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Abstract

A nearly optimal explicitly-sparse representation for oscillatory kernels is presented in this work by de-

veloping a curvelet based method. Multilevel curvelet-like functions are constructed as the transform of

the original nodal basis. Then the system matrix in a new non-standard form is derived with respect to

the curvelet basis, which would be nearly optimally sparse due to the directional low rank property of the

oscillatory kernel. Its sparsity is further enhanced via a-posteriori compression. Finally its nearly optimial

log-linear computational complexity with controllable accuracy is demonstrated with numerical results.

This explicitly-sparse representation is expected to lay ground to future work related to fast direct solvers

and effective preconditioners for high frequency problems. It may also be viewed as the generalization

of wavelet based methods to high frequency cases, and used as a new wideband fast algorithm for wave

problems.
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1. Introduction

In this work, N -body problems like

fi =
N∑
j=1

K(xi ,yj )σj , for i = 1,2, , ,N (1)

with the oscillatory kernel being

K(x,y) =
eiκr

4πr
, r =

∣∣∣x − y∣∣∣ (2)

or its derivatives are concerned. Such computations may come from acoustic, electromagnetic, or elasto-

dynamic problems when solved with boundary integral equations or the Lippmann-Schwinger equation

[1–6].
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Two major difficulties may be encountered when solving large scale cases. Firstly, the direct evaluation

is prohibitive, since its computational complexity is O(N2) due to its densely populated system matrix.

Secondly, iterative solvers which are generally used often suffer from the bad conditioning of the system

matrix, especially in cases with highly oscillatory kernels [6–9]. These difficulties can be overcome by

constructing approximate sparse representations for the system matrix and its inverse.

Data-sparse representations for the system matrix are constructed in many fast algorithms, that is, the

system is represented in a low rank factorization form with only O(N logαN )α≥0 elements. For low fre-

quency or even non-oscillatory cases which are mainly concerned in early research, the kernel K(x,y) is

asymptotically smooth when x lies far away from y. Therefore, K(x,y) can be approximated by a low-order

expansion, and low rank approximations for off-diagonal matrix blocks corresponding to far-field inter-

actions can be constructed. Representative fast algorithms following this idea include the fast multipole

method (FMM) and its variants [10–13], treecode algorithm [14], H2-matrix [15], adaptive cross approx-

imation [16], and nested cross approximation [17, 18], etc. One of the main differences between these

algorithms is that they use different functions in the low-order expansion of the kernel, or different al-

gebraic schemes in deriving the low rank approximation for matrix blocks. Each of them can achieve a

data-sparse representation for the system matrix with only O(N ) elements, and bring down the computa-

tional complexity to linear for low frequency cases.

For high frequency cases, however, data-sparse representations cannot be obtained by these early fast

algorithms, since the approximate rank of the matrix block increases with its size [19]. Thus other mathe-

matical properties of the kernel should be considered to develop fast algorithms. It is noticed that when the

kernel is approximated with exponential expansions, the translation matrices in FMM can be diagonalized

even in high frequency, thus far field interactions can be computed efficiently. This leads to the diagonal

form FMM [20, 21] and high frequency FMM [22, 23]. To overcome its possible numerical instability in low

frequency cases [24, 25], the wideband FMM is developed [26, 27], which is essentially the hybrid of the

classic and high frequency FMMs. That is, exponential expansions are only used when the oscillation over

matrix blocks becomes remarkable. Consequently, the computational complexity is reduced to O(N logN )

for high frequency cases, and remains O(N ) for low frequency cases. Therefore, it provides a data-sparse

representation with low rank factorization and diagonalization for oscillatory kernels.

Another data-sparse representation with merely low rank factorization is proposed later based on the

directional low rank property of the oscillatory kernel. That is, for x ∈ X and y ∈ Y satisfying the directional

parabolic separation condition, the kernel K(x,y) can be approximated by a low order expansion [28, 29].

Therefore, the far-field interaction matrix would be always of approximately low rank if the far field is di-

vided into multiple directional cones when necessary. Their low rank approximations can be constructed

with the same manner as that in the low frequency fast algorithms. In other words, low frequency fast algo-

rithms can be generalized to high frequency cases by defining the directional cones, and data-sparse repre-
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sentations of the system matrix can be achieved by carefully dividing the off-diagonal matrix blocks. This

idea is very attractive and leads to multiple wideband fast algorithms, including the directional FMM gen-

eralized from the kernel independent FMM [28, 30], the directional FMM generalized from the black-box

FMM [29], the dirH2-ACA method and the directional algebraic FMM based on nested cross approxima-

tion [31, 32]. All of these directional algorithms can achieve theO(N logαN )α≥0 computational complexity,

which is comparable with the wideband FMM.

Explicitly-sparse representations for the linear system are very useful in the development of fast direct

solvers and efficient preconditioners. An representative one is the inverse FMM, which first transforms

the data-sparse representation in FMM into an explicitly-sparse extended linear system, then compute its

inverse efficiently [33, 34]. Unfortunately, it is based on classic FMM, thus is only valid for low frequency

cases. For high frequency cases, a sparsify and sweep preconditioner is proposed recently for Lippmann-

Schwinger equations, by which the computational cost can be reduced to nearly linear [8]. But it requires

computations on Cartesian grids over the entire computational domain, thus its performance may be not

satisfactory for problems with highly nonuniform distributed points, for example, boundary element anal-

ysis in which points are distributed only on the surface.

An explicitly-sparse system matrix can be achieved straightforwardly in the wavelet based method

(WBM) [35–37]. The boundary integral is discretized with wavelet-like functions which are compactly

supported functions with “vanishing” or “quasi-vanishing” low order moments [36, 38]. Thus for low

frequency problems, the interactions between well-separated wavelet-like functions are insignificant. Only

near-field interactions between wavelets have to be preserved in the system matrix, making it explicitly-

sparse with only O(N ) nonzero elements [35, 37]. However, WBM is also only suitable for low frequency

cases [39–41].

