, where nc is the number of points
in the data set.
In high-dimensional spaces, say m > 15, the bound-

ing techniques of both types of algorithms are ineffec-
tual and the performance is much worse. In fact, the
computational cost of these algorithms can be signif-
icantly higher than the brute force approach due to
overhead imposed for ordering the search of the input
space and for calculating the lower bounds. Generally,
the search time increases exponentially with m up to
a limit where the distance is calculated for nearly all
of the points in the data set.
If all of the points in the data set lie in a low-

dimensional subspace of R
m, the triangle inequality

algorithms have an advantage over axis-partitioning
algorithms—they can achieve search times compara-
ble to low-dimensional data sets. If the dimension of
the subspace is held constant, the search time grows
roughly linearly with m. This is especially relevan-
t when the data points are taken from a time series
generated by a nonlinear dynamic system because the

7See Nene and Nayar for a recent concise review of existing
algorithms [30].

points will often lie on a low-dimensional manifold
[14, 35, 39]. This feature of triangle inequality-based
algorithms has not been widely recognized in either the
nearest neighbor algorithm literature or in the time se-
ries prediction literature, with the exception of Micó
et al. [28].

F.1. Another Nearest Neighbor Algorithm

In this section a new nearest neighbor algorithm, AN-
NA8, is described that is competitive with the most ef-
ficient nearest neighbor algorithms in low-dimensional
spaces and nearly as efficient as the brute force ap-
proach in high-dimensional spaces. Since this algo-
rithm is based on the triangle-inequality, it is much
faster than the brute force approach when used on da-
ta sets generated low-dimensional nonlinear dynamic
systems.
As with other triangle inequality algorithms, ANNA

requires that a metric be chosen before construction.
It is assumed in this section that the metric is the
square root of the metric given in Equation (5), dΛ.
The square root is necessary for the triangle inequality
to hold.

d(q, xi)
�
= dΛ(q, xi)1/2 (13)

ANNA consists of two stages, a construction phase
and a search phase. During the construction phase a
search tree is recursively constructed. Initially all of
the points in the data set are subdivided into c dis-
tinct groups. Each subset is further subdivided into c
subsets and so on until the size of a subset becomes
less than or equal to nT .
Any clustering algorithm could be used to divide

each subset into further subsets. The following algo-
rithm is used in ANNA: suppose a set of np points are
to be divided into c distinct subsets.

1. Pick a point x0 at random.

2. Find the point in the data set furthest from x0.
This point will be the first cluster center.

3. Find the point in the data set that has the max-
imum distance to the nearest of the cluster cen-
ters found thus far. This point will be the next
cluster center.

4. Repeat the previous step until c cluster centers
have been found.

5. Assign each point to the nearest cluster center.
Calculate the center of mass for each cluster of
points.

8ANNA is an improved version of the triangle inequality-
based algorithm that was proposed by Fukunaga and Narendra
[12].
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ri qd(Mi,q)

d(xk,q)

xk

Figure 2: This figure illustrates Rule 1. The circle
around Mi encloses all of the points, Si, assigned to
the node i. The circle around the query point, q, en-
closes the k nearest neighbors found so far by the al-
gorithm. Rule 1 effectively states that if the circles do
not intersect, none of the points contained in Si can
be one of the k nearest neighbors of q.

6. Find the c points, {M1,M2, . . . ,Mc}, that are
closest to the center of mass in each cluster of
points.

7. Assign each point in the data set to the nearest
center point, Mi. The set of points assigned to
a center point Mi will be denoted by Si

8. For each set of points, Si, calculate the distance,
ri, to the point that is furthest from the center
point, Mi.

ri = max
xi∈Si

d(xi,Mi) (14)

9. For all sets, Si, that contain less than nT points,
calculate the distance from the center point, Mi,
to each point in the set, d(Mi, xi) ∀xi ∈ Si.

