
A Nested Depth First Search Algorithm for
Model Checking with Symmetry Reduction

Dragan Bošnački

Dept. of Math. and Computer Science, Eindhoven University of Technology
PO Box 513, 5600 MB Eindhoven, The Netherlands

phone: +31 40 247 5159, fax: +31 40 246 8508, dragan@win.tue.nl

Abstract. We present an algorithm for the verification of properties
of distributed systems, represented as Büchi automata, which exploits
symmetry reduction. The algorithm is developed in the more general
context of bisimulation preserving reductions along the lines of Emerson,
Jha and Peled. Our algorithm is a modification of the nested depth
first search (NDFS) algorithm by Courcoubetis, Yannakakis, Vardi and
Wolper. As such, it has the standard advantages (memory and time
efficiency) that NDFS shows over the state space exploration algorithms
based on maximal strongly connected components in the state space
graph. In addition, a nice feature of the presented algorithm is that it
works also with multiple (non-canonical) representatives for the sym-
metry equivalence classes. Also, instead of an abstract counter-example,
our algorithm is capable of reproducing a counter-example which exists
in the original unreduced state space, which is an important feature for
debugging.

Keywords:Model checking, state space reduction techniques, symmetry
reduction, nested depth first search algorithm, multiple representatives.

1 Introduction

Over the last decades, the complexity of computer systems has been increas-
ing rapidly, with a tendency towards distribution and concurrency. The correct
functioning of these complex systems is becoming an ever larger problem. Many
verification and proof techniques have been invented to solve this problem. An
important class of techniques are those based on a fully automatic, exhaustive
traversal of the state space of a concurrent system. Well-known representatives
are the various model-checking techniques.
An infamous problem complicating an exhaustive traversal of the state space

of a concurrent system is the state explosion, caused by the arbitrary interleaving
of independent actions of the various components of the system. Several tech-
niques have been developed to cope with this problem. Among those techniques
symmetry reductions [15,8,4] are one of the most successful. They exploit the
inherent symmetry of the model which is present in many systems like: mutual
exclusion algorithms, cache coherence protocols, bus communication protocols,

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 65–80, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

66 D. Bošnački

etc. After observing that the symmetry in the description of the model results
in a symmetric state space, the key idea is to partition the state space into
equivalence classes of (symmetric) states. Then, the state space exploration can
be performed in the usually smaller quotient state space that consists only of
(representatives of the) equivalence classes.
The problem of finding canonical, i.e., unique, representatives of equivalence

classes is also known as the orbit problem. The orbit problem is equivalent to the
graph isomorphism problem[4], for which no polynomial algorithm is known. As
a result, often with symmetry reduction the verification time can become criti-
cal. On the other hand, finding multiple (non-canonical) representatives usually
boils down to sorting algorithms [8,3]. An obvious drawback of the multiple
representatives is that they provide less state space reduction compared to the
canonical representatives. However, often in practice it turns out that, with an
acceptable increasing of the state space, the verification time can be improved
significantly by using multiple representatives [15,3].
In this paper we present an algorithm that exploits symmetry reduction for

model checking. We describe the algorithm in the more general setting of bisim-
ulation preserving reductions, along the lines of Emerson, Jha and Peled [10]. As
symmetry reduction is just a special case of a bisimulation preserving reduction,
all results are valid for the former too.
We assume that in general we are checking liveness properties specified as

Büchi automata [16].1 As a consequence the problem of checking whether some
given property holds for the system under consideration can be reduced to the
problem of finding acceptance cycles (i.e., cycles that contain special states called
acceptance states) in the graph representing the product of the system (model)
state space with the automaton representing the (complement of the) prop-
erty (c.f. [6,5]). Our algorithm is a modification of the nested depth first search
(NDFS) algorithm by Courcoubetis, Yannakakis, Vardi and Wolper [6] which
reports an acceptance cycle if and only if there is one in the state space graph.
We present two versions of the algorithm both based on NDFS. The first

version is a straightforward adaptation to NDFS of the algorithms used in the
literature for state space exploration with symmetry reduction (e.g. [15,10]). We
show that in general the algorithm provides a counter example for the checked
property which is in the abstract state space and as such contains transitions
which are not in the original state space. Therefore, we present the second version
of the NDFS algorithm which is in fact exploring (part of) the original state
space. As a consequence the found erroneous executions are always “realistic”
in the sense that they exist in the original state space too.
Unlike the other algorithms for explicit state model checking which are known

in the literature, our algorithm does not require unique (canonical) representa-
tives of the bisimulation (symmetry) equivalence classes. As discussed above this
can lead to shorter verification times.

1 This means that the algorithm can be used for temporal logics which can be trans-
lated into Büchi automata, like, for instance, linear-time temporal logic (LTL) [7].

A Nested Depth First Search Algorithm for Model Checking 67

In general, our algorithm features all advantages that NDFS has over the
algorithms for state space exploration which are based on maximal strongly
connected components (MSCC) [1]. Probably the most important one among
these advantages is that, unlike the existing algorithms for symmetry reduction,
our algorithm is compatible with the memory efficient approximative verification
techniques like bit-state hashing [12] and hash-compact [18]. In practice, when
the property which is being verified does not hold, the NDFS based algorithms
are faster and require less memory to find an error. Also, with the NDFS based
algorithms it is much easier to reconstruct the counter example execution which
witnesses the error, by simply dumping the contents of the stack. Finally, the
NDFS algorithms are in principle easier to implement than the MSCC based
ones.

