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Abstract—A low-loss passive metamaterial exhibiting negative
refractive index or “double negative” electromagnetic properties at
microwave frequencies is proposed. The metamaterial is a lattice
of spherical particles made up of multiple dielectric materials in
concentric layers. Because no magnetic constituents (that tend to have
higher losses) are involved, the negative-index behavior is possible with
very low values of attenuation. A negative-index metamaterial based
on dielectric-coated metal spheres is also proposed, and is predicted
to have lower attenuation than other structures based on metallic
scatterers. Numerical results and design principles are given.

1. INTRODUCTION

Metamaterials possessing negative dielectric permittivity and/or
magnetic permeability have been actively investigated in recent years.
The first metamaterial shown to exhibit negative refractive index or
“double negative” (DNG) behavior was an array of conducting split-
ring resonators and rods arranged in a lattice [1]. This class of
materials has several drawbacks for many applications: losses are often
unacceptably high, and the material has a natural anisotropy which
must be overcome by re-orienting the elements of the array in different
directions. Recently, an alternative DNG metamaterial was proposed
that is naturally isotropic — a cubic lattice of magnetodielectric
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spherical particles, whose Lorenz-Mie resonances induce an effective
permittivity and permeability that can be set to any desired values
by choosing the lattice and particle parameters appropriately [2]. It
was hoped that this approach would also lead to reduced losses in the
metamaterial, but since the particles need to have large permeability
as well as large permittivity, the associated losses near resonance are
generally still too large to address this drawback.

Several researchers have proposed variants of the idea presented
in [2] that avoid the use of materials having magnetic permeabilities
different from vacuum. In [3–13], it is proposed that two different
sizes of purely dielectric spheres be alternated in the lattice, chosen so
that the dielectric resonance frequency of one sphere size is adjusted
to coincide with the magnetic resonance frequency of the other sphere
size. This has the advantage of employing only dielectric materials,
which are often inherently of very low loss, but suffers from additional
structural complexity, complicating the fabrication process. In [14],
a similar idea is proposed, but in which one set of spheres are of
ordinary dielectric material and contribute to a negative permeability,
while the other set is composed of a plasma semiconductor, which
contributes a negative permittivity. A variation on this idea was
proposed in [15], wherein only one set of purely dielectric spheres is
used (to generate negative permeability), but embedded in a negative
permittivity host (such as semiconductor plasma). Wheeler et al. [16]
(and later Yannopapas [17]) have proposed a lattice of two-layered
spheres, in which one layer is ordinary dielectric and the other a
semiconducting plasma, in order to realize a negative-index medium.
Khoo et al. [18] have extended this idea by using a liquid crystal as the
host medium in order to achieve tunability of the effective properties.
The presence of plasma constituents in these designs will lead to
increased losses by comparison with realizations using only low-loss
dielectrics. Finally, a sort of “meta-metamaterial” is proposed in [19],
in which layered spheres, themselves made up of metamaterials having
negative permittivity and/or permeability, are arranged in a lattice to
achieve the desired overall effective material properties. While offering
potentially very great design flexibility, this approach will also present
formidable fabrication and size problems in practice.

In this paper, we propose a new approach that yields a passive
metamaterial that exhibits far lower losses at microwave frequencies
than anything that has heretofore appeared in the literature. The
structure is a cubic periodic array of layered dielectric spheres, made
from low-loss high-permittivity ceramics. Although the geometry is
the same as that of [16–18], our structure does not use metals or
semiconductors, thereby achieving much less attenuation than those
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designs. We begin by reviewing the effective medium properties of an
array of homogeneous magnetodielectric spheres, and then present a
critical review of the formulas for two-layered spheres, correcting in
the process a number of errors that have been published in previous
literature. We then present numerical results of a “brute-force” search
for combinations of parameters that result in a negative effective
refractive index for the proposed metamaterial. Some discussion of
the parameter ranges required to achieve this is carried out, and
comparison with finite-element simulations is made to validate our
analysis. Finally, another negative-index metamaterial is proposed
that is based on dielectric-coated metallic spheres. Although lossier
than the all-dielectric metamaterial, this structure still offers lower
attenuation than has been achieved by those proposed up to now.

