
Algorithmica (1996) 16: 569–617 Algorithmica
© 1996 Springer-Verlag New York Inc.

A Nearly Optimal Deterministic Parallel Voronoi
Diagram Algorithm 1

R. Cole,2 M. T. Goodrich,3 and C.Ó Dúnlaing4

Abstract. We describe ann-processor,O(log(n) log log(n))-time CRCW algorithm to construct the Voronoi
diagram for a set ofn point-sites in the plane.

Key Words. Voronoi diagram, Parallel algorithm.

1. Introduction. Outline of the Algorithm. The Voronoi diagram is a geometric
structure of great computational interest: see [5] for a useful survey. This paper addresses
the problem of constructing the diagram in parallel, given as input a set ofn points
(“sites”) in the plane. The Voronoi diagram for a set of sites is the locus of points
equidistant from two closest sites: Figure 1 illustrates a diagram with 32 sites.

The model of parallelism we assume is a CRCW PRAM, a system of independent
processors accessing a shared random-access memory, where the same memory cell can
be read by several processors simultaneously (concurrent read) and written by several
processors simultaneously (concurrent write). Write-conflicts are resolved arbitrarily:
the model of computation is an ARBITRARY CRCW PRAM.

Each processor is assumed capable of exact rational and integer arithmetic in unit
time.

Earlier algorithms [1], [9] were presented for CREW5 machines. The algorithm in [1]
usedn processors and tookO(log2(n)) parallel time; that in [2] usedn log(n) processors
and tookO(log(n) log log(n)) parallel time. Our algorithm reduces the overall work
(parallel time× number of processors) toO(n log(n) log log(n)), while maintaining a
runtime of O(log(n) log log(n)). Both of these figures are within the factor log log(n)

1 A preliminary version of this paper was presented at the 17th EATCS ICALP meeting at Warwick, England,
in July 1990.
2 Department of Computer Science, Courant Institute, 251 Mercer Street, New York, NY 10012, USA.
cole@cs.nyu.edu. Supported by the US NSF under Grants CCR 890221 and CCR 8906949.
3 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA.
goodrich@cs.jhu.edu. Supported by the US NSF under Grants CCR 8810568, CCR-9003299, and IRI-
9116843, and by the NSF and DARPA under Grant CCR 8908092.
4 School of Mathematics, Trinity College, Dublin 2, Ireland. odunlain@maths.tcd.ie. Supported by the EU
Esprit program under BRAs 3075 (ALCOM) and 7141 (ALCOM II).
5 Exclusive-write, that is, no write conflicts are allowed. We use the concurrent-write mechanism for forward
chaining and integer sorting [6].

Received May 1, 1994; revised December 20, 1994. Communicated by K. Melhorn.

570 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

Fig. 1.Voronoi diagram formed from two setsP andQ to the top and bottom of the dashed horizontal lineL.
The(P, L)- and(Q, L)-beachlines are illustrated, and the(P, Q)-contour edges are darkened. Note that the
contour lies between the two beachlines. Thex-direction is upwards.

of optimal.6 Our technique, like all7 previous deterministic parallel algorithms, is based
on the serial algorithm due to Shamos and Hoey [25]. The set of sites is initially sorted
by x-coordinate; then the algorithm proceeds recursively:

• Partition the input setS of n sites into two setsP and Q of sizen/2 by a vertical
straight lineL.
• Compute the Voronoi diagrams of the left and right half-sets recursively, withn/2

processors assigned to each; call these Vor(P) and Vor(Q) respectively.
• Compute thecontour, the locus of all points in the plane equidistant fromP andQ

(the contour is illustrated in Figure 1).
• Stitchthe diagrams together along the contour.

It was shown in [1] how to compute the contour and stitch the diagrams together in
log(n) parallel time. This is done, roughly speaking, as follows:

• Each edge of Vor(P) can meet the contour at most twice; for simplicity we assume at
most once: using suitable data structures and one processor per edge of Vor(P), those
edges which meet the contour are identified. We call such edges “attachments,” and
the points where they meet the contour (necessarily vertices of Vor(S)) their “ends.”
This takesO(log(n)) parallel time. Likewise for Vor(Q).
• The edges of Vor(P) meeting the contour can be ranked and sorted according to the

y-coordinates of their ends, without knowing these coordinates, inO(log(n)) parallel
steps.
• Among all the attachments in Vor(P), ranked along the contour, lete be the median

attachment. Its end can be calculated using processors assigned to all attachments
from Q in one parallel step; this subdivides the attachments fromQ and permits,
ultimately, calculation of all the ends fromP, in O(log(n)) time. Likewise forQ.

6 This is substantially better than earlier deterministic algorithms, but randomized parallel algorithms have
been described which achieve optimalexpectedtime and work [24].
7 All, that is, except the earliest [8], which ran inO(log3(n)) time, using a transformation to the three-
dimensional convex hull problem.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 571

• Once all the attachments and ends have been calculated, it is straightforward to com-
plete construction of Vor(S) in O(log(n)) steps.

In this paper we show that it is possible to compute the contour inO(log log(n))
parallel time, and stitch in constant parallel time. The ideas are derived from Valiant’s
[27] array-merging algorithm. In place of a data-structure which allows one proces-
sor to answer certain queries in serial timeO(log(n)), we have one allowing

√
n pro-

cessors to answer such queries inO(1) parallel time. The structure involves what
are calledbeachlines8 and fringes [1]. Beachlines (but not fringes) are illustrated in
Figure 1.

Given a setP of sites and a (vertical) lineL which has all ofP to its left (or right), the
“beachline” betweenP andL is the set of points in the plane equidistant fromL andP.
It is a union of parabolic segments; the foci of the parabolas are inP and they all have
the same directrixL. The beachline “cusps” (where adjacent parabolic segments meet)
are the points where it crosses edges of Vor(P). The beachline thus divides Vor(P) into
a part nearerP than L and a part further fromP than L. The latter part is called the
“fringe.” It has the structure of a forest of trees; each tree contains exactly one unbounded
edge of Vor(P). These trees are essentially binary trees, and the structure of the fringe
can be used to build the contour inO(log log(n)) parallel time.

An important advantage of our structure is that not only are the attachments calculated,
but also the ends, which allows two of the above steps to be bypassed. This avoids an
Ä(log(n)) bottleneck caused by list-ranking [13].

Another feature of our methods is that the structures can have surplus processors
allotted. The beachlineB is a sorted list, and it would be convenient to store it in sorted
order in an array. However, to avoid the need for excessive reorganization between
phases of the algorithm, we allowB to be represented in an arrayA of size O(n), in
which an element fromB might be represented by a block of several contiguous entries
from A. The arrayA is then used to assign processors to the elements inB; only those
processors assigned to the first copy of an element will be active. By this means we avoid
compressing data by parallel prefix, another potential bottleneck [23].

It appears that the main difficulty in our approach is recursive construction of the
beachlines, which would be trivial in the serial case. In [9] the beachlines were all
precomputed independently inO(log(n)) parallel steps using fractional cascading [3].
This allowed the algorithm to proceed without difficulty but was processor-inefficient,
since the precomputed structures were built usingn log(n) processors.

The improved method described here usesn processors to precompute not the beach-
lines but partial information about the beachlines. Specifically, given a setB of k points
in the plane, sorted byy-coordinate, aruling for B is a set ofO(k/log(n)) horizontal
lines such that each horizontal strip containsO(log(n)) points in B. We will see how
to precompute rulings for the beachlines withn processors. During the algorithm, a
linked-list structure for a beachlineB can be used to build an arrayA coveringB: A has
O(k/log(n)) blocks, each of sizeO(log(n)), covering the strips of a given ruling ofB.
Each strip containsO(log(n)) elements ofB, which can be sorted in timeO(log log(n))
by list-ranking.

8 The notion of beachline, invented by Chee Yap, was first described in [1].

572 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

The contributions of this paper (aside from the result stated in the title) are:

(a) Detailed geometrical analysis of beachline and fringe.
(b) A special-purpose planar point location structure for the fringe.
(c) Usage of duplicate array entries to avoid array compression.
(d) An unusual application of stable integer sorting.

Sections 2–8 of this paper cover the material as follows. Section 2 introduces the
Voronoi diagram together with the convex hull, and proves some facts about “beachlines”
and “fringes.” Section 3 reviews some parallel operations on arrays, including Valiant’s
merging technique and some results from [6]. Section 4 introduces the point-location
structure definable from a fringe, and Section 5 shows how to use it to locate contour
vertices. Section 6 shows how the Voronoi diagram itself can be built recursively during
this process. Section 7 (which is long) shows how to build these fringe structures during
the recursive processing, with the aid of precomputed “rulings,” and Section 8 shows
how to precompute the necessary “rulings.” Concluding remarks are in Section 9.

REMARKS. It is implicit in our algorithm that most of the processing will take place
in sorted arrays of data, and processors will be attached to entries in such arrays. The
general steps involve processors attached to a block of entries in one array inspecting
either an evenly spaced sequence of entries in another array, or a few contiguous intervals
of entries in another array. These tasks do not involve processor-allocation problems such
as occur in list processing; processor allocation involves simple arithmetic calculations
and does not complicate our algorithm.

Most of the structures are defined relative to a vertical “reference line”L. In some of
the diagrams, to save space,L will be shown as horizontal.

2. Definitions, Notations, and Terms. In this section the notions of convex hull,
Voronoi diagram, contour, beachline, and fringe are defined. Various geometrical prop-
erties are demonstrated; the section summary indicates where such properties will be
useful.

2.1. We consider throughout a setSof sites, points in the plane;n will be the number
of sites inS. For convenience, the following assumptions are made aboutS.

• n is a power of 2.
• For no two distinct pairs{p,q}, {p′,q′} of sites are the linespq and p′q′ parallel.9

• No four sites are concyclic.
• No two sites have the samex-coordinate.

2.2. Theconvex hull H(S) of S is the smallest convex set containingS (Figure 2).
Its boundary is a convex polygon whose corners are sites ofS. The distance|x − y|
between two points in the plane is Euclidean distance. For any pointx, the distance of

9 The distinct pairs could have one site in common, so this implies no three sites are collinear.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 573

Fig. 2.Convex hull of a set of point sites.

x to a nonempty setT of points is

d(x, T) = inf{|x − t |: t ∈ T}.

For any sitep itsVoronoi cell(with respect toS) is the set of pointsx in the plane such that
|x− p| = d(x, S), i.e., the set of points as close or closer top than to any other site inS.

Let x be a point in the plane. Itsclearance circlerelative toS is the circle centred
at x and of radiusd(x, S). This is the largest circle centred atx whose interior contains
no site inS. The Voronoi cell of a sitep can be defined as the set of all points whose
clearance circle touchesp.

The cell owned byp can be expressed as the intersection ofn−1 closed half-planes;
because, for every other siteq, the set of points equidistant fromp andq is a straight
line, and the set of points as close or closer top than toq is a closed half-plane bounded
by this line. Therefore the cell is a (topologically) closed convex region whose boundary
is an open or closed polygon.10

DEFINITION 2.3. TheVoronoi diagramVor(S) is the union of all these cell boundaries.

Equivalently, the Voronoi diagram consists of every point in the plane whose clearance
circle touches two or more sites.

2.4. The Voronoi diagram is a plane graph withn faces, one for each site, and hence
it hasO(n) edges and vertices. The cells owned by the corners ofH(S) are unbounded,
and all other cells are bounded. The unbounded edges are infinite rays perpendicular to
the sides ofH(S) (and collinear with the midpoints of its sides, of course). The vertices
are those points in the plane whose clearance circles touch at least three (hence, in view
of 2.1, exactly three) sites.

We begin with a simple lemma about Voronoi vertices. It will be used in Lemma 2.20
below.

LEMMA 2.5. Letv be a Voronoi vertex, and let V be any line throughv. Then Voronoi
edges fromv extend on both sides of V.

PROOF. See Figure 3. Without loss of generality,v is the only vertex, andV is vertical.
If none of the incident edges extends rightwards fromv, then one of the incident cells,

10 The nondegeneracy assumptions 2.1 eliminate the possibility that its boundary is two parallel lines.

574 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

C

V

v

Fig. 3. Illustrating Lemma 2.5.

C say, contains all points to the right ofV . This is impossible sinceC is convex with a
corner atv.

2.6. Construction of the diagram will be by divide-and-conquer. Initially, the sites are
sorted byx-coordinate (which are all distinct, 2.1). The recurrence step involves parti-
tioningSinto two equal-size setsP andQ separated by a vertical lineL passing between
the two median elements.

DEFINITION 2.7. The(P, Q)-contour[25] is the set of pointsx in the plane such that
d(x, P) = d(x, Q).

(The(P, Q)-contour is an infinite zigzag line, monotonic in they-direction [25]: see
Figure 1.) Then Vor(S) is the union of the contour together with that part of Vor(P) to
its left and of Vor(Q) to its right.

Throughout this paper,S, L, P, andQ play these rˆoles. SinceP andQ play almost
identical rôles, any statement involvingP applies, suitably altered, toQ.

DEFINITION 2.8. (See Figure 4.) The(P, L)-beachlineis the set of pointsx such that
d(x, P) = d(x, L).

LEMMA 2.9.

(i) The (P, L)-beachline is infinite, piecewise parabolic, and monotonic in the y-
direction, each segment is contained in a cell ofVor(P), and its cusps(points
common to two adjacent segments) are on the edges ofVor(P).

Fig. 4. Vor(P), reference lineL, (P, L)-beachline and -fringe. Thex-direction is upwards andL is shown
horizontal.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 575

(ii) The beachline crosses each edge ofVor(P) at most twice: hence there are O(n)
beachline segments.

(iii) The contour lies strictly between the(P, L)- and(Q, L)-beachlines.

PROOF. (i) For each sitep in P, let Rp consist of all points closer top than L. The
boundary of this region is the parabola with focusp and directrixL. The beachline is
the boundary of the union of all these regionsRp: hence it is infinite, monotonic in the
y-direction, and piecewise parabolic.

If a point x on the beachline is interior to a segment with focusp, then its clearance
circle touchesp alone and hencex is in the cell forp. If it is on the boundary of two
segments, then it is on the edge of Vor(P) separating the two associated foci.

(ii) An edge bounding the cell of the sitep can meet the beachline only on the parabola
boundingRp, hence it can meet it at most twice.

(iii) If a point x is on the(P, Q)-contour, then its clearance circle touches bothP and
Q; hence this circle intersectsL properly andx lies between the two beachlines.

REMARK 2.10. We have assumed that the processors are capable of exact rational arith-
metic. The sites, and any vertical separating lineL, are assumed, of course, to have ra-
tional coordinates. Given two sitesp andq, the perpendicular bisector (which contains
the Voronoi edge separating them, if it exists) satisfies a rational linear equation: hence
the Voronoi vertices have rational coordinates.

This does not generally hold for the beachline cusps. However, it is easy to see that
their coordinates satisfy quadratic equations with rational coefficients, hence are of the
form a ± √b wherea andb are rational. Comparison between two quantities of this
form, which is the only exact arithmetic operation needed, is easily accomplished with
a few rational operations.

DEFINITION 2.11. The(P, L)-fringe is that part of Vor(P) to the right of the(P, L)-
beachline.11

See Figure 4. From the above lemma, the contour can meet Vor(P) only in this fringe.
We first note that

LEMMA 2.12. A fringe edge cannot meet the beachline twice.