Despite the large number of steps in this clustering
algorithm the computation is O(np).
During the search phase a depth-first branch and

bound search algorithm is used. First, the algorithm
calculates distance from the query point to each cen-
ter point, d(Mi, q), in the top level of the search tree.
Second, the successor nodes, which represent smaller
subsets of points, are searched in order of increasing
d(Mi, q). This process is repeated until a terminal n-
ode is reached.
After k distances have been calculated the following

rule may enable the algorithm to avoid searching a
node.
Rule 1: No point in Si can be the kth nearest neigh-

bor of q if

d(xk, q) < d(Mi, q)− ri

where xk is the kth nearest neighbor found so far. This
rule is illustrated in Figure 2.
When a terminal node is reached, Rule 2 can be

used eliminate some of the points without explicitly

Mi

qd(Mi,q)
d(xk,q)

xk

d(Mi,x1)

x1

x2

d(Mi,x2)

x3

Figure 3: This figure illustrates Rule 2, which effec-
tively states that any point outside the gray region
cannot be a nearest neighbor of q. This rule can be
used to eliminate points x1 and x2, but not x3 though
it is not one of the k nearest neighbors of q.

calculating the distance from each point, xi ∈ Si, to
the query point, q.
Rule 2: No point xj in the terminal node i can be

the kth nearest neighbor of q if9

d(xk, q) < |d(Mi, q)− d(Mi, xj)|
Several additional rules have been proposed to e-

liminate more points than the rules described here
[18]. However, Larsen and Kanal have shown these
additional rules are rarely invoked, especially for high-
dimensional problems [23]. Other improvements have
been suggested by various researchers but the addi-
tional overhead imposed by more extensive rule check-
ing often outweighs the savings [16, 26, 32].

F.2. Nearest Neighbors in Time Series

The search time of ANNA can be reduced when the
query points are taken from consecutive points in the
time series. For example, if the k nearest neighbors
for an input vector xt have been found,

[xv(1), xv(2), . . . , xv(k)] (15)

where v(i) is the index of the ith nearest neighbor,
then the set of points

[xv(1)+1, xv(2)+1, . . . , xv(k)+1] (16)

will usually be very close to xt+1. If the distance to
these points is calculated before searching the tree then
the lower bounds used in Rules 1 and 2 will be much
tighter, more points will be eliminated, and the com-
putation will be reduced.

9This is a slight extension of the original rule proposed
by Fukunaga and Narendra and was originally suggested by
Kamgar-Parsi and Kanal [12, 18].



qt

Figure 4: Three coarsely sampled trajectories in a two-
dimensional embedding space. The nearest point on
each trajectory is shown by a triangle. Note that the
nearest point on the second nearest trajectory is fur-
ther away than the nearest point on the third nearest
trajectory.

G. Interpolation

As discussed in Section E., the nearest trajectory algo-
rithm finds the closest point on each of the k neighbor-
ing trajectory segments. If the time series is coarsely
sampled from a continuous-time dynamic system, the
nearest point on a neighboring trajectory can only be
found with coarse precision. If a higher sampling rate
is used or, equivalently, if a time series generated by
a discrete-time dynamic system is interpolated, the n-
earest point will be found with greater precision and
the prediction will generally be more accurate.
In severe cases where the sampling rate is nearly

small enough to incur aliasing, the wrong trajectories
may be found by the nearest trajectory algorithm, as
shown in Figure 4.
In practice, interpolation can significantly increase

accuracy if the raw time series is coarsely sampled.
However, effectively increasing the number of points
in a time series may proportionally increase the com-
putational cost of the nearest trajectory algorithm. A
good rule of thumb is to interpolate, if necessary, so
that the effective sampling rate is 5–10 times faster
than the Nyquest rate.

H. Local Function Approximation

Once the k nearest trajectories have been found a lo-
cal model must be constructed to make the prediction.
This is a standard function approximation problem
with the important exception that the dimension of
the input vector, m, is often large compared to the
number of data points, k, that are used to construc-
t the model. Most nonlinear modeling methods are

not viable under these conditions because they con-
tain too many free parameters and require more than
k data points to construct. Models that are compu-
tationally expensive to construct are also not viable
since a different model must be constructed for every
query.

