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Abstract—The rapidly developing cloud computing and 
virtualization techniques provide mobile devices with battery 
energy saving opportunities by allowing them to offload 
computation and execute applications remotely. A mobile 
device should judiciously decide whether to offload 
computation and which portion of application should be 
offloaded to the cloud. In this paper, we consider a mobile 
cloud computing (MCC) interaction system consisting of 
multiple mobile devices and the cloud computing facilities. We 
provide a nested two stage game formulation for the MCC 
interaction system. In the first stage, each mobile device 
determines the portion of its service requests for remote 
processing in the cloud. In the second stage, the cloud 
computing facilities allocate a portion of its total resources for 
service request processing depending on the request arrival 
rate from all the mobile devices. The objective of each mobile 
device is to minimize its power consumption as well as the 
service request response time. The objective of the cloud 
computing controller is to maximize its own profit. Based on 
the backward induction principle, we derive the optimal or 
near-optimal strategy for all the mobile devices as well as the 
cloud computing controller in the nested two stage game using 
convex optimization technique. Experimental results 
demonstrate the effectiveness of the proposed nested two stage 
game-based optimization framework on the MCC interaction 
system. The mobile devices can achieve simultaneous reduction 
in average power consumption and average service request 
response time, by 21.8% and 31.9%, respectively, compared 
with baseline methods. 

Keywords-mobile cloud computing; mobile devices; game 
theory; nested game; resource allocation 

I. INTRODUCTION 
Cloud computing has been envisioned as the next-

generation computing paradigm for its advantages in on-
demand service, ubiquitous network access, location 
dependent resource pooling, and transference of risk [1]. 
Cloud computing shifts the computation and storage 
resources from the network edges to a "Cloud" from which 
businesses and users are able to access applications from 
anywhere in the world on demand [2][3][4]. In cloud 
computing, the capabilities of business applications are 
exposed as sophisticated services that can be accessed over a 

network. Cloud service providers are incentivized by the 
profits by charging clients for accessing these services. 
Clients are attracted by the opportunity for reducing or 
eliminating costs associated with "in-house" provision of 
these services. 

The cloud service providers own large data centers with 
massive computation and storage capabilities [5]. Service 
providers often end up over-provisioning their resources in 
these data centers in order to meet the clients' response time 
requirements or service level agreements (SLAs) [6]. Such 
over-provisioning may increase the cost incurred on the 
servers in terms of both the electrical energy cost and the 
carbon emission. Therefore, optimal allocation of the 
resources in the cloud computing system (or the broader area 
of distributed computing systems) is imperative in order to 
reduce the cost incurred on the servers as well as the 
environmental impact, and has been investigated in [7]-[12]. 

The emerging paradigm of mobile cloud computing 
(MCC) moves the processing, memory, and storage 
requirements all together from the resource limited mobile 
devices to the resource unlimited cloud [13]-[15]. MCC 
provides multiple advantages for the mobile devices 
[16][17], including extension of the storage capacity for 
mobile users and reducing the risk of data and application 
lost on mobile devices by backing up users' data. The 
potentially most important benefit for mobile users is the 
extension of battery operation time. The MCC paradigm 
helps the mobile devices to run the computation intensive 
applications, which may consume a large amount of battery 
energy when running locally in the mobile devices. This is 
enabled by the virtualization technique that allows the cloud 
to run mobile applications for the remote mobile devices 
[18]. This technique is referred to as computation offloading 
in the reference work [17][19].  

The mobile devices should judiciously make decisions 
about whether to perform computation offloading and which 
portion of application should be offloaded to the cloud. 
Reference [17] provides an analysis and guideline on the 
conditions that computation offloading could help save the 
energy for mobile devices, i.e., an application or task with 
high computation but limited data communication 
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requirement could benefit from computation offloading. 
Reference [19] proposes MAUI to dynamically control the 
computation (code) offloading for .NET applications at 
runtime, formulating the computation offloading problem as 
a linear programming optimization problem. Reference [20] 
provides a similar approach for Android applications. 
Moreover, the mobile devices should also be aware of other 
devices and the potential congestion level in the remote 
servers if all the mobile devices decide to offload their 
computations simultaneously. Reference [21] provides a 
congestion game-based optimization framework, where each 
mobile device is a player and his strategy is to select one of 
the available servers in the cloud to offload computation. In 
the realistic cloud computing facilities, however, a 
centralized request dispatcher selects the target server for 
each service request (i.e., request for computation 
offloading) generated from the mobile devices [4][11]. The 
mobile devices do not select the target servers themselves. 