Related work other than [10]. This paper can be seen as a follow up of [3]. How-
ever, in [3] only safety properties are considered and the emphasis is on heuristics
for coping with the orbit problem. In this paper we “reuse” the heuristics from [3]
and focus on the algorithm for generating the reduced state space for liveness
properties.
The usefulness of multiple representatives is discussed in several papers

(e.g. [15,4]). However, these papers deal either only with safety properties or
they are in the context of symbolic model checking. To the best of our knowl-
edge there is no paper which tackles this issue in the area of explicit-state model
checking for liveness properties.
In a recent paper [14] a nested depth first search algorithm was implicitly

assumed, but in a context of a specific reduction which exploits so called heap
symmetries. Also, [14] assumes only canonical representatives.

2 Preliminaries

In the sequel we adopt the automata theoretic approach to model checking [17].
In particular, we assume that the properties that are checked are given as Büchi
automata. As it was mentioned in the introduction, we work with the graph
obtained as a product of the state space graph representing the system (more
precisely: the system model) with the automaton (graph) representing the nega-
tion of the property. The algorithms to obtain the product state space are quite
standard (c.f. [6,5]). In the sequel we assume that the product state space is given.
(An on-the-fly integration of the algorithms for obtaining the product state space
with the algorithms presented in this paper should be trivial (c.f. [5]).)
We represent the state space of the system which is checked as a labeled

transition system formally defined as follows:

Definition 1. Let Π be a set of atomic propositions. A labeled transition system
(LTS) is a 6-tuple T = (S,R,L,A, ŝ, F), where

– S is a finite set of states,
– R ⊆ S×A×S is a transition relation (we write s a→ s′ ∈ R for (s, a, s′) ∈ R),

68 D. Bošnački

– L : S → 2Π is a labeling function which associates with each state a set of
atomic propositions that are true in the state,

– A is a finite set of actions,
– ŝ is the initial state,
– F ⊆ S is the set of acceptance states.

Unless stated differently, we fix T to be (S,R,L,A, ŝ, F) for the rest of the paper.
An action a is enabled in a state s ∈ S iff s

a→ s′ ∈ R for some s′ ∈
S. An execution sequence or path is a finite or infinite sequence of subsequent
transitions, i.e., for si ∈ S, ai ∈ A, the sequence s0 a0→ s1

a1→ s2 . . . is an execution
sequence in T iff si

ai→ si+1 ∈ R for all i ≥ 0. A state s is reachable iff there
exists a finite execution sequence that starts at ŝ and ends in s. An infinite
execution sequence is said to be accepting iff there is an acceptance state s ∈ F
that occurs infinitely many times in the sequence. A finite execution sequence
c = s0

a0→ s1
a1→ . . .

an−1→ sn,n ≥ 1 is a cycle iff the start and end states coincide,
i.e. s0 = sn. A cycle c is reachable iff there exists a state in c which is reachable.
A cycle c is an acceptance cycle if it contains at least one acceptance state.
Next, we define bisimulation between two LTSs:

Definition 2. Given two LTSs T1 = (S1, R1, L1, A, ŝ1, F1) and
T2 = (S2, R2, L2, A, ŝ2, F2), an equivalence relation ≡⊆ S1×S2 is called a bisim-
ulation between T1 and T2 iff the following conditions hold:

– ŝ1 ≡ ŝ2;
– If s ≡ s′, then:
• L1(s) = L2(s′);
• s ∈ F1 iff s′ ∈ F2;
• Given an arbitrary transition s

a→ s1 ∈ R1, there exists s2 ∈ S2 such
that s′ a→ s2 ∈ R2 and s1 ≡ s2;

• The symmetric condition holds: Given an arbitrary transition s′ a→ s2 ∈
R2, there exists s1 ∈ S1 such that s a→ s1 ∈ R1 and s1 ≡ s2;

We say that T1 and T2 are bisimilar iff there exists a bisimulation between
T1 and T2.

2.1 Standard Nested Depth-First Search Algorithm

The algorithms presented in this paper are based on the algorithm of [6] for mem-
ory efficient verification of liveness (temporal) properties, called nested depth-
first search (NDFS) algorithm. In the rest of this section we give a brief overview
of the NDFS algorithm of [6].
We begin by considering the basic depth-first search algorithm in Fig. 1.

When it is started in the initial state ŝ of a given LTS T , the basic depth-
first search algorithm generates and explores the reachable part of T , i.e., all
reachable states and all transitions between them.
Note that in in an implementation of the algorithm in Fig. 1, as well as in

all other algorithms in this paper, we need to save only the states of the LTS –
saving transitions is not needed.

A Nested Depth First Search Algorithm for Model Checking 69

1 proc dfs1(s)
2 add s to Stack
3 add s to States
4 for each transition (s,a,s’) do
5 add {s,a,s’} to Transitions
6 if s’ not in States then dfs1(s’) fi
7 od
8 delete s from Stack
9 end

Fig. 1. Basic DFS algorithm.