PROOF. See Figure 5. Suppose thatf is a fringe edge, on the bisector of two sitesp
andr ; suppose that both its endpointsu andv were on the beachline. These endpoints
are equidistant fromp, r , andL, and this fixes them uniquely on the bisector between
p andr . Then f is (by definition) the edge joiningu andv: but points betweenu andv
are to the left of the beachline, hence not on the fringe, a contradiction.

It is possible that an edge of Vor(P) could cross the contour twice; if so, the beachline
divides it into two fringe edges. That is a consequence of the following lemma.

11 The(Q, L)-fringe lies to the left of the(Q, L)-beachline.

576 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

f

L

v

u

r

p

Fig. 5. Illustrating Lemma 2.12.

LEMMA 2.13. Let X be a line-segment or ray with one end on the beachline at a point x
and entirely contained in a cell ofVor(P) containing x. Then X cannot meet the contour
more than once.

PROOF. (See Figure 6.) Choosep ∈ P so thatX is in the cell of Vor(P) owned byp.
We assume thatX meets the contour at least once. Lety be the point onX, closest tox,
whereX meets the contour. Now,x is on the beachline: thereforex is not on the contour,
and it is closer top than to the closest site inQ (Lemma 2.9(iii)).

Let q be a site inQ such thaty is equidistant fromp andq. Sincey is on the per-
pendicular bisector of the linepq, andx (being closer top) is not, all points beyondy
on X are closer toq than top. Since they are all in the cell of Vor(P) owned byp, they
are closer to the closest site inQ than inP, and are therefore to the right of the contour.
Hence no point beyondy is on the contour.

LEMMA 2.14. A fringe is a forest of(free)12 trees.

x

y

X
q

p

Fig. 6. Illustrating Lemma 2.13.

12 A free tree is a connected undirected graph without cycles; it does not have a distinguished root node. In
this paper “graph” has a wider meaning than usual, since edges can be unbounded.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 577

s

s

A

Fig. 7. As: beachline region owned bys (Definition 2.15). The open boundarybAs is darkened.

PROOF. In other words, the(P, L)-fringe is an acyclic graph. The reason is as follows:
any simple cycle of edges in Vor(P) must (being a Jordan curve13) enclose part of the
plane. Its interior, being open, intersects the interior of the cell of at least one sitep.
However, the cycle is disjoint from the cell interior, so it encloses all of the cell, and
hence enclosesp. Sincep is to the left of the beachline, the cycle cannot be entirely
within the fringe.

DEFINITION 2.15. Lets be a beachline segment, contained in the cellC of a site p
in Vor(P). The region As owned bys is that part ofC bounded bys on its left. The
boundary ofAs (which includess) is conventionally denoted∂As. The open boundary14

bAs is that part of∂As to the right of the beachline:bAs = ∂As\s.

See Figure 7. The open boundary ofAs is whereAs intersects the(P, L)-fringe.

2.16. It is easy to show that for every cornerp of the convex hullH(P) of P there
exists a circle touchingp andL and not touching or containing any other site inP or
Q: in other words, each corner of the convex hull owns a beachline segment. The two
infinite segments of the beachline belong to the parabola whose focus is the leftmost site
in P (necessarily a corner ofH(P)).

Consider one of the infinite edges of Vor(P). It lies along the perpendicular bisector
B of two sitesp, p′ which are corners ofH(P). As a pointz moves alongB away from
H(P), the circle with centrez passing throughp and p′ increases in size; whenz is
sufficiently distant then that circle contains no other sites inP and intersectsL (since the
line pp′ is not vertical by assumption 2.1). This implies thatz is on the(P, L)-fringe.
In other words (see Figure 8),

LEMMA 2.17. Every unbounded edge ofVor(P) intersects the(P, L)-fringe, and the
intersection is unbounded.

13 A Jordan curve is a curve in the plane topologically equivalent to a circle. The Jordan Curve theorem [16],
[21] says that such a curve has a definite “inside” and “outside.”
14 “Open boundary” is a nonstandard term, used only in this paper.

578 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

’

L

z

p
p

Fig. 8. Illustrating Lemma 2.17.

DEFINITION 2.18. A segments is aseparating segmentif s is bounded butAs is un-
bounded.

If s is a separating segment, then its two endpoints are on different, disjoint, unbounded
components ofbAs:

LEMMA 2.19. If s is a bounded nonseparating segment, then its endpoints are con-
nected by bAs. If it is a separating segment, then its endpoints are connected to different
unbounded edges on the fringe.

PROOF. Consider a point moving alongbAs, beginning at the lower endpoint ofs. The
moving point either goes to infinity, along an unbounded fringe edge, or returns to the
beachline at the upper endpoint ofs. In the first caseAs is unbounded. In the second
casebAs is bounded.

Thus if s is bounded (has two endpoints), but is not a separating segment, then its
endpoints are connected alongbAs. If s is a separating segment, then its endpoints are
not connected alongbAs, its lower endpoint is connected to an unbounded edge, and its
upper endpoint is (by similar reasoning) connected to a different unbounded edge.

LEMMA 2.20. Each tree in the(P, L)-fringe contains exactly one unbounded edge from
Vor(P).

PROOF. Let T be a tree in the(P, L)-fringe. Leth be the highest beachline cusp onT .
The segments whose lower endpoint ish cannot be a bounded nonseparating segment,
since otherwise, by Lemma 2.19, its upper endpoint would also be inT . Thereforeh is
connected to an unbounded edge alongbAs. ThereforeT contains at least one unbounded
edge.

Next we show that every tree meets at most one unbounded edge; equivalently, there
is no path within the(P, L)-fringe joining two unbounded edges.

Consider any simple path5 in Vor(P) joining two infinite edges of Vor(P). Let R be
a large rectangular region containing all sites inP and all vertices in Vor(P), so only the
unbounded edges of the diagram intersect the boundary∂R, and bothL and the infinite

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 579

B

A

p
x

Π

Fig. 9. Illustrating Lemma 2.20.

beachline segments pass through the top and/or bottom sides ofR. Note that5 intersects
∂R at exactly two points. By a straightforward adaptation of the Jordan Curve Theorem,
5 partitionsR into two open connected setsA andB. See Figure 9.

Let x be a point on5, not a vertex, so there are exactly two Voronoi cells incident tox,
owned, say, byp andq, respectively. These sites are both insideR, and the line-segments
px andqx are entirely within these respective cells, meeting5 only atx, so one of them
is in A and the other is inB. This implies that bothA andB contain sites fromP.

Clearly, the outside ofR is partitioned by5 into two connected regions, so we can
say that5 divides the whole plane into two connected regions, still denotedA and B.
We shall labelA andB so thatB contains a sitep such that the horizontal ray extending
leftwards fromp intersects5 at a pointx. Since the beachline must pass to the right of
p, it will follow that x is not on the fringe, and the proof will be complete (the infinite
edges belonging to different fringe trees).

If 5 extends infinitely in both vertical directions, then letB be the region “to the right
of” 5. Then5 passes to the left of all sites inB, and no more need be said. Otherwise,
5 is bounded below, say, and unbounded above (by assumption 2.1, the infinite edges
cannot be horizontal). LetB then be the region “above”5. Then for every horizontal
line `, B ∩ ` is bounded. Letp be a site inB, and let̀ be the horizontal line throughp.
Let x be the leftmost point ofB ∩ `; thenx is on5 and to the left ofp.

2.21. LetT be a free tree—a connected acyclic graph—in the(P, L)-fringe. LetE be
its unique unbounded edge, withr its endpoint. Orient all edges ofT by orientingE away
fromr and orienting all other edges towardsr (i.e., any edgeeis connected tor by a unique
path inT : if e 6= E, then it is oriented towardsr along this path). Regarding these edge
orientations as from child to parent,T (or, more properly,T\E) is now given the structure
of a binary tree: the leaves ofT are the cusps whereT meets the beachline. Every internal
nodev of T has two incoming edges and one outgoing edge. Lete3 be the outgoing edge.
Thene3 is oriented towards the parent ofv (unlessv = r). Let C1 be the cell of Vor(P)
to the left ofe3, and letC2 be the other cell; the other two edges meeting atv are on the
boundary of these cells; lete1 be the edge on the boundary ofC1; similarly, e2. Then the
child node one1 (resp.e2) is defined as theleft (resp. right) child ofv. See Figure 10.

LEMMA 2.22. Let e be a fringe edge, on a fringe tree T. Let p1 (resp. p2) be the site
owning the cell to the left(resp. right) of e. Let x be a point on the interior of e. Let
x1 (resp. x2) be the unique point where the line-segment xp1 (resp. xp2) crosses the

580 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

v
1

2

2

1
3

C

C

e

e e

Fig. 10.Illustrating 2.21.

(P, L)-beachline. The beachline interval from x1 to x2 and the line-segments xx1 and
xx2 together form a Jordan curve J. Suppose thatv is the endpoint of e inside J(or on
J if e meets the beachline). See Figure11.Then:

(i) All descendants ofv in T are inside J and all nodes inside J are descendants ofv.
(ii) x1 is above x2 on the beachline.

PROOF. Letu be a node insideJ. The path fromu to infinity in the fringe must crossJ, at
some point not on the beachline; the only such point isx, and the path must therefore pass
throughv, sou is a descendant ofv. If u is a node of the fringe not insideJ, then the path
fromu to infinity cannot crossJ, since if it enteredJ it would have to leave it at a different
point, but it can only crossJ at x. Thereforeu is not a descendant ofv. This proves (i).

(ii) Let y be a point beyondx on e, so the line-segmentxy is oriented towards the
infinite part ofT . Travel around the Jordan curveJ, beginning atx1: from x1 to x to x2

and along the beachline back tox1. At x, y is to the left of this path. Ifx2 were abovex1,
then this tour would be anticlockwise, with the interior ofJ on the left. In this case,y
would be insideJ. However, in this case a path fromy to infinity in T would be forced
to leaveJ, and therefore crossx, which is impossible.

COROLLARY 2.23. Let e be a fringe edge, with p1 and p2 its two adjacent sites. Then
the orientation of e in the fringe depends only on p1, p2, and L.

PROOF. Choose any internal pointx on e, and calculatex1 andx2 as in Lemma 2.22.
Assume thatx1 is the higher of the two points. Thene is oriented so thatx1 (and p1) is
to the left ofe.

e

p

x
x

p

x

J

1

1

2

2

JJ

J

v

y

Fig. 11.Illustrating Lemma 2.22. Thex-direction is upwards.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 581

v

w

u

Fig. 12.Illustrating Lemma 2.25.

COROLLARY 2.24. For any fringe nodev, the leaf descendants ofv form a contiguous
interval of beachline cusps,with the leftmost descendant highest and the rightmost lowest.

PROOF. From Lemma 2.22(i), and following the notation of that lemma, the leaf de-
scendants are betweenx1 andx2 on the beachline; hence they form a contiguous interval.
The leftmost leaf descendant is the closest cusp tox1 in J: hence it is the highest cusp.
Similarly, the rightmost cusp is the lowest.

Consider a segments of the beachline between these two cusps. It is a bounded
nonseparating segment (Definition 2.18): letu andw be its upper and lower endpoints.
Recall (Lemma 2.19) thatbAs connectsu tow in T .

Now for any treeT a path joining two (adjacent) leavesu andw can be separated into
two branches leading from the leaves to their lowest common ancestorv. In the present
case, the branch fromu to v (clockwise alongbAs) leads to a left child ofv along a
rightmost branch, and the branch fromw to v (anticlockwise alongbAs) leads to a right
child of v along a leftmost branch. See Figure 12. This implies thatu andw are the
inorder predecessor and successor, respectively, ofv:

LEMMA 2.25. If u andw are the endpoints of a nonseparating segment, so they are
adjacent beachline cusps, andv is their lowest common ancestor, then u is the inorder
predecessor andw is the successor ofv.

Another lemma with the same flavour as Lemma 2.22 is about edge orientations at
the contour. It refers to the construction in that lemma.

LEMMA 2.26. In Lemma2.22suppose that x is not to the right of the(P, Q)-contour
(it might be on the contour); let v be as in the lemma. Thenv and all its descendants are
to the left of the contour.

PROOF. For clarity, assumex is on the contour. By Lemma 2.13, the line-segmentsx1x
andx2x meet the contour only atx, so the Jordan curveJ meets the contour only atx.
However, the beachline is to the left of the contour; hence so isJ; hence so isv and all
its descendants.

Both the contour and the beachline are monotonic in they-direction. The order of
edges (resp. segments) is not necessarily the same as the vertical order of the sites owning

582 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

b

a

Fig. 13.Illustrating Lemma 2.27(i).

them. However, there is a way to match contour edges with some beachline segments so
that vertical orders correspond. We call an edge which meets the contour anattachment.

In the following lemma we speak of beachline “features.” This means “segments or
cusps.” Ife is a fringe edge, its “child” endpointv is either a beachline cusp, or comes
between two adjacent beachline cuspsu andw in inorder (Lemma 2.25). In the first
case we consider the beachline cusp to “own”v and in the second case we consider the
beachline segment betweenu andw to “own” v.

LEMMA 2.27.

(i) For any beachline segment s, As (2.15)intersects the contour in a connected inter-
val.

(ii) Let A be the set of attachments, let U be the sequence of beachline features owning
the child endpoints of the edges in A, and let V be the sequence of contour vertices
where they cross the contour. Then U and V are in the same vertical order.

(iii) Let e be a contour attachment, meeting the contour at a vertexv, and let i1 and i2
be the contour edges incident tov, with i1 above i2. Let s1 and s2 be the(P, L)-
beachline segments such that ij intersects Asj , j = 1, 2. Then s1 is above s2.

PROOF. (i) If the intersection were disconnected, then there would be two pointsa, b
common to the contour and the open boundarybAs, with a aboveb and no other such
points between. See Figure 13. The paths froma to b onbAs and on the contour would
form between them a simple cycle of edges in Vor(S), a Jordan curve, containing sites
from S and lying between the(P, L)-beachline and the(P, Q) contour. Hence these
sites are fromP and are to the right of the beachline, which is impossible.

(ii) Let a andb be two points on the contour, where edgese1 ande2 respectively of
the(P, L)-fringe meet the contour, witha aboveb and no other such point in between.
Then the edges (truncated toa andb, respectively) and the contour interval between
them are all on the boundary of the same cell,C, of Vor(S).

2

1

C

e

e

v

b

au

Fig. 14.Illustrating Lemma 2.27(ii).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 583

2

2

11

s

s

i

i

e

Fig. 15.Illustrating Lemma 2.27(iii).

Let u be the child vertex one1, v that one2 (Figure 14). The pathvbau (from v to b
alonge2, then fromb to a along the contour, and then froma to u) is in the anticlockwise
sense around the boundary∂C. SoC is to the left ofe2 and to the right ofe1; the right-
most cusp descendant ofu and the leftmost descendant ofv are upper and lower ends
respectively of a beachline segment inC; so the beachline feature owningu is above
that owningv, as required.

(iii) See Figure 15. The attachmente crosses the contour from left to right;i1 is left
of e and i2 is right of e; therefores1 ands2 are respectively left and right ofe, which
implies thats1 is aboves2.

Summary. In this section the structures of the beachline and fringe have been analysed
in detail. The results, summarized, are: each unbounded edge of Vor(P) separates the
cells of sites which are adjacent corners of the convex hullH(P). For every such edge
there is an unbounded edge on the(P, L)-fringe.15 The(P, L)-fringe is a disjoint union
of free trees; every such tree contains a unique unbounded edge. These trees can be
oriented naturally as binary trees, with the leaves on the beachline: with this orientation,
the leftmost descendant of a node is the highest16 on the beachline.

