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Abstract
We introduce a framework for sparsity structures
defined via graphs. Our approach is flexible
and generalizes several previously studied spar-
sity models. Moreover, we provide efficient pro-
jection algorithms for our sparsity model that run
in nearly-linear time. In the context of sparse re-
covery, we show that our framework achieves an
information-theoretically optimal sample com-
plexity for a wide range of parameters. We
complement our theoretical analysis with experi-
ments demonstrating that our algorithms also im-
prove on prior work in practice.

1. Introduction
Over the past decade, sparsity has emerged as an important
tool in several fields including signal processing, statistics,
and machine learning. In compressive sensing, sparsity re-
duces the sample complexity of measuring a signal, and
statistics utilizes sparsity for high-dimensional inference
tasks. In many settings, sparsity is a useful ingredient be-
cause it enables us to model structure in high-dimensional
data while still remaining a mathematically tractable con-
cept. For instance, natural images are often sparse when
represented in a wavelet basis, and objects in a classifica-
tion task usually belong to only a small number of classes.

Due to the success of sparsity, a natural question is how we
can refine the notion of sparsity in order to capture more
complex structures. There are many examples where such
an approach is applicable: (i) large wavelet coefficients
of natural images tend to form connected trees, (ii) active
genes can be arranged in functional groups, and (iii) ap-
proximate point sources in astronomical data often form
clusters. In such cases, exploiting this additional structure
can lead to improved compression ratio for images, bet-
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ter multi-label classification, or smaller sample complexity
in compressive sensing and statistics. Hence an important
question is the following: how can we model such sparsity
structures, and how can we make effective use of this addi-
tional information in a computationally efficient manner?

There has been a wide range of work addressing these ques-
tions, e.g., (Yuan & Lin, 2006; Jacob et al., 2009; He &
Carin, 2009; Kim & Xing, 2010; Bi & Kwok, 2011; Huang
et al., 2011; Duarte & Eldar, 2011; Bach et al., 2012b; Rao
et al., 2012; Negahban et al., 2012; Simon et al., 2013;
El Halabi & Cevher, 2015). Usually, the proposed solutions
offer a trade-off between the following conflicting goals:

Generality What range of sparsity structures does the ap-
proach apply to?

Statistical efficiency What statistical performance im-
provements does the use of structure enable?

Computational efficiency How fast are the resulting al-
gorithms?

In this paper, we introduce a framework for sparsity mod-
els defined through graphs, and we show that it achieves a
compelling trade-off between the goals outlined above. At
a high level, our approach applies to data with an under-
lying graph structure in which the large coefficients form
a small number of connected components (optionally with
additional constraints on the edges). Our approach offers
three main features: (i) Generality: the framework en-
compasses several previously studied sparsity models, e.g.,
tree sparsity and cluster sparsity. (ii) Statistical efficiency:
our sparsity model leads to reduced sample complexity
in sparse recovery and achieves the information-theoretic
optimum for a wide range of parameters. (iii) Computa-
tional efficiency: we give a nearly-linear time algorithm for
our sparsity model, significantly improving on prior work
both in theory and in practice. Due to the growing size
of data sets encountered in science and engineering, algo-
rithms with (nearly-)linear running time are becoming in-
creasingly important.
∗Authors ordered alphabetically.
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We achieve these goals by connecting our sparsity model
to the prize collecting Steiner tree (PCST) problem, which
has been studied in combinatorial optimization and approx-
imation algorithms. To establish this connection, we intro-
duce a generalized version of the PCST problem and give
a nearly-linear time algorithm for our variant. We believe
that our sparsity model and the underlying algorithms are
useful beyond sparse recovery, and we have already ob-
tained results in this direction. To keep the presentation
in this paper coherent, we focus on our results for sparse
recovery and briefly mention further applications in Sec. 7.

Before we present our theoretical results in Sections 3 to 5,
we give an overview in Section 2. Section 6 complements
our theoretical results with an empirical evaluation on both
synthetic and real data (a background-subtracted image, an
angiogram, and an image of text). We defer proofs and
additional details to the supplementary material.

Basic notation Let [d] be the set {1, 2, . . . , d}. We say
that a vector β ∈ Rd is s-sparse if at most s of its coeffi-
cients are nonzero. The support of β contains the indices
corresponding to nonzero entries in β, i.e., supp(β) = {i ∈
[d] |βi 6= 0}. Given a subset S ⊆ [d], we write βS for
the restriction of β to indices in S: we have (βS)i = βi
for i ∈ S and (βS)i = 0 otherwise. The `2-norm of β is
‖β‖ =

√∑
i∈[d] β

2
i .

Sparsity models In some cases, we have more informa-
tion about a vector than only “standard” s-sparsity. A natu-
ral way of encoding such additional structure is via sparsity
models (Baraniuk et al., 2010): let M be a family of sup-
ports, i.e., M = {S1, S2, . . . , SL} where Si ⊆ [d]. Then
the corresponding sparsity model M is the set of vectors
supported on one of the Si:

M = {β ∈ Rd | supp(β) ⊆ S for some S ∈M} . (1)

2. Our contributions
We state our main contributions in the context of sparse
recovery (see Section 7 for further applications). Our goal
is to estimate an unknown s-sparse vector β ∈ Rd from
observations of the form

y = Xβ + e , (2)

where X ∈ Rn×d is the design matrix, y ∈ Rn are the ob-
servations, and e ∈ Rn is an observation noise vector. By
imposing various assumptions on X and e, sparse recovery
encompasses problems such as sparse linear regression and
compressive sensing.

2.1. Weighted graph model (WGM)

The core of our framework for structured sparsity is a
novel, general sparsity model which we call the weighted

(a) s-sparsity (b) Cluster sparsity

Figure 1. Two examples of the weighted graph model. (a) In a
complete graph, any s-sparse support can be mapped to a single
tree (g = 1). (b) Using a grid graph, we can model a small number
of clusters in an image by setting g accordingly. For simplicity,
we use unit edge weights and set B = s− g in both examples.

graph model. In the WGM, we use an underlying graph
G = (V,E) defined on the coefficients of the unknown
vector β, i.e., V = [d]. Moreover, the graph is weighted
and we denote the edge weights with w : E → N. We
identify supports S ⊆ [d] with subgraphs inG, in particular
forests (unions of individual trees). Intuitively, the WGM
captures sparsity structures with a small number of con-
nected components in G. In order to control the sparsity
patterns, the WGM offers three parameters:

• s, the total sparsity of S.

• g, the maximum number of connected components
formed by the forest F corresponding to S.

• B, the bound on the total weight w(F ) of edges in the
forest F corresponding to S.

More formally, let γ(H) be the number of connected com-
ponents in a graph H . Then we can define the WGM:

Definition 1. The (G, s, g,B)-WGM is the set of supports

M = {S ⊆ [d] | |S| = s and there is a F ⊆ G
with VF = S, γ(F ) = g, and w(F ) ≤ B} .

(3)

Fig. 1 shows how two sparsity structures can be encoded
with the WGM. Since our sparsity model applies to arbi-
trary graphs G, it can describe a wide range of structures.
In particular, the model generalizes several previously stud-
ied sparsity models, including 1D-clusters, (wavelet) tree
hierarchies, the Earth Mover Distance (EMD) model, and
the unweighted graph model (see Table 1).

2.2. Recovery of vectors in the WGM

We analyze the statistical efficiency of our framework in
the context of sparse recovery. In particular, we prove that
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the sample complexity of recovering vectors in the WGM
is provably smaller than the sample complexity for “stan-
dard” s-sparse vectors. To formally state this result, we first
introduce a key property of graphs.

Definition 2. Let G = (V,E) be a weighted graph with
edge weights w : E → N. Then the weight-degree ρ(v) of
a node v is the largest number of adjacent nodes connected
by edges with the same weight, i.e.,

ρ(v) = max
b∈N
|{(v′, v) ∈ E |w(v′, v) = b}| . (4)

We define the weight-degree of G to be the maximum
weight-degree of any v ∈ V .

Note that for graphs with uniform edge weights, the
weight-degree of G is the same as the maximum node de-
gree. Intuitively, the (weight) degree of a graph is an impor-
tant property for quantifying the sample complexity of the
WGM because the degree determines how restrictive the
bound on the number of components g is. In the extreme
case of a complete graph, any support can be formed with
only a single connected component (see Figure 1). Using
Definitions 1 and 2, we now state our sparse recovery result
(see Theorem 12 in Section 5 for a more general version):

Theorem 3. Let β ∈ Rd be in the (G, s, g,B)-WGM. Then

n = O

(
s

(
log ρ(G) + log

B

s

)
+ g log

d

g

)
(5)

i.i.d. Gaussian observations suffice to estimate β. More
precisely, let e ∈ Rn be an arbitrary noise vector and let
y ∈ Rn be defined as in Eq. 2 whereX is an i.i.d. Gaussian
matrix. Then we can efficiently find an estimate β̂ such that∥∥β − β̂∥∥ ≤ C‖e‖ , (6)

where C is a constant independent of all variables above.

Note that in the noiseless case (e = 0), we are guaranteed to
recover β exactly. Moreover, our estimate β̂ is in a slightly
enlarged WGM for any amount of noise, see Section 5.
Our bound (5) can be instantiated to recover previous sam-
ple complexity results, e.g., the n = O(s log d

s ) bound for
“standard” sparse recovery, which is tight (Do Ba et al.,
2010).1 For the image grid graph example in Figure 1,
Equation (5) becomes n = O(s+ g log d

g ), which matches
the information-theoretic optimum n = O(s) as long as the
number of clusters is not too large, i.e., g = O(s/ log d).2

1To be precise, encoding s-sparsity with a complete graph as
in Figure 1 gives a bound of n = O(s log d). To match the log d

s
term, we can encode s-sparsity as g = s clusters of size one in a
fully disconnected graph with no edges.

2Optimality directly follows from a simple dimensionality ar-
gument: even if the s-sparse support of the vector β is known,
recovering the unknown coefficients requires solving a linear sys-
tem with s unknowns uniquely. For this, we need at least s linear
equations, i.e., s observations.

2.3. Efficient projection into the WGM

The algorithmic core of our sparsity framework is a
computationally efficient procedure for projecting arbi-
trary vectors into the WGM. More precisely, the model-
projection problem is the following: given a vector b ∈ Rd
and a WGM M, find the best approximation to b in M,
i.e.,

PM(b) = arg min
b′∈M

‖b− b′‖ . (7)

If such a model-projection algorithm is available, one can
instantiate the framework of (Baraniuk et al., 2010) in order
to get an algorithm for sparse recovery with the respective
sparsity model.3 However, solving Problem (7) exactly is
NP-hard for the WGM due to a reduction from the classi-
cal Steiner tree problem (Karp, 1972). To circumvent this
hardness result, we use the approximation-tolerant frame-
work of (Hegde et al., 2014a). Instead of solving (7) ex-
actly, the framework requires two algorithms with the fol-
lowing complementary approximation guarantees.

Tail approximation: Find an S ∈M such that

‖b− bS‖ ≤ cT · min
S′∈M
‖b− bS′‖ . (8)

Head approximation: Find an S ∈M such that

‖bS‖ ≥ cH · max
S′∈M
‖bS′‖ . (9)

Here, cT > 1 and cH < 1 are arbitrary, fixed constants.
Note that a head approximation guarantee does not imply
a tail guarantee (and vice versa). In fact, stable recovery
is not possible with only one type of approximate projec-
tion guarantee (Hegde et al., 2014a). We provide two al-
gorithms for solving (8) and (9) (one per guarantee) which
both run in nearly-linear time.

Our model-projection algorithms are based on a connection
to the prize-collecting Steiner tree problem (PCST), which
is a generalization of the classical Steiner tree problem. In-
stead of finding the cheapest way to connect all terminal
nodes in a given weighted graph, we can instead omit some
terminals from the solution and pay a specific price for each
omitted node. The goal is to find a subtree with the optimal
trade-off between the cost paid for edges used to connect a
subset of the nodes and the price of the remaining, uncon-
nected nodes (see Section 3 for a formal definition).

We make the following three main algorithmic contribu-
tions. Due to the wide applicability of the PCST problem,
we believe that these algorithms can be of independent in-
terest (see Section 7).