The basic DFS cannot detect cycles. Therefore, in order to do model checking
we extend it with a call to a procedure that checks for a cycle, as soon as an
acceptance state is encountered. The new algorithm is given in Fig. 2.

1 proc dfs1(s)
2 add s to Stack1
3 add s to States1
4 if accepting(s) then States2:=empty; seed:=s; dfs2(s) fi
5 for each transition (s,a,s’) do
6 add {s,a,s’} to Transitions
7 if s’ not in States1 then dfs1(s’) fi
8 od
9 delete s from Stack1
10 end

11 proc dfs2(s) /* the nested search */
12 add s to Stack2
13 add s to States2
14 for each transition (s,a,s’) do
15 add {s,a,s’} to Transitions2
16 if s’ == seed then report cycle
17 else if s’ not in States2 then dfs2(s’) fi
18 od
19 delete s from Stack2
20 end

Fig. 2. Nested depth first search (NDFS) algorithm, version 1 (“preorder”).

The cycle check procedure is again a DFS which reports a cycle and stops
the algorithm if the seed acceptance state is matched. If a cycle through the
acceptance state does not exist, then the basic DFS is resumed at the point in
which it was interrupted by the nested cycle check. In the sequel we also call the
basic DFS first DFS, while the nested cycle checks all together are called second

70 D. Bošnački

DFS. We need to work with two distinct copies of the state space in order to
ensure that the second DFS does not fail to detect a cycle by cutting the search
because it has hit a state already visited by the first DFS.
An important feature of the algorithm in Fig. 2 is that before the cycle

check is called its copy of the state space is reset in line 4 with the statement
States2:=empty. Hence, the cycle check is always started from scratch. As a
consequence, some states can be visited several times (by different cycle checks),
which increases the time complexity of the algorithm. The reinitialization of
States2 is needed, because otherwise some acceptance cycles can be missed.
In order to be able to preserve the States2 between cycle checks and reuse

the previous calls of dfs2, we need a small modification of the algorithm – the
cycle check should start only after all the successors of an acceptance state are
explored, i.e., when the recursion retracts from an acceptance state [6]. This is
achieved by moving line 4 to the end of the procedure dfs1, i.e., after line 8,
and removing the statement States2 := empty which is not needed anymore.
Also, in the new version of the algorithm we use only one States (and

Transitions) variable and extend the state representation with an additional
bit to distinguish between the two different copies of the state space, belonging
to the first and second DFS, respectively. The variable States is preserved be-
tween the calls of dfs1 and dfs2 and, as a result, each state is visited only once
also during the second DFS. The resulting algorithm is shown in Fig. 3.

1 proc dfs1(s)
2 add s to Stack1
3 add {s,0} to States
4 for each transition (s,a,s’) do
5 add {{s,0},a,{s’,0}} to Transitions
6 if {s’,0} not in States then dfs1(s’) fi
7 od
8 if accepting(s) then seed:={s,1}; dfs2(s) fi
9 delete s from Stack1
10 end

11 proc dfs2(s) /* the nested search */
12 add s to Stack2
13 add {s,1} to States
14 for each transition (s,a,s’) do
15 add {{s,1},a,{s’,1}} to Transitions
16 if {s’,1} == seed then report cycle
17 else if {s’,1} not in States then dfs2(s’) fi
18 od
19 delete s from Stack2
20 end

Fig. 3. Nested depth first search (NDFS) algorithm.

A Nested Depth First Search Algorithm for Model Checking 71

The following claim (Theorem 1 from [6]) establishes the correctness of the
algorithm

Theorem 1 ([6]). Given an LTS T , the NDFS algorithm in Fig. 3, when called
on ŝ, reports a cycle iff there is a reachable acceptance cycle in T .

The cycle which is reported is contained in Stack2, while Stack1 contains the
path from the initial state that leads to it. Thus, the counterexample execution
can be reproduced by concatenating the contents of the stacks.
The fact that for each state s the copies in the first and second DFS differ

only in the second (bit) component can be used to save memory space [13]. The
states (s, 0) and (s, 1) can be stored together as (s, b1, b2), where b1 (respectively
b2) is a bit which is set to 1 iff (s, 0) (resp. (s, 1)) has been already visited during
the first (resp. second) DFS. Thus, NDFS requires virtually the same memory
as if the verification was done with only one copy of the state space.

3 Bisimulation Preserving Reduction

In this section we recall some definitions and results from [10]. Our starting point
is the idea to perform the model checking in an abstract state space, which is
usually much smaller than the original one. To this end, the original state set S
is partitioned into equivalence classes. The abstract state space consists of (not
necessarily unique) representatives of these classes, chosen by a function h, with
transitions between them as defined below.

Definition 3. Given a function h : S → S on LTS T = (S,R,L,A, ŝ, F), we
define the corresponding abstract LTS h(T) to be (Sh, Rh, Lh, A, h(ŝ), Fh), where

– Sh = h(S), the set of representatives,
– r1

a→ r2 ∈ Rh iff there exists s ∈ S such that r1
a→ s ∈ R and h(s) = r2.

– for all r ∈ Sh, Lh(r) = L(r).
– Fh = h(F).

In order to preserve the properties of interest that hold in T also in h(T) we
need to impose some additional constraints on the function h. In particular, we
require that the equivalence class induced by the partitioning is a bisimulation.

