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ABSTRACT

The abundance of new cosmological data becoming available means that a wider range of cosmolog-
ical models are testable than ever before. However, an important distinction must be made between
parameter fitting and model selection. While parameter fitting simply determines how well a model
fits the data, model selection statistics, such as the Bayesian Evidence, are now necessary to choose
between these different models, and in particular to assess the need for new parameters. We imple-
ment a new evidence algorithm known as nested sampling, which combines accuracy, generality of
application and computational feasibility, and apply it to some cosmological datasets and models. We
find that a five-parameter model with Harrison–Zel’dovich initial spectrum is currently preferred.

Subject headings: cosmology: theory

1. INTRODUCTION

The higher-level inference problem of allowing the data
to decide the set of parameters to be used in fitting is
known as model selection. In the Bayesian framework,
the key model selection statistic is the Bayesian evidence
(Jeffreys 1961; MacKay 2003), being the average likeli-
hood of a model over its prior parameter space. The ev-
idence can be used to assign probabilities to models and
to robustly establish whether the data require additional
parameters.

While the use of Bayesian methods is common prac-
tice in cosmological parameter estimation, its natural ex-
tension to model selection has lagged behind. Work in
this area has been hampered by difficulties in calculating
the evidence to high enough accuracy to distinguish be-
tween the models of interest. The issue of model selection
has been raised in some recent papers (Marshall, Hobson
& Slosar 2003; Niarchou, Jaffe & Pogosian 2004; Saini,
Weller & Bridle 2004; Bassett, Corasaniti & Kunz 2004),
and information criterion based approximate methods
introduced in Liddle (2004). Semi-analytic approxima-
tions such as the Laplace approximation, which works
well only for gaussian likelihoods, and the Savage–Dickey
density ratio which works for more general likelihood
functions but requires the models being compared to
be nested, are methods that were recently exploited by
Trotta (2005). A more general and accurate numerical
method is thermodynamic integration, but Beltrán et
al. (2005) found that in realistic applications around 107

likelihood evaluations were needed per model to obtain
good accuracy, making it a supercomputer-class problem
in cosmology where likelihood evaluations are computa-
tionally costly.

In this paper we present a new algorithm which, for
the first time, combines accuracy, general applicability,
and computational feasibility. It is based on the method
of nested sampling, proposed by Skilling (2004), in which
the multi-dimensional integral of the likelihood of the
data over parameter space is performed using Monte
Carlo sampling, working through the prior volume to the
regions of high likelihood.

2. BAYESIAN INFERENCE

Using Bayes’ theorem, the probability that a model
(hypothesis: H) is true in light of observed data (D) is
given by

P (H |D) =
P (D|H)P (H)

P (D)
. (1)

It shows how our prior knowledge P (H) is modified in
the presence of data.

The posterior probability of the parameters (θ) of a
model in light of data is given by

P (θ|D, H) =
P (D|θ, H)P (θ|H)

P (D|H)
, (2)

where P (D|θ, H) is the likelihood of the data given the
model and its parameters, and P (θ|H) is the prior on
the parameters. This is the relevant quantity for param-
eter estimation within a model, for which the denomina-
tor P (D|H) is of no consequence. P (D|H) is however
the evidence for the model H , the key quantity of in-
terest for the purpose of model selection (Jeffreys 1961;
MacKay 2003; Gregory 2005). Normalizing the posterior
P (θ|D, H) marginalized over θ to unity, it is given by

E = P (D|H) =

∫
dθ P (D|θ, H)P (θ|H) , (3)

the prior also being normalized to unity.
The evidence for a given model is thus the normalizing

constant that sets the area under the posterior P (θ|D, H)
to unity. In the now-standard Markov Chain Monte
Carlo method for tracing the posterior (Gilks et al. 1996;
Lewis & Bridle 2002), the posterior is reflected in the
binned number density of accumulated samples. The ev-
idence found in this way would not generally be accurate
as the algorithm would sample the peaks of the proba-
bility distribution well, but would under-sample the tails
which might occupy a large volume of the prior.

