
A negotiation-based Multi-agent System
for Supply Chain Management

Ye Chen, Yun Peng, Tim Finin, Yannis Labrou,
Scott Cost

Computer Science and Electronic Engineering

University of Maryland Baltimore County

Baltimore, MD 21250

{yechen, ypeng, finin, jklabrou,
rcost1}@cs.umbc.edu

Bill Chu′, Jian Yao′, Rongming Sun″, Bob
Wilhelm″

Computer Science′, Mechanical Engineering″
University of North Carolina

Charlotte, NC 28223

{billchu, jyao, rsun, rgwilhel}@uncc.edu

ABSTRACT
This paper describes an ongoing effort in developing a Multi-
agent System (MAS) for supply chain management. In our
framework, functional agents can join in, stay, or leave the
system. The Supply Chain Management System (SCMS)
functionality is implemented through agent-based negotiation.
When an order arrives, a virtual supply chain may emerge from
the system through automated or semi-automated negotiation
processes between functional agents. We present our
framework and describe a number of negotiation performatives,
which can be used to construct pair-wise and third party
negotiation protocols for functional agent cooperation. We also
explain how to formally model the negotiation process by using
Colored Petri Nets (CPN) and we provide an example of
establishing a virtual chain by solving a distributed constraint
satisfaction problem.

Keywords
Negotiation, muliti-agent system, supply chain management
system, negotiation perforamtive, Color Petri Net.

1. INTRODUCTION
Computer software and hardware development leads to the
appearance of non-human software agencies. A software agent
is considered as an entity with goals, capable of actions
endowed with domain knowledge and situated in an
environment [1]. Multi-agent systems (MAS) are suitable for
the domains that involve interactions between different people
or organizations with different (possibly conflicting) goals and
proprietary information [1].

A supply chain is a network of suppliers, factories, warehouses,
distribution centers and retailers, through which raw materials
are acquired, transformed, produced and delivered to the
customer [2]. A supply chain management system (SCMS)
manages the cooperation of these system components. In the
computational world, roles of individual entities in a supply

chain are implemented as distinct agents. Correspondingly, a
SCMS transforms to a MAS, in which functional agents
cooperate with each other in order to implement system
functionality. Most of the previous research work in this field
sets MAS in a closed environment, that is, the system consists
of a fixed number of entities/components and they have a
common target [2][3]. The coordination of chain components is
a hierarchical scheduling problem [4]. However, this setting
could not accurately reflect the real situation in which a supply
chain sits. First, every company in the supply chain has its own
interests and goals even though companies may also have
intentions to deal with each other. The existence of self-interest
makes it difficult to model the agent cooperation as a pure
scheduling problem. Second, in a real business environment
there are no obligations for companies to remain with a supply
chain for a certain time period. Companies may join or leave
the chain according to their own judgement. In other words,
functional agents have to cooperate in a relatively dynamic way.
To address this problem, we propose a negotiation-based MAS
framework for supply chain management. In our framework,
there is no preset relationship between functional agents. When
an order comes, a virtual supply chain may emerge through
negotiation processes. The components of the chain may change
according to the external situation even after the order has been
accepted.

The paper is organized as follows. The proposed framework for
negotiation-based MAS is described in Section 2. Negotiation
performatives for agent are given in Section 3. Section 4
explains how to use a CPN to formally model the negotiation
process. A real supply chain scenario is given in Section 5.
Section 6 presents our conclusions.

2. Framework
In this section we propose a framework for the Multi-agent
System (MAS) for supply chain management. This MAS
consists of heterogeneous types of agents, which implement
some functionality of the supply chain management, called
functional agents. All of them have some understanding of

