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ABSTRACT

An algorithm is presented for adaptively partitioning a multidimen-

sional coordinate space based on optimization of a scalar function

of the coordinates. The goal is to construct a set of hyperrectangu-

lar regions, such that the variation of function values within each

region is small. These regions are then used as the basis for a

stratified sampling estimate of the definite integral of the function.
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1. INTRODUCTION

Although the numerical evaluation of multiple integrals has received

considerable attention, it remains a difficult problem. Most general-

purpose techniques today apply to integrands that are relatively "well

behaved" in that the integrand can be reasonably well approximated by a

low order polynomial within the region of integration. One technique

for trying to deal with integrands that are not so "well behaved" is to

partition the region of integration "adaptively" into subregions, chosen

so that the integrand is well-behaved within each subregion [Halton and

Zeidman, 1971; Lautrup, 1971, Genz, 1972; Kahaner and Wells, 1979;

Sasaki, 1978; LePage 1978]. Standard techniques can then be applied to

evaluate the integral in each subregion, and the integral over the entire

region is taken as the sum of the integrals over the subregions.

Such partitioning can sometimes be carrfed out manually for inte-

grands of simple functional form with few variables, but this is usually

not possible for complicated or large-dimensional integrals. Several

automatic partitioning strategies have recently been proposed, based on

estimated properties of the integrand. Some of these strategies rely on

factored approximations [Lautrup, 1971; LePage, 1978; Sasaki, 1978] while

the others are general multidimensional adaptive procedures [Halton and

Zeidman, 1971; Genz, 1972; Kahaner and Wells, 1979].

All of these adaptive techniques (as well as the one presented here)

are iterative, and are based on top-down successive refinement. At each

iteration, a particular region is considered (initially, the entire in-

tegration region). A sampling of the integrand within the region is



used to estimate various properties of the integrand, which then guide

a strategy for division into several subregions. This process continues

until the partitioning has achieved some specified reduction in the es-

timated error of the approximate integral.

The effectiveness of a partitioning strategy depends, in large part,

upon the degree to which the properties of the integran. deduced during

the sampling,accurately reflect the characteristics of the function. If

the function is badly behaved, its predicted and actual behavior may not

even resemble one aiother, which may lead to ineffective or counterpro-

ductive partitions. This possibility is especially likely in high dim-

ensions where even samplings of large cardinality are very sparse (for

example, in ten dimensions a sampling of 60,000 points is equivalent to

about three points per coordinate). On the other hand, a complex par-

titioning strategy that requires a very large number of integrand evalu-

ations may be inefficient because the additional evaluations might be

better expended simply to increase the number of points used to compute

the final integral estimate. Thus, a good partitioning strategy must be

based on a computationally feasible way of assessing the integrand's be-

havior.

The main d'stinctions of the new partitioning strategy from previous-

ly proposed methods are:

(1) The behavior of the integrand within a region is estimated

via multiparameter optimization rather than sampling;

(2) All subregions are defined by simple bounds on the co-

ordinates.
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2. OVERVIEW OF THE ADAPTIVE REFINEMENT PROCEDURE

Consider a hyperrectangular region R, defined by simple bounds on

each coordinate:

R = {xj x1 ! x I x(

Twhere x is the vector (xI, x2, .. , x )

The essence of an adaptive strategy for partitioning R can be specified

by three attributes:

(1) A measure s(R) that indicates the "badness" of the inte-

grand's behavior within R;

(2) A method for subdividing the region after s(R) has been de-

termined;

(3) A procedure for processing the new subregions and for

terminating the partitioning.

The quantity used in the new algorithm to characterize the integrand

is the difference of extreme values within R, weighted by the volume of

R. Let

v(R) = max f(x) -. min f(x), (2)

xER xER

where f(x) is a scalar-valued function (presently, the integrand func-

tion). The spread s(R) is then defined by:

s(R) = v(R) • vol(R). (3)

The spread measure s(R) bounds the uncertainty of a quadrature or Monte

Carlo estimate of the integral over R, and is taken to indicate the con-

tribution of R to the uncertainty of a global estimate of the integral.