H.1. Local Linear Models

Local linear models have been a popular choice be-
cause they can be constructed very quickly using small
data sets. Some authors have proposed projecting the
input vectors onto a subspace before constructing the
linear model. Most often, singular value decomposi-
tion is used to find the l-dimensional subspace in which
the input vectors exhibit the greatest variance10. The
linear model is then constructed and the prediction is
generated.
One of the commonly mentioned disadvantages of

local models is that they are discontinuous [5, 24, 25].
A slight perturbation in the input vector can change
the kth nearest trajectory which can, in turn, result in
a very different model. This problem can be remedied
by giving the furthest trajectories less influence on the
local model. For example local linear models can be
constructed using weighted linear regression where the
furthest trajectories receive the smallest weights [8,
34].
Various weighting functions have been widely re-

searched in the context of kernel regression [36, 43].
It is generally accepted in this field that model accu-
racy is insensitive to the type of weighting function
used and it is reasonable to assume that this is true
for the models described here as well. A good choice
is the biweight function,

w(i) =
(
1− d2

i

d2
k

)2

(17)

where di is the distance to the ith nearest neighbor.
One of the advantages of the biweight function is that
the kth nearest trajectory is given a weight of zero
which makes the local model continuous11.

H.2. Local Constant Models

Local constant models are a slightly less common
choice. Like local linear models, they can be made
continuous by using a smooth weighting function. Be-
cause constant models have only one degree of free-
dom they have less variance than linear models but
more bias for the same number of points, k. If the
optimal k is used, neither is consistently more accu-
rate. Linear models are slightly more expensive com-

10This is commonly called principal components analysis.
11This is not true in general. If a sufficient number of points

are equidistant to q the local model may be discontinuous at that
point. However, for q ∈ R

m the probability of this happening is
virtually zero.
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Figure 5: Three trajectory segments and a predict-
ed trajectory in a two-dimensional embedding space.
The three nearest trajectory points to the query point,
xt, are shown as triangles. The predicted next point,
x̂t+1, using averaged prediction is shown as a gray cir-
cle. This is just the average vertical value of the white
circles. For integrated prediction, shown by the gray
square, the predicted next point is the current position
plus the average change in the nearest trajectories (the
vertical change from each triangle to the corresponding
circle).

putationally, but in most cases the additional compu-
tation is insignificant compared to the computational
cost of finding the k nearest trajectories. However, lin-
ear models generally require a larger value of k which
is significantly more expensive computationally.
Although local constant models are reasonably ac-

curate at interpolation they are generally poor at ex-
trapolation. Since a local model consists of a weighted
average, the output will never be greater than or less
than any of the points that make up the average. In
high-dimensional spaces this can be a significant dis-
advantage since nearly every point is an outlier [10].
For example, in Figure 5 the gray circle shows a pre-
diction generated by averaging the next point of the
three nearest trajectories.
One way to fix this problem is to predict the change,

or residual, yt+1 − yt, rather than yt+1. The final pre-
diction can then be found by integrating from the cur-
rent state.
Figure 5 illustrates why predicting the residual and

integrating (integrated prediction) may be better than
predicting the average of the neighboring trajectory
segments (averaged prediction)12.
For large data sets these methods have similar per-

formance. In brief empirical comparisons, integrated

12Integrated prediction has been widely used for time series
prediction of nonstationary stochastic processes [7]. However,
this typically includes using residuals for the embedding, which
is different from the approach taken here.

prediction was slightly more accurate for short term
predictions and averaged prediction was more accurate
for longer term predictions. This is probably because
averaged prediction is less sensitive to accumulated er-
rors in the input vector.