Both WBM and FMM are based on the fact that the kernel K(x,y) can be approximated by low or-

der expansions for well separated x and y. Further study shows that they can transform into each other

[41, 42], which means it is possible to transform a data-sparse representation based on low rank factor-

ization into an explicitly-sparse representation with wavelet-like functions. This finding evokes the idea

that the data-sparse representation in directional algorithms may also be transformed into an explicitly-

sparse representation, and a new wideband fast algorithm with “directional” wavelet-like functions may

be obtained.

Multiple directional wavelets have been proposed in the last two decades, among them the curvelet is a

popular one and has gained great success in image processing [43–45]. Furthermore, mathematical study

on its potential application in scientific computing shows that, the curvelet representation for oscillatory

kernels is optimally sparse, which consists only O(N logN ) nonzero elements [46]. Therefore, it is reason-

able to expect that, in the new wideband fast algorithm transformed from directional algorithms, the new

basis should be curvelet-like functions, thus the algorithm can be named as curvelet based method (CBM).
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The aim of this paper is to develop a curvelet based method providing a nearly optimal explicitly-sparse

representation for oscillatory kernels. It is a transform of a directional FMM, and can also be viewed as a

generalization of a WBM. It is worth noting that in this work, we are not restricted to one particular low

order expansion of the kernel function or an unique algorithm constructing low rank approximations for

matrix blocks, thus it provides a framework transforming various directional algorithms into CBMs.

This rest of the paper is organized as follows. In Section 2, a framework transforming FMM-like algo-

rithms to WBM is discussed for low frequency problems. Then it is generalized to high frequency cases in

Section 3, resulting in the CBM and explicitly-sparse representation for wideband problems. Its sparsify is

further enhanced by a-posteriori compression in Section 4. Finally its performance is studied numerically

in Section 5.

2. Wavelet compression method for low frequency cases

Our CBM is transformed from a directional FMM. For low frequency cases, the directional FMM would

degenerate into the corresponding low frequency FMM-like method, thus our CBM should degenerate into

a WBM. Therefore, before proposing CBM, we would like to provide the framework transforming FMM-

like algorithms to WBM for N -body problems in this section.

2.1. Basis and weight functions in N -body problems

Generally the WBM is developed for Petrov-Galerkin discretization of integrals [36, 37, 47], in which

the wavelet basis can be constructed by transforming the original nodal basis and weight functions. For

the N -body problem (1), it seems there are no basis or weight functions. However, it can be rewritten into

the following Petrov-Galerkin integral form

fi =
N∑
j=1

K(xi ,yj )σj =
∫
Ω

δi(x)
∫
Ω

K(x,y)δj (y)dydx · σj , xi ∈Ω,yj ∈Ω, (3)

where

δi(x) = δ(x,xi), δj (y) = δ(y,yj ).

Thus the N -body problem can be viewed as integrals over Ω discretized with Dirac-δ functions as basis

and weight functions, and wavelets can be constructed as the linear combination of Dirac-δ functions.

2.2. Wavelet compression for far-field interactions

For low frequency cases, the kernel can be approximated by low order expansions

K(x,y) ≈
∑
r

Tr (x)
∑
s

drsSs(y), x ∈ X,y ∈ Y (4)
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when X and Y are well separated

dist(X,Y) ≥ ηmax(diamX,diamY). (5)

Therefore, far-field interactions in the Petrov-Galerkin disretization can be evaluated by

Aij =
∫
Ω

wi(x)
∫
Ω

K(x,y)χj (y)dydx

≈
∑
r

∫
Ω

Tr (x)wi(x)dx
∑
s

drs

∫
Ω

Ss(y)χj (y)dy, x ∈ X,y ∈ Y.
(6)

Denote

Mri(w) =
∫
Ω

Tr (x)wi(x)dx, Msj (χ) =
∫
Ω

Ss(y)χj (y)dy (7)

as moments of w and χ, respectively. Apparently Aij ≈ 0 if M(wi) ≈ 0 or M(χj ) ≈ 0, i.e., when the moment

of wi or χj approximately vanishes. Then the system matrix would be sparsified.

Wavelet-like functions are transformed from the original nodal functions {χ} and {w}. For simplicity

they are also called wavelets in this paper. For basis functions {χ}, evaluate the moment matrix M(χ) and

calculate its singular value decomposition

M(χ) = UΣQH, (8)

in which Σ = diag(σ0,σ1, · · · ,σn) is the diagonal matrix consisting of singular values in the descending order.

Divide Σ and Q into columns corresponding to relatively large singular values {σi |σi ≥ εσ0} and ignorable

ones {σi |σi < εσ0}, then

M(χ) [Q1,Q0] =U [Σ1,Σ0] ≈ [UΣ1,0]

:=[M(Φ),M(Ψ )] ,
(9)

with

[Φ ,Ψ ] =
[
QT

1 {χ},Q
T
0 {χ}

]
. (10)

That is, the original basis functions are transformed into a group of scaling functions Φ = QT
1 {χ} without

quasi-vanishing moments and wavelets Ψ = QT
0 {χ} with quasi-vanishing moments.

The number of scaling functions Φ are limited and independent with the matrix block’s size. Assume

the kernel is approximated by a p-term expansion, then the moment matrix M(χ) also consists of p rows,

thus the number of relatively large singular values and number of scaling functions would not exceed p.

Since p is independent of the number of points, there would be only O(1) scaling functions.

Wavelets for weight functions can be constructed in the similar manner. Then the matrix block for
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far-field interactions (6) becomes

A =[M(w)]TDM(χ) =
{
[M(Φw),M(Ψ w)]QH

w

}T
D

{[
M(Φχ),M(Ψ χ)

]
QH
χ

}
≈
[
M(Φw)QH

w,1

]T
D

[
M(Φχ)QH

χ,1

]
= Qw,1

{
[M(Φw)]TDM(Φχ)

}
QH
χ,1

:=Qw,1ÃQ
H
χ,1

(11)

with D = [drs]. Hence the matrix block A can be represented with

Ã = QT
w,1AQχ,1 = [M(Φw)]TDM(Φχ) (12)

which only consists of interactions of scaling functions Φw and Φχ, and there are only O(1) nonzero

elements.

Notice Eq. (6) is actually the translation in single level FMM, in which M(χ),D, [M(w)]T are called the

source-to-moment (S2M), moment-to-local (M2L), and local-to-target (L2T) translation matrices, respec-

tively. That is, when transforming FMM into WBM, the moment matrix of basis functions can be defined

the same as the S2M matrix in FMM, while the moment matrix for weight functions should be defined as

the transpose of the L2T matrix.