Since the fringe has quite a regular structure, it partitions the plane into regions which
are well organized for planar point-location queries; this organization is discussed in
detail in Section 4, leading to efficient calculation of the contour in Section 5.

3. Parallel Operations on Arrays. This section collects some standard techniques of
parallel computation. Most of them are of the

√
n divide-and-conquer style, leading to

variousO(log log(n)) parallel time algorithms.

3.1. We begin with a review of Valiant’s CREW procedure to merge two sorted arrays
A andB of sizesn andm respectively into another arrayC of sizen+m. We assume
there is a processor attached to each entry inA andB. For every itemA[i] we want to
calculate the maximum indexj (if any) such thatA[i] > B[j]; for every itemB[j] we
want to calculate the maximum indexi (if any) such thatA[i] ≤ B[j].

Let A be divided into
√

n blocks of size
√

n. Correspondingly,B is divided into
√

n

15 There are two such edges ifP contains only two sites.
16 AssumingP is to the left ofL; otherwise the opposite holds.

584 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

(uneven) intervals, and each block ofA is merged recursively with the corresponding
interval fromB, as follows.

Call the first elements in each block theblock leaders. Let ni = 1+ (i − 1)
√

n: then
A[ni · · ·ni+1− 1] is thei th block of A. The corresponding intervalB[mi · · ·mi+1− 1]
(which can be empty) satisfies:B[mi] is the first element no less thanA[ni], if it exists.
Calculating the partition ofB is in two steps. First, the elementsB[mi] matching the
block leaders are identified; these elements define the partition ofB. Second, all elements
in B[mi · · ·mi+1− 1] matching thei th block of A are informed.

Let B be divided intom/
√

n blocks each of size
√

n. For each block leaderA[ni]
in A assign one processor from each block ofB to compare the block leader,B[`],
say, with A[ni] and hence identify the largest block leaderB[`] of B (if any) such
that B[`] < A[ni]. Then the processors inA[ni · · ·ni+1 − 1] can inspect the block
B[` · · · `+√n−1] to ascertain the largesti ′ such thatB[i ′ −1] < A[i]: i ′ is the desired
indexmi . This finishes the first step.

Next the correct indicesi are first written to the block leaders ofB as follows: ifB[`]
is a block leader, then the processors in the block identify the corresponding blocki of
A, by finding the largestni such thatA[ni] ≤ B[`].

To clarify the second step, we define

DEFINITION 3.2. A block of processors inA is short if the corresponding interval ofB
is within a single block ofB, otherwise it islong.

(Compare with 5.6.) LetJ be thei th block of A, and letI be the corresponding interval
mi · · ·mi+1 − 1 of B. If J is short, then|J| ≥ |I | and the indexi can be written into
I by the processors inJ. If J is long, the processors inJ first write the indexi to the
leftmost and rightmost blocks ofB intersectingI . Then the processors inI complete the
calculation; for the only entries inI for which i is not yet calculated are those belonging
to complete blocks contained inI , and they can copyi from their block leaders. This
finishes the second step.

For a complete description, which does not assume log log(n) is an integer, and which
achieves optimal speedup (n/log log(n) processors), see [18].

3.3. The following “broadcasting” problem occurs in the Voronoi diagram algorithm.
Suppose thatA is an array of bits with one processor attached to each array entry. Sup-
pose that each 1-bit is intended to mark the beginning of a subinterval of the array, so
we call the 1-bits the “interval leaders.” The problem is to inform all the other proces-
sors of the nearest interval leaders, i.e., for eachi , the maximumj ≤ i which carries a
1-bit.

An obvious way is to use parallel prefix. This would be a bottleneck in our algorithm
[23]. When the interval leaders are linked together, however, it is possible to do this in
O(log log(n)) time, as shown below.

LEMMA 3.4. With A as above, and assuming that each interval leader knows the closest
interval leader to its left and right, all of A can be informed of the appropriate interval
leaders in O(log log(n)) parallel steps(CREW).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 585

PROOF. Without loss of generalityn is a power of 2; letn = 2k1+k2 wherek1 ≤ k2 ≤
k1+ 1. ConsiderA partitioned into 2k1 blocks of size 2k2.

We have the “marked” processors, the interval leaders, and we have the processors
at the beginning of each block, the block leaders. Each interval leader ascertains if there
are any block leaders in its interval. If so, it informs theleftmostsuch block leader. All
the processors in this block can consult the block leader, and then the interval leader, to
ascertain the range of block leaders in the interval, and hence to inform them all (there
are enough processors to do this).

Having done this, all processors in the same interval as their block leader or the leader
of thenextblock can identify themselves by consulting the block leader. The only proces-
sors which remain in doubt are those in intervals which do not contain a block leader, and
these can be informed by a recursive application of the same method within the blocks.

In summary: there are about log log(n) rounds. In thei th round,B is partitioned into
22i

blocks of equal size. For each one of these blocks, if it is entirely contained in an
interval of the partition, then the identity of the interval leader is written into each block
entry. If a block does not fit into an interval of the partition in thei th round, then it is
untouched during that round.

Lemma 3.4 addresses the so-calledforward chaining problem[6], in the special case
where there are pointer-links between the marked elements. Actually, the same effect can
be achieved by a subtle variation of the methods in the above two lemmas, on a CRCW
machine, without assuming such links. We state the result (it is used in Sections 7 and 8):

PROPOSITION3.5 [6]. If A is an array of processors, some of them marked, in a CRCW
machine, then in time O(log log(n)) the processors can attach to each array entry A[j]
indices i and k to the closest marked entries(if they exist) left and right of j.

We also use the principal result from [6] in Section 8:

PROPOSITION3.6. Let K be an array of k≤ n integers between1 and n. Then K can
be stably sorted in O(log(n) log log(n)) time using k/log(n) processors(CRCW).

PROOF. Theorem 1 of [6] provides for sortingK stably in timet (k, n) = O(log(k)/
log log(k)+log log(n))with a time-processor product ofO(k log log(n)). Usingk/log(n)
processors, the time would beO(log(n) log log(n)), which is greater thant (k, n), so the
time is achievable.

3.7. For completeness we include two other techniques: list-ranking and parallel prefix.
These are applied in Sections 7 and 8. The techniques described here are inefficient in
terms of processor allocation, but they are sufficient for our purposes.

Given a linked listF , the rank of a node inF is its distance from the last node in the
list. Let k = |F |. If processors are assigned to every node in the list, this rank can be
calculated in timeO(log(k)) as follows: there are about log2(k) phases; in the(r + 1)st
phase all nodes of rank less than 2r know their rank, and the other nodes know the node
at distance 2r ahead of them in the list. A typical nodep with a nodeq at distance 2r

586 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

ahead on the list calculates the node at distance 2r+1 by pointer jumping, and, if this does
not exist, stores its rank as 2r + d whered is the rank ofq.

This (exclusive write) algorithm will be sufficient for our purposes;O(log(k)) is
optimal for exclusive-write machines, as can be shown by a reduction from parity [13].

Parallel prefix is the recognized method of solving the following problem: given a
list x1, . . . , xk of numbers stored in an array, compute all partial sums

∑r
1 xi . It can

be solved withk/log(k) processors (CREW), essentially by covering the array with a
balanced tree structure and calculating partial sums of subintervals covered by nodes of
the tree [19]. The runtime of log(k) achieved is more or less optimal [23].

4. Point Location Using the(P, L)-Fringe. From Section 2 we have a fairly complete
picture of the(P, L)-fringe: it is a forest of free trees, exactly one tree for each unbounded
edge of Vor(P); the leaves of each tree form a contiguous interval of cusps along the
(P, L)-beachline, and it has essentially the structure of a binary tree in which the leaf
descendants of any node likewise forms a contiguous interval along the beachline, with
the “leftmost” above the “rightmost” with respect toy-coordinates.

Throughout this section,n will be the number of sites inP. The beachline, fringe,
etc., and the arrays covering these structures, all have sizeO(n). It is convenient to speak
as ifn is the number of entries in an array covering the(P, L)-beachline.

4.1. We address the followinglocationproblem: given a pointq in the plane, to decide
whether it lies to the right of the(P, L)-beachline, and, if so, to return the cell of Vor(P)
containingq—that is, to return the site inP closest toq.

The aim, realized in Section 5, is to use search structures on the(P, L)- and(Q, L)-
fringes to calculate the(P, Q)-contour vertices. We use methods analogous to parallel
merging (3.1). Valiant’s parallel algorithm to merge sorted arraysA andB is based on
the observation that any itemx can be located in the arrayA in two steps using

√
n pro-

cessors. Analogously, we describe a “skeleton tree” for the(P, L)-fringe which enables
any pointx to be located in the fringe region containingx using

√
n processors. The

skeleton tree will have size
√

n and each node of the tree will be assigned a plane region
intersectingO(

√
n) regions of the(P, L)-fringe.

4.2. Since the individual trees in the fringe correspond to sides of the convex hull
H(P), it is useful to have a description of this set (i.e., an array containing its corners
in cyclic order) available during the algorithm. Fortunately it is not difficult to construct
H(S) from H(P) andH(Q)with n processors: it is necessary to calculate the two outer
tangents common toH(P) and H(Q), and this can be done in constant parallel time
using

√
n divide-and-conquer [28], [4], [22]. Thus we have all relevant convex hulls

constructed during the algorithm.

4.3. The fringe is laid out as a sequence of binary trees. To provide a uniform search-
structure, it is convenient to embed the structure in asingle full binary treeT . The
structure ofT will itself be mapped onto the beachline.

Let T1, . . . , Tk be the sequence of fringe trees, with root nodes (meeting the infinite
edges)r1, . . . , rk. Lets1, . . . , sk−1 be the sequence of beachline segments whose bound-
ing cusps are on different trees (s1 separatesT1 from T2 and so on; we ignore the two
unbounded segments owned by the leftmost site inH(P)).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 587

q

p f

Fig. 16.Ray from f is in p’s cell in Vor(P) (2.18).

These segmentssi are the separating segments (Definition 2.18). For the purpose of
searching the beachline, it is useful to have sample points available on the separating
segments. Such points can be calculated easily fromH(P); for definiteness, we fix the
following method of calculating separating points: given a sitep which is a corner of
H(P) but not the leftmost corner, letq be the corner next top in anticlockwise order, and
let f be the centre of the circle tangent toL and tangent to the sidepq at p. Then f is on
the separating segment associated withp, and the infinite ray extending outwards from
f , in the directionp f , is entirely within the (P, L)-fringe, and entirely withinp’s cell in
Vor(P). (See Figure 16.) It is convenient to fix and record descriptions of these rays and
call themseparating rays. There is one separating ray for each corner ofH(P) except the
leftmost.

One associates nodesni corresponding to thek−1 separating segmentss1, . . . , sk−1;
these are not associated with any vertex of the fringe, but, formally, the left child ofni

is ri and its right child isni+1 (except fornk−1 whose right child isrk).
This defines a structureT which is a single full binary tree. The leaves ofT corre-

spond to the beachline cusps; the internal nodes correspond to the bounded beachline
segments. The beachline segments (excluding the two unbounded segments) each “own”
a unique internal node ofT , namely, the least common ancestor (LCA) inT of its two
bounding cusps. Ifs is a separating segment (2.18), then this LCA is an artificial nodeni

introduced above. Ifs is a bounded nonseparating segment, then this LCA corresponds
to a (P, L)-fringe vertex, using the natural binary-tree structure on the fringe (2.21).
Sufficient information about the(P, L)-fringe to define the structure ofT will be stored
in an arrayA covering the(P, L)-beachline (4.7).

DEFINITION 4.4. Ifs is a bounded nonseparating segment,17 the unique vertexv coming
between its bounding cusps in inorder (Lemma 2.25) is called theinner vertexowned
by s.

4.5. The regionsAs as defined in 2.15 partition the plane to the right of the(P, L)-
beachline. By extending the ends of the open boundariesbAs leftwards with infinite
horizontal rays, we define a partition of the entire plane. This partition is subdivided as

17 Vertices of Vor(P) are not associated with the separating segments, which separate different trees of the
fringe.

588 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

vRv

v

Fig. 17.TubeRv ; T-pocket atv.

follows. With each inner nodev of T is associated atube: this is a polygonal region, not
necessarily convex, defined as follows. Letu andw bev’s leftmost and rightmost leaf
descendants inT . If u andw are in the same tree of the fringe, sov is a fringe vertex,
then the tube is bounded by the linesuv andvw (possibly but not necessarily fringe
edges), and the horizontal rays extending leftwards fromu andw. See Figure 17.

Otherwise,u andw are the highest and lowest cusps respectively meeting two fringe
treesTi andTj . If u is not the highest beachline cusp, then let the tube be bounded above
by the separating ray directly aboveu (4.3), extended leftwards from where it meets the
beachline by an infinite horizontal ray. Ifu is the highest cusp, then the tube is unbounded
above. Similarly, the tube is bounded below by two infinite rays unlessw is the lowest
cusp in which case the region is unbounded below.

All tubes are closed, that is, they include their polygonal boundaries.

4.6. We assume there is an arrayA covering the(P, L)-beachline. Recall from the In-
troduction that this means that each array entryA[i] contains, or points to, a data record
R(f) associated with one of the featuresf (a cusp or segment) of the beachline, and
that all beachline features are thus accessed in vertically descending order inA, possibly
with duplicate entries. We allow for duplicates to avoid a data-compression step between
phases of the algorithm.

In general, the number of processors available will be a fixed fraction of the size ofA.
For simplicity, we assume that there are sufficiently many processors available to attach
to all the elements ofA.

4.7. Array entryA[j] contains the following information about the beachline feature
f which it covers.

• The intervali · · · k of entries inA covering f .

If j 6= i , then no other data need be stored with this entry: it is enough to store the
information aboutf in A[i].

If the featuref is a cusp, then:

• Its coordinates are stored inA[i].
• Letedenote the edge of Vor(P) crossing the beachline at the cusp: a pointer to a record

for e is stored withf . This is needed when combining Vor(P)with Vor(Q) (Section 6).

Otherwise, it is a segment. The two unbounded segments contribute little information.
If the feature is a bounded segments, let u andw be the bounding cusps, and letv be

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 589

x
y

u

Fig. 18.Illustrating Lemma 4.9.

the inner vertex owned bys;18 then the information stored is:

• The sitep owning it, the coordinates ofv if s is not a separating segment (2.18); if it
is, a description of the separating ray. (Ifs is a separating segment, then the sitep is
a corner of the convex hullH(P), and the indexi of the leftmost entry inA covering
s will be associated withp in the description ofH(P).)
• Indices to the (leftmost) records covering the leftmost and rightmost cusp descendants

of v, from which the tube owned bys is easily determined.

DEFINITION 4.8. (See Figure 17.) TheT -pocketassociated with an internal nodev is
the setRv\(Ru ∪ Rw), whereRv is the tube associated withv andu andw are its two
children inT .

LEMMA 4.9. Pointer links defining the parent–child relations of T can be installed in
the array A in constant time with n processors. Then the T -pocket associated with every
node can be determined in constant time.