In this paper, we consider an MCC interaction system 
consisting of multiple mobile devices and the cloud 
computing facilities. Each mobile device executes an 
application and generates service requests, which could 
either be processed locally in the mobile device or remotely 
in the cloud through computation offloading. The cloud 
computing facilities consist of multiple servers dedicated for 
processing mobile service requests inside a data center. 
Service requests from the mobile devices are free to be 
dispatched to any server in the cloud computing system. The 
total profit in the cloud computing system is the total price 
gained from serving the service requests, which depends on 
the average request response time as defined in the utility 
function, subtracted by the energy cost of the active servers. 

We provide a two stage (i.e., sequential) game-based 
formulation [32] for the MCC interaction system. In this 
game, each mobile device determines the portion of its total 
service requests for remote processing in the cloud. The 
objective of each mobile device is to minimize its power 
consumption as well as the response time of service requests. 
This is the first stage of the two stage game. The cloud 
computing controller dispatches the service requests 
generated from mobile devices to each server and allocates a 
portion of resources in each server for service request 
processing. It performs resource allocation depending on the 
service request arrival rate from all mobile devices. The 
objective of the cloud computing controller is to maximize 
its own profit. This is the second stage of the game. Suppose 
that the portion of allocated resources in the cloud facilities 
is pre-announced to the mobile devices. Then in the first 
stage of the game, all the mobile devices compete for the 
allocated resources, which becomes a normal-form game 
(i.e., all the players in the game choose strategy 
simultaneously [32].) We prove that the Nash equilibrium 
always exists and is unique in this normal-form game. Nash 
equilibrium is the optimal strategy profile in the sense that no 

player can find better strategy if he deviates from the current 
strategy unilaterally. 

According to the above discussion, the MCC interaction 
system is essentially a nested two stage game [33] since its 
first stage itself is a normal-form game. Based on the 
backward induction principle [32], we derive the optimal or 
near-optimal strategy for all the mobile devices as well as the 
cloud computing controller in the nested two stage game 
using convex optimization approach [31]. Experimental 
results demonstrate the effectiveness of the proposed nested 
two stage game-based optimization framework on the MCC 
interaction system. The mobile devices can achieve 
simultaneous reduction in average power consumption and 
average service request response time, by 21.8% and 31.9%, 
respectively, compared with baseline methods. 

The rest of this paper is organized as follows. The MCC 
system model, including models for mobile devices and 
resource allocation in the cloud computing facilities, is 
presented in Section II. The nested two stage game-based 
formulation and optimization of the MCC system are 
provided in Section III and Section IV, respectively. 
Experimental results are presented in Section V and the 
conclusion is in the last section. 

II. MOBILE CLOUD COMPUTING SYSTEM MODEL 
We consider an MCC system (i.e., an interaction system 

of mobile devices and cloud computing) consisting of � 
mobile devices. These mobile devices such as smart phones, 
tablet computers are connected to the cloud through WiFi or 
3G networks. Each mobile device in the MCC system is 
identified by a unique ID, represented by index i. Figure 1 
illustrates the i-th (� � � � � ) mobile device. Each i-th 
mobile device executes an application and generates service 
requests, which could either be processed locally or remotely 
in the cloud through computation offloading.  

λi M λ⋅i ip

M(1 ) λ− ⋅i ip

 
Figure 1.  Conceptual structure for the mobile device: local or remote 

processing? 