Definition 4. For a given LTS T , a function h : S → S is a selection function
iff there exists a bisimulation ≡⊆ S × S on T (i.e., between T and T) such that
for all s ∈ S
– s ≡ h(s), and
– h(s) = ŝ iff s = ŝ.

Intuitively, the function h picks one or more representatives for each equivalence
class of S induced by≡. It should be emphasized that in the definition of selection
function in [10] h is required to satisfy the additional property

72 D. Bošnački

s ≡ s′ implies that h(s) = h(s′)

which in the sequel we call canonicity requirement. Obviously, with this require-
ment each equivalence class has a canonical (unique) representative. In what
follows we assume that h is a selection function without the canonicity require-
ment, which implies multiple representatives per equivalence class.
We say that h preserves the bisimulation relation ≡. The following result is

implied by the definitions given above:

Lemma 1 ([10]). Given an LTS T and a selection function h, T and h(T) are
bisimilar.

Lemma 1 is actually Lemma 8 from [10]. The proof of that lemma in [10] is valid
in our setting too because it does not use the canonicity requirement for the
representatives. The following lemma, is implied directly by Lemma 1. It gives
the path correspondence between the original and the abstract LTSs.

Lemma 2. Let T be an LTS with a selection function h, and let h(T) be the
corresponding abstract LTS. If ≡ is a bisimulation which is preserved by h, then
the following path correspondence holds. For any s0, r0 ∈ S such that s0 ≡ r0,
there exists a finite (resp. infinite) path p = s0

a0→ s1
a1→ ... in T iff there exists a

finite (resp. infinite) path q = r0
a0→ r1

a1→ ... in h(T) and si ≡ ri for all i.

A direct consequence of Lemma 1 is the following result:

Lemma 3. There exists a reachable acceptance cycle in the LTS T iff there
exists a reachable acceptance cycle in h(T).

Proof. Let c = s0
a0→ s1

a1→ ...sn−1
an−1→ s0 be a reachable acceptance cycle in T

and let us suppose without loss of generality that s0 is an acceptance state. Be-
cause c is reachable, also any state on c, and therefore, s0 is reachable in T . Thus,

there exists in T a path p = ŝ
b0→ q1

b1→ ...qn−1
bn−1→ s0. Let ≡ be the bisimulation

that corresponds to h. Then by the definition of selection function ŝ ≡ h(ŝ).
Thus, by Lemma 2 there exists a path from h(ŝ) to some state r0 ≡ s0. So, r0 is
a reachable acceptance state in h(T). By Lemma 2 to the cycle c in T there cor-
responds in h(T) a path p0 = r0

a0→ r1
a1→ . . . rn−1

an−1→ r10 which is not necessarily
a cycle. As s0 ≡ r10, we can unfold p again according to Lemma 2, but this time
beginning at r10, which will produce the path p

1 = r10
a0→ r11

a1→ . . . r1n−1
an−1→ r20.

In an analogous way we can repeat this unfolding arbitrary many times which
will give us a sequence of paths p0, p1, p2, . . . with the corresponding end states
r10, r

2
0, r

3
0 As the equivalence class of the (acceptance) states r

0
0 = r0, r

1
0, r

2
0, ...

is finite, for some i, j ≥ 0 we will have that ri0 = rj0. Obviously, the concatenation
of the paths pi to pj−1 is an acceptance cycle in h(T).
Using symmetric arguments one can also prove the other direction. �	

A Nested Depth First Search Algorithm for Model Checking 73

4 NDFS Algorithms for Bisimulation Preserving
Reduction

We generate and search the reduced abstract state space for acceptance cycles
with a straightforward modification of the standard (postorder) NDFS from
Figure 3, which we call reduced NDFS (RNDFS). To this end the searched state
space is made to comply with Def. 3. More precisely, RNDFS is obtained from
the standard NDFS algorithm by replacing all the occurrences (except in lines
4 and 14) of the newly generated state s’ with its representative h(s’). The
RNDFS algorithm is given in Fig. 4.

1 proc dfs1(s)
2 add s to Stack1
3 add {s,0} to States
4 for each transition (s,a,s’) do
5 add {s,0},a,{h(s’),0}} to Transitions
6 if {h(s’),0} not in States then dfs1(h(s’)) fi
7 od
8 if accepting(s) then seed := {s,1}; dfs2(s) fi
9 delete s from Stack1
10 end

11 proc dfs2(s) /* the nested search */
12 add s to Stack2
13 add {s,1} to States
14 for each transition (s,a,s’) do
15 add {{s,1},a,{h(s’),1}} to Transitions
16 if {h(s’),1} == seed then report cycle
17 else if {h(s’),1} not in States then dfs2(h(s’)) fi
18 delete s from Stack2
19 od
20 end

Fig. 4. Nested depth first search algorithm with bisimulation preserving reduction
(RNDFS).

In order to show the correctness of the RNDFS algorithm we first show that
it is equivalent to the NDFS algorithm applied on the reduced state space. In
fact the generation of h(T) from T according to Def. 3 and the NDFS on h(T)
are done simultaneously in RNDFS.