2. EFFECTIVE MEDIUM EQUATIONS

2.1. Array of Homogeneous Spheres — Review

The tools for expressing the effective permittivity and permeability
of a composite medium consisting of a lattice of resonant spheres
have existed for a surprisingly long time. In fact, one year after the
publication of Mie’s paper [20] on the scattering of electromagnetic
waves by a uniform magnetodielectric sphere†, Gans and Happel [23]
derived expressions for the effective material parameters of a cubic
lattice of such spheres, using the dipole scattering coefficients from
Mie’s solution (see also [24] and [25]). We follow this procedure here.

The geometry involved is shown in Fig. 1. Homogeneous spheres
of permittivity ε2, permeability µ2 and radius a are arranged in a cubic
lattice of period (lattice constant) p in a background medium whose
electromagnetic parameters are ε1 and µ1. A time dependence of ejωt

will be assumed, and we will define the wavenumbers k1 = ω
√

µ1ε1
and k2 = ω

√
µ2ε2 in the background and sphere media respectively.

The classical Clausius-Mossotti-Lorentz-Lorenz formulas express
the effective permittivity and permeability of such a medium in terms
of the electric and magnetic polarizabilities αe and αm of the “atoms”
of the composite medium (here, the spheres):

εeff = ε1
1 + 2Nαe

1−Nαe
(1)

µeff = µ1
1 + 2Nαm

1−Nαm
(2)

† Although this scattering problem is often referred to only by Mie’s name, many others,
most notably Lorenz, have made equally significant contributions. See [21, Section 3.4]
and [22] for an extensive historical assessment.
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Figure 1. Cubic array of homogeneous magnetodielectric spheres.

where N = p−3 is the volume density of the spheres. The
polarizabilities for a homogeneous sphere can be expressed for nonzero
frequency in terms of the dipole-order Lorenz-Mie coefficients of the
resonant spheres (see, e.g., [26, Eq. (4.53)], where the result for differing
magnetic properties is given):

αe = −2πja1

k3
1

(3)

αm = −2πjb1

k3
1

(4)

where

a1 =
√

εrψ
′
1(k1a)ψ1(k2a)−√µrψ1(k1a)ψ′1(k2a)√

εrξ′1(k1a)ψ1(k2a)−√µrξ1(k1a)ψ′1(k2a)
(5)

b1 =
√

µrψ
′
1(k1a)ψ1(k2a)−√εrψ1(k1a)ψ′1(k2a)√

µrξ′1(k1a)ψ1(k2a)−√εrξ1(k1a)ψ′1(k2a)
(6)

Here εr = ε2/ε1 and µr = µ2/µ1 are the values of the sphere
parameters relative to those of the background, and ψ1(z) and ξ1(z) =
ψ1(z) + jχ1(z) are Riccati-Bessel functions, expressed by means of
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standard spherical Bessel functions‡ in terms of elementary functions:

ψ1(z) = zj1(z) =
sin z − z cos z

z
(7)

χ1(z) = −zy1(z) =
cos z + z sin z

z
(8)

Thus, the effective parameters of the composite medium are given by:

εeff = ε1
1− 4πjNa1/k3

1

1 + 2πjNa1/k3
1

(9)

µeff = µ1
1− 4πjNb1/k3

1

1 + 2πjNb1/k3
1

(10)

If the results of Gans and Happel [23, Eqs. (46)–(47)] are written in the
notation used here, and higher-order non-dipolar terms omitted from
their expression for εeff , they are found to be identical to (9)–(10).
Equivalent results for the case where µ1 = µ2 = µ0 were also obtained
recently by Wheeler et al. [16, Eqs. (1), (2), (7) and (8)].

The applicability of an effective medium description requires the
lattice constant p to be sufficiently small compared to a wavelength in
the background medium [2, 28]. Thus, it really only makes sense to use
(9)–(10) or (1)–(2) in the limit k1a ¿ 1 (but not necessarily k2a ¿ 1).
In this case, the Riccati-Bessel functions of k1a can be replaced by
their small-argument approximations:

ψ1(z) ' z2

3
; ψ′1(z) ' 2z

3
; χ1(z) ' 1

z
; χ′1(z) ' − 1

z2
(11)

resulting in

a1 =
2j

3
(k1a)3

εrF (k2a)− 1
εrF (k2a) + 2

(12)

b1 =
2j

3
(k1a)3

µrF (k2a)− 1
µrF (k2a) + 2

(13)

where we have defined the function [28]

F (z) =
2ψ1(z)
zψ′1(z)

=
2(sin z − z cos z)

z cos z + (z2 − 1) sin z
(14)

Note that in numerical calculations, it may be preferable to use one of
the approximate forms

F (z) ' 2(1− jz)
z2 − 1 + jz

; if Im(z) < −10 (15)

‡ The notation for spherical Bessel functions jν and yν is that used in Abramowitz and
Stegun [27]. The notation for Riccati-Bessel functions is not standardized, and we have
used that of [21].