3Note that the framework does not supply general projection
algorithms. Instead, the model-projection algorithms have to be
designed from scratch for each model.
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• We introduce a variant of the PCST problem in which
the goal is to find a set of g trees instead of a single
tree. We call this variant the prize-collecting Steiner
forest (PCSF) problem and adapt the algorithm of
(Goemans & Williamson, 1995) for this variant.

• We reduce the projection problems (8) and (9) to a
small set of adaptively constructed PCSF instances.

• We give a nearly-linear time algorithm for the PCSF
problem and hence also the model projection problem.

2.4. Improvements for existing sparsity models

Our results are directly applicable to several previously
studied sparsity models that can be encoded with the
WGM. Table 1 summarizes these results. In spite of its gen-
erality, our approach at least matches the sample complex-
ity of prior work in all cases and actually offers an improve-
ment for the EMD model. Moreover, our running time is al-
ways within a polylogarithmic factor of the best algorithm,
even in the case of models with specialized solvers such as
tree sparsity. For the EMD and cluster models, our algo-
rithm is significantly faster than prior work and improves
the time complexity by a polynomial factor. To comple-
ment these theoretical results, our experiments in Section 6
show that our algorithm is more than one order of magni-
tude faster than previous algorithms with provable guaran-
tees and offers a better sample complexity in many cases.

2.5. Comparison to related work

In addition to the “point-solutions” for individual sparsity
models outlined above, there has been a wide range of work
on general frameworks for utilizing structure in sparse re-
covery. The approach most similar to ours is (Baraniuk
et al., 2010), which gives a framework underlying many of
the algorithms in Table 1. However, the framework has one
important drawback: it does not come with a full recovery
algorithm. Instead, the authors only give a recovery scheme
that assumes the existence of a model-projection algorithm
satisfying (7). Such an algorithm must be constructed from
scratch for each model, and the techniques that have been
used for various models so far are quite different. Our con-
tribution can be seen as complementing the framework of
(Baraniuk et al., 2010) with a nearly-linear time projec-
tion algorithm that is applicable to a wide range of sparsity
structures. This answers a question raised by the authors of
(Huang et al., 2011), who also give a framework for struc-
tured sparsity with a universal and complete recovery al-
gorithm. Their framework is applicable to a wide range of
sparsity models, but the corresponding algorithm is signif-
icantly slower than ours, both in theory (“Graph clusters”
in Table 1) and in practice (see Section 6). Moreover, our
recovery algorithm shows more robust performance across
different shapes of graph clusters.

Both of the approaches mentioned above use iterative
greedy algorithms for sparse recovery. There is also a large
body of work on combining M-estimators with convex reg-
ularizers that induce structured sparsity, e.g., see the sur-
veys (Bach et al., 2012a) and (Wainwright, 2014). The
work closest to ours is (Jacob et al., 2009), which uses an
overlapping group Lasso to enforce graph-structured spar-
sity (graph Lasso). In contrast to their approach, our algo-
rithm gives more fine-grained control over the number of
clusters in the graph. Moreover, our algorithm has better
computational complexity, and to the best of our knowl-
edge there are no formal results relating the graph struc-
ture to the sample complexity of the graph Lasso. Empriri-
cally, our algorithm recovers an unknown vector with graph
structure faster and from fewer observations than the graph
Lasso (see Section A in the supplementary material).

3. The prize-collecting Steiner forest problem
We now establish our connection between prize-collecting
Steiner tree (PCST) problems and the weighted graph
model. First, we formally define the PCST problem: Let
G = (V,E) be an undirected, weighted graph with edge
costs c : E → R+

0 and node prizes π : V → R+
0 . For a

subset of edges E′ ⊆ E, we write c(E′) =
∑
e∈E′ c(e)

and adopt the same convention for node subsets. More-
over, for a node subset V ′ ⊆ V , let V ′ be the complement
V ′ = V \V ′. Then the goal of the PCST problem is to find
a subtree T = (V ′, E′) such that c(E′) + π(V ′) is mini-
mized. We sometimes write c(T ) and π(T ) if the node and
edge sets are clear from context.

Similar to the classical Steiner tree problem, PCST is
NP-hard. Most algorithms with provable approximation
guarantees build on the seminal work of (Goemans &
Williamson, 1995) (GW), who gave an efficient primal-
dual algorithm with the following guarantee:

c(T ) + 2π(T ) ≤ 2 min
T ′ is a tree

c(T ′) + π(T ′) . (10)

Note that the PCST problem already captures three impor-
tant aspects of the WGM: (i) there is an underlying graph
G, (ii) edges are weighted, and (iii) nodes have prizes. If
we set the prizes to correspond to vector coefficients, i.e.,
π(i) = b2i , the term π(T ) in the PCST objective function
becomes π(T ) = ‖b− bT ‖2, which matches the objective
in the model-projection problems (8) and (9). However,
there are two important differences. First, the objective
in the PCST problem is to find a single tree T , while the
WGM can contain supports defined by multiple connected
components (if g > 1). Moreover, the PCST problem op-
timizes the trade-off c(T ) + π(T ), but we are interested
in minimizing ‖b− bT ‖ subject to hard constraints on the
support cardinality |T | and the support cost c(T ) (the pa-
rameters s and B, respectively). In this section, we ad-
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Table 1. Results of our sparsity framework applied to several sparsity models. In order to simplify the running time bounds, we assume
that all coefficients are polynomially bounded in d, and that s ≤ d1/2−µ for some µ > 0. For the graph cluster model, we consider the
case of graphs with constant degree. The exponent τ depends on the degree of the graph and is always greater than 1. The parameters
w and h are specific to the EMD model, see (Hegde et al., 2014a) for details. We always have w · h = d and s ≥ w. Our sparsity
framework improves on the sample complexity and running time of both the EMD and graph cluster models (bold entries).

Model Reference Best previous
sample complexity

Our sample
complexity

Best previous
running time

Our running
time

1D-cluster (Cevher et al., 2009b) O(s+ g log d
g ) O(s+ g log d

g ) O(d log2 d) O(d log4 d)

Trees (Hegde et al., 2014b) O(s) O(s) O(d log2 d) O(d log4 d)

EMD (Hegde et al., 2014a) O(s log
B log s

w

s ) O(s log B
s
) O(sh2B log d) O(wh2 log4 d)

Graph clusters (Huang et al., 2011) O(s+ g log d) O(s + g log d
g
) O(dτ ) O(d log4 d)

dress the first of these two issues; Section 4 then completes
the connection between PCST and the WGM. We begin by
defining the following variant of the PCST problem.

Definition 4 (The prize-collecting Steiner forest problem).
Let g ∈ N be the target number of connected components.
Then the goal of the prize-collecting Steiner forest (PCSF)
problem is to find a subgraph F = (V ′, E′) with γ(F ) = g
that minimizes c(E′) + π(V ′).

As defined in Section 2.1, γ(F ) is the number of connected
components in the (sub-)graph F . To simplify notation in
the rest of the paper, we say that a forest F is a g-forest
if γ(F ) = g. There is always an optimal solution for the
PCSF problem which consists of g trees because remov-
ing edges cannot increase the objective value. This allows
us to employ the PCSF problem for finding supports in
the WGM that consist of several connected components.
In order to give a computationally efficient algorithm for
the PCSF variant, we utilize prior work for PCST: (i) To
show correctness of our algorithm, we prove that the GW
scheme for PCST can be adapted to our PCSF variant. (ii)
To achieve a good time complexity, we show how to simu-
late the GW scheme in nearly-linear time.

3.1. The Goemans-Williamson (GW) scheme for PCSF

A useful view of the GW scheme is the “moat-growing”
interpretation of (Jünger & Pulleyblank, 1995), which de-
scribes the algorithm as an iterative clustering method that
constructs “moats” around every cluster. These moats are
essentially the dual variables in the linear program of the
GW scheme. Initially, every node forms its own active
cluster with a moat of size 0. The moats around each active
cluster then grow at a uniform rate until one of the follow-
ing two events occurs:

Cluster deactivation When the sum of moats in a cluster
reaches the sum of node prizes in that cluster, the clus-
ter is deactivated.

Cluster merge When the sum of moats that are intersected
by an edge e reaches the cost of e, the clusters at the
two endpoints of e are merged and e is added to the
current solution.

The moat-growing stage of the algorithm terminates when
only a single active cluster remains. After that, the resulting
set of edges is pruned in order to achieve a provable approx-
imation ratio. We generalize the proof of (Feofiloff et al.,
2010) and show that it is possible to extract more than one
tree from the moat-growing phase as long as the trees come
from different clusters. Our modification of GW terminates
the moat-growing phase when exactly g active clusters re-
main, and we then apply the GW pruning algorithm to each
resulting tree separately. This gives the following result.

Theorem 5. There is an algorithm for the PCSF problem
that returns a g-forest F such that

c(F ) + 2π(F ) ≤ min
F ′⊆G, γ(F ′)≤g

2c(F ′) + 2π(F ′) . (11)

For g = 1, the theorem recovers the guarantee in (10). We
defer the proof to Sec. D.1 of the supplementary material.

3.2. A fast algorithm for Goemans-Williamson

While the modified GW scheme produces good approxi-
mate solutions, it is not yet sufficient for a nearly-linear
time algorithm: we still need an efficient way of simu-
lating the moat-growing phase. There are two main diffi-
culties: (i) The remaining “slack” amounts on edges can
shrink at different rates depending on how many of the
edge endpoints are in active clusters. (ii) A single clus-
ter event (merge or deactivation) can change this rate for
up to Θ(|V |) edges. In order to maintain edge events ef-
ficiently, we use the dynamic edge splitting approach in-
troduced by (Cole et al., 2001). This technique essentially
ensures that every edge always has at most one active end-
point, and hence its slack either shrinks at rate 1 or not
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at all. However, edge splitting introduces additional edge
events that do not directly lead to a cluster merge. While
it is relatively straightforward to show that every such in-
termediate edge event halves the remaining amount of slack
on an edge, we still need an overall bound on the number of
intermediate edge events necessary to achieve a given pre-
cision. For this, we prove the following new result about
the GW moat growing scheme.

Theorem 6. Let all edge costs c(e) and node prizes π(v)
be even integers. Then all finished moats produced by the
GW scheme have integer sizes.

In a nutshell, this theorem shows that one additional bit of
precision is enough to track all events in the moat-growing
phase accurately. We prove the theorem via induction over
the events in the GW scheme, see Section D.2.2 for details.
On the theoretical side, this result allows us to bound the
overall running time of our algorithm for PCSF. Combined
with suitable data structures, we can show the following:

Theorem 7. Let α be the number of bits used to specify
a single edge cost or node prize. Then there is an algo-
rithm achieving the PCSF guarantee of Theorem 5 in time
O(α · |E| log|V |).

On the practical side, we complement Theorem 6 with a
new adaptive edge splitting scheme that leads to a small
number of intermediate edge events. Our experiments show
that our scheme results in less than 3 events per edge on
average (see Section D.3 in the supplementary material).

4. Sparse approximation with the WGM
In order to utilize the WGM in sparse recovery, we em-
ploy the framework of (Hegde et al., 2014a). As out-
lined in Section 2.3, the framework requires us to construct
two approximation algorithms satisfying the head- and tail-
approximation guarantees (8) and (9). We now give two
such model-projection algorithms, building on our tools for
PCSF developed in the previous section.

4.1. Tail-approximation algorithm

We can connect the PCSF objective to the WGM quantities
by setting π(i) = b2i and c(e) = w(e) + 1, which gives:

c(F ) = w(F ) + (|F | − g) and π(F ) = ‖b− bF ‖2 .

After multiplying the edge costs with a trade-off parameter
λ, the PCSF objective λ·c(F )+π(F ) essentially becomes a
Lagrangian relaxation of the model-constrained optimiza-
tion problem (8). We build our tail-approximation algo-
rithm on top of this connection, starting with an algorithm
for the “tail”-variant of the PCSF problem. By performing
a binary search over the parameter λ (see Algorithm 1), we
get a bicriterion guarantee for the final forest.