I. Number of Neighboring Trajectories

Many researchers have reported that model accuracy
is sensitive to the number of neighboring trajectories,
k, which makes this parameter a good candidate for
global optimization [5, 6, 14, 37]. As discussed in Sec-
tion C., this is a crucial decision because a global opti-
mization can be performed for only a few parameters.
Optimizing k is much more efficient than optimiz-

ing the metric parameter λ for two reasons. First, the
nearest neighbor search can be performed for different
values of k without having to reconstruct the search
tree used by ANNA. This is not true for λ which re-
quires that a new search tree be constructed for each
value.
Second, the optimal value of k is generally small for

noise-free time series, as was shown by Casdagli and
Weigend [6]. Only a small number of different values
for k need to be considered to find the optimal value.
Since λ ∈ R

1, many more values must be considered
in order to find the optimal value of λ.
Smith has suggested locally varying the value of k

to minimize an estimate of the predicted absolute er-
ror [37]. This method has the disadvantage of making
local models discontinuous, but certainly warrants fur-
ther investigation.

J. Model Accuracy

Many methods of evaluating model accuracy have been
proposed. A popular choice for local models is leave-
one-out cross-validation. This method begins by con-
structing a model to predict one step ahead with all
but one of the nc points. The error in predicting the
omitted point is calculated and the process is repeated
for all nc points. Any of a variety of measures of error
could be used. Absolute error, squared error, and the
coefficient of correlation are common choices.
The cross-validation error is an estimate of the ex-

pected error13. For example, if squared error is used
the cross-validation error is defined as

MSE1
�
=

1
nc

nc∑
i=1

(
yi+1 − f

−(i+1)
i+1 (xi)

)2

(18)

≈ Et

[(
yt+1 − f

−(t+1)
t+1 (xt)

)2
]

(19)

≈ Et

[
(yt+1 − ft+1(xt))

2
]

(20)

where f
−(i+1)
i+1 (xi) is the model constructed to predict

13See Friedman for a discussion of issues surrounding cross-
validation and other model selection criteria [10].



one step ahead with the (i+ 1)th point left out of the
construction set.
This method is especially attractive for local models

because it can be efficiently computed without con-
structing nc different models. Instead, during the
search for the k nearest neighbors, the omitted point
can simply be ignored. A further advantage can be
gained by performing one search for the largest value
of k that is being considered. One can then construct
local models for smaller values of k without performing
additional searches which further reduces the compu-
tational cost of finding the optimal value of k.
The ability to efficiently compute the cross-

validation error is a significant advantage of local mod-
els. Many global modeling strategies, such as neural
networks, require substantial computation to build a
single model; for these strategies building nc different
models is computationally infeasible14.
A disadvantage of using one-step ahead cross-

validation error (OSCV) as a measure of model ac-
curacy is that it does not take into account the model
sensitivity to errors in the input vector that occur with
iterated prediction; the parameter values that mini-
mize the OSCV error are generally not the same val-
ues that minimize the p-steps ahead cross-validation
error.
It is better to choose an error measure that repre-

sents the cost of making poor predictions in the appli-
cation in which the model is going to be used. In many
cases an average (possibly weighted) model accuracy
over p-steps ahead is appropriate,

MSE1,p
�
=

1
pnp

np∑
i=1

p∑
j=1

(
yi+j − f

−(i+1,i+p)
i+j (xi)

)2

(21)

where np = nc−p+1 and f
−(i+1,i+p)
i+j (xi) is the model

output j-steps ahead constructed with the points (i+
1) to (i + p) left out. Kantz and Jaeger have argued
that multi-steps ahead cross-validation (MSCV) also
reduces bias [19].
Unfortunately, MSCV is more expensive computa-

tionally than OSCV for two reasons. First, p predic-
tions must be made by each model instead of one. Sec-
ond, a single search for all of the different values of k
cannot be done with MSCV because, for example, the
prediction two steps ahead depends on the previous
prediction, which is different for each value of k. How-
ever, the search tree in ANNA still does not need to be
reconstructed in order to calculate MSE1,p; the omit-
ted points can simply be ignored during the search.
To reduce the computation required to calculate

MSE1,p, fewer than nc − p + 1 terms could be used
14Vapnik has recently proposed an efficient method of opti-

mizing parameters for a large class of models that requires much
less computation [41].

to approximate the expected error. For example, win-
dows of p-points could be used that are spaced s points
apart.