180 Kuester et al.

or

F (z) ' 10− z2

10− 2z2
; if |z| ¿ 1 (16)

for F (z). Inserting (12)–(13) into (9)–(10) gives

εeff = ε1
1 + 2f εrF (k2a)−1

εrF (k2a)+2

1− f εrF (k2a)−1
εrF (k2a)+2

(17)

µeff = µ1

1 + 2f µrF (k2a)−1
µrF (k2a)+2

1− f µrF (k2a)−1
µrF (k2a)+2

(18)

where

f =
4πa3N

3
=

4πa3

3p3
(19)

is the volume fraction occupied by the spheres. Eqs. (17) and (18)
were given by Lewin [28], and obtained in a more general context by
Khizhnyak [29] (see also the references cited in [2]).

2.2. Array of Two-layered Spheres — Critical Analysis

This same approach can be used for a composite medium made up
of layered spheres, if the appropriate generalization of Mie’s analysis
is used (see the original papers [30–32] as well as the treatments in
the books [21, Sections 5.1-5.2] and [26, Section 8.1]). We limit our
treatment to spheres with only two layers, as shown in Fig. 2. The outer
radius of the particle is still a, and the outer layer still has material
properties ε2 and µ2, but this medium surrounds a core of radius b and
material parameters ε3, µ3.

Of the references cited above, only [30] gives expressions for the
modified Lorenz-Mie coefficients of a two-layer sphere when there is
contrast in the magnetic properties as well as the dielectric ones (these
results can be found quoted elsewhere, in [33] and [34] for example).
Their results can be written in our notation as:§

a1 =
√

εr21ψ
′
1(k1a)Gε(k2a)−√µr21ψ1(k1a)G′

ε(k2a)√
εr21ξ′1(k1a)Gε(k2a)−√µr21ξ1(k1a)G′

ε(k2a)
(20)

§ Aden and Kerker [30] use a notation for the Riccati-Bessel functions that can be confused
with what is now the standard for spherical Bessel functions, and Alù and Engheta [19]
have followed their choice. Kerker [21, p. 194] gives a table to help clarify the notations
used in various treatments.
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Figure 2. A two-layered sphere.

where

A1 =
√

εr32ψ
′
1(k2b)ψ1(k3b)−√µr32ψ1(k2b)ψ′1(k3b)√

εr32χ′1(k2b)ψ1(k3b)−√µr32χ1(k2b)ψ′1(k3b)

=
εr32F (k3b)k2b

2 ψ′1(k2b)− ψ1(k2b)

εr32F (k3b)k2b
2 χ′1(k2b)− χ1(k2b)

(21)

and
Gε(z) = ψ1(z)−A1χ1(z) (22)

while

b1 =
√

µr21ψ
′
1(k1a)Gµ(k2a)−√εr21ψ1(k1a)G′

µ(k2a)√
µr21ξ′1(k1a)Gµ(k2a)−√εr21ξ1(k1a)G′

µ(k2a)
(23)

where

B1 =
√

µr32ψ
′
1(k2b)ψ1(k3b)−√εr32ψ1(k2b)ψ′1(k3b)√

µr32χ′1(k2b)ψ1(k3b)−√εr32χ1(k2b)ψ′1(k3b)

=
µr32F (k3b)k2b

2 ψ′1(k2b)− ψ1(k2b)

µr32F (k3b)k2b
2 χ′1(k2b)− χ1(k2b)

(24)

and
Gµ(z) = ψ1(z)−B1χ1(z) (25)