Algorithm 1 PCSF-TAIL

1: Input: G, c, π, g, cost-budget C, parameters ν and δ.
2: We write cλ(e) = λ · c(e) .
3: πmin ← minπ(i)>0 π(i), λ0 ← πmin

2C
4: F ← PCSF-GW(G, cλ0

, π, g)
5: if c(F ) ≤ 2C and π(F ) = 0 then return F
6: λr ← 0, λl ← 3π(G), ε← πminδ

C
7: while λl − λr > ε do
8: λm ← (λl + λr)/2
9: F ← PCSF-GW(G, cλm , π, g)

10: if c(F ) ≥ 2C and c(F ) ≤ νC then return F
11: if c(F ) > νC then λr ← λm else λl ← λm
12: end while
13: return F ← PCSF-GW(G, cλl , π, g)

Theorem 8. Let ν > 2 and δ > 0. Then PCSF-TAIL re-
turns a g-forest F ⊆ G such that c(F ) ≤ ν · C and

π(F ) ≤
(

1 +
2

ν − 2
+ δ

)
min

γ(F ′)=g,c(F ′)≤C
π(F ′) . (12)

Theorem 8 does not give c(F ) ≤ C exactly, but the cost
of the resulting forest is still guaranteed to be within a con-
stant factor of C. The framework of (Hegde et al., 2014a)
also applies to projections into such slightly larger mod-
els. As we will see in Section 5, this increase by a constant
factor does not affect the sample complexity.

For the trade-off between support size and support weight,
we also make use of approximation. By scalarizing the two
constraints carefully, i.e., setting c(e) = w(e) + B

s , we get
the following result. The proofs of Theorems 8 and 9 can
be found in the supplementary material, Section C.1.

Theorem 9. Let M be a (G, s, g,B)-WGM, let b ∈ Rd,
and let ν > 2. Then there is an algorithm that returns a
support S ⊆ [d] in the (G, 2ν · s + g, g, 2ν · B)-WGM
satisfying (8) with cT =

√
1 + 3/(ν − 2) . Moreover, the

algorithm runs in time O(|E| log3 d).

4.2. Head-approximation algorithm

For our head-approximation algorithm, we also use the
PCSF objective as a Lagrangian relaxation of the model-
constraint problem (9). This time, we multiply the node
prizes instead of the edge costs with a parameter λ. We
perform a binary search similar to Alg. 1, but the final step
of the algorithm requires an extra subroutine. At the end of
the binary search, we are guaranteed to have a forest with
good “density” π(F )

c(F ) , but the good forest could correspond
to either the lower bound λl or the upper bound λr. In the
latter case, we have no bound on the cost of the correspond-
ing forest Fr. However, it is always possible to extract a
high-density sub-forest with bounded cost from Fr:
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Algorithm 2 GRAPH-COSAMP
1: Input: y, X , G, s, g, B, number of iterations t.
2: β̂0 ← 0
3: for i← 1, . . . , t do
4: b← XT (y −Xβ̂i−1)

5: S′ ← supp(β̂i−1)∪HEADAPPROX’(b,G, s, g,B)

6: zS′ ← X†S′y, zS′C ← 0
7: S ← TAILAPPROX(z,G, s, g,B)

8: β̂i ← zS
9: end for

10: return β̂ ← β̂i

Lemma 10. Let T be a tree and C ′ ≤ c(T ). Then
there is a subtree T ′ ⊆ T such that c(T ′) ≤ C ′ and
π(T ′) ≥ C′

6 ·
π(T )
c(T ) . Moreover, we can find such a subtree

T ′ in linear time.

The algorithm first converts the tree into a list of nodes
corresponding to a tour through T . Then we can extract
a good sub-tree by either returning a single, high-prize
node or sliding a variable-size window across the list of
nodes. See Section C.2 in the supplementary material
for details. Combining these components, we get a head-
approximation algorithm with the following properties.

Theorem 11. Let M be a (G, s, g,B)-WGM and let b ∈
Rd. Then there is an algorithm that returns a support S ⊆
[d] in the (G, 2s+g, g, 2B)-WGM satisfying (9) with cH =√

1/14 . The algorithm runs in time O(|E| log3 d).

5. Application in sparse recovery
We now instantiate the framework of (Hegde et al., 2014a)
to give a sparse recovery algorithm using the WGM. The
resulting algorithm (see Alg. 2) is a variant of CoSaMP
(Needell & Tropp, 2009) and uses the head- and tail-
approximation algorithms instead of the hard thresholding
operators.4 In order to state the corresponding recovery
guarantee in full generality, we briefly review the definition
of the (model-) restricted isometry property (RIP) (Candès
& Tao, 2005; Baraniuk et al., 2010). We say that a matrix
X satisfies the (M, δ)-model-RIP if for all β ∈M:

(1− δ) · ‖β‖2 ≤ ‖Xβ‖2 ≤ (1 + δ) · ‖β‖2 . (13)

Theorem 12. Let β ∈ Rd be in the (G, s, g,B)-WGMM
and letX ∈ Rn×d be a matrix satisfying the model-RIP for
a (G, c1s, g, c2B)-WGM and a fixed constant δ, where c1
and c2 are also fixed constants. Moreover, let e ∈ Rn be an
arbitrary noise vector and let y ∈ Rn be defined as in (2).

4Strictly speaking, HEADAPPROX’ is a “boosted” version of
the head-approximation algorithm developed here. See (Hegde
et al., 2014a) for details.

Then GRAPH-COSAMP returns a β̂ in the (G, 5s, g, 5B)-
WGM such that

∥∥β − β̂
∥∥ ≤ c3‖e‖, where c3 is a fixed

constant. Moreover, GRAPH-COSAMP runs in time

O

(
(TX + |E| log3 d) log

‖β‖
‖e‖

)
,

where TX is the time complexity of a matrix-vector multi-
plication with X .

In order to establish sample complexity bounds for con-
crete matrix ensembles (e.g., random Gaussian matrices as
in Theorem 3), we use a result of (Baraniuk et al., 2010)
that relates the sample complexity of sub-Gaussian matrix
ensembles to the size of the model, i.e., the quantity |M|.
More precisely, n = O(s + log|M|) rows / observations
suffice for such matrices to satisfy the model-RIP for M
and a fixed constant δ. For the WGM, we use a counting
argument to bound |M| (see Section B in the supplemen-
tary material). Together with Theorem 12, the following
theorem establishes Theorem 3 from Section 2.2.

Theorem 13. Let M be the set of supports in the
(G, s, g,B)-WGM. Then

log|M| = O

(
s

(
log ρ(G) + log

B

s

)
+ g log

d

g

)
.

Next, we turn our attention to the running time of GRAPH-
COSAMP. Since our model-projection algorithms run in
nearly-linear time, the matrix-vector products involving X
can become the bottleneck in the overall time complexity:5

for a dense Gaussian matrix, we have TX = Ω(sd), which
would dominate the overall running time. If we can control
the design matrix (as is often the case in compressive sens-
ing), we can use the construction of (Hegde et al., 2014b)
to get a sample-optimal matrix with nearly-linear TX in the
regime of s ≤ d1/2−µ, µ > 0. Such a matrix then gives
an algorithm with nearly-linear running time. Note that the
bound on s is only a theoretical restriction in this construc-
tion: as our experiments show, a partial Fourier matrix em-
pirically performs well for significantly larger values of s.

6. Experiments
We focus on the performance of our algorithm Graph-
CoSaMP for the task of recovering 2D data with clustered
sparsity. Multiple methods have been proposed for this
problem, and our theoretical analysis shows that our algo-
rithm should improve upon the state of the art (see Table 1).
We compare our results to StructOMP (Huang et al., 2011)
and the heuristic Lattice Matching Pursuit (LaMP) (Cevher
et al., 2009a). The implementations were supplied by the

5It is not necessary to compute a full pseudo-inverse X†. See
(Needell & Tropp, 2009) for details.
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(a) Background-subtracted image (b) Angiogram (c) Text (d) Running times

Figure 2. Sparse recovery experiments. The images in the top row are the original images β. In the regime where the algorithms
recover with high probability, the estimates β̂ are essentially identical to the original images. Our algorithm Graph-CoSaMP achieves
consistently good recovery performance and offers the best sample complexity for images (b) and (c). Moreover, our algorithm is about
20 times faster than StructOMP, the other method with provable guarantees for the image cluster model.

authors and we used the default parameter settings. More-
over, we ran two common recovery algorithms for “stan-
dard” s-sparsity: Basis Pursuit (Candès et al., 2006) and
CoSaMP (Needell & Tropp, 2009).

We follow a standard evaluation procedure for sparse re-
covery / compressive sensing: we record n observations
y = Xβ of the (vectorized) image β ∈ Rd using a sub-
sampled Fourier matrix X . We assume that all algorithms
possess prior knowledge of the sparsity s and the number of
connected-components g in the true support of the image β.
We declare a trial successful if the squared `2-norm of the
recovery error is at most 5% of the squared `2-norm of the
original vector β. The probability of successful recovery is
then estimated by averaging over 50 trials. We perform sev-
eral experiments with varying oversampling ratios n/s and
three different images. See Section A in the supplementary
material for a description of the dataset, experiments with
noise, and a comparison with the graph Lasso.

Figure 2 demonstrates that Graph-CoSaMP yields consis-
tently competitive phase transitions and exhibits the best
sample complexity for images with “long” connected clus-
ters, such as the angiogram image (b) and the text image
(c). While StructOMP performs well on “blob”-like im-
ages such as the background-subtracted image (a), its per-
formance is poor in our other test cases. For example,
it can successfully recover the text image only for over-
sampling ratios n/s > 15. Note that the performance of
Graph-CoSaMP is very consistent: in all three examples,
the phase transition occurs between oversampling ratios 3
and 4. Other methods show significantly more variability.

We also investigate the computational efficiency of Graph-
CoSaMP. We consider resized versions of the angiogram
image and record n = 6s observations for each image size
d. Figure 2(d) displays the recovery times (averaged over
50 trials) as a function of d. We observe that the runtime of
Graph-CoSaMP scales nearly linearly with d, comparable
to the conventional sparse recovery methods. Moreover,
Graph-CoSaMP is about 20× faster than StructOMP.

7. Further applications
We expect our algorithms to be useful beyond sparse recov-
ery and now briefly describe two promising applications.

Seismic feature extraction In (Schmidt et al., 2015), the
authors use Steiner tree methods for a seismic feature ex-
traction task. Our new algorithms for PCSF give a princi-
pled way of choosing tuning parameters for their proposed
optimization problem. Moreover, our fast algorithms for
PCSF can speed-up their method.

Event detection in social networks (Rozenshtein et al.,
2014) introduce a method for event detection in social net-
works based on the PCST problem. Their method per-
forms well but produces spurious results in the presence
of multiple disconnected events because their PCST algo-
rithm produces only a single tree instead of a forest. Our
new algorithm for PCSF gives exact control over the num-
ber of trees in the solution and hence directly addresses this
issue. Furthermore, the authors quote a running time of
O(|V |2 log|V |) for their GW scheme, so our nearly-linear
time algorithm allows their method to scale to larger data.
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(a) Original image (b) Basis Pursuit (c) CoSaMP

(d) LaMP (e) StructOMP (f) Graph-CoSaMP

Figure 3. Recovery examples for the text image (see Figure 2) and n = 3.3s noisy linear observations using different recovery algo-
rithms. Only Graph-CoSaMP is able to recover the image correctly.

A. Further experimental results
We start with a more detailed description of our experimental setup. All three images used in Section 6 (Figure 2) are
grayscale images of dimension 100 × 100 pixels with sparsity around 4% to 6%. The background-subtracted image was
also used for the experimental evaluation in (Huang et al., 2011). The angiogram image is a slightly sparsified version of
the image on the Wikipedia page about angiograms;6 it shows cerebral blood vessels. The text image was created by us.

We used SPGL17 as implementation of Basis Pursuit. The implementation of CoSaMP was written by us, closely following
(Needell & Tropp, 2009). Graph-CoSaMP and CoSaMP share the same code, only the projection methods differ (hard s-
thresholding for CoSaMP and our model projections for Graph-CoSaMP). Empirically it is not necessary to “boost” the
head-approximation algorithm as strongly as suggested by the analysis in (Hegde et al., 2014a), we use only a single
approximate model projection in place of HEADAPPROX’ (see Alg. 2). The timing experiments in Figure 2(d) were
conducted on a Windows machine with a 2.30 GHz Intel Core i7 CPU, 8 MB of cache, and 32 GB of RAM.

Recovered images In order to illustrate the outcomes of unsuccessful recovery trials, we show examples in the regime
where Graph-CoSaMP recovers correctly but the other algorithms fail. This is the most relevant regime because it demon-
strates that Graph-CoSaMP accurately recovers the image while other methods still show significant errors. See Figure 3
for the corresponding results.