PROOF. We assume one processor per entry inA. Since the range of leaf descendants
is given with each node, it is trivial to test whether one node is an ancestor of another.
Given a nodeu, let x be the inorder predecessor of its leftmost descendant, and lety be
the inorder successor of its rightmost descendant. Ifx does not exist or is an ancestor
of y, thenu is a left child with parenty, otherwiseu is a right child with parentx. See
Figure 18. Thus with one processor assigned to each entry ofA it can be decided quickly
of every node whether it is a left or right child and which node is its parent. Then the
parent–child pointer can be installed in the parent’s record.

Since the tube associated with each node can be easily constructed, theT-pocket can
then be determined.

4.10. A pocket has at most twelve edges, including its infinite horizontal edges, it meets
at most three cells of Vor(P) to the right of the beachline, and hence it meets at most
three beachline segments. Hence, given a query pointx, a single processor can decide
easily whetherx is in the pocket, and if so, whetherx is to the right of the beachline,
and if so, which cell of Vor(P) containsx. Assigning processors to all the entries inA,
it is therefore easy to determine whetherx is to the right of the(P, L)-beachline, and if
so, which site inP is closest.

18 ThereforeA[i − 1] andA[k+ 1] contain records foru andw, respectively.

590 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

b

w v

u

Fig. 19.Skeleton tree:b, u, v, w splitting nodes,b, w bottom.u has one childb in T ′, v has childrenu andw
in T ′.

4.11. An important sampling technique will allow
√

n processors to solve location
problems in bounded parallel time. The sampling involves taking askeleton tree T′

whose nodes are nodes ofT and which have the same ancestor relation asT .
Letk be a proper divisor ofn (for convenience we assume thatn is a power of 2 (2.1)).

A k-sampleof T is the subsequence of leaves obtained by taking everykth elementA[i]
indexing a featuref , and choosing eitherf if it is a cusp or its lower cusp if it is a
segment. We call the leaves thus sampled themarkedleaves ofT .19 The marked leaves
form a subsequence such that between any two leaves in the sequence (in inorder) there
areO(k) nodes ofT . Thespanof an internal nodev is its set of marked leaf descendants:
this is easily calculated from the indexesi and j of the leftmost and rightmost entries in
A covering the descendants ofv.

An internal nodev is asplitting nodeif its two children both have nonempty span. It
is abottom nodeif it is but none of its descendants is a splitting node. Notice that every
bottom node has exactly two marked descendants. See Figure 19. There is a binary tree
T ′ whose nodes are the splitting nodes ofT , and whose leaves are the bottom nodes of
T . The parent of a node inT ′ is its closest splitting-node ancestor inT . A splitting node
which is not a bottom node can have one or two children inT ′.

If v is a splitting node, itsT ′-pocket is defined asRv\(Ru ∪ Rw) whereu andw are
its children inT ′, or Rv\Ru if v has just one childu in T ′; if v is a bottom node, itsT ′

pocket is simply the tubeRv. The highest splitting noder ′ in T ′—which need not be the
root ofT—is the root ofT ′: the complement ofRr ′ defines one other kind of pocket, the
enclosing pocket.

LEMMA 4.12.

(i) T ′ is a binary tree with O(n/k) nodes.
(ii) Each pocket contains O(k) vertices of the(P, L)-fringe.

(iii) Using the covering array A, n processors can identify the nodes of T′ and the
parent–child relations in O(1) parallel time.

19 The arrayA covers the beachline; a leaf can be marked because several of the sampled elements ofA are
associated with this leaf; ifA[i · · · j] is the subinterval ofA associated with the feature, thenA[i] is where the
marking information should be written; this information can be calculated by the processor attached toA[i],
the others remaining idle.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 591

(iv) The vertices and cusps in the(P, L)-fringe can be mapped to the pockets containing
them in O(1) parallel time.

(v) When20 k = √n, the location problem for any query point q can be solved by k
processors in O(1) parallel time.

PROOF. (i) We show that it is a binary tree in the sense that every node inT ′ has at most
two children inT ′. The notion of “left” and “right” child is irrelevant where a node has
just one child; otherwise, the children are independent nodes ofT , and it is natural to
order them the same way inT ′.

Suppose thatv has two different childrenu andw in T ′. Thenv is their closest ances-
tor in T which is a splitting node, so they are independent andv is their lowest common
ancestor (LCA). It follows readily thatv has no other children inT ′: If x were another
splitting-node descendant ofv, then say without loss of generality that bothw andx were
descendants of the right child ofv in T : then their LCAy would also be a descendant
of the right child, so it would differ fromv, and hencex could not be independent ofw
(y is not splitting), sox would be a descendant ofw.

Since every bottom node has two marked descendants inT , there are at most̀/2k
bottom nodes, wherè< n is the number of beachline cusps. IfT ′ were a full binary tree
it would follow that it had fewer thann/k nodes. However, it might not be. Consider the
full binary treeT ′′ obtained fromT ′ as follows: ifv is a splitting node, not a bottom node,
with just one childu in T ′, then one of its children inT , sayw, has exactly one marked
descendant, andu is descended from the other child. Addw as a leaf ofT ′′, sou andw are
siblings inT ′′. Then inT ′′ every leaf has at least one marked descendant, soT ′′ has at most
n/k leaves, andT ′′ is a full binary tree, so it, and thereforeT ′, has at most 2n/k nodes.

(ii) Let v be a splitting node. If it has two childrenu andw in T ′, then letT ′′ be the
subtree ofT at v, with the subtrees atu andw deleted. Then the leaves ofT ′′ come in
three intervals along the beachline, each containing no marked cusp, so it has at most
3k−3 leaves, and hence, since it is (nearly) a complete binary tree, fewer than 6k nodes
altogether. However, these are all the nodes in theT ′-pocket atv.

If v has just one childu in T ′, let T ′′ be the subtree ofT at v with the subtree at
u deleted. ThenT ′′ is (nearly) a complete binary tree, and its leaves are among two
intervals of beachline cusps. These cusps contain exactly one marked cusp, so there are
again at most 6k nodes inT ′′, hence in the pocket atv.

If v has no children inT ′, then it is a bottom node, and its leaf cusps form an interval
containing exactly two marked cusps, and again the pocket atv, which equals the tube
atv, contains at most 6k nodes ofT .

Finally, if v is the highest splitting node, letT ′′ be T with the subtree atv deleted:
thenT ′′ is (nearly) a complete binary tree whose leaves form two intervals along the
beachline and which has no marked leaf descendants, so it has at most 4k nodes. These
are all the nodes ofT in the enclosing pocket.

(iii) Let l1 andl2 be two adjacent marked leaves ofT . This means that the range of

20 Or
√

n/2, whichever is an integer.

592 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

entries ofA covering eitherl1 (resp.l2) or else its inorder predecessor contains an index
r (resp.r + k), wherer ≡ 1 modulok, andl1 andl2 are distinct.

Their LCA v in T must be a splitting node, since both its children possess marked
descendants. Furthermore, ifv is a splitting node, then taking asl1 the rightmost marked
leaf descendant of its left child, and asl2 the leftmost marked leaf descendant of its right
child, these are contiguous marked leaves andv is their LCA. Thus the splitting nodes
are exactly the LCAs of adjacent marked leaves.

Suppose thatr · · · s− 1 is an interval of lengthk wherer ≡ s ≡ 1 modulok. There
are leavesl1 andl2, possibly the same leaf, which are marked becauser (resp.s) is in the
interval covering them or covering the segment above them. If these are distinct, then
they are adjacent marked beachline leaves, and the processors allocated to the interval
can detect this, and since the LCA lies between these marked leaves in inorder, one of
the processors can identify it and attach the information to the array entry coveringl1.

Note that ifl1 is a marked leaf (not the last), then a single processor can access the
nearest marked leafl2 following it: it calculates the largestr ≡ 1 (modulok) in the range
coveringl1, and accessesl2 by inspectingA[r + k].

If u andv are the LCAs of adjacent pairsl1, l2 andl2, l3 of marked leaves, then either
u is an ancestor ofv in T , andv is its right child inT ′, or u is the left child ofv in T ′.
This concludes (iii).

(iv) Each splitting nodev is associated with a pair of adjacent marked leaves, hence
with a block of at leastk processors. Since its pocket containsO(k) nodes, forming at
most three intervals of contiguous nodes ofT (in inorder), the nodes inv’s pocket can
be labelled (with the index of the leftmost entry inA covering the segment whose inner
vertex isv) in bounded parallel time.

Each bottom node is associated with a unique pair of adjacent marked leaves, so it is
easy to assign a block ofk processors to label the interval of nodes in its pocket.

(v) Given the query pointq, the processors are first distributed over the nodes ofT ′,
andq is located to the correct pocket ofT ′. The processors are then distributed to the
nodes within the pocket, andq located in the correct pocket ofT .

5. Constructing the(P,Q)-Contour by Progressive Refinement. We have seen that
the fringe can be separated into pockets so that planar point location can be executed in
constant time using

√
n processors. Here we discuss the progressive subdivisions of the

fringe obtained by sampling at progressively smaller intervals. By iterating the process
log log(n) times all the contour vertices are constructed. Heren is the number of sites in
P ∪ Q; the arrays covering the beachlines have sizeO(n); for clarity we assume they
have sizen.

5.1. The interval lengths involved will progress through the sequencek0, k1, . . .where
k0 = n (assumed a power of 2), and, for eachi , ki+1 is either

√
ki or
√

ki /2, whichever is
an integer, until the value 1 is reached. Thus there are about log log(n) refinement steps.

LEMMA 5.2. No pocket edge crosses the contour more than once.

PROOF. The horizontal pocket edges (those to the left of the beachline) do not cross
the contour; the other pocket edges satisfy the hypothesis of Lemma 2.13.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 593

Any pocket has from two to six edges to the right of the beachline. Since the contour is
to the right of the beachline, it cannot cross the other pocket edges. Hence the boundary
of each pocket meets the contour at most six times and therefore the pocket meets the
contour in at most three connected intervals which we callcontour fragments.

The data-structure described in the previous section can be used to calculate the points
where pocket edges cross the contour, but first the pocket edges which cross the contour
are identified. In view of Lemma 5.2, for bounded edges it is enough to establish that their
endpoints are on opposite sides of the contour. For the unbounded edges (the separating
rays, 2.18), with only one endpoint, the following method is used.

LEMMA 5.3. Let R be one of the separating rays associated with the beachline, so it is
entirely within a cell ofVor(P). Then it can easily be determined whether R crosses the
contour.

PROOF. Letebe the side ofH(P) perpendicular toR; thenRcrosses the contour if and
only if e is not an edge ofH(P ∪ Q), which can be assumed to be already constructed
(4.2).

LEMMA 5.4. The contour fragments(at the first stage of the construction) can be defined
in constant parallel time.

PROOF. We consider the first stage, where a
√

n-sampling is used. Assign
√

n proces-
sors to each of theO(

√
n) pocket edges on the(Q, L)-fringe. We have seen how those

unbounded edges which cross the contour can be identified; a bounded pocket edge
crosses the contour if and only if its two ends lie on opposite sides of the contour, which
can be decided in constant time (4.1; Lemma 4.12).

The problem reduces to using
√

n processors to compute for a (possibly unbounded)
line-segmentX, known to cross the contour, and entirely contained in the cell of a site
q in Vor(Q), the pointc where it crosses the contour.

Assigning the processors to the(P, L)-fringe, the intervals of intersection (at most
three) ofX with each pocket are determined. EitherX is unbounded and the last, un-
bounded, interval begins closer toq than P, or there is an interval with one end closer
to q and the other toP—this is the interval containingc. It can then be computed by
reassigning the processors to the fringe edges within the pocket and determining in the
same way the cell of Vor(P) containingc, and hence calculatingc.

Thus the endpoints of all the contour fragments on the(Q, L)-fringe are determined.
Similarly for the(P, L)-fringe.

We now consider the process of refining the samplings to compute ultimately all the
contour vertices. Consider a refinement step. We have had (implicitly) a skeleton tree
T ′ obtained by sampling everyki th element ofA. At the next level of refinement there
is a skeleton treeT ′′ where everyki+1th entry in A is sampled. Recall that the pockets
are defined in terms of the “tubes”Ru associated with the nodes of the various skeleton
trees. These tubes are fixed in relation to the original fringe treeT and have nothing to
do with the samplings.

594 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

LEMMA 5.5. Assuming that the tree T′ is nonempty:

(i) Every marked cusp at one level will be marked at the next.
(ii) Every node in T′ is a node in T′′.
(iii) The T′′-pockets subdivide the T′-pockets.

PROOF. (i) Essentially trivial, sinceki+1 divideski . (ii) Therefore every splitting node
at thei th level is a splitting node at the(i + 1)st.

(iii) Given any nodesx, y of T , x is a descendant ofy if and only if Rx ⊆ Ry. The root
node ofT ′ is a descendant of that ofT ′′, hence the enclosing pocket forT ′ contains that
for T ′′. Let v′′ be a node ofT ′′, and letK denote theT ′′-pocket atv′′, not the enclosing
pocket ifv′′ is the root ofT ′′. If no node inT ′ is an ancestor ofv′′ (includingv′′), then
the root node ofT ′ is a proper descendant ofv′′, hence a descendant of one of its (one
or two) children inT ′′: henceK is contained in the enclosing pocket forT ′. If v′′ has
some ancestor inT ′, let v′ be the lowest such ancestor. Letu′ be a child ofv′ in T ′: u′

need not exist, but if it does, then it cannot be an ancestor ofv′′ in T ′ (being lower than
v′). If u′ andv′′ are independent, thenRv′′ ∩ Ru′ = ∅, so K ∩ Ru′ = ∅. If u′ andv′′ are
not independent, thenu′ is a proper descendant ofv′′ in T ′′, so the tubeRu′ is contained
in the tube at some child ofv′′ in T ′′, and once againK ∩ Ru′ = ∅. SinceK ⊆ Rv′
andK is disjoint from the tube at any child ofv′ in T ′, K is contained in theT ′-pocket
atv′.

5.6. LetR be a pocket of the(P, L)-fringe at a fixed level in the refinement process.
We want to compute where the contour intersects all the subpocket boundaries within
R, where the subpockets are those ofT ′′.

Note that the structure ofT ′′ can be built in bounded time, and for any node ofT ′′

the enclosing pocket inT ′ has been precomputed (Lemma 4.12).
There areO(ki) processors available to carry out this task forR. One deals separately

with each of the (at most three) fragments, intervals of the contour intersectingR. The
fragments can be assumed to be stored with the record forv, wherev is the node of the
(P, L)-fringe owning the pocket. The points where the contour crosses the pocket are
stored sorted byy-coordinate. Because the contour is monotonic in they-direction, the
highest pair of endpoints, if they exist, define the highest fragment, the next pair define
the middle fragment, and the lowest pair define the lowest fragment. The corresponding
pockets (at the same refinement level) of the(Q, L)-fringe containing these endpoints
can also be assumed stored with the endpoints, since locating the endpoints involved
locating these pockets.

Call a fragmentshort if there is aQ-fragment which contains it—in particular, all
of the fragment is in the same pocket, call itR′, of the (Q, L)-fringe. Otherwise it is
long (compare with Definition 3.2). By referring to the pockets of the(Q, L)-fringe
containing the fragment endpoints, it is easy to locate theQ-fragments containing them,
and hence determine whether a fragment inR is short or long.

Let F be a short fragment inR; let R′ be the corresponding pocket of the(Q, L)-
fringe containingF . RandR′ each containO(ki+1) subpockets each containingO(ki+1)

vertices in its respective fringe. The points whereF crosses subpocket boundaries inR
and R′ can be calculated inO(1) time using theki processors assigned toR. So, in

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 595

bounded time, for each short fragmentF relative to the subdivisionT ′, the points where
F crosses subpocket boundaries in the(P, L)- and(Q, L)-fringes can be calculated.