system ontology and use a certain Agent Communication
Language (ACL) to make conversation. The system ontology
includes knowledge about the goods that the system is dealing
with and interaction rules, e.g. the negotiation protocol used in
the system. Broadly, functional agents can be divided into two
types. One is used for providing system information, called
Information agent, and may be interacted with the outside. The
other type of agents is related to a certain goods, for example,
laptop and implements one special role of the supply chain.
Initially, functional agents in the system might be unaware of
who are its cooperating parties in the chain. They can get the
information about potential negotiation partners through the
related information agents. Functional agents could be
autonomous agents and semi-autonomous agents. They could be
as simple as CGI-like programs and distributed across the
Internet or other large-scale networks. The knowledge of each
agent related to the goods is modeled as a set of constraints.
The interaction between them, the negotiation process, is
modeled as a process of collaboratively assigning values to a
set of variables. For example, agents may negotiate the due
dates and quantities of orders. The dates and quantities may be
subject to the constraint of a producer's capacity. A
manufacturer may be willing to evaluate different combinations
of order sizes and due dates in order to find qualified vendors
with competitive price offers.

In the framework, a number of information agents are
predefined, which are in charge of providing different system
information, for example, who wants to sell or buy laptops.
Except for these agents, other system components are not fixed.
Functional agents may join the system and leave it according to
their own rules or orders from their owners. A functional agent
is said to join the system if it advertises its abilities and desired
role in a chain to one of the information agents. Similarly,
when a function agent wants to leave, it has to notify
information agents in which it registered. There are no
centralized super-agents or distributed mediators [5] to handle
the agent cooperation. All these activities occur through
negotiation processes, regardless of whether two sides are
involved in bargaining for some goods intentionally or de-
committing a contract caused by the outside events. A system is
called “dead” when there are either no registered agents in all
the information agents or no virtual chains can be formed in a
high percentage when customer orders arrive (further
discussion on this measurement is in progress). This framework
is used to simulate the dynamic situation that a SCMS
encounters, which requires the management system organize
the chain flexibly.

At first, the buyer agent that carries the order from a customer
looks for a cooperation partner. After knowing who are the
potential sellers through the help of information agents, the
buyer agent will negotiate with the seller agents directly and
find the most suitable one for its own interests. Conversely, the
seller agent may look for goods manufacturer agents by
searching the information agent (another solution is to let the
seller agent post the requirement to the information agents and
wait for manufacturers to contact it). All these messages will
broadcast and gradually propagate through the whole system.
Finally, a virtual supply chain may emerge, from material

provider agents to retailer agents. The negotiation process
resolves the incoming order constraints step by step across the
self-interested agents and during which a virtual chain emerges
from the MAS. This process could be described by the
following figure:

Figure 1 A negotiation-based MAS for supply chain
management

(A: functional agents that act as a role in supply chain; I:
information agents)

In the business environment, the functionality of a SCMS has
been defined as “the right products in the right quantities (at the
right place) at the right moment at minimal cost” [6]. In our
research, the functionality of a SCMS has been transformed to
constructing a virtual supply chain in a MAS through the
negotiation process among functional agents, in which the
constraints of an order has been fully or partial satisfied. The
goals of the ongoing research are to build up a MAS base on
the framework and support a component-based architecture
where different evaluation techniques can be used in
conjunction with the negotiation protocols discussed here. One
of the evaluation techniques we are experimenting is based on
distributed constraint satisfaction [7]. We also attempt to
explore the analysis of the life cycle of the system.

3. Negotiation performatives and protocols
An agent Communication Language (ACL) is a language with
precisely defined syntax, semantics and pragmatics that is the
basis of communication between independently designed and
developed software agents [8]. Functional agents in a MAS use
a common ACL to transfer information, share knowledge and
negotiate with each other. Knowledge Query and Manipulation
Language (KQML) and the ACL defined by Foundation for
Intelligent Physical Agents/ Agent Communication Language

A
I

A

I

A
A

A

A

I

A

A

A

order

A MAS consisted of a batch of functional agents related to one kind of goods

Negotiation

A A A A

I I

order

outside information

(FIPA ACL) are the most widely used and studied ACLs. Each
of them offers a minimal set of performatives to describe agent
actions and allows users to extend them if the new defined ones
conform to the rules of ACL syntax and semantics. In KQML
there are no predefined performatives for agent negotiation
actions. In FIPA ACL there are some performatives, such as
proposal, CFP and so on, for general agent negotiation
processes, but they are not sufficient for our purposes. For
example, there are no performatives to handle third party
negotiation. In this section we present a negotiation
performative set designed for MAS dealing with supply chain
management.