The choice of the measure (3) depends in two crucial ways on the

simply-bounded form (1) of R. First, the volume of such a region is

1 3 I



easy to compute:

n U
vol(R) = i (x i - xi).

i=l

This would not be true if more complicated regions were allowed. The

other term (2) may seem, at first glance, to be computationally intract-

able since two optimization problems must be solved to calculate it.

However, methods for optimization with simple bounds on the variables

are well developed and, thus, the sub-problems associated with (2) can

be solved quite efficiently if f is a reasonable function. Section 3

gives some details of the optimization procedure.

Given that (3) is the spread measure, the second element of the

partitioning algorithm involves dividing the single region (1) into dis-

joint simply-bounded subregions. The strategy for subdivision is based

on the assumption that the same quadrature rule will be applied in each

subregion at the conclusion of the partitioning so that the aimed-for

final result is a list of regions with "similar" spread measures. Sec-

tion 4 presents the method by which a given region is refined to achieve

this goal.

Finally, after R has been partitioned, the daughter subregions are

merged into the list of all regions. If the global stopping criteria

are satisfied, the partitioning terminates. Otherwise, the list of

regions is scanned for the one with the largest spread measure, which is

then considered for refinement at the next iteration. Details of this

aspect of the algorithm are given in Section 5.

Figure 1 illustrates the partitioning achieved by applying this re-

cursive partitioning procedure to the function
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f(x1,x2) = exp {-l5[x1 + (x2 - 0.5) 2]

+ exp {-l5[(x I + 0.433)2 + (x2 + 0.25)21}

+ exp {-15[(x1 - 0.433)2 + (x2 + 0.25)2 D

with -1 . x 1 1 and -1 . x2  ! 1. I

Figure la shows an isometric representation of the surface defined by

y = f(xl,x 2), Figure lb displays some isopleths of the function on the

plane, and Figure lc shows the partitioning of the plane achieved by

applying the above procedure recursively, in this case creating eleven

subregions. The numbers indicate the order in which the corresponding

cuts were made.

3. OPTIMIZATION WITH SIMPLY-BOUNDED VARIABLES

To compute the spread measure (3) at each step of the partitioning

procedure, it is necessary to solve two bounds-constrained optimization

problems of the form:

Ml: min f(x)

subject to xL1 x xU

M2: max f(x)

subject to xL ! x XU

where the scalar-valued function f drives the partitioning; and the vec-

tors xL and xU contain, respectively, the lower and upper bounds that de-

fine the desired region.

The problem M2 can be treated as a minimization problem involving

(-f(x)), and therefore all subsequent discussion will concern minimiza-
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tion only.

In a typical quadrature problem, f(x) will be twice continuously

differentiable, or at least will be non-smooth only at isolated points.

The algorithm selected to solve problem Ml should consequently be able

to perform well on a smooth function. However, in most instances, the

derivatives of f will not be available so that the method of choice should

require function values only. Based on these considerations, the optimi-

zation method used in the partitioning algorithm is a bounds-constrained

quasi-Newton method with finite-difference approximations to first deriv-

atives.

Quasi-Netwon methods for unconstrained optimizations have a remark-

able history, beginning with Davidon [1959], and Fletcher and Powell [1963];

a recent summary of their motivation and properties is given by Dennis and

More' [1977]. Quasi-Newton methods have been extremely successful on a

wide variety of problems; if properly implemented, they ae quite robust

and usually display superlinear convergence. The idea of a quasi-Newton

method is to build up second-order information about the function to be

minimized, by incorporating the observed changes in the gradient into a

matrix that approximates the underlying matrix of second partial deriva-

tives (Hessian matrix), so that the method should eventually behave like

Newton's method.