Interchanging the rˆoles ofP andQ, subpocket crossing points can be calculated for
all short fragments in the(Q, L)-fringe.

Let F be a long fragment inR. Its two endpoints are located in fragmentsF ′ andF ′′,
say, of the(Q, L)-fringe. The processors assigned toR can compute the correct subdivi-
sion ofF ∩ F ′ andF ∩ F ′′ in O(1) parallel time. Repeating this for all (up to three) long
fragments inR, the subdivision is completed, because any subpocket crossing point on
F is either inF ′ or in F ′′ or in a short fragment relative to the(Q, L)-beachline.

Thus the procedure can be iterated with bounded time per iteration, at the last iteration
the pockets contain a bounded number of fringe edges, and we conclude

THEOREM5.7. Given arrays covering the(P, L)- and (Q, L)-fringes, the (P, Q)-
contour vertices can be located in O(log logn) parallel steps using n processors
(CREW).

5.8. Once a point where a fringe edge meets the contour has been calculated, infor-
mation about the vertex can be stored with the fringe. Suppose thate is an edge of the
(P, L)-fringe; letu bee’s starting vertex; suppose that it is associated with fringe feature
f . If u is a cusp, thenf = u; otherwiseu is the inner vertex associated withf . Let a
be the point wheree crosses the contour.

Then the following can be stored withf : the coordinates ofa, and an index to the
(Q, L)-fringe segment whose region containsa. Let s1 ands2 be the segments directly
above and below the leftmost and rightmost descendant ofu in the(P, L)-fringe; then
a is the lowest point whereAs1 meets the contour and the highest whereAs2 meets the
contour; so this information (i.e., an index tof) can be associated withs1 ands2 in the
(P, L)-fringe. In other words,

LEMMA 5.9. Edges of the(P, L)-fringe which meet the contour can be pointer linked.

Since the corresponding fringe features follow the same sorted order as the corre-
sponding contour vertices (Lemma 2.27(ii)), we can use broadcasting (Lemma 3.4) to
cover the sorted sequence:

LEMMA 5.10. Arrays covering:

(i) Those contour vertices with two adjacent sites in P.
(ii) All contour vertices, both in sorted order, can be constructed in time O(log log(n)).

PROOF. (i) has been discussed; (ii) is obtained by constructing the array covering ver-
tices with two adjacent sites inQ, and merging the two.

6. Building Vor (P ∪ Q). In this section we address the problem of building the
Voronoi diagram: up to now we have concentrated on computing contour vertices. Given

596 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

u

2

1

c

e

p

p

Fig. 20.Illustrating 6.3.

S = P ∪ Q, we describe the representation of Vor(S), and show how to construct it
from Vor(P) and Vor(Q), once the(P, Q)-contour has been constructed. This turns
out to be easy.

We ignore the trivial cases in whichP or Q have fewer than three sites; therefore
Vor(P) and Vor(Q) each have at least one vertex.

6.1. The diagram Vor(S) is to be represented as a plane graph, organized as follows
[17]: there are records for every site and vertex, and for each vertex there are three edge
records. In this scheme, bounded edges are represented twice, and unbounded edges
once, as directed edges.

Each vertex record contains the vertex coordinates. Suppose that a directed edge is
oriented away from a vertexu: then we callu its “in-vertex.” If the edge is bounded then
we call its other end its “out-vertex.”

Let e be an edge with in-vertexu. The edge record contains pointers top1 and p2,
wherep1 is the site on its left andp2 the site on its right.

6.2. It is convenient to associate every Voronoi vertex with one of the adjacent sites,
canonically, as follows.

Consider a Voronoi vertexv. Since none of the sites adjacent tov are covertical (2.1),
none of the edges incident tov are horizontal; and either two edges extend downwards and
one upwards or vice versa (Lemma 2.5). Thereforev is the highest or lowest point in one
of the adjacent cells. It follows that there are at most 2|P| Voronoi vertices.21 This gives
a simple way to allocate space for Vor(P): to each site let there be associated two vertex
records, one for the highest vertex in its cell (if the cell is bounded above), and one for the
lowest (if bounded below). With each site let there be space allocated for six edge records
(three for each vertex). Since the vertices and edges are stored together it is unnecessary
to include pointer linkages from vertexu to the edges with in-vertexu, and so on.

6.3. In order to calculate the diagram, recall (4.7) that we assumed one more link be-
tween the beachline and the corresponding Voronoi diagram: to each cusp of the beachline
is attached a pointer to an edge record. Specifically, ifc is a cusp incident to an (oriented)
fringe edgee, then there is a link fromc to the record for the Voronoi edgee′ containinge
and oriented the same way ase. (If e is unbounded, then there is only one corresponding
edgee′, but it is oriented the same way ase: away from the beachline.) See Figure 20.

21 If the sites are in general position, then there are 2|P| − k − 2 Voronoi vertices, wherek is the number of
corners of the convex hullH(P).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 597

THEOREM6.4. Let A and B be arrays covering the(P, L)- and (Q, L)-fringes. As-
suming the extra linkages from cusps to edges(6.3) have been stored with the(P, L)-
and (Q, L)-fringes, and the(P, Q)-contour vertices have been located and stored in
their respective fringes(5.8),then the graph structure forVor(S) can be built in bounded
parallel time.

PROOF. (This realizes the idea of “stitching” along the contour.) Processors attached to
the two beachlines combine the structures of Vor(P) and Vor(Q), allocating new contour
edges and vertices, and discarding redundant parts of the diagrams as follows.

By Lemma 5.10 we can assume that the contour is sorted, so for every contour vertex
its two adjacent vertices (if they exist) can be accessed. First, records are created in
parallel for all contour vertices (they are stored in site records (6.2)).

Let v be a contour vertex stored inA or B; without loss of generality, two of the
adjacent sites are fromP and the other fromQ. This means thatv is where an edge
a of the (P, L)-fringe meets the contour (we calla a “contour attachment”). Lete be
the (directed) edge of Vor(P) containinga; let z be its in-vertex. Ifa meets the(P, L)-
beachline, thene is associated with the cusp where it meets the beachline; otherwise,e
is associated with the inner fringe vertex representingz.

A single processor can initialize records for the three new edges with in-vertexv (they
are stored with the same site asv is), installing the sites adjacent to each of these edges.
Two of these edges are along the contour, the third is opposite toe in direction.

For all contour “attachments”a in parallel, access the edgee containinga in Vor(P)
(or Vor(Q)), mark its old inverse (if it exists) “deleted,” and calculate its new inverse
as the edge(v, z), wherez is the in-vertex fore andv is the vertex wherea crosses the
contour.

Again access all these attachments in parallel; following the same notation, ife is not
marked “deleted,” install(v, z) as its inverse and makee the inverse for(v, z). Otherwise
e and its inverse both cross the contour twice, at verticesv andv′, say; the records for
(v, v′) and(v′, v) are made mutually inverse. This finishes calculation of the inverses
for all noncontour edges meeting the contour. For the contour edges the calculation is
trivial, since the contour vertices are sorted vertically.

The structure of Vor(S) consists of the Voronoi vertices and edges not marked
“deleted,” together with the linkages described above; these vertices and edges are stored
in the site records forS.

7. Building the (P ∪ Q,M)-Fringe. In Section 5 we used the(P, L)- and(Q, L)-
fringes to construct the(P, Q)-contour. To allowS= P ∪ Q to adopt the role ofP or
Q at a higher level of recursion, we need to compute the(S, K)- and(S,M)-fringes,
whereK andM are vertical lines to the left and right ofS= P ∪ Q.

In this section we show how to construct an arrayG covering the(S,M)-fringe; an
array covering the(S, K)-fringe is constructed symmetrically.

Recall what information is needed in the arrayG (4.7):

• Each entryG[j] covering a featuref of the(S,M)-beachline needs the rangei · · · k of
entries inG covering f . For the other data, we assumej = i (that is, the information
need only be stored in the leftmost entry coveringf).

598 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

• If f is a segment, the sitep owning it is stored inG[i].
• If f is a cusp, its coordinates are stored inG[i].
• If it is a nonseparating segment, the coordinates of its inner vertexv are stored in

G[i], and the indices of the records ofG covering the leftmost and rightmost cusp
descendants ofv.
• There is a representation built of Vor(S) as a planar graph; some linkages are needed

between the(S,M)-fringe and Vor(S): to each beachline cusp, a pointer to an edge
of Vor(S) which meets it (6.3).

7.1. Recall (2.15) that ifs is a beachline segment owned by a sitep, then As is that
part of the Voronoi cell owned byp to the right ofs. For this section only we make the
notation more explicit:AP,L

s is that part of the cell ofp in Vor(P) bounded bys and
closer toL than top.

Recall also that when the contour vertices were computed, certain data were stored
with the (P, L)- and(Q, L)-fringes (5.8). Suppose that a contour vertexx is where a
(P, L)-fringe edgee crosses the contour. Supposev is the fringe node (inner vertex or
cusp) at whichebegins; lets1 ands2 be the segments adjacent to leftmost and rightmost
descendants ofv, let f be the feature (cusp or segment) of the(P, L)-fringe owningv,
and lets be the segment of the(Q, L)-fringe whose region containsx. Then the coor-
dinates ofx, and a link tos, are stored withf ; and there are links betweenf , s1, ands2

(x is the lowest contour vertex meetingAP,L
s1

and the highest meetingAP,L
s2

(5.8)).
The following arrays are available, or will be constructed:

• An array A covering the(P, L)-fringe, with all data as required in 4.7 and 6.3, and
also information related to contour vertices as described above.
• An arrayB covering the(Q, L)-fringe, similar toA.
• An arrayC covering the(P,M)-fringe will be constructed fromA.
• An arrayD covering the(Q,M)-fringe.
• An arrayE covering the(Q, L)-fringe edges which cross the contour, sorted accord-

ing to the vertical order of the associated contour vertices. This is derived fromB
(Lemma 5.10).
• A ruling F for the(S,M)-beachline. Recall that this is a sorted array ofO(|S|/log(n))

horizontal lines, such that between any adjacent lines there areO(log(n)) beachline
cusps. Heren refers to the size of the “global” problem, different from|S|. In Section 8
it will be shown how all necessary rulings can be precomputed.
• FromC andD an array covering the(S,M)-beachline cusps will be constructed, and

then usingF an arrayG covering the(S,M)-beachline will be constructed. The last
step is to ensure thatG has sizeO(|S|) uniformly for all setsSof sites processed. The
necessary information (4.7, 6.3) will be installed inG.

REMARK 7.2. The problem of calculating the combined beachline may be dismissed as
a matter of “merging” two beachlines together. Of course, merging, in the conventional
sense, is heavily used in our algorithm, but since a single segment of the(P,M)-beachline
could be split into many segments of the(S,M)-beachline, there are difficulties in al-
locating array space. Indeed, this is the main difficulty of our paper. Without careful
treatment, it would lead to processor allocation problems.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 599

’

’

’

V

ev
v

u

w

s

s

s

s
1 1

2

2

Fig. 21.Illustrating Lemma 7.3.

LEMMA 7.3.

(i) Given an array A covering the(P, L)-fringe, an array C covering the(P,M)-
fringe can be constructed in parallel time O(log log(n)). For every segment s′ of
the (P,M)-beachline, there is a unique corresponding segment s of the(P, L)-
beachline.

(ii) s and s′ will be mutually accessible.

PROOF. First we explain what “corresponding segment” means. Every segments′ of the
(P,M)-beachline is contained in a unique regionAP,L

s (2.15) of the(P, L)-beachline;
thens is the corresponding segment. See Figure 21. Imagine a vertical lineV sweeping
from L to M , and consider how the(P,V)-beachline changes. The only event changing
the beachline qualitatively is where a beachline segment disappears, being occluded by
the two adjacent segments (the point at which it disappears is a vertex of Vor(P)).22 As V
moves, the segments sweep through beachline regions and are occasionally extinguished.

We say that a segments of the(P, L)-beachlinepersistswhen its regionAP,L
s (2.15)

intersects the(P,M)-beachline. The segments′ where it intersects is to the right ofs in
the same cell of Vor(P). The order of beachline segments is preserved: ifs1 is aboves2

in the(P, L)-beachline, thens′1 is aboves′2 in the(P,M)-beachline. Therefore, ife′ is
an edge of the(P,M)-fringe, ande is the edge of the(P, L)-fringe which contains it,
then (Lemma 2.23) they both have the same orientation. An edge of the(P, L)-fringe
persists if all or part of it is to the right of the(P,M)-beachline.

The arrayC is initially just a copy ofA, and processors are allocated to corresponding
entries in both arrays. Then:

(a) The persistent edges and segments are identified.
(b) Pointer links are installed between adjacent persisting segments; in this way, using

Lemma 3.4, all the entries inC are redirected to cover persistent segments.
(c) The appropriate revised information (4.7) is stored inC.

(a) With one processor allocated to each (active) record inC, if the record covers a
cusp (of the(P, L)-beachline), then that cusp is marked “absent”; if the record covers
a nonseparating segment with internal vertexv, then it is first determined ifv is on the

22 We omit a proof of this rather plausible fact. See [11].

600 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

(P,M)-fringe by calculating its distance fromM . Then it is marked “absent” if closer
to P than toM , otherwise “present.”

Next the processors determine which edges of the(P, L)-fringe intersect the(P,M)-
beachline. We can assume that the parent–child relation on the(P, L)-fringe is stored
in C (Lemma 4.9). An unbounded edge whose endpoint is marked absent must intersect
the(P,M)-beachline. If a bounded edge(v, x) intersects the(P,M)-beachline, where
x is the parent ofv, thenv must be absent andx present, since the orientation of the
edge must be away from the beachline inbothfringes.

Thus if a(P, L)-beachline edge oriented away from a vertexv intersects the(P,M)-
beachline, the intersection pointv′ can be calculated by a processor assigned tov, and
stored in the same record ofC asv (v can be a cusp or an internal vertex). At this time
also, the link required by (6.3), fromv′ to the edge of Vor(P) containing it, can be in-
stalled, since that edge is accessible throughv. Thus the cusps of the(P,M)-beachline
are calculated and stored.

(b) With v andv′ as above, letu andw be the extremal descendant cusps ofv in the
(P, L)-fringe, bounding beachline segmentss1 from below ands2 from above, say. Then
all of the (P, L)-beachline betweenu andw is “occluded,” and the regionsAP,L

s1
and

AP,L
s2

(2.15) intersect the new beachline in segmentss′1 ands′2 with the cuspv′ in com-
mon. In this ways′i are recognized as segments which persist in the(P,M)-beachline.
A processor assigned tov can attach this information tos1 ands2, and provide pointer
links between them. See Figure 21. Applying Lemma 3.4, all the occluded parts of the
beachline can be mapped to the closest nonoccluded parts in timeO(log log(n)). Sup-
pose that the occluded part of the beachline between segmentss1 ands2 is covered by
the subintervali · · · k of C. This part ofC should now cover just the single cuspv′.

(c) To set up information as described in 4.7, the processors attached to the interval
i · · · k write the rangei · · · k in each array entry, and the coordinates ofv′ into the leftmost
entry. When this is done, the effect on those entries ofC which coveredsi is that they
now covers′i (i = 1, 2).