2.3. Multilevel wavelet construction

An explicitly-sparse representation for the system matrix with O(N ) nonzero elements can be achieved

with multilevel wavelet basis. They can be constructed on a balanced octree, which is commonly used in

WBMs. First define a Level-0 cube containing all points. Then for currently the finest level, if there are

cubes containing more than Np points, each cube in this level would be divided into eight child cubes in

the next level. The subdivision is continued until the number of nodes in each leaf cube does not exceed

the predetermined number Np. For each cube C, define its near field NC as the union of cubes adjacent

with C. The rest are defined as its far field FC , and the interaction field is defined as IC = N P \NC with P

being the parent of C.

The construction of multilevel wavelets starts from the finest L-th level. For each leaf cube C, compute

the moment matrix for nodal basis inside C. Then transform the nodal basis into wavelets Ψ L and scaling

functions ΦL, and compute the moments of scaling functions ML(ΦL) in the L-th level.

For each cube C in the l-th level with l < L, the scaling functions in its child cubes are collected and

transformed into wavelets and scaling functions in the l-th level. First translate the moments of scaling

functions in its child cubes Ml+1(Φ l+1) into moments on the l-th level by the moment-to-moment (M2M)

translation

Ml(Φ l+1) =MlMl+1(Φ l+1), (13)
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then compute its singular value decomposition to get wavelets Ψ l and scaling functions Φ l in the l-th level

and their moments Ml(Ψ l) and Ml(Φ l). This is done recursively until the h-th level is reached on which

all cubes lie in the near field or interaction field of each other.

Now let’s discuss the multilevel wavelet construction for weight functions. Notice that the translations

in multilevel FMM can be expressed as

b = T LDMSx, (14)

with S ,M,D,L,T denote the S2M, M2M, M2L, L2L, L2T translations, respectively. Comparing with the

single level FMM b = T DSx, MS actually takes the role of
[
ML−1(Φχ)

]
at the (L − 1)-th levels with S =

ML(χ), and T L takes the role of [ML−1(Φw)]T with T = [ML(w)]T. Therefore, for weight functions,

Ml(Φ l+1) = LT
l Ml+1(Φ l+1). (15)

That is, in the multilevel wavelet construction for weight functions, the moments of scaling functions

should be translated by the transpose of the L2L translation matrix in FMM.

The construction of multilevel wavelet basis from original nodal basis X = {χ} can be depicted as

X → ΦL → ΦL−1 → ·· · → Φh

↘ ↘ ↘ ↘

Ψ L Ψ L−1 · · · Ψ h

2.4. Linear system with respect to the wavelet basis

There are two kinds of system matrix representations with respect to the multilevel wavelet basis,

namely the standard form and the non-standard form. The non-standard form is used in this work, in

which there are only interactions of functions on the same level, thus it is much simpler. Moreover, it is

more efficient than the standard form [35].

The system matrix can be transformed into wavelet representations with wavelets in the L-th level

A =
[
Qw,0,L Qw,1,L

]A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L A

φ,φ
L


QH

χ,0,L

QH
χ,1,L

 . (16)

Far-field interactions with wavelets are always insignificant due to their quasi-vanishing moments, thus

A
ψ,ψ
L ,A

ψ,φ
L ,A

φ,ψ
L are sparse, and only A

φ,φ
L is fully populated. A

φ,φ
L can be further sparsified with wavelet

7



basis in the (L− 1)-th level, which gives

A =
[
Qw,0,L Qw,1,L

]A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L A

φ,φ
L


QH

χ,0,L

QH
χ,1,L


=
[
Qw,0,L Qw,1,L

]
A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L

[
Qw,0,L−1 Qw,1,L−1

]A
ψ,ψ
L−1 A

ψ,φ
L−1

A
φ,ψ
L−1 A

φ,φ
L−1


QH

χ,0,L−1

QH
χ,1,L−1



QH

χ,0,L

QH
χ,1,L



=
[
Qw,0,L Qw,1,L Qw,1,LQw,0,L−1 Qw,1,LQw,1,L−1

]


A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L

A
ψ,ψ
L−1 A

ψ,φ
L−1

A
φ,ψ
L−1 A

φ,φ
L−1





QH
χ,0,L

QH
χ,1,L

QH
χ,0,L−1Q

H
χ,1,L

QH
χ,1,L−1Q

H
χ,1,L


.

(17)

This is done recursively until the highest level. Consequently, the matrix-vector multiplication b = Ax is

transformed into

b = QwÃnsQ
H
χ x. (18)

The system matrix in the non-standard form

Ãns =



A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L

. . .

A
ψ,ψ
h+1 A

ψ,φ
h+1

A
φ,ψ
h+1

A
ψ,ψ
h A

ψ,φ
h

A
φ,ψ
h A

φ,φ
h



(19)

is optimally sparse, since far-field interactions in Aψ,ψ ,Aψ,φ,Aφ,ψ can be discarded and the size of Aφ,φh is

limited.

Q∗ =
[
Q∗,0,L, Q∗,1,L, Q∗,1,LQ∗,0,L−1, Q∗,1,LQ∗,1,L−1, · · · ,

Q∗,1,LQ∗,1,L−1 · · ·Q∗,1,h+1Q∗,0,h, Q∗,1,LQ∗,1,L−1 · · ·Q∗,1,h+1Q∗,1,h
]

=

Q∗,0,L, Q∗,1,L, Q∗,1,LQ∗,0,L−1, Q∗,1,LQ∗,1,L−1, · · · ,
h+1∏
l=L

Q∗,1,l ·Q∗,0,h,
h+1∏
l=L

Q∗,1,l ·Q∗,1,h


(20)

is the transform matrix between the original nodal basis X and wavelet basis

Ψ ∗ =
{
Φ ∗,L,Ψ ∗,L,Φ ∗,L−1,Ψ ∗,L−1, · · · ,Φ ∗,h,Ψ ∗,h

}
, (21)

with ∗ in the subscript denoting w for weight functions or χ for basis functions. Then the matrix vector

multiplication b = Ax can be computed with linear computational cost by the following three steps in