When comparing two different models using Bayes
Theorem, the ratio of posterior probabilities of the two
models would be the ratio of their evidences (called the
Bayes Factor) multiplied by the ratio of any prior prob-
abilities that we may wish to assign to these models
(Eq. 1). It can be seen from Eq. (3) that while more

http://lanl.arXiv.org/abs/astro-ph/0508461v2


2 P. Mukherjee, D. Parkinson and A. R. Liddle

complex models will generally result in better fits to
the data, the evidence, being proportional to the vol-
ume occupied by the posterior relative to that occupied
by the prior, automatically implements Occam’s razor.
It favours simpler models with greater predictive power
provided they give a good fit the data, quantifying the
tension between model simplicity and the ability to fit to
the data in the Bayesian sense. Jeffreys (1961) provides
a useful guide to what constitutes a significant difference
between two models: 1 < ∆ln E < 2.5 is substantial,
2.5 < ∆ln E < 5 is strong, and ∆ lnE > 5 is deci-
sive. For reference, a ∆ ln E of 2.5 corresponds to odds
of about 1 in 13.

While for parameter fitting the priors become irrele-
vant once the data are good enough, for model selection
some dependence on the prior ranges always remains
however good the data. The dependence on prior pa-
rameter ranges is a part of Bayesian reasoning, and pri-
ors should be chosen to reflect our state of knowledge
about the parameters before the data came along. The
Bayesian evidence is unbiased, as opposed to approxima-
tions such as the information criteria.

Perhaps the most important application of model se-
lection is in assessing the need for a new parameter, de-
scribing some new physical effect proposed to influence
the data. Frequentist-style approaches are commonplace,
where one accepts the parameter on the basis of a bet-
ter fit, corresponding to an improvement in ∆(ln L) by
some chosen threshold (leading to phrases such as ‘two-
sigma detection’). Such approaches are non-Bayesian:
the evidence shows that the size of the threshold depends
both on the properties of the dataset and on the priors,
and in fact the more powerful the dataset the higher the
threshold that must be set (Trotta 2005). Further, as the
Bayesian evidence provides a rank-ordered list of mod-
els, the need to choose a threshold is avoided (though
one must still decide how large a difference in evidence
is needed for a robust conclusion).

The main purpose of this paper is to present an algo-
rithm for evidence computation with widespread appli-
cations. However as a specific application we examine
the need for extra parameters against the simplest vi-
able cosmological model, a ΛCDM model with Harrison–
Zel’dovich initial spectrum, whose five parameters are
the baryon density Ωbh2, cold dark matter density
Ωcdmh2, the Hubble parameter H0 = 100hkms−1Mpc−1

(or the ratio Θ of the approximate sound horizon at de-
coupling to its angular diameter distance), the optical
depth τ , and the amplitude As of primordial perturba-
tions. We study the case for two additional parameters,
the scalar spectral index and the dark energy equation
of state (assumed constant).

3. NESTED SAMPLING

3.1. Basic Method

Nested sampling (Skilling 2004) is a scheme to trace
the variation of the likelihood function with prior mass,
with the effects of topology, dimensionality and every-
thing else implicitly built into it. It breaks up the prior
volume into a large number of ‘equal mass’ points and
orders them by likelihood. Rewriting Eq. (3) in the no-
tation of Skilling (2004), with X as the fraction of total
prior mass such that dX = P (θ|H)dθ and the likelihood

x1

L(x)

0

2

1

θ

θ

Fig. 1.— The nested sampling algorithm integrates the like-
lihood over the prior volume by peeling away thin iso-surfaces of
equal likelihood.

P (D|θ, H) = L(X), the equation for the evidence be-
comes

E =

∫ 1

0

L dX . (4)

Thus the problem of calculating the evidence has be-
come a one-dimensional integral, in which the integrand
is positive and decreasing. Suppose we can evaluate the
likelihood as Lj = L(Xj), where the Xj are a sequence
of decreasing values, such that

0 < Xm < ... < X2 < X1 < 1 , (5)

as shown schematically in Figure 1. Then the evidence
can be estimated by any numerical method, for example
the trapezoid rule

E =
m∑

j=1

Ej , Ej =
Lj

2
(Xj−1 − Xj+1) . (6)

The nested sampling algorithm achieves the above
summation in the following way:

1. Sample N points randomly from within the prior,
and evaluate their likelihoods. Initially we will have
the full prior range available, i.e. (0, X0 = 1).

2. Select the point with the lowest likelihood (Lj).
The prior volume corresponding to this point, Xj ,
can be estimated probabilistically. The average
volume decrease is given as Xj/Xj−1 = t where t
is the expectation value of the largest of N random
numbers from uniform(0,1), which is N/(N + 1).

3. Increment the evidence by Ej = Lj(Xj−1 −
Xj+1)/2.

4. Discard the lowest likelihood point and replace it
with a new point, which is uniformly distributed
within the remaining prior volume (0, Xj). The
new point must satisfy the hard constraint on like-
lihood of L > Lj.

