
Machine Learning, 5, 101-113 (1990)
© 1990 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Necessary Condition for Learning
from Positive Examples

HAIM SHVAYTSER* (HAIM % SARNOFF@PRINCETON. EDU)
David Sarnoff Research Center, CN-5300, Princeton, NJ 08543-5300

Editor: David Haussler

Abstract. We present a simple combinatorial criterion for determining concept classes that cannot be learned
in the sense of Valiant from a polynomial number of positive-only examples. The criterion is applied to several
types of Boolean formulae in conjunctive and disjunctive normal form, to the majority function, to graphs with
large connected components, and to a neural network with a single threshold unit. All are shown to be nonlearnable
from positive-only examples.

Keywords. Concept learning, learning from positive examples, nonlearnability, sample complexity, predictable
concepts

1. I n t r o d u c t i o n

In many cases a system that learns from examples can be viewed as a black box that gets
as input examples of a target concept and produces as output an approximation of the target
concept which we call the learned concept. Valiant suggested in [Valiant, 1984; Valiant,
1985] a complexity based model for learning. Valianrs model can be informally described
as follows: training examples are drawn randomly according to a fixed but arbitrary pro-
babili ty distribution. With respect to this distribution, a learning algorithm produces with
high probabil i ty a learned concept which is a good approximation of the target concept.
A class of concepts C is learnable in Valiant's model i f there is a learning algorithm that
for any probabil i ty distribution, and for any target concept in C, produces a learned con-
cept with an arbitrari ly small probabil i ty of mistake, by using a polynomial number of
examples and polynomial ly bounded computational resources. (The polynomial growth is
with respect to some natural parameters o f the concept class C and the required accuracy.)

To get an intuitive feeling of the difficulty in learning concept classes with exponential
resources consider training a system to classify objects based on 100 Boolean features.
I f the training requires 1% of all the examples, and a new example becomes available every
1 microsecond, the training takes more than 10 l° mill ion years.

Several papers applied Valianrs model and related models to classify certain classes of
concepts as learnable and other classes as nordearnable. See, for example, [Blumer et al . ,
1989; Natarajan, 1987; Kearns et al . , 1987]. Many results were obtained using variations
of Valianrs model , such as considering only the sample complexity (that is, the number

*Part of this work was done while the author was in the computer science department of Cornell University.

102 H. SHVAYTSER

of required examples) (see [Blumer et al., 1989; Natarajan, 1987]), requiring that both
the learned and the target concept are from the same concept class (see [Natarajan, 1987;
Kearns et al., 1987]), and allowing the algorithm to access only positive examples during
the training [Valiant, 1984; Natarajan, 1987; Kearns et al., 1987]. (The term predictable
is used by several researchers for concept classes that are learnable in models that do not
require learned concepts and target concepts to be from the same class.)

With no restrictions on the form of the learned concepts the learnability of a concept
class C implies the learnability of all concept classes C ' C C. Equivalently, nonlearnability
of a concept class C ' implies nonlearnability of all concept classes C D C ' [Kearns et
al., 1987]. This suggests that nonlearnability can be determined by identifying simple
nonlearnable sub-classes of a given concept class.

In this paper we develop a criterion that will enable us to classify many concept classes
as nonlearnable from positive-only examples. The goal is to be able to determine nonlearn-
ability of concept classes that can be easily recognized as contained in other concept classes.
Our result is based on the observation that in many interesting concept classes that are
defined in terms of variables, all the variables play the same role. For example, a concept
class with the concept x ------- y /X z will also include the concepts y --- x A Z and z - x
Ix y. In the simplest of such cases, all concepts can be obtained by a permutation of variables
of a single Boolean formula. We use the notation PERM(f) for the set of concepts obtained
by permutations of the variables in a Boolean formula f

Whenf i s a formula of n variables, PERM(f) can have at most n! elements. Therefore,
by using results from [Blumer et al., 1987] it is always learnable (by possibly exponential
algorithms) if both positive and negative examples are available for the training. On the
other hand, we will show that when only positive examples are available, PERM(f) is
nonlearnable for many simple formulae.