Here, εr21 = ε2/ε1, εr32 = ε3/ε2, µr21 = µ2/µ1 and µr32 = µ3/µ2 are
ratios of the material properties in adjacent layers. If µ1 = µ2 = µ3 =
µ0 and ε1 = ε0, we recover the results of [16, Eqs. (18)–(21)]. It is
readily checked that these expressions reduce to the appropriate limits
(5) and (6) for a homogeneous sphere if we take b = 0, b = a, or ε3 = ε2
and µ3 = µ2.
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If we take k1a ¿ 1 as we did for the homogeneous sphere and use
(11), Eqs. (20) and (23) become

a1 =
2j

3
(k1a)3

εr21F2(k2a,A1)− 1
εr21F2(k2a,A1) + 2

(26)

b1 =
2j

3
(k1a)3

µr21F2(k2a,B1)− 1
µr21F2(k2a,B1) + 2

(27)

where
F2(z, q) =

2[ψ1(z)− qχ1(z)]
z[ψ′1(z)− qχ′1(z)]

(28)

Introducing three types of cross-products of the Riccati-Bessel
functions and their derivatives, some of whose properties are
catalogued in Appendix A,

C1(z1, z2) = ψ1(z1)χ1(z2)− χ1(z1)ψ1(z2) (29)
C2(z1, z2) = ψ1(z1)χ′1(z2)− χ1(z1)ψ′1(z2) (30)
C3(z1, z2) = ψ′1(z1)χ′1(z2)− χ′1(z1)ψ′1(z2) (31)

we can write, after some algebra,

F2(k2a,A1) =
2

k2a

εr32
k2b
2 F (k3b)C2(k2a, k2b)− C1(k2a, k2b)

εr32
k2b
2 F (k3b)C3(k2a, k2b) + C2(k2b, k2a)

(32)

F2(k2a, B1) =
2

k2a

µr32
k2b
2 F (k3b)C2(k2a, k2b)− C1(k2a, k2b)

µr32
k2b
2 F (k3b)C3(k2a, k2b) + C2(k2b, k2a)

(33)

Inserting (26)–(27) into (9)–(10) gives

εeff = ε1
1 + 2f εr21F2(k2a,A1)−1

εr21F2(k2a,A1)+2

1− f εr21F2(k2a,A1)−1
εr21F2(k2a,A1)+2

(34)

µeff = µ1

1 + 2f µr21F2(k2a,B1)−1
µr21F2(k2a,B1)+2

1− f µr21F2(k2a,B1)−1
µr21F2(k2a,B1)+2

(35)

Expressions for these effective medium parameters in the limit k1a ¿ 1
have also been given in [35–38]. We have found that all of these
papers contain at least one typographical error that must be corrected;
nevertheless, when this is done we find agreement with our formulas.

The limiting cases b = 0, b = a, or ε3 = ε2 and µ3 = µ2 of (34)–(35)
are all readily obtained, and can be verified to reduce to the appropriate
versions of Lewin’s formulas (17)–(18). Another interesting limiting
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case is when k2a (and thus also k2b) is ¿ 1, but k3b remains arbitrary.
If we use the approximations (A7) in (32)–(33), we obtain

F2(k2a,A1) =
εr32F (k3b)(1 + 2fb) + 2(1− fb)
εr32F (k3b)(1− fb) + (2 + fb)

(36)

F2(k2a,B1) =
µr32F (k3b)(1 + 2fb) + 2(1− fb)
µr32F (k3b)(1− fb) + (2 + fb)

(37)

where

fb =
b3

a3
(38)

is the fraction of the total sphere volume occupied by the inner layer
(core). This result is similar to that of [38, Eqs. (14)–(15)], although
the latter is based on the Bruggeman mixing formula rather than the
Clausius-Mossotti formula and thus differs in detail from (36)–(37).
A further case of interest is when the outer shell is electrically thin:
δ ≡ k2(a − b) ¿ 1, while k2a and k2b may be arbitrary within this
constraint. In this case we use (A8) to obtain:

F2(k2a,A1) =
εr32F (k3b) + 2δ

k2b

1 + εr32F (k3b)δ
(

1
k2b − k2b

2

) (39)

F2(k2a,B1) =
µr32F (k3b) + 2δ

k2b

1 + µr32F (k3b)δ
(

1
k2b − k2b

2

) (40)

These limiting cases can be useful in determining approximate
conditions under which the effective parameters will take on desired
values — negative ones, for example.

3. NUMERICAL RESULTS

In this section we will present numerical results based on formulas (34)–
(35) for the effective parameters of the layered-sphere metamaterial.
We have chosen to use dielectric materials typical of what can be
obtained commercially [40–44]. All permeabilities are taken to be that
of free space (µ1 = µ2 = µ3 = µ0). The permittivity of the background
medium is taken to be that of free space (ε1 = ε0) in all our examples,
but could easily be scaled to other values if desired.