Lemma 4. Given an LTS T and a selection function h, the nested depth first
search algorithm (NDFS) in Figure 3 when called on h(ŝ) and applied on h(T)
reports a cycle iff the nested depth first search algorithm with bisimulation pre-
serving reduction (RNDFS) in Figure 4, when called on the initial state h(ŝ) = ŝ
and applied on T reports a cycle.

74 D. Bošnački

Proof. We will show that for every execution E of the NDFS algorithm on h(T),
started in h(ŝ), there exists an execution E′ of the RNDFS algorithm on T ,
started in ŝ, such that the parts of h(T) which are saved in the variables States
and Transitions in both algorithms are the same. Additionally, if E reports a
cycle then also E′ reports a cycle.
We will construct an execution E′ of the RNDFS algorithm applied to T while

tracing the execution E of NDFS applied to h(T). We denote the j-th element
from the bottom of the Stacki, i = 1, 2, with Stacki(j), i.e., Stacki(0) is the
bottom element. The function length(Stacki) returns the number of elements in
Stacki. Thus Stacki(length(Stacki)− 1) is the top element. The superscript of
a variable denotes the execution, i.e., algorithm, it belongs to.
We will show by induction of the execution length that at each point the

following invariants hold:

1. length(StackEi) = length(StackE
′

i),i = 1, 2, and StackEi (j) =
StackE

′
i (j)),i = 1, 2, 0 ≤ j ≤ length(StackE

′
i − 1);

2. StatesE = StatesE
′
;

3. TransitionsE = TransitionsE
′
;

4. seedE = seedE
′
.

Basic Step: Initially, the invariants hold because both E and E′ begin by
adding h(ŝ) to States and Stack. Now, we advance E and show how it can be
mimicked by E′, while preserving the invariants.

Induction Step: Suppose that in E a new state is generated in line 4
of the NDFS (Fig. 3) and the corresponding transition (s, a, s′) is added to
TransitionsE . By the induction hypothesis (IH) the invariants hold and con-
sequently sE = sE

′
= s. According to Def. 3 there exists a state s1 in T such

that s a→ s1 and h(s1) = (s′)E . Thus we take in line 4 of RNDFS (s′)E
′
= s1.

The relation h((s′)E
′
) = (s′)E has the following consequences. First, exactly the

same transition is saved in TransitionE
′
as in TransitionE . Further, taking into

account the IH, more particularly invariant 2, we conclude that if in line 6 (17)
dfs1 (dfs2) is called in E, then it is also called in E′. Moreover in both execu-
tions dfs1 are called with the same state as argument, which further preserves
the invariants through the statements in line 2 and 3 (12 and 13). Finally, in
line 16, as by IH (invariant 4) seed has the same value in both executions, if a
cycle is reported in E it will be also reported in E′ (which is actually our main
goal to prove).
Further, as sE = sE

′
(IH, invariant 1), in line 8 if the acceptance state

test is passed in E, then it is obviously true in E′ too. This means that the
lock-step execution of E and E′ can be continued by assigning the same value
(IH, invariant 1) to seed in both of them, and thus preserving invariant 4, in
particular. Also dfs2 is called in both executions and with the same argument,
which will further preserve the invariants, as discussed above.
It is also not difficult to see that the delete statements in lines 9 and 19 will

preserve the invariants, invariant 1 in particular.

A Nested Depth First Search Algorithm for Model Checking 75

Using completely symmetric argument one can show how the executions of
RNDFS on T can be mimicked by the executions of NDFS on h(T) which com-
pletes the other direction of the theorem. �	
Theorem 2. Given an LTS T and a selection function h, the nested depth first
search algorithm with bisimulation preserving reduction (RNDFS) in Figure 4,
when called on (the initial state) h(ŝ) = ŝ, reports a cycle if and only if there
exists a reachable acceptance cycle in T .

Proof. From Theorem 1, we have that when applied on h(T), NDFS is guar-
anteed to report a cycle iff there exists a reachable acceptance cycle in h(T).
And by Lemma 3 there exists such a cycle in h(T) iff there exists a reachable
acceptance cycle in T , which proves the theorem. �	
An important feature of the standard NDFS algorithm is that if an accep-

tance cycle is detected, the erroneous execution can be recreated by dumping
the contents of the stack stacks (Stack1 and Stack2). Unfortunately, this is
no longer true with RNDFS. The reason is that in RNDFS dfs1 and dfs2 are
not called with the newly generated states as arguments, but instead from their
representatives (lines 6 and 16). Consequently, in general the stacks might con-
tain a sequence of states which corresponds to an execution sequence that do
not exist in the original LTS T . (This effect of introducing transitions between
representative states in h(T) which do not exist in T is obvious from Def. 3.)
A straightforward way to solve this problem is to define that given a subclass

C of the bisimulation equivalence class the representative h(s) is always the first
state from C which is generated by the RNDFS algorithm.2 (Notice that the
correctness of RNDFS is independent of the choice of the selection function h.)
This choice of a representative will imply that if a new state s′ is generated such
that h(s′) is not already in the States, then h(s′) = s′. As a consequence dfs1
and dfs2 will be always called with the original state s′ as an argument. In this
way the stack always contains (a sequence of states that belong to) an execution
which is also present in the original LTS T .
More formally, for our purpose we can always construct a selection function

for RNDFS in the following way. Suppose we are given a selection function h on
T . Then it is easy to see that h1, defined as

h1(s) =
{
s , if there is no state s′ ∈ States such that h(s′) = h(s);
s′ , where s′ ∈ States and h(s′) = h(s), otherwise

is also a selection function on T and therefore it can be used in RNDFS. In
other words, for each subclass of a bisimulation class (defined by the partitioning
induced by h), the state of this subclass which is first generated by the RNDFS
is used as a unique representative of the subclass. In this way RNDFS also
generates (in the stacks) part of the original LTS T .
However, such a choice has a drawback regarding the efficiency. This is be-

cause in order to compute h1(s′) one has to check if there is already a state
2 a similar idea is also used in [8].