The key to learning in Valiant's distribution free model is the ability to sample examples
(during the training) from their natural distribution. Unfortunately, this may not be possible
when the learning is in a batch style (all training examples are given at once). As an example,
consider the problem of training a system to recognize a digitized binary pattern of the
printed letter A. Figure 1 shows several examples of digitized letters. As positive examples

A1 A2 A3

IE: ::-.'." [',:.'. t
B1 B2 B3 X R

Figure 1. Digitized letters. A1, A2, A3: the letter A. B1, B2, B3: the letter B. X: the letter X. R: random noise,

LEARNING FROM POSITIVE EXAMPLES 103

one can take patterns such as A1, A2, and A3. Getting natural counter-examples for the
training is more difficult. Using examples such as B1, B2, and B3 as counter-examples
for the training may give absurd results such as identifying the pattern X or R in Figure 1
as A. On the other hand, trying to cover all possibilities such as the patterns X and R
as counter-examples may cause many mistakes in classifying Bs. The difficulty here is
that we would like to train the system to recognize the letter A, without constraining the
allowed counter examples. This is more difficult than merely separating As from, say Bs.

We will show that in many cases nonlearnability from positive examples of concept classes
such as PERM(f) can be determined by a simple combinatorial criterion. Natarajan gave
a complete characterization of learnability from positive examples in [Natarajan, 1987].
Although his results are limited to the case where both the learned and the target concepts
belong to the same concept class, they can be easily generalized to arbitrary representations
as we point out in Section 2. However, these results cannot be easily applied to concept
classes such as PERM(f) .

2. Preliminary definitions

The input to the learning algorithm is given in terms of n Boolean variables xl, . • . , xn.
A Boolean vector is an assignment of values from {0, 1} to each of the n variables. A
concept cn on n variables is a rule that assigns the value TRUE to a subset of the 2 n vec-
tors, and the value FALSE to the rest. Each vector in the TRUE subset is a positive example
of c~, and the rest are negative examples (counter examples) of c~. A concept class Cn
is a set of concepts on the variables xl, . . . , xn.

To investigate the asymptotic complexity of concept learning we consider families of con-
cept classes. A family of concept classes {Cn : n -> 1} is a set of concept classes such
that for each n _> 1, C~ is a concept class on the n Boolean variables x~, . . . , xn.

The definition of a concept class was given in terms of subsets of examples. We are inter-
ested in cases where the concepts are represented as strings in a language, such as Boolean
formulae in predicate calculus. With respect to a given language one can define the length
of a concept and its complexity. The length of a concept in a language L is the minimal
length string in the language that represents the concept. The complexity of a concept is
the longest time that it takes to determine whether an example is a positive (or negative)
example of the concept, when it is given as a minimal length string in the language. The
length of a concept class C, is the maximum of the lengths of the concepts c E C~. The
complexity of a concept class Cn is the maximum of the complexity of the concepts c ~ C,.
For a family of concept classes {C~ : n -> 1}, the length and the complexity are functions
of n. We consider only cases where the length is a polynomial function of n.

The ability to learn a family of concept classes (target concepts) may depend on the choice
of representations that the learning algorithm can use as learned concepts. Let {C, : n _> 1}
be a family of target concepts, and let {Hn : n _> 1} be a family of representations. We
use a definition of learnability that is essentially the same as the e, 6 definition that was
given in [Kearns et al., 1987; Haussler et al., 1988] (where c is an accuracy parameter
and 6 a confidence parameter), but consider learnability from positive-only examples. Here,
even though the algorithm does not encounter negative examples during the training, we

104 H, SHVAYTSER

expect it to classify with small error both positive and negative examples. It was observed
in [Valiant, 1984; Natarajan, 1987; and Kearns et al., 1987] that in this case no mistakes
can be allowed in classifying negative examples as being positive.

DEFINITION. A family of concept classes {Cn : n -> 1} is learnable by a family of concept
classes {Hn : n _> 1} from positive-only examples if there is a learning algorithm such
that for all e, ~ > 0 and n _> 1, for all target concepts c E Cn, and for all probability
distributions D + over the positive examples of c:

(a) The algorithm gets as input N positive examples that are obtained by sampling according
to the probability distribution D +. N is bounded by a polynomial in n, i/e, 1/6.

(b) The algorithm run time is polynomial in n, l/e, 1/&
(c) The output of the algorithm is a learned concept h E Hn such that:

(i) The complexity of h is bounded by a polynomial in n, l/e, 1/5.
(ii) h(v) = TRUE ~ v is a positive example of c.

(iii) With probability of at least (1 - 5),

E D + (v) < e.
c(v) ~ T R U E

h(v) = F A L S E

DEFINITION. The family {C n : n >_ 1} is learnable from positive-only examples if there
exists a family of representations {Hn : n >_ 1} such that {Cn : n >- 1} is learnable by
{ H n : n >_ 1} from positive-only examples.