In general, ifs is a persistent segment ands′ the corresponding segment of the(P,M)-
beachline, they are covered by exactly the same records ofC. Therefore the connection
between corresponding segments is trivial: they are covered by corresponding records
in A andC, proving (ii).

Also, because edge orientations are the same in the(P, L)- and(P,M)-fringes (2.23),
corresponding segments have the same inner vertex (if any).

Suppose thatv is this inner vertex. The only data which need to be changed are the
leftmost and rightmost cusp descendants ofv. However, this is easily done: suppose
that u is the leftmost cusp descendant ofv in the (P, L)-fringe. If j is the leftmost
index coveringu in A, C[j] now contains the intervali ′ · · · j ′ of records covering the
cuspu′ which replacesu. Similarly for the rightmost descendant. This finishes the proof
of (i).

Now we have arrays covering the(P,M)- and(Q,M)-fringes.

REMARK. The rest of this section is mostly concerned with finding short access paths
to various features of the(S,M)-fringe. Sometimes these are not described in full, or
are left implicit: for example, if two arrays are merged together into one, it is assumed

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 601

c
2

1

p
q

s

M

s

Fig. 22.Illustrating Lemma 7.4.

that from any record of the source arrays or target array the corresponding element in the
other can be accessed directly. Again, some access paths can be inverted efficiently. For
example, there are links from both the(Q, L)- and(Q,M)-fringes into Vor(Q) (6.3):
since every edge in Vor(Q) intersects at most two edges in either fringe, by inverting the
access relations in parallel we can assume that from any fringe edge the others can be
quickly accessed.

LEMMA 7.4. Suppose that s1 and s2 are adjacent segments on the(S,M)-beachline,
with s1 above and s2 below their common cusp c, the segments being owned by sites p
and q, respectively. If p is to the left of q, then c is the highest cusp for q, otherwise it
is the lowest cusp for p.

PROOF. Imagine thatp andq are the only sites. Ifp is left of q, thenq is closer toM
and the beachline consists of three segments, the outer two owned byp and the bounded
segment owned byq. Let R be the parabola (with focusq) containing the bounded seg-
ment. Any point abovec on R is closer top than toq, hence cannot be on the beachline,
whether or notp andq are the only sites; hencec is the highest beachline cusp owned
by q. Similarly if p is closer toM . (See Figure 22.)

COROLLARY 7.5. Let g be a site which owns a segment s on the(S,M)-beachline.

(i) If g ∈ P (resp. Q), then this segment is contained in a segment r of the(P,M)-
(resp. (Q,M)-) beachline.

(ii) If g ∈ Q, then r contains no other segment of the(S,M)-beachline.23

PROOF. (i) Without loss of generality,g ∈ P. Let U be the set of all points on the
(P,M)-beachline as close tog as to any other site inP: U is the disjoint union of all
segments owned byg on the(P,M)-beachline. Any pointv on s is equidistant fromg
andM , and as close tog as to any other site inS, hence as close as to any other site inP.
Thuss ⊆ U . Sinces is connected, it is contained in one of the connected components
of U , which is a(P,M)-beachline segmentr .

(ii) Suppose thatg ∈ Q. The upper end ofs is either that ofr , or it is a point on the
(P, Q)-contour, and by the above lemma it is the highest beachline cusp owned byg: thus
r contains no segment aboves on the combined beachline. Similarly for the lower end.

23 In contrast, a segment of the(P,M)-beachline can be split into many segments of the(S,M)-beachline.

602 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

Thus every segment of the(S,M)-beachline, if it is owned by a site fromQ, is con-
tained in a unique segment of the(Q,M)-beachline. The same cannot be said for sites
from P, and we use another method to identify such segments.

LEMMA 7.6. From arrays C and D covering the(P,M)- and(Q,M)-beachlines, the
cusps of the(S,M)-beachline can be calculated in O(log log(n)) parallel time, and the
contour cusps stored in a modified copy of D.

PROOF. First locate each(P,M)-beachline cusp in the(Q,M)-beachline segment level
with that cusp. This can be done, say, by forming copies ofC andD, redirecting entries
covering segments to cover adjacent cusps, and merging the two arrays together. Once
this is done, a cuspu on one beachline can be marked “present” or “absent” according to
whether it is to the right or left of the segments of the other beachline whose endpoints
spanu.

The remaining(S,M)-beachline cusps can be calculated inO(1) parallel time as fol-
lows. Letc be a cusp (yet to be computed) where a segments1 of the(P,M)-beachline
intersects a segments2 of the(Q,M)-beachline. Without loss of generality, abovec, s1

is to the right ofs2, and belowc, and sufficiently close toc, the converse holds. This
implies that nearc the (S,M)-beachline is contained ins1 abovec and ins2 belowc,
andc is a cusp. See Figure 22.

Now c will be the highest cusp owned by the siteq owning s2 in the combined
beachline: therefore the upper endpoint ofs2 will have been marked “absent.”

A processor assigned tos2 or s1 can calculate the one or two points wheres2 can
intersects1. Figure 22 illustrates the idea: calculate the intersection points of the two
parabolas containings1 ands2; if an intersection point is within the vertical span ofs1

ands2, then it is a contour cusp (for example, in Figure 22,c is a contour cusp, because
directly abovec the beachline is owned byp ∈ P and directly belowc by q ∈ Q). The
new contour cusp or cusps, if they exist, can be stored as the cusps bounding the “new”
version ofs2, i.e., that part ofs2 remaining in the(S,M)-beachline.

The beachline description is next written to an arrayG of sizeO(|S|). It is here that we
use a precomputed “ruling” array for the(S,M)-beachline. This is in order to compress
the arrayG to a manageable size. Otherwise, the crude way to constructG would be
to double the size ofD before merging, thenG would have enough room to store both
cusps and segments. The effect of this, over several levels of recursion, is to increase the
size requirement, and hence increase the processor requirement, toÄ(nlog2 3).24 As noted
previously, this was one of the main difficulties of our paper. In the earlier version [9],
not just a ruling for the beachline but the full beachline was precomputed, withn log(n)
processors overall (CREW).

LEMMA 7.7. Let C and D be arrays covering the(P,M)- and (Q,M)-beachlines,
and let F be a ruling for the(S,M)-beachline. Having identified the contour cusps, an

24 Solution to the recurrenceF(2k) = 3F(k).

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 603

array G covering the(S,M)-beachline can be calculated in parallel time O(log log(n))
(CRCW).

PROOF. A cusp of the(S,M)-beachline is either a contour cusp or a cusp of the(P,M)-
or (Q,M)-beachline marked “present” as described in the previous lemma.

We suppose that a modified copyD′ of D has been created, covering the contour cusps
and cusps of the(Q,M)-beachline. InD′ the records storing the closest adjacent contour
cusps can be identified inO(log log(n)) parallel time (CRCW) by forward chaining
(Lemma 3.5). By this means, records covering an “absent” cusp of the(Q,M)-beachline
can be changed to cover an adjacent contour cusp, soD′ now covers only cusps of the
(S,M)-beachline. By merging the cusps inD′ with the cusps inC, for every cuspc of the
(S,M)-beachline, the nearest cuspc′ abovec in the(P,M)-beachline, and the nearest
cuspd′ abovec in D′ (if they exist), can be located. Ifc′ exists, is belowd′, and marked
“present,” thenc′ is the closest(S,M)-beachline cusp abovec; otherwise,d′ is, if it exists.

Thus all the(S,M)-beachline cusps can be linked together in a single-linked list.
Now, by merging the cusps inC andD′ with the ruling arrayF , this list is broken into
shorter lists; if a cuspc and the closest cuspd abovec are separated by a line of the ruling,
then break the link connectingc to d. Since between two adjacent lines of the ruling
there areO(log(n)) (S,M)-beachline cusps, the result is that the(S,M)-beachline is
broken into linked lists of lengthO(log(n)). For each cuspc, its rank (distance from the
end of the list) in the list containing it can be calculated by parallel list-ranking. This
takesO(log log(n)) parallel time (3.7).

Let an arrayG of sizeO(|S|) be prepared, subdivided into blocks of sizeO(log(n));
each block sufficiently large to cover all of the beachline between two adjacent lines
of the ruling. Let the beachline cusp of ranki in its strip be copied into location 2i of
the corresponding block; so the cusp records will be in alternate locations ofG. There
is room to store the segment records between them; and unused records at the end of a
block can be redirected to cover the last segment in the block.

7.8. Next we install inG information about the(S,M)-fringe, as described in 4.7 and
6.3. The first required data, namely, for every indexj the intervali · · · k of G covering
the feature covered byG[j], is trivial to compute and install. The coordinates of cusps
will have been installed inG, and also, of course, the sites owning the various segments
in the beachline.

LEMMA 7.9. The segments in the(S,M)-beachline can be classified as “separating”
(2.18) or “nonseparating” in O(log log(n)) time. Links from H(S) to the separating
segments can be determined also.

PROOF. The separating rays can be calculated fromH(S) andM in bounded parallel
time, and listed in sorted order (the sorted order derived fromH(S)). By merging withG,
the separating segments can be determined. Obviously in determining these separating
segments, the appropriate links betweenH(S) and the beachline are determined.

7.10. Recall (Corollary 2.23) that given a pointv on an edge of the(S,M)-fringe, with

604 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

adjacent sitesp1 andp3, the edge is oriented so that the beachline segment owned by the
site on the left (p1, say), is above the segment owned by the other site. Ifv is a Voronoi
(fringe) vertex, then the edge orientations atv are determined by the order of the three
beachline segments whose regions meet atv. We assume that the three sitespi are ordered
so the segments are in descending order along the beachline, that owned byp1 highest and
p3 lowest; thenv is the inner vertex owned by the middle segment. The sitesp1, p2, p3

will be implicitly associated withv, with an implicit ordering, for the rest of this section.
We classify the(S,M)-fringe vertices asP P P, P P Q, . . . , QQQ, according to

which sets contain the corresponding sites; so, for example, ifp1, p2 ∈ P and p3 ∈ Q,
then the vertex is of typeP P Q. Vertices of typeP P P are to the left of the contour,
those of typeQQQare to the right of the contour, and the others are on the contour.

We next show how to match every nonseparating segment with its inner vertex. There
are eight types of vertex to be considered; five are relatively straightforward and are
considered first.

LEMMA 7.11. Let v be an(S,M)-fringe vertex owned by a segment s2. If v is of type
P P P, P Q P (actually impossible), QQQ, P P Q, or Q P P, then it can be associated
with s2 through linkages already present.

PROOF. Lets1, s2, s3 be the(S,M)-beachline segments whose regions meet atv, given
in descending order, sosi is owned bypi . We deal with the five possible cases, based
on the type ofv.

Case1: v of type P P P. The line-segmentsvp1 andvp3 meet the(S,M)-beachline in
s1 ands3, respectively; from Lemmas 2.13 and 2.22, all of the(S,M)-fringe between
the beachline and these line-segments is to the left of the contour, so all of the(S,M)-
beachline betweens1 ands3 is owned by sites fromP, sov is associated withs2 through
the(P,M)-fringe (s2 is a segment of the(P,M)-beachline).

Case2:v of type P Q P. By the reasoning given for Case 1, this is impossible (s2 would
be to the left of the contour).

Case3: v of type QQQ. The segments2 is contained in a unique segment of the
(Q,M)-beachline (Corollary 7.5), andv is its inner vertex in the(Q,M)-fringe. Hence
v can be taken from the(Q,M)-fringe.

Case4: v of type P P Q. By the same reasoning as for Case 1, the beachline between
s1 ands2 is owned by sites fromP, and hence the cusp boundings2 from above is on the
(P,M)-fringe. Hences2 can be accessed through the(P,M)-fringe. Lets be the corre-
sponding segment of the(P, L)-fringe. Thenv is the highest contour vertex meeting the
regionAP,L

s2
(Lemma 2.27(ii)); this was associated withs2 when calculating the contour

(5.8), and hence can be accessed throughs2.

Case5: v of type Q P P. This is a symmetric variant of Case 4.

7.12. We turn to vertices of typeQ P Q, P QQ, andQQ P. Recall that we are given an
arrayE covering all(Q, L)-fringe edges which meet the contour (at contour vertices of
one of these three types, of course), in the order in which the vertices occur on the contour.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 605

’

’

’

’

contourbeachline

1
v

v
1

v2

2v

v33v

4v

v4

’ = vv5 5

Fig. 23.Illustrating sample points on the(S,M)-beachline (7.12).

Let v be one of these vertices; define a pointv′ as follows; ifv is to the left of the
(S,M)-beachline, i.e., if it is more distant fromM than to the three adjacent sites, then
v′ = v. Otherwise, letp be the unique site fromP adjacent tov, and letv′ be the point
where the line-segmentpv intersects the(S,M)-beachline. See Figure 23.

LEMMA 7.13. The pointsv′ are in sorted order.

PROOF. Let J be an interval of the contour to the right of the(S,M)-beachline. By
definition of the contour, the region enclosed betweenJ and the beachline is entirely
owned by sites fromP. Thus, between the endpoints ofJ, the(S,M)-beachline coin-
cides with the(P,M)-beachline. See Figure 23: the illustrated interval to the right of
the beachline includes verticesv1 to v4.

Consider two contour vertices onJ, of typeQ P Q, P QQ, or QQ P, and consecutive
in vertical order (though perhaps separated by contour vertices of another type).

If there are no intermediate contour vertices, for example, withv1 andv2 in the figure,
then the vertices are both closest to the same sitep in P. The pointsv′1 andv′2 are both
on the parabola with focusp and directrixM , and, because the direction fromv1 to v2 is
clockwise aroundp, the direction fromv′1 tov′2 is also clockwise aroundp, and therefore
v′1 is abovev′2.

By a nearly identical argument, the pointv′1 is below the upper endpoint ofJ, andv′4
is above the lower endpoint ofJ.

If there are intermediate contour vertices, for example, withv2 andv3 in the figure, we
suppose for simplicity that there is exactly one, as withv2 andv3. By Lemma 2.27(iii),
the segment containingv′2 is above that containingv′3, sov′2 is abovev′3.

In the more general case, where there are several attachments betweenv2 andv3,
say, the beachline features owning them are in sorted order along the beachline (Lem-
ma 2.27(ii)) and again using part (iii) of the lemma it can be argued thatv′2 is above all
these features andv′3 below them.

Therefore our argument applies to the whole intervalJ, and the endpoints ofJ

606 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

bracket the intermediate pointsv′, and the argument is trivial for contour vertices left of
the beachline; combining these observations, our proof is complete.

Case 6 (Q P Qvertices) is now dealt with:

COROLLARY 7.14. Every vertex of type Q P Q can be associated with the segment own-
ing it in O(log log(n)) parallel time.

PROOF. Merge the pointsv′ (according to their vertical ordering) with the(S,M)-
beachline; for every vertexv of type Q P Q, if v is to the right of the beachline, thenv′

is on the beachline segments whose inner vertex isv.

Recall also that the(Q, L)- and(Q,M)-fringe edges are linked to the graph repre-
sentation of Vor(Q) (6.3). Each edge of Vor(Q) contains at most two edges on each of
these fringes; it is easy to invert these linkages in parallel, so we can assume that from
any edge of the(Q,M)-fringe all of the other fringe edges (at most three) contained in
the same edge of Vor(Q) can be accessed.

It remains to handle theP QQandQQ P vertices (Cases 7 and 8).

LEMMA 7.15. Let v be a vertex of type P QQ or QQ P. It can be associated with the
segment owning it in bounded time.