3.1 Criteria for performative definition and
selection
The criteria we used to define negotiation performatives are the
following:

1. Compatible with existing performatives. From a
practical perspective, to extend either KQML or FIPA
ACL performative sets involve a similar process. Since in
FIPAACL there is a category containing four negotiation
performatives [8], we choose to construct the negotiation
performative set based on this subset.

2. Defining new negotiation performatives based on a
negotiation protocol. There is no clear means to judge the
advantages and disadvantages of a particular extension of
a standard ACL, just as it is difficult to judge how to add
new words and phrases to a language used by human
beings. Some research attempts to define a complete
negotiation performative set for an ACL by enumerating
agent behaviors that may occur in the negotiation process
[9]. Agent actions are related to specific scenarios so that
it is hard to describe all types of agent behaviors without
knowing the details of the negotiation environment or
setting. This method, actually, can only produce the
incomplete negotiation performative set similar to the
other methods. Considering the negotiation process
between functional agents, many performatives defined in
[9] are unusable. To let functional agents understand so
many performatives sounds an overkill.

A negotiation protocol is used to organize message
sequences among agents. Agent negotiation behaviors are
depended on the negotiation protocol using in the
negotiation process. Since in a MAS for supply chain
management, only limited number of negotiation protocols
will be adopted, it is appropriate to define negotiation
performatives by describing agents possible responses
according to a specific negotiation protocol. In this way it
is easier to verify the sufficiency of the performative set
through modeling the protocol using certain formal tools
such as CPN. At the same time, this approach avoids the

redundant performative problem, and functional agents
need only to learn a relatively small set performatives for
negotiation.

In the next two sections we describe the performatives designed
for pair-wise and third party negotiation protocols.

3.2 Negotiation performatives for pair-wise
negotiation protocol
Performatives for pair-wise negotiation protocol are used when
two functional agents negotiate directly. The performatives
definitions conform to the FIPA ACL specification. We give
their name and corresponding meaning in the following table:

accept-
proposal

the action of accepting a previously submitted
proposal to perform an action

CFP the action of calling for proposals to perform
a given action

proposal the action of submitting a proposal to perform
a certain action, given certain preconditions

terminate the action to finish the negotiation process

Table 1 Pair-wise negotiation performatives

Initially, one agent starts negotiation by sending a CFP message
to the other agent. After several rounds of conversation in
which proposes and counter-propose are exchanged, the
negotiation between two agents will end when one side accepts
(rejects) the other side’s proposal or terminates the negotiation
process without any further explanation. It is not necessary that
the functional agent responds to each message. A functional
agent can simply ignore the incoming messages. It is the
sender’s responsibility to handle the lost message or in cases of
lack of responses.

The pair-wise negotiation protocol simulates a conversation
between two persons, in which one side sends an “ask” and the
other side sends a “reply.” The difference is in the pair-wise
negotiation protocol we have to limit the response message
types after a functional agent receives incoming messages so
that the negotiation process does not become irrelevant to the
topic, and at the same time simplify the message handling
process. Table 2 gives a summary about the possible
performatives a functional agent can use when certain
performative comes in:

Performatives followed

accept-proposal terminate | NONE;

CFP proposal | terminate | NONE;

proposal accept-proposal | reject-proposal |
terminate | NONE;

reject-proposal terminate | NONE;

terminate NONE.

Table 2 Pair-wise negotiation performatives and expected
response

3.3 Negotiation performatives for third party
negotiation protocol (auction)
Performatives for a third party negotiation protocol are used
when functional agents negotiate through the third party
(auctioneer). Some performatives defined for the pair-wise
negotiation protocol, e.g. accept-proposal, reject-proposal, are
still used for this protocol. One new performative, BID, is
introuduced. The syntax of BID is as follows:
• Bid: the action for a bidder to send a corresponding

response to an auctioneer
Bid
 :sender <word>
 :receiver <word>-----------------auctioneer
 :content <expression>-----------price for a goods
 :language <word> ----------- --- e.g.,
 Knowledge Interchange Format
(KIF)
 :ontology <word>----------------system

 :in-reply-to <word>--------------auction number
 :protocol <word>-----------------the default value is

 English auction.