WBM:
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1. Compute the coefficients x̃ of wavelet basis functions Ψ χ with fast wavelet transform x̃ = QH
χ x;

2. Evaluate coefficients b̃ of wavelet weight functions Ψ w by b̃ = Ãnsx̃;

3. Compute the target values with inverse fast wavelet transform b = Qwb̃.

The non-standard system matrix can be computed in a upward pass. Matrix blocks corresponding to a

cube C and B ∈NC is computed by A
φ,φ
B,C A

φ,ψ
B,C

A
ψ,φ
B,C A

ψ,ψ
B,C

 = QT
L,wAB,CQL,χ. (22)

If C and B lie in the finest level, AB,C consists of interactions of the original nodal basis and weight func-

tions, thus it is actually the source-to-target (S2T) translation matrix in FMM. If C and B lie in a higher

l-th level, AB,C consists of interactions of all the φ-interactions of their children, which includes near field

and interaction field interactions in the (l + 1)-th level. The near field interactions have already been com-

puted by the transformation (22) in the (l + 1)-th level. The interaction field interactions can be computed

efficiently with the moment matrix M(Φ) and the M2L translation

Aφ,φ = QT
wAQχ = QT

w [M(w)]TDM(χ)Qχ = [M(Φw)]TDM(Φχ). (23)

The matrix computation only requires computations in near field and interaction field, thus its computa-

tional cost is linear.

3. Curvelet compression for high frequency cases

Now we transform the directional FMM to a CBM. Our CBM also consists of computations in low and

high frequency regime, and the computations in the low frequency regime is the same with the WBM. Thus

in this section, we mainly discuss the computations in the high frequency regime.

3.1. Multilevel curvelet construction

Our CBM is also based on the directional low rank property of the oscillatory kernel. That is, the kernel

can be approximated by low order expansion

K(x,y) ≈
∑
r

Tr (x)
∑
s

drsSs(y), x ∈ X,y ∈ Y

when X and Y satisfies the parabolic separation condition, as illustrated in Fig. 1. According to the theory

in Section 2.2, far-field interactions between X and Y can be sparsified by using basis and weight func-

tions with quasi-vanishing moments. Notice that the expansion is only valid for a directional cone, and

Tr (x) and Ss(y) differ from cone to cone, thus the moments and wavelet-like functions are directional. In
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X

Y

u
O(1/(κw))

w
O(κw2)

Figure 1: Parabolic separation condition.

the following, these directional wavelet-like functions are called curvelet-like functions, or curvelets for

simplicity in this work.

In the multilevel curvelet construction, the octree is divided into low and high frequency regimes. The

low frequency regime consists of low level cubes whose size is less than the wavelength, and the rest lie

in the high frequency regime. Denote the highest level in the low frequency regime is the hl-th level. In

order to ensure hl < L so that the low frequency regime is not empty, cubes larger than the wavelength are

always subdivided during the octree construction.

For a cube C, if it lies in the low frequency regime, its near field, far field, and interaction field are

defined the same as that in WBM. If it lies in the high frequency regime, its near field NC is defined as

the union of cubes B whose distance does not exceed O(kw2), and the rest is defined as its far field FC .

Its interaction field IC = N P \NC is divided into multiple directional cones with spanning angles being

O(1/(κw)). Thus each directional cone is parabolic separated from C.

The construction of multilevel curvelets from original nodal basis X are depicted in Fig. 2. The orig-

inal nodal basis are firstly transformed into wavelet basis in the low frequency regime, then the scaling

functions are further transformed into curvelets in the high frequency regime. For each directional cone,

a group of curvelets and directional scaling functions are constructed. For the (hl − 1)-th level, i.e., the

finest level in the high frequency regime, curvelets in the u-th directional cone are transformed from non-

directional scaling functions in the hl-th level. For a higher l-th level in the high frequency regime with

l < hl , curvelets in the ul-th directional cone are transformed from directional scaling functions in the

ul+1-th directional cone in the (l + 1)-th level, with ul enclosed in the ul+1-th directional cone.

Notice there are O(N logN ) directional cones for all cubes in the high frequency regime [28]. For each

directional cone, the curvelet basis is constructed via M2M and SVD of the moment matrix. Thus it is easy

to find that the computational complexity of the multilevel curvelet construction is O(N logN ).
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X

ΦL

ΦL−1,1

ΦL−2,1 Ψ L−2,1 ΦL−2,2 Ψ L−2,2

Ψ L−1,1 ΦL−1,2

ΦL−2,3 Ψ L−2,3 ΦL−2,4 Ψ L−2,4

Ψ L−1,2

Ψ L

High Frequency Regime

Low Frequency Regime

Figure 2: Construction of multilevel curvelets, where subscripts (l,γ) denotes the γ-th directional cone in the l-th level.

3.2. Linear system in the new non-standard form

Now let’s construct the explicitly-sparse representation of the system matrix with respect to the curvelet

basis. The matrix sparsification in the low frequency regime is the same with that in the WBM, resulting

in the transformed system matrix like Eq. (19). Then there would be only one densely populated matrix

block A
φ,φ
hl

corresponding to interactions of all scaling functions at the hl-th level, and its size grows with

the wavenumber κ. Thus the key of curvelet sparsification is to further sparsify A
φ,φ
hl

with curvelet basis in

the high frequency regime.

A straightforward idea to sparsify A
φ,φ
hl

may be to apply the sparsification scheme in WBM straight-

forwardly, i.e., to transform it into near-field interactions of curvelets and directional scaling functions.

However, there are multiple groups of curvelet basis, each for a directional cone. Aφ,φhl can be transformed

by

A
φ,φ
hl

=
[
Qw,0,hl−1,γ Qw,1,hl−1,γ

]A
ψ,ψ
hl−1,γ A

ψ,φ
hl−1,γ

A
φ,ψ
hl−1,γ A

φ,φ
hl−1,γ


QH

χ,0,hl−1,γ

QH
χ,1,hl−1,γ

 (24)

for each γ-th group. We cannot determine which group should be used. More importantly, the transformed

matrix blocks A
ψ,ψ
hl ,γ

,A
ψ,φ
hl ,γ

,A
φ,ψ
hl ,γ

are not sparse any more, since only ψ-interactions in the γ-th directional

cone is ignorable, while that in other cones are still significant. Therefore, we must find another scheme to

sparsify A
φ,φ
hl

and construct a new non-standard form to achieve the sparse representation for the system

matrix.