76 D. Bošnački

s belonging to the subclass of s′ and which is already in States. As the com-
puting of h1(s′) is performed for each generated s′, i.e., for each call of the dfs
procedures, obviously it is critical for the overall performance of the algorithm.
One “naive” way to check if h1(s′) is in States is to first compute s′′ = h(s′).

Then for each state s in States to check if s′′ = h(s). If this is true, then
according to the definition of h1 the representative of the subclass exists and
h1(s′) = s. Obviously, it is very inefficient to recompute h(s) for each s in
States each time a check for a new s′ is performed. One can avoid this overhead
by saving h(h1(s′)) in States instead of h1(s′). Notice that if h1(s′) has to
be saved, then h(h1(s′)) = h(s′), This is because in such a case s′ is the first
state of its subclass which is generated by the search and therefore h1(s′) = s′.
Intuitively, we use the selection function h to compute a unique, i.e. canonical,
representative of each subclass. (Notice that these subclass representatives can be
found efficiently in polynomial time.) If two states s1, s2 have the same canonical
representative, i.e., if h(s1) = h(s2), then they belong to the same subclass.
The above discussion brings us to the modified version of RNDFS, MRNDFS,

given in Fig. 5.
If in RNDFS with selection function h1 dfs1 (dfs2) is called only if the

representative h1(s′) is not in Stack and consequently h1(s′) = s′. Therefore,
in MRNDFS dfs1 and dfs2 are called with the newly generated states s′ as
arguments and consequently, the original states are saved on the stack instead
of their representatives. However, in order to still benefit from the reduction
only the (canonical forms of the) representatives h(s′) are saved in States,
Transitions and the seed.
Next, we show that the algorithms MRNDFS and RNDFS are equivalent

in the sense that they both report a cycle iff there is a reachable acceptance
cycle in in the original LTS T . We first show that the parts of the original T
which are generated by RNDFS and MRNDFS (i.e., the states kept in Stack)
are the same, while they differ in the representatives that they save in States.
However, there exists a representative of a given subclass in States of RNDFS
iff a representative of the same subclass is also saved in States of MRNDFS.
More precisely, we have the following:
Lemma 5. Given an LTS T and selection functions h and h1 as defined above,
the nested depth first search algorithm with bisimulation preserving reduction
(RNDFS) in Figure 4 when called on ŝ and applied on T with selection function
h1 reports a cycle iff the modified nested depth first search algorithm with bisim-
ulation preserving reduction (MRNDFS) in Figure 5, when called on the initial
state ŝ and applied on T with selection function h reports a cycle.

Proof. The proof is very similar to the proof of Lemma 4. We construct an exe-
cution E′ of the MRNDFS algorithm while tracing the execution E of RNDFS,
when both algorithms are applied to T . Using the same denotations as in the
proof of Lemma 4, we define analogous invariants, i.e., we show that at each
point of the lock-step execution of the algorithms the following holds:

1. length(StackEi) = length(StackE
′

i), i = 1, 2, and Stack
E
i (j) = StackE

′
i (j),

i = 1, 2, 0 ≤ j ≤ length(StackEi − 1).

A Nested Depth First Search Algorithm for Model Checking 77

1 proc dfs1(s)
2 add s to Stack1
3 add {h(s),0} to States
4 for each transition (s,a,s’) do
5 add {{h(s),0},a,{h(s’),0}} to Transitions
6 if {h(s’),0} not in States then dfs1(s’) fi
7 od
8 if accepting(s) then seed := {h(s),1}; dfs2(s) fi
9 delete s from Stack1
10 end

11 proc dfs2(s) /* the nested search */
12 add s to Stack2
13 add {h(s),1} to States
14 for each transition (s,a,s’) do
15 add {{h(s),1},a,{h(s’),1}} to Transitions
16 if {h(s’),1} == seed then report cycle
17 else if {h(s’),1} not in States then dfs2(s’) fi
18 od
19 delete s from Stack2
20 end

Fig. 5. Modified nested depth first search algorithm with bisimulation preserving re-
duction (MRNDFS).

2. a state s is in StatesE iff there exists a unique state s′ in StatesE
′
such that

h(s) = s′.
3. a transition s1

a→ s2 is in TransitionsE iff there exists a unique transition
s′1

a→ s′2 in Transitions
E′ , such that h(s1) = s′1 and h(s2) = s′2.

4. h(seedE) = seedE
′
.