Noise tolerance We also investigate the performance of the recovery algorithms in the noisy setting (the error term
e in (2)). For this, we add Gaussian noise at a measurement-SNR level of roughly 15dB. Since we cannot hope for
exact recovery in the noisy setting, we consider different tolerance levels for declaring a trial as successful (the ratio
‖β − β̂‖2/‖β‖2). Figure 4 contains the phase transition plots for the text image from Figure 2(c). The results show that
our algorithm also gives the best performance for noisy observations.

Graph Lasso Next, we compare our approach to the graph Lasso introduced in (Jacob et al., 2009). Since the implemen-
tation in the SPArse Modeling toolbox (SPAMS)8 focuses on dense design matrices, we limit our experiments to a smaller
image than those in Figure 2. In particular, we use a 30× 30 pixel synthetic image similar to the experiment in Section 9.3

6http://commons.wikimedia.org/wiki/File:Cerebral_angiography,_arteria_vertebralis_
sinister_injection.JPG

7https://www.math.ucdavis.edu/~mpf/spgl1/
8http://spams-devel.gforge.inria.fr/index.html

http://commons.wikimedia.org/wiki/File:Cerebral_angiography,_arteria_vertebralis_sinister_injection.JPG
http://commons.wikimedia.org/wiki/File:Cerebral_angiography,_arteria_vertebralis_sinister_injection.JPG
https://www.math.ucdavis.edu/~mpf/spgl1/
http://spams-devel.gforge.inria.fr/index.html
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Figure 4. Phase transitions for successful recovery under noisy observations. The three plots are for the same image (the text image
from Fig. 2 (c)) but use different thresholds for declaring a trial as successful (the ratio ‖β − β̂‖2/ ‖β‖2). Our algorithm offers the best
performance for all thresholds.
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Figure 5. Comparison of our algorithm Graph-CoSaMP with the graph Lasso. Subfigure (a) shows the synthetic test image (30 × 30
pixels). Graph-CoSaMP recovers the vector β from significantly fewer measurements than the other approaches (phase transition plot
(b)). Moreover, Graph-CoSaMP is significantly faster than the variable replication implementation of the graph Lasso and essentially
matches the performance of Basis Pursuit in the regime where both algorithms succeed (n/s ≥ 5 in subfigure (c)).

of (Jacob et al., 2009). The nonzeros form a 5 × 5 square and hence correspond to a single component in the underlying
grid graph. As suggested in (Jacob et al., 2009), we encode the graph structure by using all 4-cycles as groups and use the
variable replication approach to implement the overlapping group penalty.

We record n observations y = Xβ with an i.i.d. Gaussian design matrix and follow the experimental procedure outlined in
Section 6 (recovery threshold 5%, 50 trials per data point). See Figure 5 for our results. While the graph Lasso improves
over Basis Pursuit, our algorithm Graph-CoSaMP recovers the unknown vector β from significantly fewer observations.
Moreover, our algorithm is significantly faster than this implementation of the graph Lasso via variable replication.9 While
there are faster algorithms for the overlapping group Lasso such as (Mosci et al., 2010), the recovery performance of the
graph Lasso only matches Graph-CoSaMP for n/s ≥ 5. In this regime, Graph-CoSaMP is already almost as fast as an
efficient implementation of Basis Pursuit (SPGL1).

B. Sparse recovery with the WGM
We now give proofs for theorems in Section 5. First, we establish our general sample complexity bound.

Theorem 13. Let M be the set of supports in the (G, s, g,B)-WGM. Then

log|M| = O

(
s

(
log ρ(G) + log

B

s

)
+ g log

d

g

)
.

Proof. Note that every support in the WGM corresponds to a g-forests, which contains exactly s− g edges. We prove the
theorem by counting the possible locations of g tree roots in the graph G, and then the local arrangements of the s − g

9As suggested by the documentation of the SPAMS toolbox, we ran this set of experiments under Linux. The corresponding machine
has an Intel Core 2 Duo CPU with 2.93 GHz, 3 MB of cache, and 8 GB of RAM.
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edges in the g trees.

Consider the following process:

1. Choose g root nodes out of the entire graph. There are
(
d
g

)
possible choices.

2. Consider the s−g edges as an ordered list and distribute the total weight budgetB to the edges. There are
(
B+s−g−1

s−g
)

possible allocations.

3. Assign a “target index” te ∈ [ρ(G)] to each edge. There are ρ(G)s−g possible assignments. Note that the combination
of edge weight and target index uniquely determines a neighbor of a fixed node v because there are at most ρ(G)
neighbors of v connected with edges of the same weight.

4. We now split the list of edges (together with their weight and target index assignments) into s sets. There are
(
2s−g
s−1

)
possible partitions of the edge list.

We now have a list L consisting of s edge sets together with weight assignments and target indices. Moreover, we have
a list of root nodes. We convert this structure to a g-forest (and hence a support in the WGM) according to the following
rules, which essentially form a breadth-first search:

While there is a remaining root node, repeat the following:

1. Add the root node to a queue Q.

2. Initialize a new empty tree Ti.

3. While Q is non-empty, repeat the following

(a) Let v be the first node in Q and remove v from Q.
(b) Add v to Ti.
(c) Let A be the first edge set in L and remove A from L.
(d) For each pair of target index and weight in A, add the corresponding neighbor to Q.

Note that this process does not always succeed: for some weight allocations, there might be no neighbor connected by an
edge with the corresponding weight. Nevertheless, it is easy to see that every possible support in the (G, s, g,B)-WGM
can be constructed from at least one allocation via the process described above. Hence we have a surjection from the set
of allocations to supports in the (G, s, g,B)-WGM M, which gives the following bound:

|M| ≤
(
B + s− g − 1

s− g

)
· ρs−g ·

(
2s+ g

s− 1

)
·
(
d

g

)
.

Taking a logarithm on both sides and simplifying yields the bound in the theorem.

The proof of the recovery result in Theorem 12 directly follows by combining the guarantees established for our tail- and
head-approximation algortihms (Theorems 9 and 11) with the framework of (Hegde et al., 2014a).

Theorem 12. Let β ∈ Rd be in the (G, s, g,B)-WGM M and let X ∈ Rn×d be a matrix satisfying the model-RIP for
a (G, c1s, g, c2B)-WGM and a fixed constant δ, where c1 and c2 are also fixed constants. Moreover, let e ∈ Rn be an
arbitrary noise vector and let y ∈ Rn be defined as in (2). Then GRAPH-COSAMP returns a β̂ in the (G, 5s, g, 5B)-WGM
such that

∥∥β − β̂∥∥ ≤ c3‖e‖, where c3 is a fixed constant. Moreover, GRAPH-COSAMP runs in time

O

(
(TX + |E| log3 d) log

‖β‖
‖e‖

)
,

where TX is the time complexity of a matrix-vector multiplication with X .
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Proof. Note that both our head- and tail-approximation algorithms project into an output model with parameters bounded
by constant multiples of s and B (we always maintain that the support corresponds to a g-forest), see Theorems 9 and 11.
This allows us to use the CoSaMP version of Corollary 19 in (Hegde et al., 2014a) to establish the recovery result in our
theorem. The claim about the running time follows from the near-linear running time of our model-projection algorithms
and the running time analysis of CoSaMP in (Needell & Tropp, 2009). The log ‖β‖‖e‖ term in the running time comes from
the geometric convergence of Graph-CoSaMP.

C. Approximate model-projection algorithms for the WGM
We now formally prove the head- and tail-approximation guarantees for our model-projection algorithms. We assume that
we have access to an algorithm PCSF-GW for the PCSF problem with the approximation guarantee from Theorem 5,
which we restate for completeness:

Theorem 5. There is an algorithm for the PCSF problem that returns a g-forest F such that

c(F ) + 2π(F ) ≤ min
F ′⊆G, γ(F ′)≤g

2c(F ′) + 2π(F ′) . (11)

We denote the running time of PCSF-GW with TPCSF. See Section D for an algorithm that achieves guarantee (11) in
nearly-linear time.

C.1. Tail-approximation

We first address the special case that there is a g-forest F ∗ with c(F ∗) ≤ C and π(F ∗) = 0. In this case, we have to find a
g-forest F with π(F ) = 0 in order to satisfy (12).

Lemma 14. Let πmin = minπ(v)>0 π(v) and λ0 = πmin

2C . If there is a g-forest F ∗ with c(F ∗) ≤ C and π(F ∗) = 0, then
PCSF-GW(G, cλ0

, π, g) returns a g-forest F with c(F ) ≤ 2C and π(F ) = 0.

Proof. Applying the GW guarantee (11) gives

λ0 · c(F ) + 2π(F ) ≤ 2λ0 · c(F ∗) + 2π(F ∗)

π(F ) ≤ λ0C =
πmin

2
.

Since πmin > 0, we must have π(F ) < πmin and hence π(F ) = 0.

Applying (11) again then gives cλ0(F ) ≤ 2cλ0(F ∗), which shows that c(F ) ≤ 2c(F ∗) ≤ 2C as desired.

We can now proceed to prove an approximation guarantee for PCSF-TAIL.

Theorem 8. Let ν > 2 and δ > 0. Then PCSF-TAIL returns a g-forest F ⊆ G such that c(F ) ≤ ν · C and

π(F ) ≤
(

1 +
2

ν − 2
+ δ

)
min

γ(F ′)=g,c(F ′)≤C
π(F ′) . (12)

Proof. We consider the three different cases in which PCSF-TAIL returns a forest. Note that the resulting forest is always
the output of PCSF-GW with parameter g, so the resulting forest is always a g-forest. To simplify notation, in the following
we use

OPT = min
γ(F ′)=g,c(F ′)≤C

π(F ′) .

First, if PCSF-TAIL returns in Line 5, the forestF directly satisfies (12). Otherwise, there is no g forestF ∗ with c(F ∗) ≤ C
and π(F ∗) = 0 (contrapositive of Lemma 14). Hence in the following we can assume that OPT ≥ πmin.

If the algorithm returns in Line 10, we clearly have c(F ) ≤ ν · C. Moreover, the GW guarantee gives

λm · c(F ) + 2π(F ) ≤ 2λmC + 2 ·OPT .
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Since c(F ) ≥ 2C, we have π(F ) ≤ OPT , satisfying (12).

Finally, consider the case that PCSF-TAIL returns in Line 13. Let Fl and Fr be the forests corresponding to λl and λr,
respectively. We show that the final output Fl satisfies the desired approximation guarantee if λr − λl is small. Note that
during the binary search, we always maintain the invariant c(Fl) ≤ 2C and c(Fr) ≥ ν · C.

Using the GW guarantee and π(Fr) ≥ 0 gives λrc(Fr) ≤ 2λrC + 2 ·OPT . Therefore,

λr ≤
2 ·OPT

c(Fr)− 2C
≤ 2 ·OPT

C(ν − 2)
. (14)

At the end of the binary search, we have λl ≤ λr + ε. Combining this with (14) above and the GW guarantee (11) gives

π(F ) ≤ λlC + OPT ≤ OPT + (λr + ε)C ≤ OPT +
2 ·OPT

ν − 2
+ εC ≤

(
1 +

2

ν − 2
+ δ

)
OPT .

In the last inequality, we used OPT ≥ πmin and ε = πminδ
C . This concludes the proof.

Finally, we consider the running time of PCSF-TAIL.

Theorem 15. PCSF-TAIL runs in time O(TPCSF · log C·π(G)
δ·πmin

).

Proof. The time complexity is dominated by the number of calls to PCSF-GW. Hence we bound the number of binary
search iterations in order to establish the overall time complexity. Let λ(0) be the initial value of λl in PCSF-TAIL. Then
the maximum number of iterations of the binary search is⌈

log
λ
(0)
l

ε

⌉
=

⌈
log

3π(G) · C
δ · πmin

⌉
= O

(
log

C · π(G)

δ · πmin

)
.

Since each iteration of the binary search takes O(TPCSF) time, the time complexity stated in the theorem follows.

If the node prizes π and edge costs c are polynomially bounded in |V |, the running time of PCSF-TAIL simplifies to
O(TPCSF · log|V |) for constant δ.

We now have all results to complete our tail-approximation algorithm for the WGM.