In this work, the far-field interactions in A
φ,φ
hl

are sparsified cone-by-cone. Notice that A
φ,φ
hl

can be

divided into the near-field and interaction-field interactions at the hl-th level Aφ,φhl ,NI(hl )
and the interaction-

field interactions on higher levels, and the later is further divided into interactions with multiple direc-

tional cones. That is,

A
φ,φ
hl

= A
φ,φ
hl ,NI(hl )

+
h∑

l=hl−1

Γl∑
γ

A
φ,φ
hl ,I(l,γ), (25)

where I(l,γ) denotes the γ-th directional cone in the interaction field in the l-th level, Γl is the number of
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cones in the l-th level, and

A
φ,φ
hl ,I(l,γ) =

∫
X
Φw,hl (x)

∫
Y
K(x,y)Φχ,hl (y)dydx

with X being the cubes in the l-th level, and Y being their γ-th directional cones.

A
φ,φ
hl ,I(l,γ) can be approximated by low order expansion since the kernel is of directional low rank. First

transform the φhl -interactions into φhl−1-interactions

A
φ,φ
hl ,I(l,γ) =

[
Qw,0,hl−1,γ ′ Qw,1,hl−1,γ ′

]A
ψ,ψ
hl−1,γ ′ A

ψ,φ
hl−1,γ ′

A
φ,ψ
hl−1,γ ′ A

φ,φ
hl−1,γ ′


QH

χ,0,hl−1,γ ′

QH
χ,1,hl−1,γ ′

 (26)

where the subscript (hl−1,γ ′) denotes the directional cone in (hl−1)-th level enclosing I(l,γ). Matrix blocks

A
ψ,ψ
hl−1,γ ′ , A

ψ,φ
hl−1,γ ′ and A

φ,ψ
hl−1,γ ′ are ignorable due to the quasi-vanishing directional moments of curvelets,

thus Eq. (26) becomes

A
φ,φ
hl ,I(l,γ) = Qw,1,hl−1,γ ′A

φ,φ
hl−1,γ ′Q

H
χ,1,hl−1,γ ′ . (27)

That is, φhl -interactions are transformed into φhl−1-interactions, and the matrix block is compressed. This

is done recursively until the l-th level, which gives

A
φ,φ
hl ,I(l,γ) =

(
Qw,1,hl−1,γ ′Qw,1,hl−2,γ ′ · · ·Qw,1,l,γ

)
A
φ,φ
l,γ

(
QH
χ,1,l,γ · · ·Q

H
χ,1,hl−2,γ ′Q

H
χ,1,hl−1,γ ′

)
=

l∏
λ=hl−1

Qw,1,λ,γ ′ ·A
φ,φ
l,γ ·

hl−1∏
λ=l

QH
χ,1,λ,γ ′ .

(28)

Substitute Eq. (28) into (25), we get

A
φ,φ
hl

= A
φ,φ
hl ,NI(hl )

+
h∑

l=hl−1

Γl∑
γ

l∏
λ=hl−1

Qw,1,λ,γ ′ ·A
φ,φ
l,γ ·

hl−1∏
λ=l

QH
χ,1,λ,γ ′ . (29)

It can be written into the form

A
φ,φ
hl

= Qw,HFR ·Ans,HFR ·QH
χ,HFR, (30)

where

Ans,HFR = diag(Aφ,φhl ,NI(hl )
, A

φ,φ
hl−1,1, · · · , A

φ,φ
hl−1,Γhl−1︸                           ︷︷                           ︸

(hl−1)-th level

, · · · , A
φ,φ
h,1 , · · · , A

φ,φ
h,Γh︸                  ︷︷                  ︸

h-th level

) (31)

and

Q∗,HFR = [I , Q∗,1,hl−1,1, · · · , Q∗,1,hl−1,Γhl−1︸                                   ︷︷                                   ︸
(hl−1)-th level

, · · · ,
h∏

λ=hl−1

Qw,1,λ,1′ , · · · ,
h∏

λ=hl−1

Qw,1,λ,Γ ′h︸                                            ︷︷                                            ︸
h-th level

] (32)

12



are the sparsified system matrix and transform matrix relative to the high frequency regime, respectively.

Substitute Eq. (30) into the non-standard form system matrix with respect to the wavelet basis in the

low frequency regime, we would get the linear system b = QwÃnsQH
χ x for high frequency problems, in

which

Q∗ =[Q∗,0,L, Q∗,1,L, · · · ,
hl+1∏
l=L

Q∗,1,l ·Q∗,0,hl ,
hl+1∏
l=L

Q∗,1,l ·Q∗,HFR]

=[Q∗,0,L, Q∗,1,L, · · · ,
hl+1∏
l=L

Q∗,1,l ·Q∗,0,hl ,
hl+1∏
l=L

Q∗,1,l ·Q∗,1,hl ,

hl∏
l=L

Q∗,1,l ·Q∗,1,h−1,1, · · · ,
hl∏
l=L

Q∗,1,l ·
h∏

λ=hl−1

Q∗,1,λ,Γh︸                                                                ︷︷                                                                ︸
for all directional cones in the high frequency regime

],

(33)

and

Ãns =



A
ψ,ψ
L A

ψ,φ
L

A
φ,ψ
L

. . .

A
ψ,ψ
hl+1 A

ψ,φ
hl+1

A
φ,ψ
hl+1

A
ψ,ψ
hl

A
ψ,φ
hl

A
φ,ψ
hl

A
φ,φ
hl ,NI(hl )

A
φ,φ
hl−1,1

. . .

A
φ,φ
h,Γh



(34)

is the explicitly-sparse representation of the system matrix in the new non-standard form for high fre-

quency cases.