MSE1,p ≈ 1
pnv

nv∑
i=1

p∑
j=1

(
yvi+j − f

−(vi+1,vi+p)
vi+j (xvi

)
)2

(22)

where v1 = 1, v2 = s, v3 = 2s, and so on. Here nv is
the number of windows, or validation sets.
For large values of p and short time series, remov-

ing p values from the data set may significantly af-
fect the model that is constructed. In this case, the
cross-validation error will not be representative of the
expected error using all nc points. A novel approach
to reduce this effect is to omit only the trajectory seg-
ment that surrounds the point being predicted, yv(i)+ρ,
instead of all p points.

III. Empirical Results

Two data sets are used to illustrate the method pro-
posed here. The first is simulated data from the Lorenz
equations. The second data set is the time series used
in the competition that was part of this workshop.

A. Measure of Accuracy

The accuracy of models generated for both data
sets was measured by the multi-steps ahead cross-
validation method described in Section J.. The nor-
malized mean squared error, NMSEρ, was calculated
for each validation set and is defined as

NMSEρ
�
=

1
nv

∑nv

i=1

(
yvi+ρ − f

−(vi+ρ)�

vi+ρ (xvi
)
)2

1
n

∑n
i=1 (yi − ȳ)2

(23)

where yvi+ρ is the (vi + ρ)th point in the time-series,
vi is the index of the first point in the ith validation
set, ȳ is the average value of yt given in Equation (12),
and f

−(vi+ρ)�

vi+ρ (xvi
) is the prediction at time vi+ρ of a

model that has been iterated ρ times. As described in
Section J., only the points that make up the trajectory
segment surrounding the point yvi+ρ were left out to
generate the prediction, f−(vi+ρ)�

vi+ρ (xvi
).

B. Lorenz Data

The Lorenz equations are as follows:

ẋ = σ(y − x) (24)
ẏ = rx− y − xz (25)
ż = xy − bz (26)

The standard values of σ = 10.0, r = 28.0, and b = 8/3
were used to generate the series. Figure 6 shows a plot
of the first 500 points in the series.
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Figure 6: The first 500 points in the Lorenz time series.

A 2000-point time series was used to build the mod-
el. The user-selected parameters are shown in Table
1.
The cross-validation error was calculated for 31 dif-

ferent values of λ, {0.40, 0.42, . . . , 1.00}, and 4 differ-
ent values of k, {2–5}, 15

Figure 7 shows the average prediction error as a
function of the number of steps predicted ahead. This
figure demonstrates the sensitivity of the model accu-
racy to value of k. It can also be seen that the average
prediction horizon, the number of steps for which the
model prediction is better than predicting ȳ, for the
best values of k and λ is about 60 steps ahead. To de-
termine the best value of λ and k, the average NMSEρ

was taken over the first 60 values of ρ.

NMSE1,60
�
=

1
60

60∑
ρ=1

NMSEρ (27)

Parameter Value
Model Type Constant
Prediction Type Averaged
Prediction Method Iterated
Embedding Dimension(m) 25
Embedding Delay (τ) 1
Upsample Rate 5
Validation Sets (nv) 258

Table 1: User-selected model parameters that were
used to predict the Lorenz time series.

Figure 8 illustrates the sensitivity of the NMSE1,60

to the choice of k and λ. The values k = 2 and λ =
0.48 had the smallest NMSE1,60 (0.2830). The lack

15k = 2 means only the nearest trajectory is used since the
kth trajectory is given a weight of zero (Section H.).
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Figure 7: The NMSEρ versus ρ, the number of steps
ahead, for the Lorenz time series. The user-selected
parameters are shown in Table 1. The heavy line shows
the NMSEρ for k = 2 and λ = 0.48, the values that
minimized NMSE1,60. The thin lines show the NMSEρ

for the other values of k, 3–5, and the best value of λ
for each.

of smoothness emphasizes the importance of using a
large number of validation sets to estimate NMSE1,60

and optimize k and λ.