Theorem 9. LetM be a (G, s, g,B)-WGM, let b ∈ Rd, and let ν > 2. Then there is an algorithm that returns a support
S ⊆ [d] in the (G, 2ν · s + g, g, 2ν · B)-WGM satisfying (8) with cT =

√
1 + 3/(ν − 2) . Moreover, the algorithm runs

in time O(|E| log3 d).

Proof. We run the algorithm PCSF-TAIL on the graph G with node prizes π(i) = b2i , edge costs c(e) = w(e) + B
s , a cost

budget C = 2B, and the parameter δ = min( 1
2 ,

1
ν ). Let F be the resulting forest and S the corresponding support. The

running time bound follows from combining Theorems 15 and 28.

First, we show that S is in the (G, 2ν · s + g, g, 2ν · B)-WGM. From Theorem 8 we know that F is a g-forest and that
c(F ) ≤ 2ν · B. This directly implies that w(F ) ≤ 2ν · B. Moreover, the g-forest F has |VF | − g edges, all with cost at
least Bs because w(e) ≥ 0 for all e ∈ E. Since |VF | = |S|, this allows us to bound the sparsity of S as

(|S| − g) · B
s
≤ 2ν ·B ,

which gives |S| ≤ 2ν · s+ g as desired.

Now, let S∗ be an optimal support in the (G, s, g,B)-WGM M and let F ∗ be a corresponding g-forest, i.e.,

π(F ∗) = ‖b− bS∗‖2 = min
S′∈M
‖b− bS′‖2 .

Then we have
π(F ∗) ≥ min

γ(F ′)=g,c(F ′)≤2B
π(F ′)
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because by construction, every support in M corresponds to a g-forest with cost at most 2B. Since π(F ) = ‖b− bS‖2,
applying guarantee (12) gives

‖b− bS‖2 ≤
(

1 +
2

ν − 2
+ δ

)
min
S′∈M
‖b− bS′‖2 .

Simplifying this inequality with our choice of δ then completes the proof.

C.2. Head-approximation

We first state our head-approximation algorithm (see Alg. 3 and Alg. 4). In addition to a binary search over the Lagrangian
parameter λ, the algorithm also uses the subroutines PRUNETREE and PRUNEFOREST in order to extract sub-forests with
good “density” π(F )

c(F ) .

Algorithm 3 Head approximation for the WGM: main algorithm PCSF-HEAD

1: function PCSF-HEAD(G, c, π, g, C, δ)
2: We write πλ(i) = λ · π(i) .
3: πmin ← minπ(i)>0 π(i)

4: λr ← 2C
πmin

5: F ← PCSF-GW(G, c, πλr , g)
6: if c(F ) ≤ 2C then . Ensure that we have the invariant c(Fr) > 2C (see Theorem 17)
7: return F
8: end if
9: ε← δ·C

2π(G)

10: λl ← 1
4π(G)

11: while λr − λl > ε do . Binary search over the Lagrange parameter λ
12: λm ← (λl + λr)/2
13: F ← PCSF-GW(G, c, πλm , g)
14: if c(F ) > 2C then
15: λr ← λm
16: else
17: λl ← λm
18: end if
19: end while
20: Fl ← PCSF-GW(G, c, πλl , g)
21: Fr ← PCSF-GW(G, c, πλr , g)
22: F ′r ← PRUNEFOREST(Fr, c, π, C) . Prune the potentially large solution Fr (See Alg. 4)
23: if π(Fl) ≥ π(F ′r) then
24: return Fl
25: else
26: return F ′r
27: end if
28: end function

We start our analysis by showing that PRUNETREE extracts sub-trees of good density π(T ′)
c(T ′) .

Lemma 10. Let T be a tree and C ′ ≤ c(T ). Then there is a subtree T ′ ⊆ T such that c(T ′) ≤ C ′ and π(T ′) ≥ C′

6 ·
π(T )
c(T ) .

Moreover, we can find such a subtree T ′ in linear time.

Proof. We show that PRUNETREE satisfies the guarantees in the theorem. We use the definitions of L, π′, c′, and φ given
in PRUNETREE (see Alg. 4). Moreover, let T ′ be the tree returned by PRUNETREE. First, note that PRUNETREE clearly
runs in linear time by definition. Hence it remains to establish the approximation guarantee

π(T ′) ≥ C ′

6
· π(T )

c(T )
=

C ′ · φ
6

.
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Algorithm 4 Head approximation for the WGM: subroutine PRUNEFOREST

1: function PRUNEFOREST(F, c, π, C)
2: Let {T1, . . . , T|F |} be the trees in F sorted by π(Ti)

c(Ti)
descendingly.

3: Cr ← C
4: for i← 1, . . . , |F | do
5: if Cr ≥ c(Ti) then
6: T ′i ← Ti
7: Cr ← Cr − c(Ti) . Cost budget C(i) = c(Ti)
8: else if Cr > 0 then
9: T ′i ← PRUNETREE(Ti, c, π, Cr)

10: Cr ← 0 . Cost budget C(i) = Cr
11: else
12: T ′i ← {arg maxj∈Ti π(j)} . Cost budget C(i) = 0
13: end if
14: end for
15: return {T ′1, . . . , T ′|F |}
16: end function

17: function PRUNETREE(T, c, π, C ′)
18: Let L = (v1, . . . , v2|VT |−1) be a tour through the nodes of T . . T = (VT , ET )

19: Let π′(j) =

{
π(vj) if position j is the first appearance of vj in L
0 otherwise

20: Let c′(P ) =
|P |−1∑
i=1

c(Pi, Pi+1)

21: Let φ = π(T )
c(T )

22: if there is a v ∈ VT with π(v) ≥ C′·φ
6 then . Check if there is a single good node (cost is automatically 0)

23: return the tree {v}
24: end if
25: l← 1
26: P 1 = () . Empty list
27: for i← 1, . . . , 2|VT | − 1 do . Search for good sublists of L
28: Append i to P l

29: if c′(P l) > C ′ then . Start a new sublist if the cost reaches C
30: l← l + 1
31: P l ← ()

32: else if π′(P l) ≥ C′·φ
6 then . Return if we have found a good sublist

33: return the subtree of T on the nodes in P l

34: end if
35: end for
36: Merge P l and P l−1 . The algorithm will never reach this point (see Lemma 10).
37: end function
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Consider the first case in which PRUNETREE returns in line 23. Then T ′ is a tree consisting of a single node, so c(T ′) =

0 ≤ C ′. Moreover, we have π(T ′) = π(v) ≥ C′·φ
6 , which satisfies the guarantee in the theorem.

Next, we consider the case in which PRUNETREE returns in line 33. By definition of the algorithm, we have c′(P l) ≤ C ′

and hence c(T ′) ≤ C ′ because the spanning tree T ′ of the nodes in P l contains only edges that are also included at least
once in c′(P l). Moreover, we have π(T ′) ≥ π′(P l) ≥ C′·φ

6 , so T ′ satisfies the guarantee in the theorem.

It remains to show that PRUNETREE always returns in one of the two cases above, i.e., never reaches line 36. We prove
this statement by contradiction: assume that PRUNETREE reaches line 36. We first consider the partition of VT induced
by the lists P i just before line 36. Note that there are no nodes v ∈ VT with π(v) ≥ C′·φ

6 because otherwise PRUNETREE

would have returned in line 23. Hence for every list P i we have π′(P i) ≤ C′·φ
3 because the last element that was added to

P i can have increased π′(P i) by at most C
′·φ
6 , and we had π′(P i) < C′·φ

6 before the last element was added to P i because
otherwise PRUNETREE would have returned in line 33. Moreover, every list P i except P l satisfies c′(P i) > C ′ by
construction. Hence after merging the last two lists P l and P l−1, we have c′(P i) > C ′ for all P i and also π′(P i) < C′·φ

2 .

We now derive the contradiction: note that all lists P i have a low density π′(P i)
c′(P i) but form a partition of the nodes in VT .

We can use this fact to show that the original tree had a density lower than π(T )
c(T ) , which is a contradiction. More formally,

we have

π(T ) =

l−1∑
i=1

π′(P i) < (l − 1)
C ′ · φ

2

and

2c(T ) ≥
l−1∑
i=1

c′(P i) > (l − 1)C .

Combining these two inequalities gives

φ

2
=

π(T )

2c(T )
<

(l − 1)C
′φ
2

(l − 1)C ′
=

φ

2
,

which is a contradiction. Hence PRUNETREE always returns in line 23 or 33 and satisfies the guarantee of the theorem.

Extending the guarantee of PRUNETREE to forests is now straightforward: we can prune each tree in a forest F individually
by assigning the correct cost budget to each tree. More formally, we get the following lemma.

Lemma 16. Let F be a g-forest. Then PRUNEFOREST(F, c, π, C) returns a g-forest F ′ with c(F ′) ≤ C and

π(F ′) ≥ C

6 · c(F )
π(F ) .

Proof. By construction, F ′ is a g-forest with c(F ) ≤ C. Let C(i) be the cost budget assigned to tree T ′i (see the comments
in PRUNEFOREST). Using Lemma 10, we get

π(F ′) =

g∑
i=1

π(T ′i ) ≥
g∑
i=1

C(i)

6

π(Ti)

c(Ti)
.

Note that the C(i) are the optimal allocation of budgets to the ratios π(Ti)
c(Ti)

with 0 ≤ C(i) ≤ c(Ti) and
∑g
i=1 C

(i) = C. In
particular, we have

g∑
i=1

C(i)

6

π(Ti)

c(Ti)
≥

g∑
i=1

C · c(Ti)c(F )

6

π(Ti)

c(Ti)
=

C

6 · c(F )
π(F ) ,

which completes the proof.

We can now prove our main theorem about PCSF-HEAD.
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Theorem 17. Let 0 < δ < 1
13 . Then PCSF-HEAD returns a g-forest F such that c(F ) ≤ 2C and

π(F ) ≥
(

1− 12

13(1− δ)

)
max

γ(F ′)=g, c(F ′)≤C
π(F ′) . (15)

Proof. Let F ∗ be an optimal g-forest with c(F ) ≤ C and π(F ∗) = OPT , where

OPT = max
γ(F ′)=g, c(F ′)≤C

π(F ′) .

In this proof, the following rearranged version of the GW guarantee 11 will be useful:

c(F ) + 2(π(G)− π(F )) ≤ 2C + 2(π(G)− π(F ∗))

π(F ) ≥ π(F ∗) +
c(F )− 2C

2
. (16)

As in the definition of PCSF-HEAD, we write πλ for the node prize function πλ(i) = λ · π(i). Using such modified node
prizes, (16) becomes

π(F ) ≥ OPT +
c(F )− 2C

2λ
. (17)

We now analyze two cases: either PCSF-HEAD returns in line 7 or in one of the lines 24 and 26. Note that in all cases, the
returned forest F is a g-forest because it is produced by PCSF-GW (and PRUNEFOREST maintains this property).

First, we consider the case that the algorithm returns in line 7. Then by definition we have c(F ) ≤ 2C. Moreover, the
modified GW guarantee (17) gives

π(F ) ≥ OPT +
c(F )− 2C

2λr
≥ OPT − C

λr
≥ OPT − πmin

2
≥ 1

2
OPT ,

because clearly OPT ≥ πmin. Hence the guarantee in the theorem is satisfied.

Now, consider the case that the algorithm enters the binary search. Let Fl and Fr be the g-forests corresponding to λl and
λr, respectively. During the binary search, we maintain the invariant that c(Fl) ≤ 2C and c(Fr) > 2C. Note that our
initial choices for λl and λr satisfy this condition (provided the algorithm reaches the binary search).

When the algorithm terminates in line 24 or 26, we have λr > λl > λr − ε. Rearranging (17) gives

2λr(π(Fr)−OPT ) ≥ c(Fr)− 2C

λr ≥
c(Fr)− 2C

2(π(Fr)−OPT )
.