As a first example, the inner core is chosen to have a complex
relative permittivity εr3 = ε3/ε0 = 100

(
1− j10−3

)
while that of the

shell is εr2 = ε2/ε0 = 9.5
(
1− j2× 10−4

)
. The lattice constant of the

array was p = 10 mm, for operation in the X-band microwave region.
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A “brute force” search was carried out by varying the radii a and b of
the shell and core of the layered sphere until a combination was found
such that the real parts of εeff and µeff both became negative over the
same frequency band. This was found to occur for a = 4.66mm and
b = 2.25mm, for which εr,eff = εeff/ε1 and µr,eff = µeff/µ1 are plotted
in Fig. 3. We see that it is the second resonances in εr,eff and µr,eff that
have been overlapped (we have not been successful in overlapping the
lowest resonances using ordinary dielectric materials) at a frequency of
about 11.2 GHz; above this frequency is a band of negative refractive
index that ranges from 11.25 GHz to 12.4GHz.

It could be objected at this point that the electrical length
of the lattice constant is rather high at the frequencies where the
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negative refractive index appears: k0p ' 2.5 (at k0p = π we
might expect higher-order Bloch modes to become significant). Thus,
for comparison, we have also obtained the effective parameters for
this medium using two independent techniques based on numerical
simulations. The first is a method described in [39] in which the
reflection and transmission coefficients of a plane wave from a single
layer of the dielectric spheres are computed numerically using Ansoft’s
HFSS (version 11.0) finite-element software. From these computations,
the polarizabilities of the particles are inferred, and then the bulk
effective permittivity and permeability are found from the Clausius-
Mossotti formulas. The HFSS results are shown in Fig. 4. In comparing
the HFSS results to those obtained from the analytical formulas (34)–
(35), we see that the second resonant frequencies (and hence the band
over which negative refractive index occurs) differ by less than 4% for
the permittivity and less than 3% for the permeability.
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These differences are likely due to two primary causes. First,
as observed above the electrical size k0p of the lattice constant in
free space is not small at these frequencies; it is even larger when
measured with respect to a wavelength in the effective medium. Thus
the approximation that p is small compared to a wavelength is certainly
strained, and lattice-related dispersion is likely to change the effective
medium parameters from those predicted by (34)–(35). In support of
this, we observe that the first resonant frequency in µ differs by less
than 1% between the HFSS and analytical results (although that of
ε still shows about a 4% difference). A second potential cause of the
discrepancy is that the spheres are very closely packed: 2a/p = 0.932.
In this case, the neglect of interactions other than through the dipole
fields in our analytic formulas is suspect, and likely to result in a
certain amount of error in the model. The first source of error
can be estimated by using Eqs. (20)–(24) in (9)–(10) without the
approximation k1a ¿ 1. When this was done, we found that the
resonances in permittivity and permeability both shifted downwards,
by similar orders of magnitude although not by the same amounts as
in the HFSS results. An indication of the effect of neglecting higher-
order multipole interactions is seen in Fig. 4 in the form of small
resonances occurring near 9.1 GHz in ε and near 11.4 GHz in µ. There
is no counterpart of these in the analytical results, and we speculate
that these are due to non-dipole resonances of the layered spheres. In
view of all this, it is rather remarkable that the agreement between
the analytical results and those of HFSS is as good as it is. Indeed,
the HFSS results still predict a region of negative refractive index from
f = 10.9 to 11.37GHz even though the resonance frequencies for ε and
µ are not identical to those obtained from the analytical formulas.

A second comparison was made using results from a numerical
eigenmode simulation. Attempts to do this using HFSS did not yield
convergent results, apparently due to the combination of high dielectric
contrast and the spherical boundaries. The simulation was therefore
made using the eigensolver of CST Microwave Studio (also a finite-
element program). The computed results give resonant frequencies of a
period cell loaded with the layered sphere, with PEC walls at x = 0 and
p, PMC walls at y = 0 and p, and a prescribed phase shift θ between
the planes z = 0 and z = p. For each mode, an effective refractive
index neff = θ/(k0p) is assigned, where k0 is the wavenumber in free
space. The dielectrics in this simulation were taken to be purely real,
so that only real eigenfrequencies would be produced (the loss tangents
of the materials used in the previous computations were small in any
event). Only some of the modes are associated with predominantly
dipolar response, and of these only some exhibit a positive slope versus
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frequency; results for this subset have been plotted in Fig. 5. In the
same plot, we have included the Clausius-Mossotti (CM) value of the
effective refractive index