We are interested in cases where the family of concepts {PERM(cn) : n ~ 1} is non-
learnable from positive only examples (that is, nonlearnable by arbitrary representations).
The following is a formal definition for the concept class PERM(cn).

DEFINITION. Let cn(x~ , Xn) be a concept on n variables, expressed as a string in a
language L. (The language must have symbols for the variables x~, . . . , Xn.) PERM(cn)
is the set of concepts cn(xi,, xi~, xi,,), where (il, i 2 , in) is a permutation of (1, 2,
. . . . n). (Two strings in the language may represent the same concept if their truth table
is the same.)

For a Boolean vector Vn of n coordinates we define perm(vn) to be the set of vectors
that can be obtained from v by a permutation of coordinates.

DEFINITION. Let v n be a Boolean vector of n coordinates, perm(vn) is the set of n coordi-
nate vectors with the same number of 0 (and 1) entries as in vn.

Throughout the paper we use the notation 1.] for the cardinality (number of elements)
of a set. The cardinality of perm(vn) can be easily computed. When vn is a Boolean vector
with rn 1 coordinates we have:

,porm ,

LEARNING FROM POSITIVE EXAMPLES 105

2.1. Natara jan 's character izat ion

Natarajan gave in [Natarajan, 1987] a complete characterization of concept classes that are
learnable from a polynomial number of positive-only examples if the complexity of the
learning procedure is ignored. Although his results are limited to the case where both the
target and the learned concept are from the same concept class they can be easily generalized
to arbitrary representations. This generalization is given by the following theorem. Its proof,
which is an immediate corollary of Natarajan's results in [Natarajan, 1987], is omitted.
In the theorem the concepts are identified with the set of their positive examples.

THEOREM. Let {Cn : n >_ 1} be a family of concept classes. ¥n _> 1 let C'n be the smallest
set such that:

i. Cn C C~-
ii. f i , g~ E Cn = f ~ fqgn ~ C~.

The following three conditions are equivalent:

1. {Cn : n > 1} is learnable from positive examples.
2. {Cn : n -> 1} is learnable from positive examples.
3. There exists a polynomial p (n) such that Vn _ 1 I C'~ I --< 2p(n).

Natarajan's characterization is very general, but it cannot be easily applied in cases where
the concepts are expressed as strings in a language. Specifically, when Cn = PERM(f~)
the difficulty is that except for special cases, counting the elements of C~ is a difficult com-
binatorial problem.

3. The nonlearnabi l i ty lemma

In this section we state and prove a useful nonlearnability lemma.

Vn _> 1 let Cn(X~, . . . , Xn) be concepts on n variables expressed as strings in a language
L. Let NEG(cn, n, m) be the number of n coordinate Boolean vectors with m "1" coordin-
ates (and n - m "0" coordinates) that are negative examples of c n.

THE NONLEARNABILITY LEMMA: If Vn _> 1 there are numbers 0 < m n <_ n such that
NEG(c, , n, mn) > 0 and for all c~,

n ~ • NEG(c, , n, mn)
lim = 0

,~-.~o (n~mn

then the family of concept classes {PERM(cn) " n _> 1} in a language L is nonlearnable
from positive-only examples.

106 H. SHVAYTSER

P r o o f We use the following terminology in the proof:

c, is a concept on n variables given as a string in the language L.
v, is a Boolean vector of n coordinates.
s = s(n) = I PERM(c~)[.
w = w(n) = Iperm(vn) l.
t = t(n) = I{v' fi perm(v,) : v ' is a negative example of c ,} l .
r = r(n) = I{c ' ~ PERM(c,) : Vn is a negative example of c ' } l .

Example . n = 4 ; cn(xl , . . . , x4) = (xlx2 V x3x4) ; v, = (0011)
PERM(c~) = {(xlx2 V X3X4) , (XlX 3 V X2X4) , (XlX 4 V x2x3) }

perm(v,) = {(001D, (0101), (1001), (0110), (1010), (1100)}
s = 3 ; w = 6 ; t = 4 ; r = 2 ;

Consider a graph whose vertices are PERM(cn) and perm(vn), with an edge between
v ' ~ perm(v~) and c ' e PERM(c~) if and only if v ' is a negative example of c'. When v'
is a negative example of c', a permutation of the coordinates of v ' produces a negative example
for the concept which is obtained by applying the same permutation to the variables of c'.
Therefore, all the PERM(cn) vertices and all the perm(vn) vertices in the graph have the
same degree. In our terminology, the degree of a PERM(cn) vertex is t, and that of a
perm(v,) vertex is r. See Figure 2 for the graph associated with the above example.