In FIPA ACL, INFORM is not included in the category of a
performatives for negotiation processes. In this work, INFORM
is treated as a perfomative aiding the negotiation process.
Specifically, INFORM is used to transfer messages between a
seller agent and an auctioneer: the seller agent INFORMs the
auctioneer of what it wants to sell and what kind of auction
protocol it prefers; the auctioneer INFORMs the seller agent of
the auction result. The accept-proposal (reject-proposal) is used
by the auctioneer to tell the bidder who has won (lost).

Initially, one functional agent (seller) starts the negotiation by
sending an INFORM message to the auctioneer. This message
includes the goods that it wants to sell and the highest desired
price (or the contract that it wants to be bought and the lowest
desired price) and the preferred auction protocol. After
receiving the message, the auctioneer will broadcast it to
potential bidders (assuming the auctioneer knows that
information by querying the information agent) and organize an
auction according to the requirement the seller submits. After
several rounds of conversation, the negotiation process will end
with a deal that was reached between seller agent and bidders.
It is the auctioneer’s responsibility to notify both the seller and
bidders of the winner and the losers. The scenario is described
in the following figure:

Figure 2 Third party negotiation process

4. Negotiation process modeled by Colored
Perit Net (CPN)
In this section we present the negotiation process in a simple
MAS associated with the negotiation protocol and negotiation
performatives that we have proposed. We use Colored Petri Net
(CPN) as the modelling tool. CPN is developed for systems in
which communication, synchronisation and resource sharing
play an important role. It combines the strengths of ordinary
Petri nets with the strengths of a high-level programming
language. Petri nets provide the primitives for process
interaction, while the programming language provides the
primitives for the definition of data types and the manipulations
of data values. Usually, a CPN model consists of a set of
modules (pages), which each contains a network of places,
transition,arcs and colored token. In a CPN-nets place is used
to describe possible states of a process. The actions of a process
are described by transitions. Arcs are used to connect places
and transitions. They are indicated by ellipses, rectangles and
arrow lines in the diagram respectively. Tokens contain a
dynamically assigned data. Arc expression describes the
possible data flow between a place and a transition. A token is
called a colored token when it is attached a data value. The
data value may be of arbitrarily complex type, e.g., a record
where the first field is a real, the second a text string, while the
third is a list of integer pairs. For a given place all tokens must
have token colors that belongs to a specified type. This type is
called color. The use of color sets in CP-nets is totally
analogous to the use of types in programming languages. Color
sets determine the possible values of tokens. Usually a
language called CPN ML is used to make CP-net declarations.
The statements written in CPN ML can be compiled and tested
by some CPN tool, which give users convenience to judge the
correctness of the CPN diagram. The modules interact with
each other through a set of well-defined interfaces, similar to
many modern programming languages. The graphical
representation makes it easy to see the basic structure of a
complex CPN model, i.e., understanding how the individual
processes interact with each other [10]. CPN diagram in figure
4 describes the pair-wise negotiaion process in a simple MAS,
which consists of two functional agents bargaining for goods.
The messages used are based on the extended FIPA ACL
negotiation performative set we propose.

Color AGENT = index a with 1..2;
Color PR = product AGENT∗ AGENT;
fun diff (x <> y);
Color MES = subset PR by diff declare ms;
Color PERFORMATIVE = accept-proposal | CFP | proposal | reject-
proposal | terminate;
Color BARGAIN = String;
Color CONTENT = product PERFORMATIVE ∗ BARGAIN;
Color E with e;
fun (s,r,c) = mult′ PR ∗ CONTENT(1`s, AGENT-1`s, c);
var s,r : AGENT;

Seller

Bidder

Auctioneer

Inform

CFP
Bid

Accept-proposal Reject-proposal

BidderBidder

Inform

BidCFP

Figure 3 Pair-wise negotiation process for a MAS
constituted of two functional agents