neff =
√

µr,effεr,eff [square root chosen so that Im(neff) ≤ 0] (41)

in which εeff and µeff are obtained from (34)–(35). The limits
k0pneff = ±π are also shown, to indicate the range of neff outside
of which the results are likely to violate the conditions under which
the effective medium model is valid. As with the HFSS results
given above, qualitative agreement is good, although quantitatively
the results disagree increasingly as frequency gets larger, as is to be
expected. Nevertheless, a negative index of refraction is observed for
the frequency range of approximately 11.2 to 12GHz.

Making the spheres even closer to each other by choosing p =
9.3806mm (so that 2a/p = 0.994), we get an even wider band of
frequencies for which the real part of the refractive index becomes
negative, as seen in Fig. 6. However, a comparison with the results
for the second resonances obtained from HFSS and displayed in Fig. 7
shows an even larger discrepancy with the analytical results than in
the previous case (although the material is still DNG over a significant
frequency band), which is to be expected due to the extremely close
spacing of the spheres. We note that without this relatively close
spacing of the spheres, we were unable to find sufficient overlap of the
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Eigenmode numbers are in order of increasing resonant frequency.
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of frequency for a dielectric layered-sphere metamaterial from (34)–
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(
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a = 4.66 mm and b = 2.25mm.

resonances in ε and µ to achieve a negative refractive index. Since
the results of both Fig. 6 and Fig. 7 are based on a model limited to
dipole interactions between spheres, neither can be regarded as more
accurate than the other, whereas the eigenmode results of Fig. 5 (that
apply only to neff) can be regarded as the most accurate of the results
presented in this paper.‖

The foregoing results show that the imaginary parts of effective
εeff and µeff are quite large near resonances, and we must ask whether
the effect of these losses is so large as to render this metamaterial
impractical for applications. A fairly universal way of expressing the
effect of losses is to compute the attenuation constant of a plane wave
‖ The combination of extremely small separation distance between spheres, high dielectric
contrasts and the polyhedral interpolation of the spherical surfaces frequently resulted in
failure of HFSS simulations to converge. Care must be taken in choosing meshing strategies
when applying any finite-element program to such configurations.
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in dB per wavelength, i.e.,

αdB/λ = 8.686 (αλ)dB = 54.575
|Im(neff)|
|Re(neff)| =

54.575
FOM

(42)

and what has been called the figure of merit (FOM) or quality factor
by some authors is defined as

FOM =
|Re(neff)|
|Im(neff)| (43)

In Fig. 8 is shown a plot of the attenuation constant calculated from
(34), (35) and (42) for the metamaterial of Fig. 6. Fig. 9 shows the
corresponding values found from the HFSS simulations. In spite of the
very large values this quantity takes near the resonance and near zeroes
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of the real part of the refractive index, we see that the attenuation
reaches a minimum of about 0.5 dB/λ at about f = 11.8GHz. It is,
moreover, less that 1 dB/λ over a bandwidth of about 1 GHz (nearly
10%). Similar results are obtained from the HFSS simulation, but over
a smaller bandwidth (about 0.5 GHz). This is significantly better than
results for other types of negative-index metamaterials that have been
reported in the literature, as we now show.
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Table 1. Comparison of figures of merit (FOM) and bulk attenuation
of some negative-index metamaterials.