PROOF. Without loss of generalityv is of typeP QQ. A processor, accessingv through
the (Q, L)-beachline, can access the(Q,M)-fringe edgee containingv. The segment
s owning v is the unique (Lemma 7.5) segment contained in the segments′ of the
(Q,M)-beachline such thatAQ,M

s′ meetse on the left.

Thus each(S,M)-beachline segment has either been classified as “separating” or
supplied with its inner vertex. It remains to supply for each inner vertexv the indices to
its leftmost and rightmost cusp descendants, and then the links between the(S,M)-fringe
and Vor(S) (6.3).

The following simple result is used in Lemma 7.17. It says, intuitively, that if two
convex curves bend in opposite directions, then they intersect at most twice.

LEMMA 7.16. Let L and R be two unbounded curves, monotonic in the y-direction,
such that the sets A and B of points left of L(resp. right of R) are convex. (See Figure24.)
Suppose also that one of the lines, L, say, is strictly convex, so no three points on L are
collinear. Then L and R intersect at most twice.

PROOF. Let i and j be two points of intersection ofL and R, with i higher thanj ,
let H be the line throughi and j , and leta be a point abovei and to the right of the
line H . Claim thata does not belong toA: for otherwise, take another pointb left of H
at the same height asa, sob belongs to the setA by definition; therefore the triangle
abj, whose corners belong toA, is contained inA and thereforei , being interior to this
triangle, is interior toA, which it is not.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 607

A

L H

R

B
j

i

b a

Fig. 24.Illustrating Lemma 7.16.

In other words,A contains no points abovei and to the right of the lineH ; similarly,
B contains no points abovei and to the left of the lineH ; so abovei , the intersection
A∩ B is contained inH . Therefore, abovei , the intersectionL ∩ R is contained inH ,
and therefore empty, since otherwiseL ∩ R would contain three collinear points. By the
same argument,L ∩ R contains no points belowj . The proof is nearly finished: if the
intersection contained a pointx betweeni and j (in vertical order), then by considering
i andx rather thani and j , j could not belong to the intersection.

LEMMA 7.17. For each nonseparating segment s2 with inner vertexv, indices to the
leftmost and rightmost cusp descendants ofv can be calculated in O(1) parallel time,
using the linkages established in the previous lemmas.

PROOF. We treat the seven possible types ofv as before.

Case1: type P P P. The cusp descendants are on the(P,M)-beachline and can be
accessed from there.

Case3: type QQQ. Letcbe the leftmost cusp descendant ofv in the(Q,M)-beachline;
it is accessible through the(Q,M)-beachline, and it bounds (from above) a segments′1
which contains a unique segment of the(S,M)-beachline; this iss1, it is accessible
throughs′1, and its lower endpoint (which isc or is a contour cusp) is the leftmost
descendant ofv in the(S,M)-beachline. Similarly for the rightmost descendant.

Case4: type P P Q. The leftmost descendant is as in Case 1. For the rightmost descen-
dant, first locate the segmentt of the(Q, L)-beachline (L, not M) such thatv ∈ AQ,L

t .
The segmentt is easy to access (see 5.8); but we are looking for the segments′3 of the
(Q,M)-beachline whose region containsv. See Figure 25.

By Lemma 2.27, the contour intersectsAQ,L
t in a connected intervalI ; let R′ be the

monotonic convex curve obtained by extendingI to infinity above and below. LetL ′

be the parabola with focusq and directrixM , whereq is the site whose cell contains
AQ,L

t . ThenR′ andL ′ satisfy the hypotheses forR andL in Lemma 7.16 and therefore
intersect at most twice. ThereforeI intersects the(Q,M)-beachline at most twice.

608 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

Fig. 25.Illustrating Lemma 7.17, Case 4.

Therefore eitherI intersects the(Q,M)-beachline at a contour cuspc belows2, or
it has a lower endpointw to the right of the(Q,M)-beachline. In the first case,c is the
rightmost descendant ofv, and it is the closest contour cusp belows2, hence accessible;
otherwise,w exists and is a vertex of typeQ P Q. Letebe the(Q,M)-fringe edge meet-
ing w; it is accessible through Vor(Q) and the(Q, L)-fringe. Thens′3 is the segment
whose region meetse from the right, and hence is accessible.

Case5. This case is similar.

Case6: type Q P Q. Let e be the(Q,M)-fringe edge containingv; it can be accessed
through the(Q, L)-fringe. Lets′1 ands′2 be the(Q,M)-beachline segments owning the
regions on either side ofe; they contain unique segmentssi of the (S,M)-fringe, and
the cusp descendants sought are endpoints of these latter segments.

Case7: type P QQ. The rightmost descendant can be accessed as in Case 3. For the left-
most descendant, the(S,M)-beachline segments1 meeting it can be accessed throughE
using a sample point ons1, just as when calculating inner vertices, Case 6 (Corollary 7.14).

In other words, suppose thatv is the vertex of typeP QQ, and p is the site fromP
closest tov. Then the line-segmentpv intersects the(P,M) beachline in a unique point
v′; all these “sample points”v′were already calculated for the purposes of Corollary 7.14;
by merging with the(S,M)-beachline, the segments1 containingv′ can be identified.

Case8. This case is similar.

The last item we need consider is

LEMMA 7.18. In O(log log(n)) parallel time, links can be installed from the cusps of
the(S,M)-beachline to the edges ofVor(S) containing them.

PROOF. Let c be a cusp, and supposee is the edge of Vor(S) crossingc (6.3). If e is
not on the(P, Q)-contour, then the existing link from the cusp as a cusp of the(P,M)-
or (Q,M)-beachline can be copied. To install links from the contour cusps, merge the
sorted list of contour vertices with the(S,M)-beachline cusps, both sorted in vertical

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 609

order. Thus every contour cusp is located between the two contour vertices closest in
vertical order; hence the edge of Vor(P) crossing the cusp can be accessed.

8. Building a Ruling for the (P, L)-Beachline. In this section we see how to do the
essential preprocessing step of producing rulings for all the beachlines in advance. Recall,
once again, that a rulingD for the (P, L)-beachline is an array of sizeO(|P|/log(n))
containing a sorted list of horizontal lines, such that between two adjacent lines there
are alwaysO(log(n)) cusps of the(P, L)-beachline. Heren is the number of sites in the
global problem, and in general the number of sites inP will be less thann.

8.1. We can assume thatP is available in both horizontal and vertical sorted order. The
first is available sinceP is just a block of contiguous sites from the horizontally sorted
array of sites, the second can be constructed inO(log(n) log log(n)) time, say, for all
blocks P of contiguous sites involved in the recursive construction of the diagram, by
recursive application of Valiant’s merging procedure [27] to sort the global set of sites
in vertical order.

Let m = |P|/log(n). There arem processors, and the plane is divided intom hori-
zontal strips, where each strip contains log(n) sites fromP. The ruling for the beachline
will be calculated using a vertical recursive partition ofP under the control of a balanced
interval treeI whose leaves cover the strips. The tree can have its nodes indexed from
1 to 2m− 1, say, following the classical indexing of a heap. Thus each slab (i.e., union
of contiguous strips) in the recursive partitioning corresponds to a node of this tree and
a number in the range 1 to 2m− 1. See Figure 26.

DEFINITION 8.2. LetU be a subset ofP bounded by horizontal linesA above and
B below. Theendsof the (U, L)-beachline are those pieces aboveA and belowB,
respectively. See Figure 27.

8.3. We consider a single strip bounded between two linesA andB. Let W be the sites
in the strip, andWa andWb the sites above and below the strip, respectively. That part of
the(P, L)-beachline betweenAandB is formed from the beachline forW, the lower end
for Wa and the upper end forWb. Our goal in this section is to provide partial information
about the ends ofWa andWb, from which the ruling can be calculated. We do not compute
the ends exactly, since that would be difficult to perform efficiently for allm strips.

1019

3

2

1

16

15

Fig. 26.Interval tree, with node indexing.

610 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

Fig. 27.Ends of a partial beachline.

LEMMA 8.4.

(i) The parent of a node indexed k6= 1 in I is indexedbk/2c, and the node is a left
(right) sibling iff k is even(odd).

(ii) Given a strip W, the set Wa of sites in P above W is the union of those slabs which
are the left siblings of all ancestors of W which are right siblings.

(iii) The set Wb of all sites below W is the union of those slabs which are the right
siblings of all ancestors of W which are left siblings.

PROOF. (i) is part of the definition ofI and (ii), (iii) are straightforward.

Consider a fixed stripW. To assess the contribution of the lower end ofWa to the
beachline withinW, we compute for every left-sibling slabU the restriction of its lower
end to the vertical interval covered by its right siblingV . Having done this, we shall be
able to calculate all cusps contributed by left-sibling slabs to the vertical interval spanned
by the stripW. This provides an estimate of the number of cusps contributed byWa to
the strip; similarly for the upper end ofWb.

The remainder of this section proceeds as follows:

(i) After some simple observations about the shape of the upper and lower ends, it
gives an optimal parallel algorithm constructing the ends of ahorizontally sorted
setU of sites. Then the construction:

(ii) Generates a sequence of pairs(J, p), whereJ indexes a right-sibling slabV , and
p is a site in its left siblingU , which possibly owns25 a segment of the lower end
of U in the vertical interval spanned byV : this sequence is sorted according to the
horizontal ordering of sitesp.

(iii) Reorders this sequence by stable integer sorting, so for each right-sibling slab in-
dexedJ there is a horizontally sorted sequence of the pairs(J, p).

(iv) Thus computes for each left-sibling slab the portion of its lower end in the vertical
span of its right siblingV .

(v) Reorganizes this information and calculates the ruling.

25 The criterion for generating the pair(J, p) is based on the horizontal position ofp in the slabU .

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 611

The task would be much simpler if all the slabs were available in horizontally sorted
order. However, the slabs are not disjoint, and their total size is aboutm log(m) log(n) =
|P| log(m). Thus we do not attempt to produce them all in sorted order with justm
processors. Step (ii) is intended to reduce the data to a manageable quantity (O(|P|)).

LEMMA 8.5. Let U be a subset of P bounded by horizontal lines A from above and B
from below. Then:

(i) Each site in U owns at most one segment in each end.
(ii) The vertical ordering of cusps along each end matches the horizontal ordering of

sites in U.

PROOF. Following the reasoning of Lemma 7.4, ifs ands′ are segments in the upper
end, owned by sitesp andp′, respectively, meeting at a common cuspc boundings from
below ands′ from above, thenp is to the left ofp′ andc is the uppermost cusp owned
by p′. Furthermore, if one imagines the parabolic segmentss ands′ continued below
c, then they do not intersect again abovep′, soc is the lowest cusp owned byp in the
upper end. Thuss is the lowest segment owned byp ands′ is the highest owned byp′,
in the upper end: so each site owns at most one segment.

Left-to-right order of sites inU corresponds to downward order for segments on the
upper end and upward order on the lower end.

LEMMA 8.6. If U is a horizontally sorted array of sites between horizontal lines A and
B, then its ends can be constructed:

(i) In linear time by one processor.
(ii) In time O(log(n)) with |U |/log(n) processors.

PROOF. See Figure 28. (i) Divide-and-conquer based on the horizontal subdivision is
applied. We consider only the lower end forU . This is built by a recursive combination
procedure, whose recursive step involves taking subsetsU1 andU2 (vertical sections

c

2

1E

E

U1 U2

Fig. 28.Illustrating Lemma 8.6.

612 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

from U contiguous in horizontal order, whereU1, say, is to the left ofU2) with lower
endsE1 andE2, respectively, finding the unique pointc belowB where these ends cross
(Lemma 8.5), and catenating the truncated versions ofE1 andE2. The pointc is unique
if it exists, and it exists if and only ifE1 is to the left ofE2 at B. If the ends are stored
in balanced trees, locating the pointc can be done, say, in timeO(log2(|U1 ∪ U2|)):
find whether the median cusp ofE1 is above or belowc by locating it in E2 in time
O(log(|U2|)), and repeat this processO(log(|U1|)) times. To catenate the partial ends
in time O(log(|U1 ∪U2|)) is a straightforward split-and-join operation [26].

The recursion implicit in this is: withk = |U |, T(k) = 2T(k/2) + log2(k), whose
solution isO(k).

(ii) (a) We first show how to do this with|U | processors in the stated time. As in (i),
the recursive step involves subsetsU1 andU2 of U , whereU1 is left of U2; their lower
ends areE1 andE2, respectively. With|U1 ∪U2| processors the pointc where the ends
cross can be calculated inO(1) parallel time. This time the endsE1 and E2 are just
stored in arrays. For simplicity suppose|E1| = |E2| = r .

First check whetherc exists by verifying thatE1 is to the left ofE2 at B. Suppose that
y is a cusp ofE1. With

√
r processors the two adjacent cuspsy1 andy2 of E2 bracketing

y can be located inO(1) time, by the usual method of first sampling every
√

r th cusp
to reduce the interval bracketingy to size

√
r , and then inspecting every cusp in the

interval. Then it can be checked whetherE1 is to the left or the right ofE2 at y, in which
casey is above (resp. below)c.

Thus withr processors a subinterval ofE1 containingc, with
√

r cusps, can be iden-
tified. Applying the processors to all cusps in the subinterval, two adjacent cusps ofE1

bracketingc can be isolated. Then two adjacent cusps ofE2 bracketingc can be isolated,
andc can then be calculated immediately.

This is just another application of
√

r divide-and-conquer to a location problem, as
in Section 4.

(b) To obtain an optimal parallel algorithm we apply a mixed strategy which imitates
[28]. Again the recursive problem is to calculate the pointc where two endsE1 andE2,
from setsU1 andU2 of sites, cross.

The algorithm begins by separatingU into vertical slabs of size log(n), assigning one
processor to each slab, and calculating its end inO(log(n)) serial time by (i). When each
processor has calculated the lower end of the slab assigned to it, it stores the result in
sorted order in a balanced tree.

These ends are recursively combined using two strategies, an “early” and a “late”
strategy. The late strategy is adopted once the subsetsU1 andU2 reach a threshold size
u. We calculateu later.

In the early stages, the ends are stored in balanced trees, as in (i). Given the ends for two
adjacent slabs stored in balanced trees, a single processor calculates the end for the com-
bined slab inO(log2(u)) serial time as in (i). Since the early stage lasts until the threshold
sizeu is reached, the overall parallel time taken by the early stages isO(log3(u)).

These balanced trees can have stored at each node the number of descendants that
node has; with this information a single processor can access a cusp of given rank (in
the endE represented in the tree) inO(log(u)) time. In the late stages, the ends are
reorganized into an array representation. We discuss later how to convert from the early
to the late representation.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 613

Let U1 andU2 be as before, with corresponding endsEi ; we want to calculate the
pointc (if any) where the lower ends cross. The lower endE1 (and similarlyE2) is stored
in a two-tier array. Letm1 = |U1|/log(n); E1 is divided into at most 2m1−1 groups each
of size at most log(n). The threshold sizeu will be chosen to ensure thatm1 ≥ log(n).
The cusps bounding the groups are stored in one array; the cusps within the groups are
stored inm1 arrays each of size at most log(n).

To calculate the lower end ofU1∪U2, using, say, 2m1 processors, first allocate
√

2m1

processors to each
√

2m1th cuspy of the< 2m1 cusps bounding a group of cusps ofE1.
Taking a cusp bounding every

√
2m1th group ofE2, y is bracketed to within

√
2m1 groups

of cusps; repeating the process,y is bracketed to a group; repeating this at most twice more
(sincem1 ≥ log(n)), y is bracketed to a segment ofE2, and hence it is determined whether
y is above or belowc. Repeating this process three more timesc is bracketed to a segment
of E1; c is similarly bracketed to a segment ofE2. Thenc can be calculated immediately.