In order to find an analytical form of the average 
response time, service requests generated from the i-th 
(� � � � �) mobile device are assumed to follow a Poisson 
process with an average generating rate of �� , which is 
predicted based on the behavior of the application. The 
mobile device chooses to offload each service request for 
remote processing in the cloud with probability ��	, where 
the superscript 	  stands for ‘mobile’. We call ��	  the 
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offloading probability of the i-th mobile device. These 
probability values for mobile devices are the optimization 
variables in the MCC optimization framework. According to 
the properties of the Poisson distribution [29], service 
requests that are generated from the i-th mobile device and 
processed remotely in the cloud follow a Poisson process 
with an average rate of ��	 
 �� , called the offloading rate. 
The service requests that are generated from the i-th mobile 
device and processed locally in the device follow a Poisson 
process with an average rate of �� � ��	
 
 �� . When ��	 
becomes larger, the average response time for the locally 
processed service requests decreases while the average 
response time for remotely processed requests increases (due 
to the average delay increasing in sending/receiving a service 
request and request processing in the cloud.) In the 
perspective of power consumption of the i-th mobile device, 
the power consumption in the mobile CPU (for locally 
processed service requests) decreases while the power 
consumption in the radio frequency (RF) components for 
sending the service requests increases. Therefore, it is crucial 
for each mobile device to judiciously choose the optimal ��	 
considering the characteristics of service requests (i.e., 
computation and data communication requirements), the 
anticipated offloading rate ���	 
 ��� of other mobile devices, 
as well as the anticipated congestion level in the servers. 

Let ��	 denote the average service request processing rate 
in the i-th mobile device. Then the average response time of 
the locally processed service requests in the i-th device is 
calculated as: 

��	���	
 � ���	 � �� � ��	� 
 �� (1) 

Let ��� denote the average speed in service request sending in 
the i-th mobile device, where the superscript �  stands for 
‘sending’. We calculate as follows the average time for a 
service request to wait in the mobile device before it is 
completely sent out:  

������	
 � ���� � ��	 
 �� (2) 

��� is proportional to the wireless channel capacity from the 
mobile device to the access point [24]. 

The power consumption in the i-th mobile device 
consists of two parts: (i) power consumption in the mobile 
CPU for local service request processing, and (ii) power 
consumption in the RF components (e.g., WiFi, 3G) for 
sending the service requests to the cloud [26][27]. Both the 
CPU power consumption and the RF components power 
consumption can be further separated into a dynamic power 
consumption part when the CPU or RF components are 
active (i.e., when they are processing or sending service 
requests) and a static power consumption part. The average 
dynamic power consumption in the CPU of the i-th mobile 

device, denoted by ���������� ���	
, is proportional to the portion 
of time that the CPU is active, given by �� � ��	
 
 �����	. 
We calculate ���������� ���	
 as: 

��������� ���	
 � �� � ��	
 
 ����	 
 ����������� ! (3) 

where ����������� ! is the dynamic power consumption when the 
mobile CPU is active. Similarly, the average dynamic power 
consumption in the RF components of the i-th mobile device 
is given by: 

�"#����� ���	
 � ��	 
 ����� 
 �"#������� ! (4) 

On the other hand, the (average) static power 
consumptions in the CPU and the RF components of the i-th 
mobile device are constant values denoted by ������$% �  and �"#��$% �, respectively. The overall power consumption in the i-
th mobile device is given by �&'(�)*�����	
 � ���������� ���	
 + �"#���������	
 +������$% + �"#��$% � (5) 

Figure 2 shows the structure of the target resource 
allocation system in cloud computing with a service request 
pool, a data center as the service provider as well as a central 
resource management node. We consider homogeneous data 
center in this paper. The data center consists of , 
homogeneous servers that are dedicated for service request 
processing from the mobile devices (clients). We use j as the 
index of the servers in the data center. 

λ

C λ⋅jp

C
1 λ⋅p

C λ⋅Mp

M λ⋅i ip

M
1 1λ⋅p

M λ⋅N Np

 
Figure 2.  Conceptual structure of the resource allocation system in cloud 

computing. 

The service request pool contains the remote service 
requests generated from all the mobile devices. According to 
the properties of the Poisson distribution [29], the total 
service request generating rate of the request pool, denoted 
by �, is given by 

� �-��	 
 ��.
�/0  (6) 

according to the properties of the Poisson distribution [29]. A 
service request can be dispatched to any server in the data 
center. The request dispatcher assigns a request to the j-th 
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server with probability �12, where the superscript 2 stands for 
‘cloud’. These probability values are the optimization 
variables in the resource allocation optimization framework 
of the cloud. According to the properties of the Poisson 
distribution [29], mobile service requests that are dispatched 
to the j-th server follow a Poisson process with an average 
rate of �12 
 �, which is the average service request arrival 
rate of that server. As long as a service request is dispatched 
to a server, the server creates a dedicated virtual machine 
(VM) for that service request, loads the application 
executable and starts execution.  