A typical iteration of an unconstrained quasi-Newton method begins

with the current iterate, x; the gradient vector of f, g; and an approxi-

mation to the Hessian, the matrix B.

(i) If the norm of the gradient is sufficiently small, the pro-

cedure terminates. Otherwise, proceed to step (ii).

9



(ii) Solve the linear system

Bp = -g

for the search direction, p. In practice, numerical sta-

bility is insured by using a Cholesky factorization of the

matrix B, so that p is always a direction of descent for f.

This essential feature is due to Gill and Murray [1972].

(iii) Find a steplength c > 0 that yields a sufficient decrease in

f, so that

f(x + cep) < f(x).

The steplength algorithm used in the current procedure is

the safeguarded quadratic interpolation procedure imple-

mented by Gill and Murray [1974a].

(iv) Evaluate the gradient at x + ap, and produce an updated

Hessian approximation by modifying the Cholesky factori-

zation of B with the BFGS quasi-Newton update [see Gill

and Murray, 1974b]. Return to step (i) with x + ap as

the next iterate.

In the present algorithn,it is assumed that the analytic gradient of

f is not available, so that the calculation of the vector g is carried

out using finite differences.

When the variables are constrained to be between simple bounds, the

above algorithm can be modified in a straightforward manner. At each

iteration, it is determined whether a given variable is "free" to vary or

is to be held "fixed" at one of its bounds. After this decision, the un-

constrained algorithm is applied with the following changes:

10



(1) The gradient, direction of search, and approximate Hessian

represent the free variables only;

(2) The steplength in step (iii) may need to be restricted to

prevent a free variable from violating a bound during an

iteration. In this case, the variable subsequently becomes

fixed on that bound.

(3) The updates to B involve only the free variables.

(4) The test for convergence in (i) is based on the norm of the

gradient with respect to the free variables. When this

quantity is sufficiently small, it is necessary to check

whether freeing any variable currently held fixed on its

bound will lead to a reduction in f. This determination

is made by checking the sign of the gradient with respect

to all fixed variables - e.g., if the ith variable is fixed

on a lower bound and the ith component of the gradient is

negative, the ith variable can be released from its bound.

The many additional details of the algorithm are given in full in

the software documentation [Friedman and Wright, 1979], including user-

controlled tolerances that define, for example, "sufficiently small" in

step (i).

Before beginning to solve problems Ml and M2, the function f is eval-

ated at a random sample of points (say, 50) in R, and the point with the

smallest (largest) function value is used as the initial point for the

minimization (maximization). Although for some regions the extrema com-

puted at previous stages could be used as part of the initial sample,

this information is not retained in order to improve robustness. Espe-

I~i "11



cially in high dimensions, convergence to a spurious saddle point might

preclude any further search for the true extremum since the convergence

criteria would be satisfied at the initial point.

An additional feature of the algorithm that is designed to improve

robustness is a "local search", to be used if the gradient is small at

the initial point. The idea is again to avoid a spurious indication of

convergence at a saddle point. The details of the local search are rather

complicated and only the general idea will be sketched. First, a point

perturbed from the initial point is generated by moving a small, feasible

amount along each coordinate until the function value changes sufficiently.

Next, a feasible descent direction is constructed at whichever point is

lower and an exact line search is carried out along that direction. Then,

a second feasible descent direction, orthogonal to the first, is generated

at the lowest point found and a second exact line search is performed.

If this process fails to yield a "sufficiently lower" function value,

the initial point is accepted; otherwise, the quasi-Newton procedure be-

gins at the new point.

This local search cannot be guaranteed to move away from a saddle

point since the function is evaluated only at a finite number of points

along two directions. In practice, the local search has been quite suc-

cessful on all the examples tested.

12
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4. REFINEMENT INTO SUB-REGIONS

In this section, we shall be concerned with a particular region, R,

defined by (1). Let xmax and xfmin denote the points in R where f achieves

its maximum and minimum, respectively, with fmax and fmin the correspond-

ing function values. For simplicity, we assume that there are no other

local extrema in R; the implemented procedure contains provisions to

handle situations where this assumption is not satisfied.