5. In RNDFS (E) the variable sE always contains a state which is its own
representative, i.e., h1(sE) = sE .

Baisc Step: Initially, the invariants hold. As both algorithms are called with
ŝ as argument, this implies that both executions E and E′ begin by pushing
ŝ in Stack. As StatesE is empty, h1(ŝ) = ŝ, which means that execution E
saves (ŝ, 0) in StatesE , while execution E′ saves (h(ŝ), 0) to StatesE

′
. In the

beginning Transitions are empty and seed is undefined in both executions, so
the invariants hold vacuously.

Induction Step: We show that the lockstep execution of E and E′ preserves
the invariants. Let sE and sE′ be the states which are currently visited by E
and E′, respectively. The states are the top elements of the corresponding Stack
variables, both in E and E′. Thus, it follows by the induction hypothesis (IH)
(invariant 1) that sE = sE′ = s. So, each transition which is taken in lines 4 and
14 of RNDFS can be mimicked by (the same lines in) MRNDFS. The obtained
successor states s′ are also the same. Depending on h1(s′), we have to consider
two cases.

78 D. Bošnački

1. If the representative h1(s′) is not in StatesE , then h1(s′) = s′. By IH (in-
variant 2) we also have that h(s′) is not in StatesE

′
.

2. If the representative of s′, s2 = h1(s′), is already in StatesE , we conclude
from the definition of h1 that h(s′) = h(s2). Thus by IH (invariant 2) h(s′)
is already in StatesE

′
.

In lines 5 and 15, RNDFS saves s a→ h1(s′) in TransitionsE , while MRNDFS
saves h(s) a→ h(s′) as a corresponding transition in TransitionsE

′
. Recall that

s is the same in both E and E′. If h1(s′) is not in StatesE , h1(s′) = s′ (case 1
above) and invariant 3 is obviously preserved. Also, if the representative s2 =
h1(s′) is already in StatesE , it is easy to see from the above discussion (case 2)
that h(s′) = h(s2) is the destination state of the transition which is saved in E′.
Therefore invariant 3 is preserved in this case too.
Using the same arguments about h1(s′) one can show that dfs1 in line 6 is

called in MRNDFS, if it is called in RNDFS. Further, dfs1 in RNDFS is always
called with s′ as parameter (case 1), i.e., exactly with the same parameter as in
MRNDFS. As a consequence the same state is pushed in the Stack in line 2 in
both algorithms. Thus, invariant 1 is preserved. As the state does not exist in
States it will be added to the latter. Again from the definition of h1 this means
that h(s) is added to StatesE

′
and s to StatesE , which preserves invariant 2. In

an analogous way we argue the preservation of the invariants by the call of dfs2
in line 17.
In a straightforward way one can prove that the invariants are preserved also

by the rest of the algorithm. Here we omit the further details. �	
The following claim states the correctness of MRNDFS:

Theorem 3. Given an LTS T , the modified nested depth first search algorithm
with bisimulation preserving reduction (MRNDFS) in Figure 5, when called on
ŝ, reports a cycle if and only if there exists a reachable acceptance cycle in T .

Proof. By Lemma 5 MRNDFS reports a cycle iff RNDFS reports a cycle. By
Theorem 2 RNDFS reports a cycle iff there exists a reachable acceptance cycle
in T , which proves the claim. �	

4.1 Experimental Support

A prototype implementation of the MRNDFS algorithm is used in SymmSpin [3],
an extension of the model checker Spin [12] with symmetry reductions. We tried
it on the case studies from [3] with encouraging results. Namely, the obtained
reductions were usually of several orders of magnitude, in fact, very similar with
the results for the same examples for safety properties, reported in [3]. Due to
space constraints we give only the results for two examples. Table 1 contains
the results for a typical bounded response property for the Data Base Manager
example, while Table 2 gives the results for Peterson’s mutual exclusion protocol
for a property of the same class. The symmetry reduction in both examples was
performed using a selection function h which corresponds to the “pc-sorted”
heuristic from [3] and which uses multiple representatives.

A Nested Depth First Search Algorithm for Model Checking 79

Table 1. Results for the Data Base Manager example.

number of processes 6 7 8 9 10
symmetry reduction no yes no yes no yes no yes no yes
number of states 2924 65 10215 113 35002 179 118109 307 362048 487
time [min:sec] 0.3 < 0.1 1.7 < 0.1 7.0 0.1 29.3 0.1 1:45.8 0.2

Table 2. Results for Peterson’s mutual exclusion protocol.

number of processes 2 3 4
symmetry reduction no yes no yes no yes
number of states 263 137 11318 2396 out of mem. 46804
time [min:sec] < 0.1 < 0.1 1.0 0.4 – 9.0