5. Repeat steps 2–4, until the evidence has been esti-
mated to some desired accuracy.
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Fig. 2.— Evidence against the number of sample points N for
a 6D Gaussian likelihood function as a test case. The horizontal
lines show the actual analytical value.Points are displaced slightly
horizontally for visual clarity.

The method thus works its way up the likelihood sur-
face, through nested surfaces of equal likelihood. Af-
ter j steps the prior mass remaining shrinks to Xj ∼
(N/(N+1))j. The process is terminated when some stop-
ping criterion is satisfied, and a final amount of 〈L〉×Xj

due to the N − 1 remaining sample points is added to
the thus far accumulated evidence.

Thus a multi-dimensional integral is performed using
Monte Carlo sampling, imposing a hard constraint in
likelihood on samples that are uniformly distributed in
the prior, implying a regularized probabilistic progres-
sion through the prior volume. Besides implementing
and testing this scheme in the cosmological context, our
main contribution lies in developing a general strategy
to sample new points efficiently.

3.2. Details

The prior space to sample from reduces by a constant
factor of N/(N+1) every time the lowest likelihood point
is discarded. The most challenging task in implementing
the algorithm is to sample uniformly from the remain-
ing prior volume, without creating too large an overhead
in likelihood evaluations even when the remaining vol-
ume of prior space may be very small. The new point
must be uncorrelated to the existing points, but we can
still use the set of existing points as a guide. We find
the covariance of the live points, rotate our coordinates
to the principal axes, and create an ellipsoid which just
touches the maximum coordinate values of the existing
points. To allow for the iso-likelihood contours not be-
ing exactly elliptical, these limits are expanded by a con-
stant enlargement factor, aiming to include the full vol-
ume with likelihood exceeding the current limit (if this
is not done new points will be biased towards the centre,
thus overestimating the evidence). New points are then
selected uniformly within the expanded ellipse until one
has a likelihood exceeding the old minimum, which then
replaces the discarded lowest-likelihood point.

The two algorithm parameters to be chosen are the
number of points N and the enlargement factor of the
ellipsoid. Figure 2 shows evidence verses N , for a flat
Harrison–Zel’dovich model with a cosmological constant.
The mean evidence values and standard deviations ob-
tained from 4 repetitions are shown. These are shown

(a)

(b)

Fig. 3.— (a) The accumulated evidence (dashed curve), the
evidence contributed by the remaining points at each stage (dot-
dashed curve), and their sum (solid curve), shown against prior
volume remaining for a 6D Gaussian likelihood function. (b) A
later part of the solid curve shown against the log(tol) (see text).

for two different values of the enlargement factor. When
the enlargement factor is large enough (here 1.5) the ev-
idence obtained with 100 sample points agrees with that
obtained with 500, while when the enlargement factor
is not large enough, the evidences obtained with small
N are systematically biased high. Similar tests done
on multi-dimensional Gaussian likelihood functions, for
which the expected evidence can be found analytically,
indicated the same. Based on such tests we choose to
work with N of 300, and enlargement factors of 1.5 for
the 5D model (this corresponds to a 50% increase in the
range of each parameter), 1.7 for 6D and 1.8 for 7D
models. These choices are conservative (smaller values
would reduce the computing time), and were made in
order to ensure evidences that are accurate and free of
systematics. In our cosmological applications we have
also computed evidences with larger enlargement factors
and found that they remained unchanged. The typical
acceptance rate in finding a new point during the course
of the algorithm was found to be roughly constant at
∼ 20 − 25% for an enlargement factor of 1.5, and lower
for larger enlargement factors, after an initial period of
almost 100% acceptance, as expected.

Figure 3a shows the accumulated evidence, the evi-
dence contributed by the remaining points at each stage,
and their sum, against prior volume remaining, again
for a flat Harrison–Zel’dovich model with a cosmologi-
cal constant. The X at which the calculation can be
terminated will depend on the details of the problem
(e.g. dimensionality, priors etc.). We define a parame-
ter tol as the maximum possible fractional amount that
the remaining points could increase the evidence by:
tol ≡ (Lmax)jXj/E where Lmax is the maximum like-
lihood of the current set of sample points. Figure 3b
zooms into a late part of the solid curve, now plotting it
against the value of the parameter tol. The calculation
need only be carried out until the standard error on the
mean evidence, computed for a certain number of repeti-
tions, drops below the desired accuracy. An uncertainty
in lnE of 0.1 would be the highest conceivable accuracy
one might wish, and with 8 repetitions this happens when
ln(tol) ∼ a few. This takes us to quite small X , of order
10−6 − 10−7 in our actual cosmological simulations.
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TABLE 1
Parameter ranges and evidences for various cosmological models. Other parameter ranges are given in text.