Figure 9 shows the average NMSEρ for the values of
k and λ that minimize NMSE1,60. The large variance
in error, shown by the gray region, also illustrates the
importance of using multiple validation sets to assess
model accuracy. If only one validation set had been
used, the prediction horizon might have appeared to
be anywhere from 10 to well beyond 100.

After upsampling the time series, there were 9871
points in the construction set. Using the parameter-
s c = 4 and nT = 5, on average only 234 distances
had to be calculated to find the two nearest trajecto-
ries to a query point. Thus, for this data set ANNA
is approximately 40 times faster than the brute force
approach.

Figures 10 and 11 show two 100-steps ahead predic-
tions for the model with k = 2 and λ = 0.48. Neither
of these series were used to construct the model or to
optimize the values of k and λ.

C. Workshop Competition

The workshop time series consisted of 2000 points. By
inspection, the data set appears to be noise-free (Fig-
ure 13). A plot of the power spectrum (Figure 12)
indicates that the series had been sampled at approx-
imately five times the Nyquest frequency.
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Figure 8: NMSE1,60 versus λ. The user-selected pa-
rameters are shown in Table 1. The heavy line shows
the NMSEρ for k = 2. The thin lines show the
NMSE1,60 for the other values of k which are labeled
on the plot.
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Figure 9: The NMSEρ versus ρ, the number of steps
ahead, for k = 2 and λ = 0.48. The user-selected pa-
rameters are shown in Table 1. The line in the center
of the gray region shows the average NMSEρ and the
gray region shows three standard deviations of the av-
erage NMSEρ. The upper broken line shows the largest
NMSEρ of all the validation sets and the line outside
of the gray region shows three standard deviations of
NMSEρ. The smallest NMSEρ of all the validation
sets is too small to be visible on this plot.
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Figure 10: A 100-steps ahead prediction for the Lorenz
time series. The predicted points are shown by the
heavy line and the actual series is shown by the broken
line. In this case the model was able to accurately
predict approximately 90 steps ahead, which is better
than the average prediction horizon (60 steps ahead).
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Figure 11: A 100-steps ahead prediction for the Lorenz
time series. The predicted points are shown by the
heavy line and the actual series is shown by the broken
line. In this case the model was able to accurately
predict approximately 40 steps ahead, which is worse
than the average prediction horizon (60 steps ahead).
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Figure 12: The estimated power spectrum of the work-
shop time series. The spectrum was estimated using
Bartlett’s method of periodogram averaging with four
nonoverlapping windows [15]. The x-axis has been s-
caled so that 1 represents half the Nyquest frequency.

C.1. Exploiting Symmetry

Upon further inspection, the series appears to be
chaotic with three unstable equilibria at approximate-
ly -0.25, 0, and 0.25, as shown in Figure 13. The pe-
riod and growth of the oscillations about the upper
and lower equilibria appear to be the same. This ob-
servation poses the possibility that the system that
generated this time series may be symmetrical; that
is, it may just as likely have generated the time series
reflected about the horizontal axis.
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Figure 13: The competition time series. The three
horizontal lines show the approximate location of the
three unstable equilibria in the series.

There is further evidence that the time series is sym-

metrical in delay plots of the series. For example, the
delay plot in Figure 14, which was created with the
raw time series, is visually indistinguishable from the
trajectory plot in Figure 15, which was created with
the time series reflected about the horizontal axis.
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Figure 14: The workshop time series data embedded
in a two-dimensional space: yt+6 verses yt. The time
series was upsampled by a factor of 10 to clearly show
the continuous path of the trajectory. The three dots
represent the approximate locations of the equilibria.