We now introduce a variable α ≥ 2 and distinguish two cases:

Case 1: Assume Assume c(Fr)
π(Fr)

> α C
OPT . Then Equation (17) gives

λr ≥
1
2
c(Fr)
OPT −

C
OPT

π(Fr)
OPT − 1

=

1
2
π(Fr)
OPT

c(Fr)
π(Fr)

− C
OPT

π(Fr)
OPT − 1

≥
1
2
π(Fr)
OPT α− 1
π(Fr)
OPT − 1

C

OPT

≥
α
2
π(Fr)
OPT −

α
2

π(Fr)
OPT − 1

C

OPT

=
α

2

C

OPT
.
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So we get λl ≥ λr − ε ≥ α
2

C
OPT −

δ·C
2π(G) ≥ (1− δ) αC

2OPT . We can now use this together with (17) to get:

π(Fl) ≥ OPT − C

λl

≥ OPT − 2OPT

(1− δ)α

=

(
1− 2

(1− δ)α

)
OPT . (18)

Case 2: Assume c(Fr)
π(Fr)

≤ α C
OPT , which is equivalent to π(Fr)

c(Fr)
≥ 1

α
OPT
C . Since c(Fr) > 2C, we can invoke PRUNEFOR-

EST on Fr with cost budget C. Let F ′r be the resulting g-forest. From Lemma 16 we have c(F ′r) ≤ C. Moreover,

π(F ′r) ≥
C

6 · c(Fr)
π(Fr) =

C

6

π(Fr)

c(Fr)
≥ 1

6α
OPT . (19)

Either case 1 or case 2 must hold. Since HEADAPPROX chooses the better forest among Fl and F ′r, we can combine
Equations (18) and (19) to get the following guarantee on the final result F :

π(F ) ≥ min

(
1− 2

(1− δ)α
,

1

6α

)
OPT .

Choosing α = 13
6 to balance the two expressions (assuming δ is close to 0) then gives the approximation guarantee stated

in the theorem.

Next, we consider the running time of PCSF-HEAD.

Theorem 18. PCSF-HEAD runs in time O
(
TPCSF · log π(G)

δ·πmin

)
.

Proof. As in Theorem 15 it suffices to bound the number of iterations of the binary search. Let λ(0)r be the initial value of
λr in PCSF-HEAD. Then the maximum number of iterations is⌈

log
λ
(0)
r

ε

⌉
=

⌈
log

4 · C · π(G)

δ · C · πmin

⌉
= O

(
π(G)

δ · πmin

)
.

As before, the running time simplifies toO(TPCSF · log|V |) for constant δ if the node prizes and edge costs are polynomially
bounded in the size of the graph.

We can now conclude with our head-approximation algorithm for the WGM.

Theorem 11. LetM be a (G, s, g,B)-WGM and let b ∈ Rd. Then there is an algorithm that returns a support S ⊆ [d] in
the (G, 2s+ g, g, 2B)-WGM satisfying (9) with cH =

√
1/14 . The algorithm runs in time O(|E| log3 d).

Proof. We embed the WGM into a PCSF instance similar to Theorem 9: we run PCSF-HEAD on the graph G with node
prizes π(i) = b2i , edge costs c(e) = w(e) + B

s , a cost budget C = 2B, and the parameter δ = 1
169 . Let F be the resulting

forest and S be the corresponding support. The running time bound follows from combining Theorems 18 and 28.

From Theorem 17 we directly have that F is a g-forest with w(F ) ≤ 2B. Following a similar argument as in Theorem 9,
we also get |S| ≤ 2s+ g. So S is in the (G, 2s+ g, g, 2B)-WGM.

Now, let S∗ be an optimal support in the (G, s, g,B)-WGM M and let F ∗ be a corresponding g-forest, i.e.,

π(F ∗) = ‖bS∗‖2 = max
S′∈M
‖bS′‖2 .



A Nearly-Linear Time Framework for Graph-Structured Sparsity

By construction, every support in M corresponds to a g-forest with cost at most 2B. Hence we have

π(F ∗) ≤ max
γ(F ′)=g,c(F ′)≤2B

π(F ′)

Since π(F ) = ‖bS‖2, applying Theorem 17 gives

‖bS‖2 ≥
(

1− 12

13(1− δ)

)
max
S′∈M
‖bS′‖2 .

Substituting δ = 1
169 completes the proof.

D. The prize-collecting Steiner forest problem (PCSF)
For completeness, we first review the relevant notation and the definition of the PCSF problem. Let G = (V,E) be an
undirected, weighted graph with edge costs c : E → R+

0 and node prizes π : V → R+
0 . For a subset of edges E′ ⊆ E, we

write c(E′) =
∑
e∈E′ c(e) and adopt the same convention for node subsets. Moreover, for a node subset V ′ ⊆ V , let V ′

be the complement V ′ = V \ V ′. We denote the number of connected components in the (sub-)graph F with γ(F ).

Definition 4 (The prize-collecting Steiner forest problem). Let g ∈ N be the target number of connected components. Then
the goal of the prize-collecting Steiner forest (PCSF) problem is to find a subgraph F = (V ′, E′) with γ(F ) = g that
minimizes c(E′) + π(V ′).

We divide our analysis in two parts: we first modify the Goemans-Williamson (GW) scheme to get an efficient algorithm
with provable approximation guarantee for the PCSF problem (Subsection D.1). Then we show how to simulate the GW
scheme in nearly-linear time (Subsection D.2).

D.1. The Goemans-Williamson (GW) scheme for PCSF

Before we introduce our variant of the GW scheme and prove the desired approximation guarantee, we introduce additional
notation. For a set of nodes U ⊆ V and a set of edges D ⊆ E, we write δDU to denote the set of edges contained in D
with exactly one endpoint in U . If D = E, we write δU . The degree of a node v in an edge set D is degD(v) = |δD{v}|.
We say that a (sub-)graph F is a g-forest if F is a forest with γ(F ) = g.

At its core, the GW algorithm produces three results: a laminar family of clusters, a dual value for each cluster, and a forest
connecting the nodes within each cluster.

Definition 19 (Laminar family). A family L of non-empty subsets of V is a laminar family if one of the following three
cases holds for all L1, L2 ∈ L : either L1 ∩ L2 = {}, or L1 ⊆ L2, or L2 ⊆ L1.

Let U be a subset of V . Then we define the following two subsets of L :

• L↓U := {L ∈ L |L ⊆ U} (going “down” in the laminar hierarchy).

• L↑U := {L ∈ L |U ⊆ L} (going “up” in the laminar hierarchy).

Let L ∗ be the family of maximal sets in L , i.e., L ∈ L ∗ iff there is no L′ ∈ L with L ( L′. If
⋃
L∈L = V , then L ∗ is

a partition of V .

Let e ∈ E, then we write L (e) := {L ∈ L | e ∈ δL} for the sub-family of sets that contain exactly one endpoint of e.

Definition 20 (Dual values). Let L be a laminar family. Then the dual values are a function y : L → R+
0 with the

following two properties (as before, we write y(L ′) :=
∑
L∈L ′ y(L) for a sub-family L ′ ⊆ L ).

• y(L (e)) ≤ c(e) for each e ∈ E.

• y(L↓L) ≤ π(L) for each L ∈ L .

We also define several properties of g-forests related to the new concepts introduced above.
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Let L be a laminar family. We say a tree T is L -connected iff for every L ∈ L , the subgraph on VT ∩ L is connected
(we consider an empty graph to be connected). A g-forest F is L -connected iff every T ∈ F is L -connected.

Let L ∈ L ∗ and let L(F ) be the trees in F with at least one node in L, i.e., L(F ) = {T ∈ F |VT ∩ L 6= {}}. A g-tree F
is L ∗-disjoint iff |L(F )| ≤ 1 for every L ∈ L ∗.

Let D be a family of subsets of V . A tree T has a leaf component in D iff there is a D ∈ D with |δTD| = 1. A g-forest F
has a leaf component in D iff there is a tree T ∈ F that has a leaf component in D .

A tree T is contained in D iff there is a D ∈ D such that VT ⊆ D. A g-forest F is contained in D iff there is a tree T ∈ F
that is contained in D .

D.1.1. ALGORITHM

Our algorithm is a modification of the unrooted GW PCST algorithm in (Johnson et al., 2000). In contrast to their unrooted
prize-collecting Steiner tree algorithm, our algorithm stops the growth phase when exactly g active clusters are left. We
use these active clusters as starting point in the pruning phase to identify a g-forest as the final result.

Since the focus of this section is the approximation guarantee rather than the time complexity, the pseudo code in Algorithm
5 is intentionally stated at a high level.

Algorithm 5 Prize-collecting Steiner forest
1: function PCSF-GW(G, c, π, g)
2: L ← {{v} | v ∈ V } . Laminar family of clusters.
3: y(C)← 0 for all C ∈ L . . Initial dual values.
4: VF ← V, EF ← {} . Initial forest.
5: D ← {} . Family of inactive clusters.
6: A ← L ∗ \D . Family of active clusters.
7: while |A | > g do . Growth phase.
8: εd ← min

C∈A
π(C)− y(L↓C) . Next cluster deactivation time

9: εm ← min
e∈δC
C∈A

c(e)− y(L (e)) . Next cluster merge time

10: ε← min(εd, εm)
11: for C ∈ A do
12: y(C)← y(C) + ε . Increase dual variables for active clusters.
13: end for
14: if εc ≤ εm then . Cluster deactivation next.
15: Let C ∈ A be such that π(C)− y(L↓C) = 0.
16: D ← D ∪ {C} . Mark cluster as inactive.
17: else . Cluster merge next
18: Let e be such that c(e)− y(L (e)) = 0 and e ∈ δC for some C ∈ A .
19: Let C1 and C2 be the endpoints of e in L ∗.
20: L ← L ∪ {C1 ∪ C2} . Merge the two clusters.
21: y(C1 ∪ C2)← 0
22: EF ← EF ∪ {e} . Add e to the forest.
23: end if
24: A ← L ∗ \D . Update active clusters.
25: end while
26: Restrict F to the g trees contained in A . . Discard trees spanning inactive clusters.
27: while there is a D ∈ D such that |δFD| = 1 do . Pruning phase.
28: VF ← VF \D . Remove leaf component in D .
29: Remove all edges from EF with at least one endpoint in D.
30: end while
31: return F
32: end function
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D.1.2. ANALYSIS

We now show that the forest returned by PCSF-GW has the desired properties: it is a g-forest and satisfies the guarantee
in Equation (11). Our analysis follows the overall approach of (Feofiloff et al., 2010).

Lemma 21. Let H = (VH , EH) be a graph and let A,B ⊆ VH be a partition of VH . Moreover, let F = {T1, . . . , Tg} be
a g-forest such that each Ti has no leaves in B and is not contained in B. Then∑

v∈A
degF (v) + 2|A \ VF | ≤ 2|A| − 2g .

Proof. Since each Ti has no leaf in B and is not contained in B, every v ∈ VF ∩B satisfies degF (v) ≥ 2. Therefore,∑
v∈VF∩B

degF (v) ≥ 2|VF ∩B| .

Note that
∑
v∈VF degF (v) = 2(|VF | − g) because F divides VF into g connected components. Hence∑

v∈VF∩A
degF (v) =

∑
v∈Vf

degF (v)−
∑

v∈VF∩B
degF (v)

≤ 2(|VF | − g)− 2|VF ∩B|
= 2|VF ∩A| − 2g .

Moreover, |A| = |A ∪ VF |+ |A \ VF |. Combining this with the inequality above gives∑
v∈VF∩A

degF (v) + 2|A \ VF | ≤ 2|VF ∩A| − 2g + 2|A \ VF |

≤ 2|A| − 2g .

Since
∑
v∈A degF (v) =

∑
v∈VF∩A degF (v), the statement of the lemma follows.

Lemma 22. Let L be a laminar family, let D ⊆ L be a sub-family, and let A = L ∗ \ D . Let F be a g-forest which is
L -connected, L ∗-disjoint, has no leaf component in D , and is not contained in D . Then∑

C∈A

|δFC|+ 2
∣∣∣{C ∈ A |C ∈ L↓F }

∣∣∣ ≤ 2|A | − 2g .

Proof. Contract each set C ∈ L ∗ into a single node, keeping only edges with endpoints in distinct sets in L ∗. Call the
resulting graph H and let A and B be the sets of vertices corresponding to A and L ∗ ∩D , respectively.

Note that F is still a g-forest in H . Since F is L ∗-disjoint, no trees in T are connected by the contraction process.
Moreover, no cycles are created because F is L -connected. Let F ′ be the resulting g-forest in H . Since F has no leaf
component in D , F ′ has no leaves in B. Furthermore, no tree in F is contained in D and thus no tree in F ′ is contained in
B. Therefore, F ′ satisfies the conditions of Lemma 21.

Since F is L -connected, there is a bijection between edges in F ′ and edges in F with endpoints in distinct elements of
L ∗. Thus we have ∑

C∈A

|δFC| =
∑
v∈A

degF ′(v) .