Consider a learning algorithm that attempts to learn c, as a member of the concept class
PERM(cn) with the confidence and accuracy parameters e, 6 by drawing (n/e6) ~ examples.
Let the probability distribution be such that the only vectors with positive probability are
the w - t vectors in perm(v,) that are positive examples of cn, and each has a probability
of 1/(w - t).

Each example from perm(v~) drawn during the training enables the algorithm to elimi-
nate all concepts connected to it in the bipartite graph from being candidates to the learned
concept. A learning algorithm can classify a vector in perm(vn) as being a pos i t i ve exam-

p l e only if all its connected concepts in the bipartite graph were previously eliminated from
being candidates. Otherwise, since the vector may be a negative example of the target con-
cept, the error in misclassifying it may be arbitrarily high.

perrn(v,,) PERM(c~)

0101

1010

0011

1100

1001

0110

x l x 2 V ~3X4

• lX4 V ~2x3

~lX3 V x 2 x 4

Figure 2. The perm(vn) - PERM(cn) bipartite graph of the example.

L E A R N I N G F R O M P O S I T I V E E X A M P L E S 1 0 7

By drawing (n / e 6) ~ examples, at most r • (n / e 6) ~ concepts from PERM(c,) can be elimi-
nated. The set of vertices corresponding to the eliminated concepts has at most r " t • (n / e 6) ;3

edges connected to examples. These edges can fully cover at most r • t • (n / e 6) ~ / r = t •

(n / e 6) ~ vertices from perm(v,).
We conclude that any learning algorithm applied to (n / e 6) ~ positive examples from

penn(v,) can classify at most t • (n / e 6) ~ examples from perm(v~) as being positive, and
therefore, at least w - t • (n / e 6) ~ examples from perm(v,) as being negative.

Since the number of negative examples in perm(vn) is t, the algorithm makes mistakes
in classifying at least w - t • (n / e 6) ~ - t examples, and the probability of error is at least

n
w - t . - ~ - t

>
W - - t

• . __

k e 0 J W

(the above inequality holds for 1/e6 _> 1 and a = /3 + 1). For fixed e, 6 and c~, when
n ~ • t / w -~ O, the probability of error goes to 1.

Choosing vn to be a vector with mn 1 coordinates we have t = NEG(cn, n, mn), and

W = . l
m n

We observe that the proof of the lemma is based on sample complexity arguments. The
lemma can be used to find families of concept classes that cannot be predicted from a poly-
nomial number of positive examples even with a training procedure that takes exponential
time.

4. Nonlearnable classes

In this section we apply the nonlearnability lemma to prove nonlearnability from positive-only
examples of several families of concept classes. The first theorem in this section deals with
families of concept classes that are expressed as Boolean formulae in predicate calculus.
The second theorem deals with concept classes that cannot be easily expressed as explicit
Boolean formulae. The third theorem proves nonlearnability by identifying a nonlearnable
sub-class.

For the proofs we use several asymptotic properties of the binomial coefficients (see,
for example, [Bollobas, 1978]). The notation q l (n) -~ q 2 (n) is used in this section to indi-
cate that:

lim log q l (n) _ 1.
n--~c~ log q 2 (n)

When d (n) is a function ofn such that 0 -< d (n) < n and both d (n) ~ o~, a n d n - d (n) ~ oo,

we say that d (n) and n - d (n) are unbounded.

108 H. SHVAYTSER

a. I f d(n) and n - d (n) are unbounded then

grows faster than any polynomial function of n.

b ' (n ~ n / 2 "~ 2n"

(n ~ n l ° g n .
c. logn

d. For a constant 0 < k < 1,

k ' n 1 k

"I~EOREM. The family of concept classes {PERM(fn) : n -> 1} is nonlearnable from posi-
tive only examples when fn are Boolean formulae defined in any of the following ways:

1. f n (x1 Xn) = X 1 V . . . V Xd(n) (1)

when d (n) and n - d (n) are unbounded, (This result with d (n) -- n /2 implies Theorem
15 in [Kearns et al . , 1987].)

2. fn(X, Xn) = (X, A X2) V (X3 A X4) V . . . V (Xn_ 1 A Xn) (2)

3. fn(X1 Xn) = x 1 V . . . V Xd(n) V (Xd(n)+l A . . . A Xn)

when d (n) and n - d (n) are unbounded.