A partitioning strategy that allowed completely general regions

might divide R into two disjoint parts with equal spread measures, as

follows. Suppose that for a given value f, fmin f fmax, one could

determine an isoplethic surface {xjf(x) = f} that separates R into two

parts, Rmax (which contains xmaX)and Rmin (which contains xmin). *Under

the uniqueness assumption, the differences of extreme function values

within Rmax and Rmin, respectively, would be (fmax . ) and (f fmin).

The desired choice for f would make the spread measures associated with

Rmax and Rmin equal, i.e.,
(fmax . ?) vol (Rmax) ( - fm in) vol (Rm in). (4)

The strategy just described is, of course, impractical since the de-

termination of the isopleths would, in general, be an extremely complex

numerical procedure. Since the resulting subregions Rmax and Rmin would

no longer be defined in general by simple bounds, the next optimization

problem would also be much more complicated to solve. Furthermore, it

would be much more difficult to compute the volume of such a general

region.
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The strategy adopted in the present algorithm divides the region R

into a collection of simply-bounded subregions by constructing an axis-

oriented hyperrectangular approximation to either Rmax or Rmin Either

fmax or fmin is selected as the "major" extremum (fM), i.e., that for

which the corresponding function value is farthest from the mean function

value f in R (f is the average of function values at the initial random

sample of points).

fmax fm i
if f, then fm ax f otherwise,

fM = fmin, fm = fmax (with the corresponding choices for xM, xm).

We then seek to define a region RM containing xM by two sets of

"cuts" (6+ , 6-) along the positive and negative coordinate directions

from x
RM~ ~ Ii x :r xi :5 0 + 6+},

RM ={xI x i - ; x i~x

6., 6! O, i= , n

with 6+, 6 chosen such that

+
f(xM+ 6i ei) = f 

(5)

f(xM- 6
i ei) = ?, i = 1, ... , n

where ei is the ith column of the identity matrix.

The equation to be satisfied by f is a re-arrangement of (4)

YfM + (ly)fm = f, (6)

where Y = vol(RM)/vol(R).

Because RM is defined by simple bounds,

14



n

vol(R M) = (6 + 6i).1=1

Thus, the vectors 6+, 6" are the solution of the 2n nonlinear equations:

n + n
+ i=l .+ i=l

i 1 vol(R) vol (R)

n n
f(6 7) +

f(xM 6: e.) = =1 fM + 1 i= 11 1 vol(R) +vol(R)

i=I, ..., n.

Several considerations affect the choice of solution method for the

nonlinear system (7). It is undesirable to expend too much effort in

solving (7) since the solution need not be computed with very high accu-

racy. This means that a Newton-type method based on standard finite

differences is unacceptable because of the 2n function evaluations re-

quired at every iteration to compute the Jacobian. A reasonable altern-

ative is to use a secant-type method, where the elements of the Jacobian

are approximated by differencing the function values from the previous

iteration. The switch to a secant method is worthwhile because such

methods display local superlinear convergence, and are typically as

effective as a Newton-type method in moving from a poor initial estimate

of the solution to a reasonably good one (which is all that is required

in this case) [Mor4, 1977].

Even a secant method for solving (7) could be considered objection-

able because it requires the solution of a 2n by 2n linear system at each

15
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iteration. However, the special form of (7) allows it to be transformed

to an equivalent, but simpler, nonlinear system.