The matrix blocks in Ãns for the low frequency regime is computed in the same manner as that in

WBM, and A
φ,φ
l,γ for the high frequency regime can be computed efficiently with the M2L translation. It

is worthnoting that each submatrix block in A
φ,φ
l,γ corresponds to an M2L operation, thus there are only

O(N logN ) blocks. The size of each block is of order O(1) due to the directional low rank property of the

kernel. Therefore, there are only O(N logN ) nonzero elements in Ãns, and the computational complexity

of the matrix computation is also O(N logN ). Then the computational cost of b = Ax can be brought down

to log-linear by computing fast curvelet transform x̃ = QH
χ x, matrix vector multiplication in the curvelet

space b̃ = Ãnsx̃, and the inverse fast curvelet transform b = Qwb̃ in sequence.

13



4. A-posteriori compression

In the study of WBM, it is found that that although the system matrix is sparsified with wavelets for

low frequency cases, there are still many tiny elements. The memory cost can be significantly reduced by

leaving out these tiny elements, which is called the a-posteriori compression technique [48]. Considering

the relationship between our CBM and the WBM, it is reasonable to expect that there would be also many

discardable elements in the explicitly-sparse representation obtained in Section 3, and its sparsify can be

enhanced by the a-posteriori compression technique.

It is noteworthy that our aim is to develop a nearly optimize explicitly-sparse representation of the

system matrix with controllable accuracy. However, the primitive a-posteriori compression technique is

developed for fast boundary element analysis and the threshold is designed to preserve the convergence

rate of the boundary element method with piecewise constant elements. Thus the threshold for leaving

out should be re-defined in our CBM.

For each matrix block B in Ãns, it is compressed by

B̃ij =


Bij , ‖Bij‖ ≥ η,

0, ‖Bij‖ < η.
(35)

The induced relative error would be controllable when

‖B − B̃‖1
‖B‖1

≤ ηm/‖B‖1 = ε, (36)

where L1 norm is used in the error estimation since it is easy to evaluate. Therefore, the threshold may be

taken as

η = ε‖B‖1/m. (37)

The compressed matrix block B̃ should be stored in sparse mode to save memory. For each nonzero

element, it is stored with a complex variable for its value and an interger for its position. Thus B̃ with Nnz

nonzeros can be stored with Nnz[sizeof(int)+ sizeof(complex)] memory. Notice that the matrix block

before a-posteriori compression requiresmn·sizeof(complex) memory, thus the a-posteriori compression

should be only carried out for B when there are

Nnz < mn
sizeof(complex)

sizeof(int)+ sizeof(complex)
(38)

undiscardable elements.

5. Numerical results

The CBM implemented in this work is transformed from the optimized dFMM [2], that is, the low rank

approximation are constructed with equivalent densities, and compressed S2M, M2M, M2L, L2L and L2T

translation matrices in [2] are used in the curvelet construction and matrix computation.
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The program is implemented serially in C++. Its performance is demonstrated with a group of numer-

ical examples in this section. All the examples are carried out with a Chinese FT2000+ CPU (2.2 GHz) and

128 GB RAM.

5.1. Accuracy and computational complexity

First we study the accuracy and computational complexity of our CBM with the summation (1) and

single layer Helmholtz kernel (2). The points {xi} and {yj } are sampled on the surface of a unit sphere with

about 10 points per wavelength, and the densities {σj } are randomly defined. The relative error εa of our

CBM is estimated with

εa =

√√√√√√√√∑Nt
i=1

∥∥∥∥f (a)
i − f

(d)
i

∥∥∥∥2

2∑Nt
i=1

∥∥∥∥f (d)
i

∥∥∥∥2

2

, (39)

where {f (a)
i } are the potentials on Nt randomly selected points computed with our CBM, and {f (d)

i } are the

potentials evaluated by direct summation. In this work,Nt = 500 points are selected in the error estimation.

The summation is computed multiple times with various choices of ε and dimensionless diameters κD.

In the highest frequency case with κD = 201.1, the diameter is 32 wavelengths, as illustrated in Figure

3, and over 1 million points are sampled on the boundary. The computational results are summarized in

Table 1, where Tc,Tm,Tp,Tt are the computational time cost by curvelet construction, sparse system matrix

computation, matrix-vector multiplication, and the overall running time, MQ,Mm,Mt are the memory cost

by the Q matrices, sparse system matrix, and the overall memory consumption, respectively.

Figure 3: A sphere with κD = 201.1.

Generally the overall error εa is of the same magnitude with the predetermined parameter ε. The error

εa seems to grow with logN . This is reasonable since in each level, some error of order O(ε) is introduced,
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Table 1: Results of the sphere with the single-layer kernel.

ε0 κD N
Time cost (sec) Memory cost (MB)

εa
Tc Tm Tp Tt MQ Mm Mt

1e-3 12.6 4,608 1 5 <1 6 12 51 68 1.0e-3

1e-3 25.1 18,432 15 27 <1 43 125 294 518 2.7e-4

1e-3 50.3 73,728 129 103 2 236 1,013 1,406 2,671 4.4e-3

1e-3 100.5 294,912 812 429 11 1,265 6,414 6,083 14,011 5.5e-3

1e-3 201.1 1,143,072 4,054 1,866 79 6,053 31,987 26,241 62,579 8.8e-3

1e-6 12.6 4,608 5 44 <1 51 12 208 249 1.2e-6

1e-6 25.1 18,432 173 351 1 528 518 2,641 3,465 6.2e-6

1e-6 50.3 73,728 1,796 1,200 8 3,009 5,465 9,826 16,923 8.3e-6

1e-6 100.5 294,912 14,238 5,074 83 19,413 38,089 46,476 94,412 9.5e-6

and there are O(logN ) levels in the octree. Compared with the error of the dFMM in [2] from which

our algorithm is transformed, the error becomes greater. This is because in our CBM, besides the low rank

approximation of the kernel, extra error is introduced in the construction of curvelets with quasi-vanishing

moments and the a-posteriori compression. Nevertheless, the overall error is still controllable.

In the N -body problem evaluations, most of the computational time are cost by construction of the

explicitly-sparse representation of the system matrix, including the curvelet construction and matrix com-

putation. Once the sparse representation is obtained, potentials on the target points can be evaluated very

efficiently. A majority of the memory cost are taken by the storage of Q matrices and the sparse system

matrix Ãns, which are necessary for the curvelet transformation and matrix-vector multiplication in the

curvelet space.