If the system that generated the original time series
could have generated the reflected time series, a more
accurate model could be built using the combination
of both time series. To determine if this was reason-
able for the purpose of prediction, the cross-validation
error was compared for two models: one built with
the original time series and the other built with the
combined time series. Table 2 shows the user-selected
parameters that were used for the comparison.

Parameter Value
Model Type Constant
Prediction Type Integrated
Prediction Method Iterated
Embedding Dimension (m) 50
Embedding Delay (τ) 2
Validation Sets (nv) 229

Table 2: User-selected model parameters for analyzing
the effect of combining the original time series with the
reflected time series.

Figure 17 shows the NMSEρ as a function of ρ us-
ing only the original data to construct the model. The
average prediction horizon is approximately 60 step-
s with the best values of λ and k. Figure 16 shows
the NMSEρ using the combined time series. The aver-
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Figure 15: The workshop time series data reflected
about the horizontal axis and embedded in a two-
dimensional space: yt+6 verses yt. The time series was
upsampled by a factor of 10 to clearly show the contin-
uous path of the trajectory. The three dots represent
the approximate locations of the equilibria.

age prediction horizon with the combined time series
is approximately 80 steps. The model built with the
combined time series has an average NMSEρ over the
first 80 steps (0.4712),

NMSE1,80
�
=

1
80

80∑
ρ=1

NMSEρ (28)

that is approximately 16% better than the model built
with just the original time series (0.5637).

C.2. Sensitivity to Optimized Parameters

Parameter Value
Model Type Constant
Prediction Type Integrated
Prediction Method Iterated
Embedding Dimension (m) 50
Embedding Delay (τ) 2
Combined Time Series Yes
Validation Sets (nv) 229

Table 3: User-selected model parameters for analyzing
the sensitivity to the values of k and λ.

To measure the sensitivity of the model accuracy to
the parameters k and λ, the NMSEρ was calculated
for 31 different values of λ, {0.40, 0.42, . . . , 1.00},
and 5 different values of k, {2–5}. Figure 18 shows
the NMSE1,80 as a function of λ for a model with the
user-selected parameters shown in Table 3. The large
variation in NMSE1,80 illustrates a central point in this
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Figure 16: NMSEρ as a function of ρ for a model built
with the combined time series. The user-selected pa-
rameters are shown in Table 2. The heavy line shows
the NMSEρ for k = 2 and λ = 0.74. The other lines
show the NMSEρ for four other values of k, 3–6, and
the best λ for each.
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Figure 17: The NMSEρ versus ρ for a model built with
the original time series. The user-selected parameter-
s are shown in Table 2. The heavy line shows the
NMSEρ for k = 2 and λ = 0.74. The other lines show
the NMSEρ for four other values of k, 3–6, and the
best λ for each.



paper—the model accuracy is sensitive to the choices
of k and λ.
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Figure 18: NMSE1,80 versus λ. The user-selected pa-
rameters are shown in Table 3. The heavy line shows
the NMSEρ for k = 2. The thin lines show the NMSEρ

for other values of k, 3–6.

C.3. Performance of ANNA

For this time series, the construction set consisted of
3800 points. Using the parameters c = 4 and nT = 5,
on average only 180 distances were calculated to find
the two nearest trajectories to a query point q. For
this data set, ANNA was approximately 20 times faster
than the brute force approach.

C.4. Prediction Horizon

Figure 19, which shows the average NMSEρ for the val-
ues of k and λ that minimized NMSE1,80, illustrates
three important points. First, it shows one of the dis-
advantages of iterated prediction—if the model is try-
ing to predict too many steps ahead, the average error
will be larger than simply predicting ȳ. As discussed
in Section D., this problem is caused by the accumulat-
ed errors in the input vector. If the average prediction
error is the appropriate measure of accuracy for the
application, the model prediction should be replaced
with ȳ for points beyond the prediction horizon.
Second, Figure 19 illustrates the sensitivity of the

prediction error to the region of the time series in
which the prediction is being made. This can be seen
by observing the large variance in the prediction er-
rors. The worst NMSEρ exceeds 1 after 4 steps; the
best NMSEρ is too small to be observed on this plot.
Essentially this illustrates that the prediction horizon
is very sensitive to the state of the system, which has
been observed by other researchers16 [8, 31, 33].