The right-hand side of (7) is a vector whose components are all

equal, and hence the vectors 6+ , 6" also satisfy the 2n nonlinear equa-

tions

f(xM + 6+ el) - f(xM + 6+ e2) = 0

+ _f(xM +6+eM+6

f(xM +6 2 e 2 ) f(x 6 e3 ) =0

(8)

f(xM + 6+ e) - f - 0

The attractive feature of the system (8) is that since each equation (ex-

cept for the last) involves only two adjacent unknowns, the Jacobian dis-

plays the following special structure:

x x 0 . . . 0

0 x x 0 . 0

0 0 x x 0 0

(9)

0 0 0....x

xxx. . . x x

If no interchanges are necessary, the matrix (9) will be reduced to

upper triangular form very easily, by simply subtracting multiples of

16



each successive row from the last. This means that solving the linear

system at each iteration is extremely fast.

Numerous safeguards are included in the secant procedure - in par-

ticular, each variable 6+, 6. is constrained to remain within the range

where the solution must lie, and the norm of the vector that is the left-

hand side of (8) is required to decrease at every iteration.

For simplicity of exposition, certain complications were not in-

cluded in the preceding discussion of the partitioning strategy - in

particular, the fact that not all possible directions are considered as

candidates for cuts. Since the bookkeeping overhead for any cut is the

same, it is prudent to disregard cuts that appear to be ineffective.

Certain directions are eliminated for two reasons. First, xM may be very

close to an upper or lower bound, so that the cut would be insignificant.

Therefore, no cut is made along the ith positive direction if

xy _ .(xy _ x. L'

nor along the ith negative direction if

- x L UxiU xL,
1i - - x

where 0 < 0 < 1 (currently, B = .05).

Furthermore, the solution values for 6t are constrained to satisfy

O 1 1i x (10)

0 < a6 C, M LxiL

where 0 < a < 1 (currently, a = 1/2). Before beginning the iteration

procedure to solve for the cuts, f is evaluated at the points where

6, izl, ... , n, are at the upper bounds given by (10); the values of Y

17



and f from (6) are then computed at this initial configuration. Assume

that fM = fmax (a similar analysis holds when fM = fmin), and consider

a possible positive cut along the ith coordinate. By assumption, f is

monotonic along the ith coordinate (moving away from the extremum) so that

the value of f corresponding to the maximum 6. will be smaller than f at
+

any other 6i in the acceptable range. In addition, the initial f will be

the maximum possible value. Thus, if f at the initial 6+ exceeds ,

there can be no solution to (7) in the desired range, and so no attempt

will be made to find 6 + (the ith upper bound remains unaltered).

The above procedure is carried out for all possible directions. It

should be noted that if any direction is eliminated, the values of Y and

f in (6) must be recomputed.

5. MULTIPLE INTEGRATION

The result of applying the nested refinement procedure described in

the previous three sections is a set of hyperrectangular subregions of the

domain of integration which are mutually exclusive and collectively cover

the integration region. The variation of integrand values within the

regions has been designed to be substantially less than between the

regions. Since the regions are mutually exclusive, the results can be

summed to form the global integral estimate.

A variety of methods exist for evaluating the definite integral with-

in each subregion. (For an excellent and rather complete survey, see

Stroud, 1971). These methods can be crudely characterized by the regu-

larity they require of the integrand (and/or its derivatives to various

orders) and their accuracy per integrand evaluation. At one extreme are

the Monte Carlo methods [Halton, 1970] which usually require very little

18
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of the integrand (and thus are quite robust) but which converge rather

slowly. Monte Carlo methods also yield a simple uncertainty estimate.

At the other extreme are the high degree quadrature formulae [Stroud,

1971] which can be applied only to very regular integrands, but which

can yield high accuracy for very few integrand evaluations.

Limited experience has indicated that the more robust methods per-

form best in conjunction with this partitioning method. Of these, the

greatest success has, so far, been obtained with the quasi uniform Monte

Carlo methods of Korobov [1963]. Reasonable success has also been

achieved with simple pseudo random Monte Carlo methods [Halton, 1970].

6. EXAMPLES

In this section, we attempt to illustrate some of the properties of

this nested refinement procedure for multiple integration by applying it

to several examples presented by others to illustrate their integration

procedures.