From the diagram we can see that there are three different
kinds of places: Inactive, Waiting, and Thinking, which reflect
the states an agent might sit in during a negotiation process.
Both of the agents in this simple MAS have the same
architecture. The difference between one functional agent that
has three places and the other that only have two comes from
the roles they play in the negotiation process. The agent that
begin the negotiation, called buyer agent, which is shown on
the left side of the diagram, has the responsibility of handling
the lost messages or no responses so it has a extra Waiting
place. The seller agent (the process on the right) does not need
this state. When no messages come in, the seller agent would
simply remain in the Inactive place. In the diagram there is one
place, Sent, and four transitions, Send XX or Receive XX, that
reflect message state and transactions. The place Sent is used to
describe the situation that the message is on the way from one
agent to the other. The four transitions are used to describe the
actions of agent sending or receiving messages. The CPN-ML
descriptions above the diagram in figure 4 give a formal way to
express the negation process in the system. It can be used for
future analysis.

In the system, initially, both agents are in Inactive places
(states). When the buyer side decides to start a negotiation

process, it takes an action Send Messages (CFP), and its state
changes from Inactive to Waiting. Now the buyer is waiting for
a response (proposal, accept-proposal, reject-proposal or
terminate). When the buyer side Receive Messages, its state
changes from Inactive to Thinking. In this state the seller agent
needs to find out how to reply to the incoming message. Of
course, it can just ignore the message. Either choice will cause
its state direclty chang to Inactive. If there is some response
back to the buyer side, its state will change from Waiting to
Thinking or Inactive. Otherwise, the Timer will enforce this to
happen (In the diagram we can see the Timer issue a special
non-colored token that controls this change.).If the Thinking
result is sent out, all the transitons in the diagram would repeat
again. Otherwise the buyer side will return to Inactive state.
The system comes back to the initial state. Further discussion
and verification regarding the negotation process in this system
are in progress.

5. Example
In this section we present a concrete example of using
constraints to represent knowledge of functional agents and
how these constraints can be used in evaluating offers. Here we
do not present how to solve the entire constraint problem for
the entire virtual supply chain emerged, but instead we give a
detailed explaination of how to form one part of the chain, that
is, from material supplier to manufacturers. We assume that all
the companies are represented as functional agents and they use
pair-wise negotiation protocol to interact with each other.

Suppose company C has a production schedule listed below:

T 1 2 3 4 5 6 7

D 300 240 340 260 360 0 0

T 15 16 17 18 19 20 21

D 290 340 140 370 390 0 0

where T stands for time period and D stands for quantity due
from the suppliers. For easy of discussion, we restrict to only
one part, X. Such a schedule is typically the output from
company C's manufacturing resource planning system Agent C
starts with the constraint that it needs these quantities at
different time periods. It may also have a database of qualified
vendors, company A and B, represented by agents A, and B
respectively. Agent C sends a "call for proposal" (CFP)
message to both agents A and B.

Upon the request of CFP, agents A and B replies with
proposals in the form of constraints:

The supplier A's proposal may be:
(if ((supply A X) ∧ (2≤supply_lead_time ≤ 4)) ((quantity ≤
600) ∧ (unit_price X 3.05)))

MES

Waiting

Thinking

Rece.

E

Send

s
(s,r,c)

Send Receive

ThinkingInInacti

Sent

Sent

set

Inactive

Mes(s,r,c) (s,r,c)

r

rs

e

s

s

MES
Mes(r,s,c)(r,s,c)

(r,s,c)

(s,r,c)AGENT

AGENT

e

e
e

(s,r,c)

re

res
et

Timer

(if ((supply A X) ∧ (5≤supply_lead_time ≤ 10)) ((quantity ≤
1500)∧ (unit_price X 3.00)))
(if ((supply A X) ∧ (supply_lead_time ≥ 11)) (unit_price X
2.95))

The first constraint means that if delivery is expected within 2
to 4 weeks, then A can only supply 600 pieces of X at the unit
cost of $3.05.