The time and memory cost by evaluations with ε0 = 1e-3 are plotted in Figure 4 to show the compu-

tational complexity. It shows that the memory taken by storing Ãns is of order O(N logN ), which means

there are only log-linear nonzeros in the explicitly-sparse representation of the system matrix obtained by

our algorithm. The time cost taken by the matrix computation also increases at the speed of O(N logN ).

Theoretically, the computational complexity of curvelet construction and the overall computation should

also be O(N logN ). For each level with the cube width being w, there are at most O(D2/w2) non-empty

cubes since the points are sampled on a surface. And there are at most O(κ2w2) directional cones when

the cube lies in the high frequency regime. The computational cost of curvelet construction for each di-

rectional cone is of order O(1) since the dimension of the moment matrices and M2M matrices are in-

dependent of κw. Therefore, the computational cost of curvelet construction in each level is of order

O(D2/w2 ·κ2w2) = O(κ2D2) = O(N ), and the overall computational complexity of curvelet construction in
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(a) Overall time cost. (b) Overall memory consumption.

Figure 4: Computational cost of the summation on a unit sphere with the single layer kernel.

all levels should be O(N logN ) since there are O(logN ) levels in the octree.

However, it seems the time and memory cost in curvelet construction increases faster than the theoret-

ical prediction, and the overall computational complexity seems O(N log2N ). To figure out the reason, we

count the actual number of nonempty directional cones in the numerical cases. Notice that for a cube in

the high frequency, if its interaction field in the directional cone is empty but there are nonempty cubes

in the far field in this cone, the cone is still considered as nonempty, and curvelets and scaling functions

have to be constructed since they are later required in the construction of its parent in higher levels. The

number of nonempty cones differs from cube to cube, thus we compute its average value for each level. For

each level with cube width in term of wavelength w/λ = κw/2π, the average number of nonempty cones Γ̃l

for each cone and its theoretical upper bound Γ̄l are listed in Table 2.

Table 2: Number of nonempty directional cones in the N -body problem with points on a spherical surface.

w/λ
Γ̃l

Γ̄l
κD = 8π κD = 16π κD = 32π κD = 64π

1 12.9 35.4 49.1 55.7 96

2 - - 69.1 142.0 384

It is shown that in real-world numerical cases, the number of nonempty directional cones may be much

less than the upper bound Γ̄l ∼ O(κ2w2), and it tends to increase with frequency. This may be because the

dimensionless curvature λ/R of the surface on which the points locate reduces with the frequency. When

the frequency is not so high, the curvature is relatively great, and the far-field surface tends to locate in

a small number directional cones. But when the frequency gets higher, the curvature decreases and the
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surface tends to occupy more directional cones, as illustrated in Figure 5. Nevertheless, the number of

directional cones will never exceed Γ̄l ∼O(κ2w2). Thus the computational complexity of curvelet construc-

tion should approach O(N logN ) asymptotically as the frequency keep increasing. This trend has been

partially demonstrated in Figure 4, in which the slope of Tc reduces as the frequency increases. It is ex-

pected that the slope would further reduce to approximately parallel with that of O(N logN ) if results of

higher frequency cases are provided. However, they are not computed in this work due to the memory

limit of our computer.

NC

C

FC

(a) Lower frequency, 6 nonempty cones.

NC

C

FC

(b) Higher frequency, 8 nonempty cones.

Figure 5: Increasement of the number of nonempty directional cones with frequency for the same w/λ. Illustrated with a two-

dimensional case. Three-dimensional cases would be similar.

5.2. Kernels of other layers

The performance of our CBM with double, adjoint and quadrapole layers are studied in this section.

The points are also sampled on the surface of a unit sphere, and their normals points outwards. The

numerical results are listed in Table 3–5.

It is shown that the performance for the adjoint layer kernel is approximately the same with that for the

double layer. This is reasonable since their matrices are in fact the transpose of each other, i.e., A(a) = A(d),

where the superscript (a) and (d) represents the adjoint and double layer kernel, respectively. Since in

our CBM we get the sparse representation A = QwÃnsQχ, thus theoretically, Q(a)
w = Q

(d)
χ , Ã

(a)
ns = Ã

(d)
ns , and

Q
(a)
χ = Q

(d)
w . Hence the computations for the adjoint layer kernel are the same with that for the double

layer kernel, except that the position of target and source points are exchanged in the algorithm. The

slight differences in the computational cost may come from the random choice of equivalent points in

construction of low rank approximation for the kernel in high frequency regimes [28, 49].

The memory cost Mm by storing Ãns for the quadrapole layer is much less than that for the single layer.
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Table 3: Results of the sphere with the double-layer kernel.

ε0 κD N
Time cost (sec) Memory cost (MB)

εa
Tc Tm Tp Tt MQ Mm Mt

1e-3 12.6 4,608 1 5 <1 6 12 61 77 5.0e-4

1e-3 25.1 18,432 15 26 <1 43 125 388 559 1.1e-3

1e-3 50.3 73,728 124 95 2 225 1,013 1,901 3,177 1.2e-3

1e-3 100.5 294,912 786 403 35 1,238 6,465 8,515 16,518 1.7e-3

1e-3 201.1 1,143,072 4,065 1,738 83 5,941 32,884 38,000 74,970 1.8e-3

1e-6 12.6 4,608 6 48 <1 55 6 316 351 5.8e-7

1e-6 25.1 18,432 164 358 1 532 531 2,971 3,807 1.4e-6

1e-6 50.3 73,728 1,869 1,241 9 3,124 5,854 12,161 19,753 1.5e-6

1e-6 100.5 294,912 15,357 5,252 80 20,708 40,368 56,058 106,432 1.7e-6

This is because, for the quadrapole layer kernel

∂2G(x,y)
∂nx∂ny

=
[
(k2r2 + 3ikr − 3)(r̂ · n̂x)(r̂ · n̂y) + (1− ikr)(n̂x · n̂y)

] eikr

4πr3 , (40)

its hypersingularity makes it increases sharply when x approaches y. Thus the elements in the near field

can be much greater than that in the case with the single layer kernel. The norm of the transformed matrix

block Aφ,φ, and the threshold for the a-posteriori compression (37) would also become larger. Consequently,

more tiny elements could be discarded in the a-posteriori compression, leaving less nonzero elements in the

final explicitly-sparse representation, and less memory is consumed. The overall error εa becomes greater

but is still approximately of the same order with ε.