The integration method used in each subregion for the examples be-

low is (with one exception) the quasi uniform Monte Carlo method of

Korobov [1963], as described in Stroud [1971]. The rate of convergence

of this method with increasing N depends upon the smoothness of the in-

tegrand, but it is never slower than 1/N. This method (like most quad-

rature methods) does not provide a simple estimate of the uncertainty

associated with the integral evaluation in each subregion. It has been

found empirically that the quantity

ai = Si/N

19



provides a reliable (and usually quite conservative) estimate of the un-

certainty associated with this method. Here Si is the spread of the ith

region, N is the number of sample points, and the factor 1/2 is intro-

duced because of the convention of reporting uncertainty as a symmetric

(plus or minus) half value about the estimate. Since the integral es-

timates in each subregion are independent, the total uncertainty a is

taken as the square root of the sum of squares of the individual region

uncertainties

1 [("[ Sl2] 
(11

Here M is the number of subregions.

This uncertainty estimate (11) can be used as a basis for termin-

ating the partitioning. At a given stage of partitioning, let there be

M subregions and N p(M) integrand evaluations. If one wishes to estimate

the integral with (prespecified) uncertainty ao' then from (11)

N[(M) 
]-,O S si 

(12)

Integrand evaluations will be required to estimate the integral in each

subregion. Therefore, the total number of integrand evaluations needed

to achieve accuracy O 0 if the partitioning is stopped after M regions is

NT(M) = Np(M) + NI(M).M (13)

As the partitioning proceeds (increasing M) N p(M) increases (approxi-

mately linearly) while NI(M) decreases due to the reduction in spread.

This reduction tends to be very rapid initially, tapering off to slow

20
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reduction for large M. Therefore, NT(M) tends to decrease for small

(increasing) M, reaching a mimimum, and then starts to slowly increase.

An optimal strategy is to terminate partitioning at the point at which

NT(M) achieves its minimum value. Since it is not possible to know (in

advance) this optimum value, we terminate the partitioning at the first

point for which NT(M) (13) fails to decrease for several (five) suc-

cessive iterations. Equation (12) is then used to determine the number

of evaluation points NI(M) to perform the final integration in each sub-

region.

Table I shows results of applying this procedure to a series of in-

tegrals presented by LePage [1978]. The table presents the answer ob-

tained with estimated uncertainty, the total number of evaluations of

the integrand (partitioning plus integral evalation) NT, the number used

for the partitioning stage alone, Np, and the number of subregions re-

sulting from the partitioning. For comparison, the results presented by

LePage for both his method and a Guass-Legendre product rule are also

presented.

LePage employs a factored approximation of the form

p
f(x) = U fi(xi) (14)

il

which is used as a basis for pseudo random Monte Carlo importance samp-

ling within the region of integration. This procedure should be espe-

cially suitable for the integrals presented in Table la since the fac-

tored approximation of (14) is exact. As seen in Table la, it considerably

outperforms the one presented here in high dimensionality. However, the

21



(IT) f d~x exp [100 ~~ (x1  1/2)]

=1.0

Integral This Method LePage [1978] Gauss-Legendre

14 0.999 ± 0.007 0.994 ± 0.007 .892

NT =7403 NT = 10000 NT =10000

NP = 3851

24 regions

191.01 ± .008 1.001 ± .005 71.364

NT = 277238 NT = 100000 NT =2.0 x 106

NP = 83626

388 regions 0.774

NT 109

TABLE la

22



best procedure in this case would be to integrate each one-dimensional

function separately and then form the combined integral as the product

3f the one-dimensional integrals. The integrals presented in Table lb

do not conform exactly to the factored approximation of (14), and the

comparison for these cases is more favorable to the partitioning method

presented here,

Table 2 Fhows results of applying this procedure to four integrals

presented by Sasaki [1979]. He employs a factored approximation of the

form

p-l

f(x) = I f. (x xi ) (15)
i=l I

Each function fi(xi,xi+l) is represented by an adaptive piecewise con-

stant approximation on the plane. For the first two integrands of Table

2, the factored approximation (15) is exact, while for the last two, it

is not. The method presented here is seen to perform well in comparison

to that of Sasaki for these integrands. However, as Table 2 indicates,

these integrands are well approximated by low order polynomials and a

simple Gauss-Legendre product rule outperforms both methods in this case.