Metamaterial Freq. FOM αdB/λ

[45] Modified split-ring/rod structure 4.5GHz 0.7 75
[16] Layered spheres (Drude/LiTaO3) 3.65THz 0.6 90
[46] Layered Au film (elliptical holes) 167THz 2 27
[47] Perforated metal-dielectric stacks 176THz 25 2.18
[48] Layered Ag film (rect. holes) 212THz 3 18
[49] Conventional split-rings/rods 100GHz 5 11
[50] Metal rod/ferrite composite 22GHz 10.9 5
[51] Metal rod/ferrite composite 10GHz 6.8 8
[52] Perforated “double-fishnet” 214THz 3 18
[7] Binary spheres (Drude/LiTaO3) 3.85THz 0.5 105
[17] Layered spheres (Au/CuCl) 775THz 0.2 247
[53] Layered metal film (“fishnet”) 250THz 3.6 15
[18] Layered spheres in liquid crystal 107THz 0.8 67
[54] Bilayer printed metalization 14GHz 5.5 10
[55] Optimized layered metal film 275THz 3.9 14
[56] Meander-line/loaded loops 400 MHz 0.7 75
[57] Layered metallic cross-pairs 1THz 10.9 5
[58] Multilayered “fishnet” 169THz 3.5¶ 16
[59] “Fishnet” structure 517THz 0.3 182
[60] Cut wire pairs (birefringent) 1.3THz 23 2.4
[61] Cylindrical dielectric resonators 10GHz 14 3.9
[62] Split cubes in a cage 176THz 0.3 165
[63] “Fishnet” structure 1THz 5 10.9
[64] Cut wire pair array 155THz 2.1 25
[65] Split-ring resonator array 100GHz 12.5 4.4
[66] Coaxial channel array 600THz 11.4 4.8
[67] Silver ring array 515THz 11 5
[68] Rodded silver sphere array 606THz 2.5 22
[69] “Fishnet” structure 400THz 3.34+ 16.3

¶ Measured value; simulated value was 18.
+ Measured value
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Not all publications about specific passive negative-index
metamaterials provide data on both real and imaginary parts of the
refractive index; often the calculated or measured results provide
only values of the power transmission coefficient for a layer of the
metamaterial. We have identified a number of papers, however, that do
present sufficient data to obtain values of FOM and αdB/λ with which
our results can be compared, although we do not make any claim of
completeness for this list. When FOM or αdB/λ was not given in these
papers, attenuation data has been extracted from the plots therein
(this could not always be done with high accuracy) and converted.
The results are assembled and displayed in Table 1.

We see that many of the materials listed are very lossy, and that,
in principle, the all-dielectric layered-sphere metamaterial proposed
here is capable of providing an order-of-magnitude reduction over all
but a few of the best attenuations per wavelength currently achieved
for a negative-index metamaterial. It should, of course, be kept in
mind that other factors such as frequency, bandwidth and value of
the real part of the negative refractive index are also significant in
assessing the quality of a negative-index metamaterial. For example,
it is generally more difficult to attain low attenuation at infrared and
optical frequencies than at microwave or millimeter-wave frequencies.

An alternative nonmagnetic structure was found that also provides
negative-index behavior: an array of dielectric-coated metal spheres.
In this structure, the core region of the layered sphere in Fig. 2 is made
of a good conductor, such as copper. It is modeled by giving the core
region a complex permittivity ε3 = ε′3− jσ/ω, where ε′3 is the real part
of the permittivity of the metal (usually ε0 if the metal is nonmagnetic)
and σ is the conductivity of the metal. The large imaginary part of
the complex core permittivity has the effect of suppressing many of
the resonances of the layered sphere, leaving only ones whose fields
are concentrated in the outer dielectric layer. We chose the shell
permittivity to be εr2 = 100

(
1− j10−3

)
, while the core was copper

(σ = 5.7 × 107 S/m). The lattice constant of the array was chosen to
be p = 12.481mm, and a much lower frequency range (2 to 4 GHz)
was explored. Again, we experimented with various combinations of
inner and outer radii, and arrived at a sphere for which a = 6.2mm
and b = 2.9mm. The values of εr,eff and µr,eff are plotted in Fig. 10.

We see that in this case, the resonance in permittivity is narrower
than in the case of the all-dielectric layered spheres. This results in
a smaller fractional bandwidth of negative-index operation: 2.81 to
2.87GHz (note that at these frequencies the lattice constant in this
example is much smaller compared to a free space wavelength than in
the previous example: k0p = 0.745). Additionally, when we examine
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the attenuation per wavelength (shown in Fig. 11), we see that its
minimum value in the negative-index region is substantially larger
than that predicted for the all-dielectric layered-sphere metamaterial
already considered: 3.2 dB/λ at 2.85 GHz. However, this is still
significantly lower than the values reported above for other negative-
index media in Table 1, although it is attained over a much narrower
bandwidth (about 0.1GHz) than in the all-dielectric case. It is likely
that this loss is lower than that of other metal-based metamaterials
because of the simpler and smoother shape of the metal used, resulting
in a lower contribution of ohmic losses to the total attenuation.
Final confirmation of these predictions must, of course, come from
experimental measurements.
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Both of our proposed metamaterials resemble to some extent
the one proposed in [16], in that both are arrays of layered spheres.
However, in [16], where the intended frequency range is several THz,
the resonance of each sphere is achieved by having the outer layer be a
Drude medium (a metal or semiconductor) with negative permittivity
and a loss tangent on the order of 10−2 in the terahertz region, while
the inner core is LiTaO3, a high-permittivity dielectric with a similar
value of loss tangent. The losses inherent in these materials result in
an attenuation of over 90 dB/λ at a frequency of 3.65 THz, where the
lowest losses in the negative-index range were attained.