The lower endE of U1 ∪ U2 is composed of all cusps inE1 below c, thenc, then
all cusps inE2 abovec (assumingU1 is to the left ofU2). This is a sequence of (at
most 2m1 − 1) groups fromE1, followed by a group containingc alone, followed by a
sequence of groups fromE2. This results in at most 4m1− 1 groups, as desired.

Each stage of the late strategy takesO(1) time, and there are log(|U |/u)of them; hence
the late stages takeO(log(n)) time. The early stages takeO(log3(u)) time. The only
requirement is that 2m1 ≥ log(n), as mentioned above; this means 2u/log(n) ≥ log(n),
i.e.,u = log2(n)/2. Then log3(u) is O(log(n)).

It remains to see how to convert from a balanced tree of sizeu to a two-tier array rep-
resentation, usingu/log(n) processors. Using the descendant count information stored
at each node, for 1≤ i ≤ u/log(n), an assigned processor can locate the cusp of rank
i log(n) in the tree. These cusps form the group boundaries and can be written directly
to an array using all available processors. Each processor can then traverse a group of
log(n) adjacent cusps stored in the tree; to traverse a group ofk adjacent cusps, and write
them into an array, can be accomplished inO(k+h) sequential time, whereh is the tree
height. Withk = log(n) the time isO(log(n)).

8.7. We next see how to construct a list of pairs(J, p), whereJ indexes a right-sibling
slabV , with left siblingU directly above it, andp is a site inU possibly contributing a
segment to the lower end within the vertical range ofV . In other words, eitherp owns
no segment on the lower end ofU , or it has and it intersects the vertical range ofV .

LEMMA 8.8. Such a list can be created and stored in an array of size O(|P|), horizon-
tally sorted on the second key p, in time O(log(n) log log(n)) with m processors.

PROOF. There is one processor attached to each strips of P. For each ancestorU of s
which is a left sibling, say its right siblingV has indexJ; the processor creates a pair
(J, p) for each sitep possibly contributing a lower-end segment toV .

The processor allocated to strips first sorts all sites ins in horizontal order, in se-
rial time O(log(n) log log(n)). (This is the bottleneck—the rest isO(log(n)) parallel
time.)

614 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

The processors next construct the upper and lower ends for the strips. A processor
assigned to strips inspects all slabs corresponding to its ancestors in the interval-treeI ,
traversing the tree from bottom to top. It generates a list of all slabsV which are right
siblings of its ancestors inI , in bottom-up order: therefore the slabsV are visited in
descending vertical order. By essentially a merging process, it locates the cusps of the
lower end ofs in these slabs in linear time(O(log(m)+ log(n)) = O(log(n))), and for
each sitep and slabV wherep owns a segment intersectingV , the processor creates a
pair (J, p), whereJ is the index (1 to 2m− 1) of V in I , and attaches it to a list. Since
the processor takesO(log(n)) time, it createsO(log(n)) pairs(J, p). Therefore there
areO(m log(n)) = O(|P|) such pairs created altogether.

For each sitep visited it counts the numberc(p) of such pairs(J, p), and writes it
in a record attached top.

With a single parallel prefix computation, the partial sums of thec(p), added according
to horizontal order of sitesp, can be calculated inO(log(n)) time withmprocessors (3.7).

As noted above, the sum
∑

c(p) is O(|P|). An arrayC of this size can be created to
hold the pairs(J, p), and each sitep allotted an interval [i · · · j] of lengthc(p) in this
array, based on the prefix-sum calculation.

The list of pairs(J, p) can be written into the correct intervalC[i · · · j] by the proces-
sor which created thec(p) pairs. The arrayC contains the pairs in the order desired.

The arrayC can be sorted on the first indexJ by stable integer sorting in time
O(log(n) log log(n)), usingm processors (CRCW) (Proposition 3.6).

LEMMA 8.9. For each right-sibling slab V let U′ be the set of sites in its left sibling U
which can own lower-end segments within its vertical span. The lower ends of all such
sets U′ can be calculated in parallel time O(log(n)) with m processors.

PROOF. Let J be the index of a typical slabV . The subsequenceU ′ is represented by
a horizontally sorted block of pairs(J, p) in C, so the calculation of Lemma 8.6 can be
executed.

Of course, all the constructions described so far apply to calculating the relevant upper
ends as well.

LEMMA 8.10. Given the relevant parts of the upper and lower ends for all the slabs
of the vertical partition of P, and using m processors, it is possible to calculate in
O(log(n) log log(n)) time the merged list of all cusps of all these upper and lower ends.

PROOF. Consider a pairU andV of sibling slabs,U the left sibling, so it is directly
aboveV . There were|U ′|/log(n) processors assigned to calculate that part of the lower
end ofU within the span ofV , whereU ′ was the subset of sites in the slab which could
have owned segments of the lower end within this span. Also, the lower endE contains
O(|U ′|) segments and cusps.

One can arrange to merge the cusps ofE with thev = 1+|V |/log(n) strip-boundaries
in V using(|U ′| + v)/log(n) processors for all such pairs of slabs simultaneously. The

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 615

time taken isO(log(n) log log(n)) using Valiant’s merge algorithm [27], slowed down
by a factor of log(n) to reuse the processors available.

This associates with each strips in V the sorted list of cusps contributed tos by U ;
also, the numberc(U, s) of cusps in this list. Similarly, with each strips in U the list of
cusps contributed tos by the upper end ofV can be calculated; also, the numberc(V, s)
of cusps in the list. These numbers can be written into an array of size 2 log(m) × m,
and with one processor per strips the total numberc(s) of cusps contributed to the strip
s from O(log(m)) slabs above and below it can be calculated.

The sum of all these numbersc(s) is O(|P|) (linear in the total number of pairs(J, p)
described above). By applying parallel prefix, for each strips a block of size 2c(s) can
be reserved in an array, and the various lists contributing to the strip can be stored to-
gether in the first half of the block. The second half will be used as temporary storage
for merging.

For each strips, we then want to merge together about 2 log(m) lists: we iterate
Valiant’s algorithm, as follows. For each strips, c(s)/log(n) processors can be assigned
to merge together all the 2 log(m) lists of cusps contributing to the strips. A single
merge step can be executed in timeO(log log(c(s)) usingc(s)/log log(c(s)) proces-
sors by Valiant’s merge procedure, with optimized processor usage [18]; hence in time
O(log(n)) with the available number of processors.26 Iterating over theO(log log(n))
phases the overall runtime isO(log(n) log log(n)). Ultimately we obtain the sorted list
of cusps for each strip.

DEFINITION 8.11. The rulingD of the beachline consists of them strip boundaries,
together with, for each strip containing more than log(n) cusps, a horizontal line through
every log(n)th cusp.

THEOREM8.12. There are O(m) lines in the ruling and between any two adjacent lines
there are O(log(n)) cusps of the(P, L)-beachline.

PROOF. Let t be the strip between two adjacent lines in the ruling. It is entirely con-
tained in a strips containing log(n) adjacent sites ofP. The sites aboves, Ua, say, have
been extracted from about log(m) disjoint slabs, and the total number of beachline cusps
contributed tot by these slabs isO(log(n)).

Therefore the total number of beachline segments contributed from above isO(log(n)).
Now, because the interaction between different slabs has been lost, not all the cusps
counted int need figure in the(P, L)-beachline, and there may be other beachline cusps
within t . However, the number ofsitesin Ua contributing segments to the stript is like-
wiseO(log(n)). Likewise, the number of sites belows contributing beachline segments
to t is O(log(n)).

Hence the beachline between two adjacent lines of the ruling comes fromO(log(n))
sites and has sizeO(log(n)).

26 Valiant’s algorithm is not essential here; any logarithmic time, linear work algorithm will suffice.

616 R. Cole, M. T. Goodrich, and C.Ó Dúnlaing

9. Comments and Open Problems. At time of writing we believe this to be the
best deterministic parallel algorithm. Obviously, one aspires to anO(log(n)) time, n-
processor algorithm. The methods of this paper do not seem capable of such an improve-
ment. Fractional cascading [3] is the most obvious direction to seek such an improvement;
but fractional cascading is generally about pipelined merging with successively larger
samples. As remarked in paragraph 7.2, the business of combining fringes is related to
merging but much more complicated; we thus find difficulties with fractional cascading.

Sampling is indeed exploited in this paper; Section 8 is about constructing a sample
(a “ruling” for the beachline); but it is used just once rather than pipelined, and it is
constructed by CRCW methods unconnected with fractional cascading.

A lesser goal is to make the overall work optimal, using, say,n/log log(n) processors.
The last section in this paper, in which we show how to construct the beachline rulings,
uses some processor-optimized parallel techniques, so it is not obvious how to apply
these techniques withn/log log(n) processors.

Perhaps the methods of the last section could be sharpened to produce all beachlines
in advance, with the same time and processor bounds. This might streamline other parts
of the paper.

A significant note also is the essential way we exploit the CRCW architecture in
the construction of the rulings for which “forward chaining” and integer sorting are
employed [6]. These areÄ(log(n)) operations in the CREW architecture [12], [13].

The only other place where the CRCW property is required is in Lemma 7.7, where
we used forward chaining to solve the following problem. Given two sorted arraysX and
Y, suppose that some entries in these arrays are marked “absent,” some ’‘present”; we
want to merge the “present” entries from each array together, without compressing the
arrays. The trick we use is aliasing (broadcasting), identifying the “absent” entries with
nearby “present” entries; forward chaining enables this aliasing. Perhaps further geomet-
ric analysis would lead to an alternative aliasing scheme, and the CRCW requirement
would be confined to Section 8.

It remains to be seen whether, and how, these time and processor bounds can be
achieved in the CREW architecture.

One last point is that many of the results about the fringe data-structure derive from
the Jordan Curve theorem [16], [21], and perhaps this could be generalized, for example,
to the Voronoi diagram for line-segments [15].

Acknowledgements. Chee Yap made valuable contributions about the geometric prob-
lems, and Torben Hagerup supplied essential information on integer sorting. I am also
indebted to two anonymous referees whose careful reviews corrected many errors and
substantially improved this complicated paper.

Some of the diagrams in this paper were generated by a “beachline-driven” version of
Fortune’s Voronoi diagram algorithm [14], [11] suggested by the first author and imple-
mented in Dublin by Keith Brady, Andrew Farrell, the third author, and Colman Reilly.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C.Ó Dúnlaing, and C. Yap (1988). Parallel computational geom-
etry.Algorithmica, 3(3), 293–328.

A Nearly Optimal Deterministic Parallel Voronoi Diagram Algorithm 617

[2] M. J. Atallah (1985). Some dynamic computational geometry problems.Computers and Mathematics
with Applications, 11, 1171–1181.

[3] M. J. Atallah, R. Cole, and M. T. Goodrich (1989). Cascading divide-and-conquer: a technique for
designing parallel algorithms.SIAM Journal on Computing, 18(3), 499–532.

[4] M. J. Atallah and M. T. Goodrich (1988). Parallel algorithms for some functions of two convex polygons.
Algorithmica, 3, 535–548.

[5] F. Aurenhammer (1990). Voronoi Diagrams—a Survey of a Fundamental Geometric Data Structure.
Technical report, FB Mathematik Serie B, Freie Universit¨at Berlin.

[6] P. Bhatt, K. Diks, T. Hagerup, V. Prasad, T. Radzik, and S. Saxena (1991). Improved deterministic
parallel integer sorting.Information and Computation, 94, 29–47.

[7] L. Boxer and R. Miller (1989). Parallel dynamic computational geometry.Journal of New Generation
Computer Systems, 2(3), 227–246.

[8] A. Chow (1980). Parallel Algorithms for Geometric Problems. Ph.D. thesis, Computer Science Depart-
ment, University of Illinois.

[9] R. Cole, M. Goodrich, and C.́O Dúnlaing (1990). Merging free trees in parallel for efficient Voronoi
diagram construction.Proc. 17th ICALP. LNCS, vol. 443. Springer-Verlag, Berlin, pp. 432–445.

[10] D. Evans and I. Stojmenovi´c (1989). On parallel computation of Voronoi diagrams.Parallel Computing,
12, 121–125.

[11] A. Farrell (1994). Fortune’s Voronoi sweepline algorithm for convex sites. M.Sc. dissertation, Depart-
ment of Mathematics, Trinity College, Dublin.

[12] F. Fich (1993). The complexity of computation on the parallel random access machine. InSynthesis of
Parallel Algorithms, ed. J. Reif. Morgan Kaufmann, Los Altos, CA.

[13] F. Fich and V. Ramachandran (1990). Lower bounds for parallel computation on linked structures.Proc.
Annual ACM Symp. on Parallel Algorithms and Architectures, Crete, pp. 109–116.

[14] S. Fortune (1987). A sweep-line algorithm for Voronoi diagrams.Algorithmica, 2(2), 153–174.
[15] M. T. Goodrich, C.Ó Dúnlaing, and C. Yap (1993). Constructing the Voronoi diagram of a set of line

segments in parallel.Algorithmica, 9, 128–141.
[16] M. Greenberg and J. Harper (1981).Algebraic Topology—A First Course. Benjamin/Cummings, Menlo

Park, CA.
[17] L. Guibas and J. Stolfi (1985). Primitives for the manipulation of general subdivisions and the compu-

tation of Voronoi diagrams.ACM Transactions on Graphics, 4, 74–123.
[18] C. Kruskal (1983). Searching, merging, and sorting in parallel computation.IEEE Transactions on

Computers, 32(10), 942–946.
[19] C. P. Kruskal, L. Rudolph, and M. Snir (1985). The power of parallel prefix. 1985Internat. Conf. on

Parallel Processing, pp. 180–185.
[20] R. E. Ladner and M. J. Fischer (1980). Parallel prefix computation.Journal of the Association for

Computing Machinery, 27, 831–838.
[21] E. Moise (1977).Geometric Topology in Dimensions2 and3. Graduate Texts in Mathematics, No. 47.

Springer-Verlag, New York.
[22] C. Ó Dúnlaing (1993). Parallel computational geometry. InLectures on Parallel Computation, ed.

A. Gibbons and P. Spirakis. Cambridge International Series on Parallel Computation, Vol. 4. Cam-
bridge University Press, Cambridge, pp. 77–108.

[23] I. Parberry (1987). On the time required to sumn semigroup elements on a parallel machine with
simultaneous writes.Theoretical Computer Science, 51, 239–247.

[24] J. H. Reif and S. Sen (1992). Optimal parallel algorithms for 3-dimensional convex hulls and related
problems.SIAM Journal on Computing, 21(3), 466–485.

[25] M. I. Shamos and D. Hoey (1975). Closest-point problems.Proc. 15th IEEE Symp. on Foundations of
Computer Science, pp. 151–162.

[26] R. Tarjan (1983).Data Structures and Network Algorithms. CBMS–NSF Regional Conference Series
in Applied Mathematics, No. 44. SIAM, Philadelphia, PA.

[27] L. Valiant (1975). Parallelism in comparison problems.SIAM Journal on Computing, 4(3), 348–355.
[28] H. Wagener (1985). Optimally Parallel Algorithms for Convex Hull Determination. Manuscript, Tech-

nical University of Berlin.