Table 3 shows results on several of the integrals presented by Halton

and Zeidman [1971]. They describe a nested refinement procedure based on

successive bisection. The procedure described in this report was moti-

vated, to a substantial degree, by this MCSS (Monte Carlo Sequential

Stratification) technique. Inspection of Table 3 indicates that the op-

timization method described in this report compares favorably with the

MCSS procedure.
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p Pr- {0( [3o A x

+ exp [i 1  1 (x1  2]} 1.0

Integral This Method LePage [1978] Gauss-Legendre

12 1.000 ± 0.003 0.999 ± .002 .999

NT =2278 NT = 300000 NT = 2304

NP = 1339

8 regions

1 4 0.998 ±i 0.007 1.003 ± 0.006 .927

NT =10230 NT = 300000 NT = 10000

NP = 4662

29 regions

17 0.994 ± 0.005 0.991 ± 0.007 2.27

NT = 190894 NT 2.4 x 106 NT= 279936

NP 43449

99 regions

1 9 1.03 ± 0.025 0.96 ± 0,04 240.08

NT =303228 NT = 1.5 x 10 6 N T 262144

NP 151033 0.0065

305 regions NT =1.95 x 106

TABLE lb
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100 f d6x exp [- 1= (0.6 + 0.4i)xi] = 0.719022
1

1 0. 01 d6x

5II [0.1 + 0.01 + (x. + x.)2
i=l d i+1

Ic =_O.Olf dx
+L 0.1i (xi - 0. Ii)

"=l

Id  100 f d6x

01.0+ ( 1.0 + 0.li)xNLi~l

Inte- S a s a k i (1979)
gral This Method Method 1 Method 2 Gauss-Legendre

Ia  0.7193 + 0.0005 0.7182 ± 0.0005 0.7194 - 0.0003 .71902 NT = 15625

NT = 40526 NT = 7000 NT = 84529 .71902 NT = 46656

Np = 7010
48 regions

1b 0.1740 t 0.0004 0.1718 ± 0.0004 0.1721 0.0004 1722 N T  15626

NT = 46656 NT = 70000 NT = 84529 .1723 N = 46645

Np = 6183

66 regions

Ic  0.5072 ± 0.0004 0.5005 ± 0.0004 0.5017 + 0.0004 .498 NT = 4096
NT = 10676 NT = 70000 NT = 84529 .502 NT = 15625

30 regions

Id  0.8193 + 0.0008 0.816 * 0.00] 0.8214 L 0.0008 .8208 NT = 15626
NT = 46663 NT = 70000 NT = 84529 .8208 NT = 46645

Np = 10798

23 regions

TABLE 2
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'a ~ 1 j d 10  
i 1.

0 i 1

Ib =f d 5x f(x) = 1/54 = 0.01851851

0

0 -- x 1 1

0 x 2 1/2

f(x) = 1.0, if 0 x3 = 1/3

0 x 4 s 2/3

1/3 < x5 ! 1/2

f(x) = 0, otherwise

5

Ik =f 5  dkx [(2.) -
1/2 exp(-1/2 xi) = 1.0-i~l

Integral This Method Halton & Zeidman (1971) Gauss-Legendre

la 1.03 ± 0.02(l) 0.944 ± 0.029 .921

NT = 91096 NT = 205677 NT = 59049

Np = 50138

273 regions

Ib 0.018517 ± 0.68xi0 - 5  0.018516 ± O.llxlO- 4  .01969

NT = 16237 NT = 120145 NT = 32768

Np = 7837

27 regions

15 .999 ± 0.003 0.96 ± 0.02 1.155

NT = 15378 NT = 105821 NT = 16807

Np = 7816

38 regions

110 1.017 ± 0.007 0.90 ± 0.11 0.0076

NT = 360609 NT = 453872 NT 1.05x10 6

Np = 73225

184 regions

TABLE 3
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7. DISCUSSION

The results of the previous section indicate that the partitioning i

strategy presented here can be useful for multiple integration. Although

one might have rejected out of hand (as being hopelessly too expensive)