Furthermore, the contraction process gives∣∣∣{C ∈ A |C ∈ L↓F }
∣∣∣ = |A \ VF ′ |

and |A | = |A|. Now the statement of the lemma follows directly from applying Lemma 21.
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Lemma 23. At the beginning of every iteration of the growth phase in PCSF-GW (lines 7 to 24), the following invariant
(I) holds:

Let F be a g-forest which is L -connected, L ∗-disjoint, has no leaf component in D , and is not contained in D . Moreover,
let A = {v1, . . . , vg} be an arbitrary set of g nodes in G and let B =

⋃
v∈A L↑{v}. Then∑

e∈EF

y(L (e)) + 2y(L↓F ) ≤ y(L \B) . (20)

Proof. Clearly, (I) holds at the beginning of the first iteration because the dual values y are 0 for every element in L . We
now assume that (I) holds at the beginning of an arbitrary iteration and show that (I) then also holds at the beginning of the
next iteration. By induction, this then completes the proof.

Let L ′, D ′, A ′, and y′ be the values of L , D , A , and y at the beginning of the iteration. We analyze two separate cases
based on the current event in this iteration of the loop: either a cluster is deactivated (lines 15 to 16) or two clusters are
merged (lines 18 to 22).

First, we consider the cluster deactivation case. Let F be a g-forest satisfying the conditions of invariant (I). Since L ′ = L
and D ′ ⊆ D , F is also L ′-connected, L ′∗-disjoint, has no leaf component in D ′, and is not contained in D ′. Hence we
can invoke Equation (20): ∑

e∈EF

y′(L ′(e)) + 2y′(L ′↓F ) ≤ y′(L ′ \B) . (21)

Note that y and y′ differ only on sets in A ′ = L ′∗ \D ′. Therefore, we have the following three equations quantifying the
differences between the three terms in Equations (20) and (21):

•
∑
e∈EF

y(L ′(e))−
∑
e∈EF

y′(L ′(e)) =
∑
e∈EF

∑
C∈A ′

ε · 1[e ∈ δFC] = ε
∑
C∈A ′

|δFC| (22)

• y(L ′↓F )− y′(L ′↓F ) =
∑
C∈A ′

ε · 1[C ∈ L ′↓F ] = ε
∣∣∣{C ∈ A ′ |C ∈ L ′↓F }

∣∣∣ (23)

• y(L ′ \B)− y′(L ′ \B) =
∑
C∈A ′

ε · 1[C /∈ B] = ε|A ′| − ε|A ′ ∩B| ≥ ε|A ′| − εg (24)

In the last inequality, we used the fact that |A| = g and hence B can contain at most g maximal sets in the laminar family
L ′. Combining the three equations above with Equation (21) and Lemma 22 then gives:∑

e∈EF

y(L ′(e)) + 2y(L ′↓F ) ≤ y(L ′ \B) . (25)

Since L ′ = L , this is equivalent to Equation (20), completing the proof for this case.

Now we consider the cluster merge case. As before, let F be a g-forest satisfying the conditions of invariant (I). Since
L = L ′ ∪ {C1 ∪ C2} and D = D ′, F is also L ′-connected, L ′∗-disjoint, has no leaf component in D ′, and is not
contained in D ′. Therefore, we can invoke Equation (20) again. Moreover, Equations (22), (23), and (24) also hold in
this case. Combining these equations with (21) and Lemma 22 then again results in Equation (25). Furthermore, we have
y(C1 ∪ C2) = 0 and thus y(L (e)) = y(L ′(e), y(L↓F ) = y(L ′↓F ), and y(L \ B) = y(L ′ \ B). Applying these
equalities to Equation (25) completes the proof.

The following lemma is essential for proving a lower bound on the value of the optimal solution.

Lemma 24. Let L be a laminar family with dual values y. Let F be a g-forest and let B =
⋃
T∈F L↑T . Then

c(EF ) + π(VF ) ≥ y(L \B) .
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Proof. Let M = {C ∈ L | δFC 6= {}} and N = L↓F . Then L = M ∪N ∪B.

Since the y are dual values, we have c(e) ≥ y(L (e)) for every e ∈ EF . Therefore,

c(EF ) =
∑
e∈EF

c(e) ≥
∑
e∈EF

y(L (e)) =
∑
e∈EF

∑
C∈L (e)

y(C)

=
∑
C∈L

∑
e∈δFC

y(C) ≥
∑
C∈M

y(C) = y(M ) .

Moreover, we have π(C) ≥ y(L↓C) for every C ∈ L . Thus,

π(VF ) ≥
∑
C∈L ∗

C⊆VF

π(C) ≥
∑
C∈L ∗

C⊆VF

y(L↓C) = y(L↓VF ) = y(N ) .

Finally, we get

c(EF ) + π(VF ) ≥ y(M ) + y(N ) ≥ y(M ∪N ) = y(L \ (L \ (M ∪N ))) ≥ y(L \B) ,

where we used L = M ∪N ∪B in the final step.

We can now prove the main theorem establishing an approximation guarantee for PCSF-GW, which also proves Theorem
5 from the main text of the paper.

Theorem 25. Let F be the result of PCSF-GW(G, c, π, g). Then F is a g-forest and

c(F ) + 2π(F ) ≤ 2c(FOPT ) + 2π(FOPT ) ,

where FOPT is a g-forest minimizing c(FOPT ) + π(FOPT ).

Proof. By construction in the growth phase of PCSF-GW (lines 7 to 24), F is a L -connected forest at the end of the
growth phase. Since at most one element is added to D in each iteration of the growth phase, we have |A | = g at the
end of the growth phase. Hence restricting F to A in line 26 leads to F being a g-forest which is still L -connected.
Furthermore, F is L ∗-disjoint and no tree in F is contained in D .

The pruning phase (lines 27 to 29) maintains that F is a g-forest, L -connected, L ∗-disjoint, and not contained in D .
Moreover, the pruning phase removes all leaf components of F in D . Hence at the end of the pruning phase, F satisfies
the conditions of Lemma 23 (L , D , and A did not change in the pruning phase).

Now let FOPT = (TOPT
1 , . . . , TOPT

g ) be a g-forest minimizing c(FOPT ) + π(FOPT ) and let A = {v1, . . . vg} with
vi ∈ TOPT

i . Moreover, let B1 =
⋃
v∈A L↑{v} as in Lemma 23. Invoking the Lemma then gives∑
e∈EF

y(L (e)) + 2y(L↓F ) ≤ 2y(L \B1) . (26)

Now, note that every e ∈ EF was added to F when we had c(e) = y(L (e)). Hence∑
e∈EF

y(L (e)) =
∑
e∈EF

c(e) = c(F ) . (27)

Moreover, VF can be decomposed into elements in D : after restricting F to A = L ∗ \ D in line 26 this clearly holds.
During the pruning phase, all subtrees that are removed from trees in F are elements of D . Therefore, there is a family of
pairwise disjoint sets Z ⊆ D such that

⋃
C∈Z = VF . Note that for every C ∈ D we have π(C) = y(L↓C) because C

was deactivated at some point in the growth phase. Therefore,

π(F ) =
∑
C∈Z

π(C) =
∑
C∈Z

y(L↓C) ≤ y(L↓F ) . (28)
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Combining Equations (26), (27), and (28) then gives

c(F ) + 2π(F ) ≤ 2y(L \B1) . (29)

We now relate this upper bound to the optimal solution FOPT . Let B2 =
⋃
T∈FOPT

L↑T as in Lemma 24. The y are valid
dual values due to their construction in PCSF-GW. Thus Lemma 24 gives

y(L \B2) ≤ c(FOPT ) + π(FOPT ) . (30)

Note that B2 ⊆ B1 and therefore y(L \B1) ≤ y(L \B2). The guarantee in the theorem now follows directly from
Equations (29) and (30).

D.2. A fast algorithm for Goemans-Williamson

We now introduce our fast variant of the GW scheme. To the best of our knowledge, our algorithm is the first practical
implementation of a GW-like algorithm that runs in nearly linear time.

On a high level, our algorithm uses a more aggressive and adaptive dynamic edge splitting scheme than (Cole et al.,
2001): our algorithm moves previously inserted splitting points in order to reach a tight edge constraint quicker than
before. By analyzing the precision needed to represent merge and deactivation events in the GW algorithm, we prove
that our algorithm runs in O(α · |E| log|V |) time, where α is the number of bits used to specify each value in the input.
For constant bit precision α (as is often the case in practical applications) our algorithm hence has a running time of
O(|E| log|V |). Furthermore, our algorithm achieves the approximation guarantee (11) exactly without the additional 2

nk

term present in the work of (Cole et al., 2001). From an empirical point of view, our more aggressive edge splitting scheme
produces only very few additional edge pieces: we observed that the number of processed edge events is usually close to
2|E|, the number of edge events initially created. We demonstrate this empirical benefit in our experiments (see Section
D.3).

Since the pruning stage of the GW scheme can be implemented relatively easily in linear time (Johnson et al., 2000), we
focus on the moat growing stage here. We also remark that there are algorithms for the PCST problem that achieve a
nearly-linear time for planar graphs (Bateni et al., 2011; Eisenstat et al., 2012).

D.2.1. ALGORITHM

Similar to (Cole et al., 2001), our algorithm divides each edge e = (u, v) into two edge parts eu and ev corresponding to
the endpoints u and v. We say an edge part p is active if its endpoint is in an active cluster, otherwise the edge part p is
inactive. The key advantage of this approach over considering entire edges is that all active edge parts always grow at the
same rate. For each edge part p, we also maintain an event value µ(p). This event value is the total amount that the moats
on edge part p are allowed to grow until the next event for this edge occurs. In order to ensure that the moats growing on
the two corresponding edge parts eu and ev never overlap, we always set the event values so that µ(eu)+µ(ev) = c(e). As
for edges, we define the remaining slack of edge part eu as µ(eu) −

∑
C∈C yC , where C is the set of clusters containing

node u.

We say that an edge event occurs when an edge part has zero slack remaining. However, this does not necessarily mean
that the corresponding edge constraint has become tight as the edge event might be “stale” since the other edge parts has
become inactive and stopped growing since the last time the edge event was updated. Nevertheless, we will be able to show
that the total number of edge events to be processed over the course of the algorithm is small. Note that we can find the
next edge event by looking at the edge events with smallest remaining slack values in their clusters. This is an important
property because it allows us to organize the edge parts in an efficient manner. In particular, we maintain a priority queue
QC for each cluster C that contains the edge parts with endpoint in C, sorted by the time at which the next event on each
edge part occurs. Furthermore, we arrange the cluster priority queues in an overall priority queue resulting in a “heap of
heaps” data structure. This data structure allows us to quickly locate the next edge event and perform the necessary updates
after cluster deactivation or merge events.

In addition to the edge events, we also maintain a priority queue of cluster events. This priority queue contains each active
cluster with the time at which the corresponding cluster constraint becomes tight. Using these definitions, we can now
state the high-level structure of our algorithm in pseudo code (see Algorithm 6) and then describe the two subroutines
MERGECLUSTERS and GENERATENEWEDGEEVENTS in more detail.
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Algorithm 6 Fast variant of the GW algorithm for PCSF.
1: function PCSF-FAST(G, c, π, g)
2: INITPCST(G, c, π)
3: t← 0 . Current time
4: g′ ← |V | . Number of active clusters
5: while g′ > g do
6: . Returns event time and corresponding edge part
7: (te, pu)← GETNEXTEDGEEVENT()
8: . Returns event time and corresponding cluster
9: (tc, C)← GETNEXTCLUSTEREVENT()

10: if te < tc then
11: t← te
12: REMOVENEXTEDGEEVENT()
13: pv ← GETOTHEREDGEPART(pu)
14: . GETSUMONEDGEPART returns the current moat sum on the edge part
15: . pu and the maximal cluster containing u
16: (s, Cu)← GETSUMONEDGEPART(pu)
17: (s′, Cv)← GETSUMONEDGEPART(pv)
18: r ← GETEDGECOST(pu)− s− s′ . Remaining amount on the edge
19: if Cu = Cv then . The two endpoints are already in the same cluster
20: continue . Skip to beginning of while-loop
21: end if
22: if r = 0 then
23: MERGECLUSTERS(Cu, Cv)
24: else
25: GENERATENEWEDGEEVENTS(pu, pv)
26: end if
27: else
28: t← tc
29: REMOVENEXTCLUSTEREVENT()
30: DEACTIVATECLUSTER(C)
31: g′ ← g′ − 1
32: end if
33: end while
34: PRUNING()
35: end function
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MERGECLUSTERS(Cu, Cv) : As a first step, we mark Cu and Cv as inactive and remove them from the priority queue
keeping track of cluster deactivation events. Furthermore, we remove the priority queues QCu and QCv from the heap of
heaps for edge events. Before we merge the heaps of Cu and Cv , we have to ensure that both heaps contain edge events on
the “global” time frame. If Cu (or Cv) is inactive since time t′ when the merge occurs, the edge event times in QCu will
have become “stale” because the moat on edge parts incident to Cu did not grow since t′. In order to correct for this offset
and bring the keys in QCu back to the global time frame, we first increase all keys in QCu by t− t′. Then, we merge QCu
and QCv , which results in the heap for the new merged cluster. Finally, we insert the new heap into the heap of heaps and
add a new entry to the cluster deactivation heap.