The memory cost Mm for the double and adjoint layer, however, is greater than that for the single layer.

This is because, for the double layer kernel

∂G(x,y)
∂ny

= (1− ikr) · (r̂ · n̂y)
eikr

4πr2 (41)

and the adjoint kernel

∂G(x,y)
∂nx

= −(1− ikr) · (r̂ · n̂x)
eikr

4πr2 , (42)

the r̂ · n̂ term makes them approaches 0 when x approaches y since x and y are sampled on the surface

with n is the surface normal. This makes the elements in the near field becomes much smaller than that

in the case with the single layer kernel, and results in a smaller threhold for the a-posteriori compression.

Consequently, more nonzero elements are left in the explicitly-sparse representation and more memory is

consumed. The overall error εa becomes lower probably because less error is introduced in the a-posteriori

compression.
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Table 4: Results of the sphere with the adjoint-layer kernel.

ε0 κD N
Time cost (sec) Memory cost (MB)

εa
Tc Tm Tp Tt MQ Mm Mt

1e-3 12.6 4,608 1 5 <1 6 12 60 77 5.0e-4

1e-3 25.1 18,432 15 26 <1 41 125 388 559 1.1e-3

1e-3 50.3 73,728 127 96 2 228 1,012 1,901 3,177 1.2e-3

1e-3 100.5 294,912 786 403 34 1,237 6,465 8,515 16,518 1.7e-3

1e-3 201.1 1,143,072 4,068 1,732 82 5,937 32,884 38,000 74,970 1.8e-3

1e-6 12.6 4,608 5 44 <1 51 6 316 351 5.8e-7

1e-6 25.1 18,432 160 352 1 515 531 2,971 3,807 1.4e-6

1e-6 50.3 73,728 1,875 1,234 10 3,124 5,854 12,161 19,753 1.5e-6

1e-6 100.5 294,912 15,494 5,254 80 20,847 40,368 56,058 106,432 1.7e-6

5.3. Different geometries

An aircraft X45X and a submarine DARPA suboff is used to study the performance of our CBM on dif-

ferent geometries. The CAD models are downloaded from grabcab.com. Various frequencies and different

choices of ε are considered. In the highest frequency case, the size of the aircraft is about 96 wavelengths,

and the submarine is about 109 wavelengths long, as depicted in Figure 6 and 7. The points are also

sampled with approximately 10 points per wavelength. The summations are computed with the single

layer kernel. The computational results are listed in Table 6 and 7, in which the log-linear complexity is

shown. Compared with summations on a sphere, higher frequency cases are computed for the aircraft and

submarine within approximately the same computational cost, showing that our CBM is more efficient

for flattened and elongated geometries. This is because with such geometries, more directional cones are

empty, and less directional cones has to be addressed.

6. Conclusion

A nearly optimal explicitly-sparse representation for oscillatory kernels is presented in this work by

developing a curvelet based method. Here we summarize some of its main features:

• The explicitly-sparse representation of the system matrix only consists of O(N logN ) nonzero ele-

ments.

• The computational complexity of the construction of the representation with controllable accuracy

is log-linear.
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Table 5: Results of the sphere with the quadrapole-layer kernel.

ε0 κD N
Time cost (sec) Memory cost (MB)

εa
Tc Tm Tp Tt MQ Mm Mt

1e-3 12.6 4,608 1 5 <1 6 12 46 62 8.0e-4

1e-3 25.1 18,432 14 25 <1 41 125 159 456 2.2e-4

1e-3 50.3 73,728 120 94 2 219 1,023 722 2,382 3.7e-3

1e-3 100.5 294,912 773 394 10 1,192 6,380 3,562 12,533 4.5e-3

1e-3 201.1 1,143,072 3,961 1,712 79 5,808 33,159 17,018 58,595 5.7e-3

1e-6 12.6 4,608 6 47 <1 54 0 324 353 4.0e-7

1e-6 25.1 18,432 164 352 1 519 546 2,347 3,196 6.4e-6

1e-6 50.3 73,728 1,943 1,241 9 3,196 6,216 8,624 16,677 6.5e-6

1e-6 100.5 294,912 17,068 5,340 77 22,502 43,356 39,995 94,160 1.2e-5

Figure 6: A aircraft with κD = 603.2.

• S2M, M2M, M2L, L2L, and L2T translation matrices in the directional FMM are used straightfor-

wardly in our curvelet based method. As various techniques constructing the low rank approxima-

tion of the kernel can be used to compute the translation matrices, various variants of our curvelet

based method can be easily developed.

• It is shown numerically that our method performs well for surface-distributed points with single,

double, adjoint, and quadrapole layers, thus it is efficient for wave analysis with boundary integral

equations as well.

Our curvelet based method is constructed as a transform of the directional FMM. It may also be viewed

as the generalization of a wavelet based method to high frequency cases, and used as a new wideband

fast algorithm. This work is expected to lay ground to future work related to new fast direct solvers and
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Figure 7: A submarine with κD = 684.3.

Table 6: Results of the aircraft with the single-layer kernel.

ε0 κD N
Time cost (sec) Memory cost (MB)

εa
Tc Tm Tp Tt MQ Mm Mt

1e-3 75.4 22,992 17 26 <1 45 155 308 565 2.0e-3

1e-3 150.8 88,608 114 107 2 226 1,026 1,738 3,024 1.4e-3

1e-3 301.6 350,388 763 501 25 1,305 6,547 8,180 16,121 1.7e-3

1e-3 603.2 1,401,348 3,920 2,035 99 6,139 35,612 34,059 74,600 1.7e-3

1e-6 75.4 22,992 149 283 2 438 614 2,557 3,454 9.5e-7

1e-6 150.8 88,608 1,091 1,370 9 2,481 4,708 13,770 20,157 8.9e-7

1e-6 301.6 350,388 6,570 5,910 82 12,603 30,559 64,361 102,260 1.2e-6

efficient preconditioners for high frequency problems.
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