(3)

4 . f~(x l , Xn) = (X, V . . . V Xd(,)) A (Xd(n)+ l V . . . V Xn)

when d(n) and n - d (n) are unbounded.

(4)

5. fn(Xl, . . . , Xrt) ~-- (X 1 /~ . . . /~ Xd(tO) ~ (Xd(n)+l A . . . 1~ X?t)

when d(n) and n - d (n) are unbounded. (~ is the logical implication.)

(5)

LEARNING FROM POSITIVE EXAMPLES 109

6. The majority function:

f n (xa x n) =

L

d (n)
TRUE z, di(ft x i > ~ - -

FALSE otherwise
(6)

fo rd (n) = k ' n w i t h O < k < 1, and fo rd (n) = l o g n .

P r o o f We apply the nonlearnability lemma by choosing an appropriate value for m~, com-
puting NEG(fn, n, m~), and checking the condition of the lemma. The denominator in the
condition of the lemma is denoted by w.

1. Take m , = n - d (n) . There is only one vector with n - d (n) 1 coordinates that gives
FALSE in Formula (1): x i = 0 for i = 1 d (n) , a n d x i = 1 for i = d (n) + 1 , n .

Therefore, NEG(fn, n , mn) = 1 with

W ~
n)

Substituting in the condition of the lemma:

n c ~ ° 1
lim - 0.
n - ~ ~ n ~

d (n)

And this holds when d (n) and n - d (n) are unbounded.
2. Take m n = n / 2 . When Formula (2) is FALSE, each of its n / 2 terms must have one 0;

therefore, NEG(fn, n , m ,) = 2 n/2 and

Q n ~ 2n"
W ~

n / 2

The condition of the lemma is easily verified.
3. Take mn = n - (d (n) + 1). When Formula (3) is FALSE, xl = . . . = Xd(,) = O.

Therefore, exactly one OfXd(n)+ l X n is assigned the value 0, and NEG(fn, n , mn)

= n - d (n) with

w = d (n) "

The condition of the lemma is easily verified.
4. We can assume without loss of generality that d (n) <_ n - d (n) . Take mn = n - d (n) .

When Formula (4) is FALSE, all the variables in the shorter conjunct must be zero;
therefore, when d (n) < n - d (n) , NEG(fn, n , ran) = 1, and when d (n) = n - d (n) ,

NEG(fn, n , mn) = 2. Since

110 H . S H V A Y T S E R

w = d (n)

the condition of the lemma is easily verified.

5. Take m~ = d (n) . Since Formula (5) is false only if xl = . . . = xd(n) = 1, NEG(fn,
n, mn) = 1 with

w = d (n) '

and the condition of the lemma is easily verified.

6. Take mn = n - d (n) / 2 . Formula (6) is FALSE only when all the 0 entries of a vector
with d (n) / 2 0 coordinates are among the first d (n) variables. Therefore,

NEG(f~, n , ran) ~ d (n) / 2 = 2a(~'

and

w = d (n) / 2 "

When d (n) = log n, NEG(f~, n , mn) ~ n , w ~ n l°gn, and the condition of the lemma is
easily verified. When d (n) = k " n for a constant k, NEG(fn, n , mn) ~ 2 '/(n) = (2k) n, and

W

The condition of the lemma holds for values of k for which:

~ 2 _ 1~ k/2
2 k <

k
1 - - - -

2

and this can be shown to hold for all values of 0 < k < 1. •

Let G be the set of graphs with p vertices. The edges of a graph g ~ G can be defined
by the Boolean variables { gi,j}, w h e r e gi,j = 1 i f there is an edge between vertices i, j
and 0 otherwise, g E G is characterized by the n = p (p - 1)/2 variables gi,j where
O < i < _ j < _ p .

LEARNING FROM POSITIVE EXAMPLES 111

TnEOe, ZN. Let cn(gl,l, gl,2 gp,p) stand for: "'the graph g E G has a connected compo-
nent o f size greater than p / 2 . " The family of concept classes

{PERM(cn) • n = p(p - 1)/2, p ~ 1}

is nonlearnable f rom positive-only examples.

Proof The following fact, which can be easily proved, is needed for the proof: let q be
thep-vertex graph with the maximum number of edges that has no connected components
of size greater than p/2. q is the graph of two unconnected cliques, each of size p/2. It
is unique up to isomorphism.