the notion of applying function optimization to these problems, the ex-

amples illustrate that at least for difficult problems in high dimension-

ality, this is not the case.

The purpose of applying the partitioning is to divide integration

region into subregions, such that the behavior of the integrand within

each is relatively good when compared to its behavior over the entire

integration region, In this context, "bad behavior" is ideally defined

as error associated with a particular integration method. Our choice of

spread (3) as such a measure is motivated by the relative ease and

reliability with which it can be estimated (using function optimization),

as compared to other properties of the integrand (such as the variance)

which require adequate sampling to be reliably estimated. The partition-

ing procedure will be most effective in those cases for which the spread

measure closely corresponds to with the uncertainty in the integral es-

timate.

The main objective of the isoplethic division strategy is to make

finer divisions (locally) in those directions in which the integrand is

most rapidly varying. The strategy will tend to accomplish this even

if the resulting hyperrictangle does not closely correspond to a function

isopleth. However, the resulting reduction in spread will be greater

the closer the approximation is to a function isopleth. Thus, the par-

titioning strategy will be most effective when the function isopleths

27
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tend to be convex over the bulk of the integration region and somewhat

less effective to the extent that this is not the case. (It should be

noted that this generally is the case for the examples of the previous

section.) As with most numerical integration methods, this method will

have difficulty with highly oscillatory integrands.

An important consequence of adopting the spread as an indication of

difficulty is that one is less likely to be deceived into thinking that

an integral estimate is accurate when it is not. Undersampling can

cause both the integral and its associated error estimate to be seriously

undervalued. This tendency is more pronounced the more difficult the

problem, Owing to the fact that the estimation of the spread does not

rely on sampling, it is less vulnerable to this problem.

The memory requirement associated with the method is not severe.

For each of the M hyperrectangular regions, one must store the spread

measure, S. (3), and the region boundaries x xi  The boundaries

can be arranged in a binary tree requiring 3M-2 integers and M-l real

quantities. Thus, in all, storage for 3M-2 integers and 2M-l real num-

bers is required. For the examples of the previous sections, the largest

number of regions was M=38§. Storage for several thousand regions could

easily be accommodated on most medium to large scale computers.

There are several avenues of investigation that are not addressed

in this report. It has been assumed that the object function used to

drive the partitioning was identical to the integrand. This is not a

fundamental requirement and different choices may prove to be useful.

For example, if several integrals are to be evaluated with similar inte-

grands over the same region of integration, it might be that a partition-
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ing based on one of them will be effective for integrating all of them.

Many integration formulae have the property that they are exact for

linear functions. Thus, within any region, the linear component of the

integrand is exactly integrated and one would like a partitioning of

the domain of integration, such that the range or spread of derivatives

within each subregion is small. An object function of the form

1 /2

1=1 *,rf~f(x)f' (x) I= (Xl or f'(x)= x

might be useful for driving the partitioning in these cases.

The possibility of using this partitioning method in conjunction

with other adaptive methods might also be considered. Owing to its ro-

bustness, this procedure might be applied as the first stage of a com-

bined procedure. In those subregions for which the spread measure is

relatively large, one could apply an adaptive procedure based on sampling.

The methods of Genz [1972], LePage [1978], and Kahaner and Wells [1979]

appear as good candidates for this combined application.

A FORTRAN program [Friedman and Wright, 1979] implementing the nested

refinement partitioning procedure described in this report, along with

several numerical integration methods, is available from either author

upon request.
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