Model ΛCDM+HZ ΛCDM+ns ΛCDM+ns HZ+w w + ns

(wide prior)

ns 1 0.8 – 1.2 0.6 – 1.4 1 0.8 – 1.2

w -1 -1 -1 - 1

3
– -1 - 1

3
– -1

e.f 1.5 1.7 1.7 1.7 1.8

Nlike(×104) 8.4 17.4 16.7 10.6 18.0

log E 0.00 ± 0.08 −0.58 ± 0.09 −1.16 ± 0.08 −0.45 ± 0.08 −1.52 ± 0.08

4. RESULTS

We have calculated the evidences of four different cos-
mological models: 1) a flat, Harrison–Zel’dovich model
with a cosmological constant (ΛCDM+HZ), 2) the same
as 1, except allowing the tilt of the primordial perturba-
tion spectrum ns to vary (ΛCDM+ns), 3) the same as 1,
except allowing the equation of state of the dark energy
to take alternative values to w = −1 (w+HZ), and finally
4) allowing both ns and w to vary (w + ns). The prior
ranges for the other parameters were fixed at 0.018 ≤
Ωbh2 ≤ 0.032, 0.04 ≤ Ωcdmh2 ≤ 0.16, 0.98 ≤ Θ ≤ 1.1,
0 ≤ τ ≤ 0.5, and 2.6 ≤ ln(As × 1010) ≤ 4.2.

The data sets we use are CMB TT and TE anisotropy
power spectrum data from the WMAP experiment (Ben-
nett et al. 2003; Spergel et al. 2003; Kogut et al. 2003),
together with higher l CMB temperature power spectrum
data from VSA (Dickinson et al. 2004), CBI (Pearson et
al. 2003) and ACBAR (Kuo et al. 2004), matter power
spectrum data from SDSS (Tegmark et al. 2004) and
2dFGRS (Percival et al. 2001), and supernovae apparent
magnitude–redshift data from Riess et al. (2004).

Results are shown in Table 1. For the spectral tilt, ev-
idences have been found for two different prior ranges, as
an additional test of the method. For a prior range twice
the size of the original in ns the evidence is expected to
change by − ln 2 at most and that difference is recovered.
The first 2 rows show the priors on the additional param-
eters of the model, or their constant values if they were
fixed. The 3rd row shows the enlargement factor (e.f) we
used for the model. The 4th row shows the total number
of likelihood evaluations needed to compute the mean ln
evidence to an accuracy ∼ 0.1, and the 5th row shows
the mean ln E and the standard error in that mean com-
puted from 8 repetitions of the calculation, normalized
to the ΛCDM+HZ evidence.

The ΛCDM+HZ model has the highest evidence, and
as such is the preferred fit to the data. Hence we do not
find any indication of a need to introduce parameters be-

yond the base set of 5, in agreement with the conclusions
of Liddle (2004) and Trotta (2005). However, the differ-
ence between the ln E of the higher-dimensional models
and the base model is not large enough to significantly
exclude any of those models at present.

5. CONCLUSIONS

We introduce the nested sampling algorithm for the
computation of Bayesian evidences for cosmological
model selection. We find that this new algorithm
uniquely combines accuracy, general applicability and
computational feasibility. It is able to attain an accu-
racy (standard error in the mean ln evidence) of 0.1 in
O(105) likelihood evaluations. It is therefore much more
efficient than thermodynamic integration, which is the
only other method that shares the general applicability
of nested sampling. Nested sampling also leads to a good
estimate of the posterior probability density of the pa-
rameters of the model for free, which we will discuss in a
forthcoming paper. We also plan to make a public release
of the code in the near future.

Using nested sampling we have computed the evidence
for the simplest cosmological model, with a base set of 5
parameters, which provides a good fit to current cosmo-
logical data. We have computed the evidence of models
with additional parameters — the scalar spectral tilt, a
constant dark energy equation of state parameter, and
both of these together. We find that current data offer
no indication of a need to add extra parameters to the
base model, which has the highest evidence amongst the
models considered.
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