Similarly, supplier B's constraints may be:
(if ((supply B X) ∧ (2≤supply_lead_time ≤ 3)) ((quantity ≤
500) ∧ (unit_price X 2.95)))
(if ((supply B X) ∧ (4≤supply_lead_time ≤ 8)) ((quantity ≤
1600) ∧ (unit_price X 2.90)))
(if ((supply B X) ∧ (supply_lead_time ≥ 9)) (unit_price X
2.85))

Figure 4 Search tree for constraint solving

Based on all the constraints, agent C will construct a search
tree as follows. If a satisfactory solution can be found, agent C
will accept the one or both proposals from suppliers A or B. If
no solution can be found, agent C has the following options:
Change its master schedule. That is to say, agent C will try to
relax its own constraints, or Request supply A and B to relax
one of their constraints. This alternative would produce counter
proposal messages to agents A or B. After several rounds of
negotiation, Agent C might setup a cooperation relationship
with Agent A or Agent B.

6. Conclusion
In this paper, we have presented a framework of negotiation-
based MAS for supply chain management. Negotiation
performatives for pair-wise and third party protocol have been
designed. A CPN diagram explaining negotiation protocol made
up of the proposed performative has been given. The design
and implementation of the negotiation-based MAS for supply
chain management is in progress. The definition of negotiation
performatives needs to be refined and new ones will be added
in if necessary. The negotiation protocol expressed in CPN
diagram will be given a more formal verification. We model the
evaluation process as a distributed constraint satisfaction
problem. Many challenges remain. Key research issues include:
convergence behavior of a network of negotiating agents,
strategies, and orders for deciding when to relax constraints.

7. REFERENCES
[1] P. Stone and M. Veloso, “Multiagent Systems: A Survey

from a Machine Learning Perspective,” Under review for
journal publication, February, 1997.

[2] M. Barbuceanu, and M. S. Fox, “The Information Agent:
An Infrastructure Agent Supporting Collaborative
Enterprise Architectures,” in Proceedings of Third
Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Morgantown, West Virginia,
IEEE Computer Society Press, 1994.

[3] N. Sadeh, “MASCOT: An Agent Architecture for Multi-
Level Mixed Initiative Supply Chain Coordination,”
Internal Report, Intelligent Coordination and Logistics
Laboratory, Carnegie Mellon University, 1996.

[4] D. Kjenstad, “Coordination Supply Chain Scheduling,”
Ph. D. Dissertation, Department of Production and Quality
Engineering, Norwegian University of Science and
Technology, 1998.

[5] R. Kalakota, J. Stallaert, and A. B. Whinston,
“Implementing Real time Supply Chain Optimiaztion
System,” in Proceedings of the Conference on Supply
Chain Management, HongKong, 1995.

[6] NEVEM-workgroup, Performance Indicators in Logistics,
IFS Publications, Springer-Verlag, 1989.

[7] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara,
“The Distributed Constraint Satisfaction Problem:
Formalization and Algorithms”, in IEEE Transaction on
knowledge and data Engineering, Vol 10, No. 2, 1998, pp.
673-685.

[8] FIPA '97 Specification Part 2, “Agent Communication
Language,”
http://drogo.cselt.stet.it/ufv/leonardo/fipa/spec/fipa71
12.zip

[9] B. Fordhan, K. Kalpakis, and Y. Yesha, “Extending
KQML for Inter-Agent Negotiation,” Master Thesis,
Computer Science Department, University of Maryland
Baltimore County, May, 25,1995.

A

Supply lead
time

X

S1:

q≤600

p=$3.05

S2:
q
≤1500
p=$3.
00

S3:

q ≤ ∞
p=$2.
95

S4:
q ≤
500
p=$2.
95

S5:
q≤160
0
p=$2.
90

S6:
q ≤ ∞
p=$2.
85

supplier

B

(≥ 2)
∧
(≤4)

(≥5)
∧
(≤10
)

≥
11

(≥ 2)
∧
(≤3)

(≥4)
∧
(≤ 8)

≥
9

Product Type

Supply lead
time

[10] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Volume 1, Basic Concepts,

Monographs in Theoretical Computer Science, Springer-
Verlag, 2nd corrected printing 1997.