GENERATENEWEDGEEVENTS(pu, pv) : This function is invoked when an edge event occurs, but the corresponding
edge constraint is not yet tight. Since the edge part pu has no slack left, this means that there is slack remaining on pv . Let
Cu and Cv be the set of clusters containing u and v, respectively. Then r = c(e)−

∑
C∈Cu∪Cv

yC is the length of the part
of edge e not covered by moats yet. We distinguish two cases:

1. The cluster containing the endpoint v is active.
Since both endpoints are active, we expect both edge parts to grow at the same rate until they meet and the edge
constraint becomes tight. Therefore, we set the new event values to µ(pu) =

∑
C∈Cu

+ r
2 and µ(pv) =

∑
C∈Cv

+ r
2 .

Note that this maintains the invariant µ(pu) +µ(pv) = c(e). Using the new event values for pu and pv , we update the
priority queues QCu and QCv accordingly and then also update the heap of heaps.

2. The cluster containing the endpoint v is inactive.
In this case, we assume that v stays inactive until the moat growing on edge part pu makes the edge constraint for e
tight. Hence, we set the new event values to µ(pu) =

∑
C∈Cu

+r and µ(pv) =
∑
C∈Cv

. As in the previous case, this
maintains the invariant µ(pu) + µ(pv) = c(e) and we update the relevant heaps accordingly. It is worth noting our
setting of µ(pv) reduces the slack for pv to zero. This ensures that as soon as the cluster Cv becomes active again, the
edge event for pv will be processed next.

Crucially, in GENERATENEWEDGEEVENTS, we set the new event values for pu and pv so that the next edge event on
e would merge the clusters Cu and Cv , assuming both clusters maintain their current activity status. If one of the two
clusters changes its activity status, this will not hold:

1. If both clusters were active and cluster Cu has become inactive since then, the next event on edge e will be part pv
reaching the common midpoint. However, due to the deactivation of Cu, the edge part pu will not have reached the
common midpoint yet.

2. If Cv was inactive and becomes active before the edge event for pu occurs, the edge event for pv will also immediately
occur after the activation for Cv . At this time, the moat on pu has not reached the new, size-0 moat of Cv , and thus
the edge constraint is not tight.

However, in the next section we show that if all input values are specified with d bits of precision then at most O(d) edge
events can occur per edge. Moreover, even in the general case our experiments in Section 6 show that the pathological
cases described above occur very rarely in practice. In most instances, only two edge events are processed per edge on
average.

D.2.2. ANALYSIS

We now study the theoretical properties of our algorithm PCSF-FAST. Note that by construction, the result of our algorithm
exactly matches the output of PCSF-GW and hence also satisfies guarantee (11).

First, we establish the following structural result for the growth stage of the GW algorithm (the “exact” algorithm PCSF-
GW, not yet PCSF-FAST). Informally, we show that a single additional bit of precision suffices to exactly represent all
important events in the moat growth process. The following result is equivalent to Theorem 6.

Theorem 26. Let all node prizes π(v) and edge costs c(e) be even integers. Then all cluster merge and deactivation events
occur at integer times.



A Nearly-Linear Time Framework for Graph-Structured Sparsity

Proof. We prove the theorem by induction over the cluster merge and deactivation events occuring in the GW scheme,
sorted by the time at which the events happen. We will show that the updates caused by every event maintain the following
invariant:

Induction hypothesis Based on the current state of the algorithm, let te be the time at which the edge constraint for edge
e becomes tight and tC be the time at which the cluster constraint for cluster C becomes tight. Then te and tC are integers.
Moreover, if the merge event at te is a merge event between an active cluster and an inactive cluster C, then te− tinactive(C)

is even, where tinactive(C) is the time at which cluster C became inactive.

Clearly, the induction hypothesis holds at the beginning of the algorithm: all edge costs are even, so te = c(e)
2 is an integer.

Since the node prizes are integers, so are the tC . The assumption on merge events with inactive clusters trivially holds
because there are no inactive clusters at the beginning of the algorithm. Next, we perform the induction step by a case
analysis over the possible events:

• Active-active: a merge event between two active clusters. Since this event modifies no edge events, we only have
to consider the new deactivation event for the new cluster C. By the induction hypothesis, all events so far have
occured at integer times, so all moats have integer size. Since the sum of prizes in C is also an integer, the new cluster
constraint becomes tight at an integer time.

• Active-inactive: a merge event between an active cluster and an inactive cluster. Let e be the current edge, te be the
current time, and C be the inactive cluster. The deactivation time for the new cluster is the same as that of the current
active cluster, so it is also integer. Since every edge e′ incident to C now has a new growing moat, we have to consider
the change in the event time for e′. We denote the previous event time of e′ with t′e′ . We distinguish two cases:

– If the other endpoint of e′ is in an active cluster, the part of e′ remaining has size t′e′ − te and e′ becomes tight at

time te +
t′
e′−te
2 because e′ has two growing moats. We have

t′e′ − te = (t′e′ − tinactive(C))− (te − tinactive(C)) .

Note that both terms on the right hand side are even by the induction hypothesis, and therefore their difference is
also even. Hence the new event time for edge e′ is an integer.

– If the other endpoint of e′ is an inactive cluster, say C ′, we have to show that te′ − tinactive(C′) is even, where te′
is the new edge event time for e′. We consider whether C or C ′ became inactive last:
∗ C became inactive last: from the time at which C became inactive we know that t′e′ − tinactive(C′) is even.

Moreover, we have that te′ = t′e′+(te−tinactive(C)). Since te−tinactive(C) is even by the induction hypothesis,
so is te′ − tinactive(C′).

∗ C ′ became inactive last: from the time at which C ′ became inactive we know that t′e′ − tinactive(C) is even.
The time of the new edge event can be written as te′ = te + t′e′ − tinactive(C′) (an integer by the induction
hypothesis), which is equivalent to te′ − t′e′ = te − tinactive(C′). We now use this equality in the second line
of the following derivation:

te′ − tinactive(C′) = te′ − t′e′ + t′e′ − te + te − tinactive(C′)

= 2(te′ − t′e′) + t′e′ − te
= 2(te′ − t′e′) + (t′e′ − tinactive(C))− (te − tinactive(C)) .

Since te − tinactive(C) is even by the induction hypothesis, all three terms on the right hand side are even.

• Cluster deactivation: Clearly, a deactivation of cluster C leads to no changes in other cluster deactivation times.
Moreover, edges incident to C and another inactive cluster will never become tight based on the current state of the
algorithm. The only quantities remaining are the edge event times for edges e with another cluster endpoint that is
active. Note that up to time tC , the edge e had two growing moats and te was an integer. Therefore, the part of
e remaining has length 2(te − tC), which is an even integer. The new value of te is tC + 2(te − tC), and since
tinactive(C) = tC the induction hypothesis is restored.

Since the induction hypothesis is maintained throughout the algorithm and implies the statement of the theorem, the proof
is complete.
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We now use this result to show that the number of edge part events occuring in PCSF-FAST is small.

Corollary 27. Let all node prizes π(v) and edge costs c(e) be specified with α bits of precision. Then the number of edge
part events processed in PCSF-FAST is bounded by O(α · |E|).

Proof. We look at each edge e individually. For every edge part eventA on e that does not merge two clusters, the following
holds: either A reduces the remaining slack of e by at least a factor of two or the event directly preceeding A reduced the
remaining slack on e by at least a factor of two. In the second case, we charge A to the predecessor event of A.

So after O(α) edge parts events on e, the remaining slack on e is at most c(e)2α . Theorem 26 implies that the minimum time
between two cluster merge or deactivation events is c(e)

2α+1 . So after a constant number of additional edge part events on e,
the edge constraint of e must be the next constraint to become tight, which is the last edge part event on e to be processed.
Therefore, the total number of edge part events on e is O(α).

We now show that all subroutines in PCSF-FAST can be implemented in O(log|V |) amortized time, which leads to our
final bound on the running time.

Theorem 28. Let all node prizes π(v) and edge costs c(e) be specified with α bits of precision. Then PCSF-FAST runs in
O(α · |E| log|V |) time.

Proof. The requirements for the priority queue maintaining edge parts events are the standard operations of a mergeable
heap data structure, combined with an operation that adds a constant offset to all elements in a heap inO(log|V |) amortized
time. We can build such a data structure by augmenting a pairing heap with an offset value at each node. Due to space
constraints, we omit the details of this construction here. For the outer heap in the heap of heaps and the priority queue
containing cluster deactivation events, a standard binomial heap suffices.

We represent the laminar family of clusters in a tree structure: each cluster C is a node, the child nodes are the two clusters
that were merged to form C, and the parent is the cluster C was merged into. The initial clusters, i.e., the individual nodes,
form the leaves of the tree. By also storing the moat values at each node, the GETSUMONEDGEPART operation for edge
part pu can be implemented by traversing the tree from leaf u to the root of its subtree. However, the depth of this tree can
be up to Ω(|V |). In order to speed up the data structure, we use path compression in essentially the same way as standard
union-find data structures. The resulting amortized running time for GETSUMONEDGEPART and merging clusters then
becomes O(log|V |) via a standard analysis of union-find data structures (with path compression only).

This shows that all subroutines in PCSF-FAST (Algorithm 6) can be implemented to run in O(log|V |) amortized time.
Since there are at most O(α|E|) events to be processed in total, the overall running time bound of O(α · |E| log|V |)
follows.

D.3. Experimental results

We also investigate the performance of our algorithm PCSF-FAST outside sparse recovery. As test data, we use the public
instances of the DIMACS challenge on Steiner tree problems10. We record both the total running times and the number of
edge events processed by our algorithm. All experiments were conducted on a laptop computer from 2010 (Intel Core i7
with 2.66 GHz, 4 MB of cache, and 8 GB of RAM). All reported running times are averaged over 11 trials after removing
the slowest run. Since the GW scheme has a provable approximation guarantee, we focus on the running time results here.

Running times Figure 6 shows the running times of our algorithm on the public DIMACS instances for the unrooted
prize-collecting Steiner tree problem (PCSPG). For a single instance, the maximum running time of our algorithm is
roughly 1.3 seconds and most instances are solved significantly faster. The scatter plots also demonstrates the nearly-linear
scaling of our running time with respect to the input size.

Effectiveness of our edge splitting heuristic As pointed out in our running time analysis, the number of edge part
events determines the overall running time of our algorithm. For input values specified with α bits of precision, our
analysis shows that the algorithm encounters at most O(α) events per edge. In order to get a better understanding of our

10http://dimacs11.cs.princeton.edu/

http://dimacs11.cs.princeton.edu/
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empirical performance, we now look at the number of edge part events encountered by our algorithm (see Figure 7). The
scatter plots show that the average number of events per edge is less than 3 for all instances. These results demonstrate the
effectiveness of our more adaptive edge splitting heuristics. Moreover, the number of edge events encountered explains the
small running times on the large i640 instances in Figure 6.
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Figure 6. Running times for the PCSPG instances of the DIMACS challenge. Each color corresponds to one test case group. Our
algorithm runs for at most 1.3s on any instance and clearly shows nearly-linear scaling with the input size.
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Figure 7. Average number of edge events processed per edge for the PCSPG instances of the DIMACS challenge. Each color corresponds
to one test case group. The results demonstrate the effectiveness of our edge splitting approach and show that the average number of
edge events is less than 3 for every instance.
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