16See Nese for a good discussion on this topic [31].

Third, this figure illustrates the importance of using
a large number of validation sets, nv, to assess the
average prediction horizon. This can be observed by
noting that the thickness of the gray region, which can
be loosely interpreted as a 99.8% confidence region17,
is inversely proportional to

√
nv.
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Figure 19: The average NMSEρ versus ρ for the pa-
rameters shown in Table 3, k = 2 and λ = 0.74. The
gray region shows three standard deviations in the esti-
mate of the mean error. The upper broken line shows
the worse-case error and the upper solid line shows
three standard deviations in the error. The minimum
error is not visible on this scale.

Figure 20 shows the 200-steps ahead predictions for
the five smallest values of NMSE1,80, which are given
in Table 4 along with the corresponding values of k
and λ. There is agreement among the predictions for
the first 80 steps, which is consistent with the average
prediction horizon that was found by cross-validation.

k λ NMSE1,80

2 0.74 0.4712
2 0.72 0.4750
2 0.66 0.4882
2 0.68 0.4913
2 0.62 0.4914

Table 4: The smallest five values of NMSE1,80 and the
corresponding values of k and λ.

17If the errors in the numerator summation of Equation (23)
are independent, then the central limit theorem applies and the
distribution of NMSEρ is approximately normal for nv suitably
large. The assumption of independence is appropriate if the
validation sets are spaced sufficiently far apart and the system
is chaotic.
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Figure 20: Five 200-steps ahead predictions from
the five best models. The user-selected parameter-
s are shown in Table 3. The five smallest values of
NMSE1,80 are shown in Table 4.

C.5. Competition Entry

As in many practical situations, there was relatively
little time to construct a model for the competition.
Consequently, a relatively narrow range of different
models could be considered, which compromised mod-
el accuracy. The NMSE1,200 was calculated for 31 d-
ifferent values of λ, {0.40, 0.42, . . . , 1.00}, and 5 d-
ifferent values of k, {2–5}. Invariably k = 2 had the
smallest error. Only local constant models using in-
tegrated prediction were investigated for the compe-
tition. Local linear models or local constant models
using averaged prediction may be more accurate.
The user-selected parameters are shown in Table

5. Only 33 validation sets were used, {201–400, 250–
450, . . . , 1801–2000}, to reduce the computational
cost. Unlike the previous sections, leave-200-out cross-
validation was used instead of omitting out only the
local trajectory segment.

Parameter Value
Model Type Constant
Prediction Type Integrated
Prediction Method Iterated
Embedding Dimension (m) 50
Embedding Delay (τ) 2
Combined Time Series Yes
Validation Sets (nv) 33

Table 5: User-selected model parameters that were
used for the competition entry.

Figure 21 shows the average NMSE1,200 as a func-
tion of λ. The minimum NMSE1,200, 1.044, was ob-
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Figure 21: NMSE1,200 as a function of λ for k = 2.
The error for each of the 33 validation sets is shown
by the broken lines. The lines at the top and bottom of
the plot show the maximum error and minimum error,
respectively, over all 33 validation sets.

tained with λ = 0.68 and k = 2. As discussed in sec-
tion D., the best prediction to minimize average error
after the average prediction horizon is the constant ȳ.
However, the prediction horizon for any given region
of the time series may be longer or shorter than the
average, as is illustrated in Figure 21. Since similar
entries were likely to be submitted in the competition,
it was probable that at least one of them would have
a longer prediction horizon than the average, conse-
quently having a smaller error than an entry which
predicted ȳ after the average prediction horizon. For
this reason, the model output was used for all 200 pre-
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Figure 22: The last 200 points shows the model pre-
diction that was entered in the competition.



dicted points even though this approach is worse on
average. The competition entry is shown in Figure 22.
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