To apply the nonlearnability lemma take m(p) = p /2 • (p/2 - 1). Since this is exactly
the number of edges in the graph q, the number of vectors o fp (p - 1)/2 coordinates
with m(p) 1 coordinates that are negative examples of cn is the number of graphs isomor-
phic to q, which is

2

Therefore, we have

NEG(cn, p(p - 1)/2, re(p)) -~ 2 p,

and the denominator in the condition of the lemma is:

i 1112 2 W =

2 - --4

2 p2/2.

The condition of the lemma is easily verified. •

Consider a neural network with a single threshold unit such as the one in Figure 3. The
ability of this network to learn from both positive and negative examples was extensively
analyzed in [Minsky & Papert, 1969]. The network can compute all the Boolean functions
of the type:

~ TRUE ~=1 Wi " Xi > 0

N(x , , . . . , xn) = (7)
FALSE otherwise

for all possible choices of coefficients wi, O.

112 H. SHVAYTSER

4 N { 1 ~in=lll)i.xi>e
= 0 otherwise

. . . .

Figure 3. A network with one threshold node.

THEOREM. A family of concept classes consisting of all the Boolean functions expressible
in the form of Equation (7) is nonlearnable from positive-only examples.

Proof The proof follows from the fact that all the functions in PERM(fn) wheref~(xi
Xn) is the Boolean formula (1) can be realized by the network by choosing appropriate coef-
ficients wi, O. For example, by choosing wi = 1, for i = 1 , d, and wi = 0 for i =
d + 1 , n, w i t h 0 = 0:

d

E x i > 0 i=l <:=} X 1 V . . . V xd = TRUE.

(Alternatively, we could choose the majori ty function 6.) •

5. Conc lud ing r e m a r k s

From the proof of the nonlearnability lemma in Section 3 it follows that when the condition
of the lemma holds, the probabili ty of a mistake approaches 1 as n --+ ~ . This is stronger
than what is required for nonlearnabili ty in the sense of Valiant. I f we think of the distribu-
tions of positive and negative examples as the working environment of a learning system,
the nonlearnabili ty lemma can be understood as follows:

I f a learning system is trained with posit ive-only examples to recognize a concept class
that contains PERM(cn), and the condition of the nonlearnabili ty lemma holds, then
there is a target concept c ' E PERM(cn) and an environment, in which the sytem almost
certainly fails to classify almost all the examples.

LEARNING FROM POSITIVE EXAMPLES 113

The nonlearnability lemma provides a sufficient, but not a necessary condition, for learn-
ability from positive-only examples. In general, nothing follows from the fact that the condi-
tion of the lemma does not hold. However, sometimes it is possible to show that when
the lemma does not hold the family of permutation classes is learnable, and thus, obtain
a complete characterization. Consider, as an example, the results that were obtained for
formulae (1)-(5) in the first theorem in Section 4. In each of these cases when d (n) or
n - d (n) are bounded the permutation class has only polynomially many formulae, and
is, therefore, trivially learnable from positive examples [Natarajan, 1987].

The families of concept classes that were shown nonlearnable in Section 4 were chosen
to demonstrate the simplicity of proofs that use the nonlearnability lemma. Other applications
of the lemma to the learnability of visual concepts can be found in [Shvaytser, in press].

Acknowledgment

I would like to thank Professor Dexter Kozen for fruitful discussions.

References

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987). Occam's razor. Information Processing Letters,
24: 377-380.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1989). Learnability and the Vapnik-Chervonenkis
dimension. J. of the ACM 36: 929-965.

Bollobas, A. (1978). Extremal Graph Theory. New York: Academic Press.
Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. (1988). Equivalence of models for polynomial learnability.

Proceedings of the first workshop on computational theory (pp. 42-55).
Kearns, M., Li, M., Pitt, L., & Valiant, L.G. (1987). On the learnability of Boolean formulae. Proceedings of

the nineteenth annual ACM symposium on theory of computing (May) (pp. 285-295).
Minsky, M., & Papert, S. (t969). Perceptrons: An Introduction to Computational Geometry. Cambridge: MIT Press.
Natarajan, B.K. (1987). On learning Boolean functions. Proceedings of the nineteenth annual ACM symposium

on theory of computing (May) (pp. 296-304).
Shvaytser, H. (in press). Learnable and nonlearnable visual concepts. IEEE Transactions on Pattern Analysis

and Machine Intelligence.
Valiant, L.G. (1984). A theory of the learnable. Communications of the ACM, 27: 1134-1142.
Valiant, L.G. (1985). Learning disjunctions of conjunctions. Proceedings of the 9th IJCAI, (Aug.) (pp. 550-556).