5 Conclusion

In this paper we presented an algorithm for model checking properties defined
as Büchi automata while employing bisimulation preserving reductions [10] with
multiple representatives. The algorithm is based on the nested depth first search
(NDFS) algorithm of [6]. As such the algorithm features all the advantages that
the NDFS approach has over analogous algorithms based on the search for max-
imal strongly connected components (MSCC). We presented two versions of the
algorithm. The first version, which was a straightforward extension to NDFS
of the algorithm of [10] lacked the property to always reproduce a “realistic”
counterexample execution. As this property is an important feature of model
checking, we also presented a modification of the algorithm which was capable
of showing a counterexample which always exists in the original state space. The
theoretical results were supported by experiments performed with SymmSpin [3].
From practical point of view, probably the main direction for future work

will be to integrate the algorithm presented in this paper with fairness. Un-
fortunately, the algorithms that can be found in the literature for symmetry
reduction with fairness (e.g. [9,11]) are not compatible with the NDFS concept.
This is because they are developed for state space search algorithms based on
the MSCC approach. It can be shown though that the weak process fairness
algorithm which is implemented in Spin (a version of Choueka’s flag algorithm)
is compatible with our algorithm in one direction – false positives can be gener-
ated, but if a fair acceptance cycle is reported by MRNDFS with fairness, then a
fair acceptance cycle also exist in the original state space. An obvious challenge
is to modify the algorithm such that it holds for the other direction too.
It should not be difficult to prove that the (M)RNDFS algorithm is compat-

ible with partial order reduction (POR). Our optimism is based on [10] and
[2] where it is shown that POR is compatible with symmetry with canonical
and multiple representatives, respectively, as well as on [13] where NDFS was

80 D. Bošnački

adapted to POR. As the two reduction techniques are orthogonal, their combi-
nation can be very effective, as it was confirmed experimentally [3].

Acknowledgments. The author is grateful to Dennis Dams for the numerous
discussions over the issues treated in the paper and the valuable feedback, and
to Gerard Holzmann for his remark that lead to the MRNDFS algorithm.

References

1. A.V. Aho, J.E. Hopcroft, J.D. Ulmann, The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.

2. D. Bošnački, Partial Order and Symmetry Reductions for Discrete Time, to appear
in Proc. of RT-TOOLS ’02, Copenhagen, Denmark, 2002.

3. D. Bošnački, D. Dams, L. Holenderski, Symmetric Spin, 7th Int. SPIN Workshop
on Model Checking of Software SPIN 2000, pp. 1–19, LNCS 1885, Springer, 2000.

4. E.M. Clarke, R. Enders, T. Filkorn, S. Jha, Exploiting Symmetry in Temporal
Logic Model Checking, Formal Methods in System Design, Vol. 19, 77–104, 1996.

5. E.M. Clarke, Jr., O. Grumberg, D.A. Peled, Model Checking, The MIT Press, 2000.
6. C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, Memory Efficient Algo-

rithms for the Verification of Temporal Properties, Formal Methods in System
Design I, pp. 275-288, 1992.

7. E.A. Emerson, Temporal and Modal Logic, in J. van Leeuwen (ed.), Formal Models
and Semantics, pp. 995–1072, Elsevier, 1990.

8. E.A. Emerson, A.P. Sistla, Symmetry and model checking, Proc. of CAV’93 (Com-
puter Aided Verification), LNCS 697, pp. 463–478, Springer, 1993.

9. E.A. Emerson, A.P. Sistla, Utilizing Symmetry when Model Checking under Fair-
ness Assumptions: An Automata-theoretic Approach, ACM Transactions on Pro-
gramming Languages and Systems, Vol. 19, 4, pp. 617–638, ACM Press, 1997.

10. E.A. Emerson, S. Jha, D. Peled, Combining partial order and symmetry reduc-
tions, in Ed Brinksma (ed.), Proc. of TACAS’97 (Tools and Algorithms for the
Construction and Analysis of Systems), LNCS 1217, pp. 19–34, Springer, 1997.

11. V. Gyuris, A.P. Sistla, On-the fly model checking under fairness that exploits sym-
metry, in O. Grumberg (ed.), Proc. of CAV’97 (Computer Aided Verification),
LNCS 1254, pp. 232–243, Springer, 1997.

12. G.J. Holzmann, Design and Validation of Communication Protocols, Prentice Hall,
1991. Also: http://netlib.bell-labs.com/netlib/spin/whatispin.html.

13. G. Holzmann, D. Peled, M. Yannakakis, On Nested Depth First Search, Proc. of
the 2nd Spin Workshop, Rutgers University, New Jersey, USA, 1996.

14. R. Iosif, Symmetry Reduction Criteria for Software Model Checking, Model Check-
ing Software, Proc. of SPIN 2002, LNCS 2318, pp. 22–41, Springer, 2002.

15. C.N. Ip, D.L. Dill, Better verification through symmetry. Formal Methods in
System Design, Vol. 9, pp. 41–75, 1996.

16. W. Thomas, Automata on Infinite Objects, in J. van Leeuwen (ed.), Formal Models
and Semantics, pp. 995–1072 Elsevier, 1990.

17. M. Vardi, P. Wolper, An automata-theoretic approach to automatic program veri-
fication. In Proc. of the 1st Symposium on Logic in Computer Science LICS ’86,
pp. 322–331, 1986.

18. P. Wolper, D. Leroy, Reliable Hashing without Collision Detection, Proc. of CAV’93
(Computer Aided Verification), LNCS 697, pp. 59–70, Springer, 1993.

	A Nested Depth First Search Algorithm for Model Checking with Symmetry Reduction
	Introduction
	Preliminaries
	Standard Nested Depth-First Search Algorithm

	Bisimulation Preserving Reduction
	NDFS Algorithms for Bisimulation Preserving Reduction
	Experimental Support

	Conclusion
	Acknowledgments.
	References