4. CONCLUSION

In this paper we have proposed a novel passive metamaterial that
exhibits negative refractive index and much lower loss at microwave
frequencies than typical split-ring/rod-based media. Bandwidths of
greater than 10% for negative-index behavior are predicted, and
implementation using commercially available materials should be
possible at microwave frequencies. Results from analytical formulas are
validated by comparisons with two independent numerical simulations.

In future investigations, we plan to fabricate prototypes of these
proposed metamaterials, and carry out measurements to confirm both
the predicted negative-index behavior and the low attenuation. Of
course, fabrication of metamaterials based on spherical particles is
likely to be challenging by comparison with those based on a printed-
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circuit structure. In principle, there is nothing essential about using
spherically shaped particles; other shapes such as cubes could equally
serve the desired purpose. The advantage of the spherical geometry
is that closed-form expressions are available for the polarizabilities
of the particles, making design much less computationally intensive.
Metamaterials based on arrays of nonspherical dielectric scatterers
will be the subject of a future publication. Also of interest would
be to extend the analysis to spheres with more than two layers, and
to implement a more systematic method of searching for negative-
index configurations. Finally, the extension of the ideas of this paper
to millimeter-wave, terahertz and higher frequencies would be worth
examining. Such extensions will depend on the availability of suitable
low-loss dielectrics and metals at these frequencies, which also will
merit further research.
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APPENDIX A. SOME PROPERTIES OF THE
FUNCTIONS C1–C3

From the definitions (29)–(31) of the functions C1–C3, we see that

C2(z1,z2)=
∂C1(z1,z2)

∂z2
; C3(z1,z2)=

∂C2(z1, z2)
∂z1

=
∂2C1(z1,z2)

∂z1∂z2
(A1)

In [70] is proved the following expression, which allows C3 to be
expressed in terms of C1 and C2:

C1(z1, z2)C3(z1, z2) + C2(z1, z2)C2(z2, z1) = 1 (A2)

By inserting expressions (7) and (8) for the Riccati-Bessel functions
into (29)–(31) and using some trigonometric identities, we find that
only trigonometric functions of the difference z1 − z2 need appear in
the formulas for C1–C3:

C1(z1, z2) =
(

1 +
1

z1z2

)
sin(z1 − z2) +

(
1
z1
− 1

z2

)
cos(z1 − z2) (A3)

C2(z1, z2) =
(

1
z1
− 1

z2
− 1

z1z2
2

)
sin(z1 − z2)

+
(

1
z2
2

− 1
z1z2

− 1
)

cos(z1 − z2) (A4)
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C3(z1, z2) =
(

1
z2
1z

2
2

− 1
z2
1

− 1
z2
2

+
1

z1z2
+ 1

)
sin(z1 − z2)

+(z2 − z1)
(

1
z1z2

+
1

z2
1z

2
2

)
cos(z1 − z2) (A5)

from which in particular we have

C1(z1, z1) = C3(z1, z1) = 0; C2(z1, z1) = −1 (A6)

If z1 → 0 while z2/z1 remains constant, we have

C1(z1, z2) ' z3
1 − z3

2

3z1z2
; C2(z1, z2) ' −z3

1 + 2z3
2

3z1z2
2

;

C3(z1, z2) ' −2
3

z3
1 − z3

2

z2
1z

2
2

(A7)

Finally, if |z1− z2| ¿ 1 while z1 and z2 themselves may be of arbitrary
magnitude, we have, with errors of O[(z1 − z2)2]:

C1(z1, z2) ' z1 − z2; C2(z1, z2) ' −1;

C3(z1, z2) ' (z1 − z2)
(

1− 2
z2
2

)
(A8)
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