Each j-th server in the MCC system allocates a portion of 
its total resources, denoted by 312  ( 4 � 312 � � ), for 
servicing the mobile service requests. By using the well-
known formula in M/M/1 queues [30], the average 
processing time of the service requests dispatched to that 
server is calculated as 

�12��125 3125 6	
 � �312 
 �12 � �12 
 � (7) 

where �12  denotes the average service request processing 
speed when all the resources in the server are allocated for 
request processing. The �12  values are equal to each other 
since the servers are homogeneous. �  is a function of 6	 � 7�0	� �8	� 9 � �.	: as given in (6). 

The data center sends back the response to a service 
request after finishing processing it. We calculate as follows 
the average time for the response to wait in the data center 
before it is completely sent out: 

�;�6	� � ��; � � (8) 

where the superscript ; stands for 'receiving' (i.e., the mobile 
device receives the response from the data center.) 

Therefore, the average response time of a service request 
generated from the i-th mobile device (either processed 
locally or remotely) is given by: ��<=>�6	5 625 ?2� � �� � ��	
 @ ��	���	
 + ��	 @ 
����������A������	
 +-�12 @ �12��125 3125 6	
&

1/0 + �;�6	�B 
(9) 

where 62 � 7�02� �82� 9 � �&2 : and ?2 � 7302� 382� 9 � 3&2 :.  
Power consumption in each server consists of a dynamic 

power consumption part when the server is active (i.e., when 
it is processing service requests) and a static power 
consumption part. The average dynamic power consumption 
in each j-th server is proportional to the portion of time that 
the server is active, given by ��12 
 �
 �312 
 �12
C , as well as 

the portion 312 of the resources that have been allocated for 
request processing: 

�D*EF�1��� ��125 6	
 � �12 
 �312 
 �12 
 312 
 �D*EF�1����� !  

� �12 
 ��12 
 �D*EF�1����� !� 
(10) 

where �D*EF�1����� !�  is the dynamic power consumption when 
the server is active and all resources have been allocated for 
service request processing. On the other hand, the (average) 
static power consumption in each j-th server in the MCC 
system is the sum of a constant term GD*EF�1 and another term 
proportional to the portion 312  of allocated resources for 
request processing: �D*EF�1$% �312
 � GD*EF�1 + 312 
 ��D*EF�1$% �� !� � GD*EF�1
 (11) 

We neglect the power consumption in the data center for 
response sending since it is much smaller than the power 
consumption for request processing. Therefore, the overall 
power consumption of the data center is the sum of the total 
power consumptions of all the servers residing in it, i.e., 

�H� �-I�D*EF�1��� ��125 6	
 + �D*EF�1$% � �312
J&
1/0  (12) 

Let K��� � L � M @ � denote the utility function of the 
cloud computing system with the average service request 
response time equal to �. Then the total profit of the cloud 
computing system is calculated by: 

� @ NL � M @-�12 @ I�12��125 3125 6	
 + �;�6	�J&
1/0 O 

��P�QR @-I�D*EF�1���� ��125 6	
 + �D*EF�1$% � �312
J&
1/0  

(13) 

where �P�QR denotes the unit energy price. 

III. GAME THEORETIC PROBLEM FORMULATION 
We consider the MCC interaction system comprised of 

the mobile devices and cloud computing, and provide a two 
stage game-based formulation [32] of the interaction system 
as follows. In the first stage of the game, each mobile device 
i determines the portion ��	 of its total service requests for 
remote processing in the cloud. The objective of the mobile 
device is to minimize the following objective function: 

S0 @ �&'(�)*�����	
 + S8 @ ��<=>�6	5 625 ?2� (14) 

which is a linear combination of the mobile device’s power 
consumption �&'(�)*�����	
  and average request response 
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time ��<=>�6	5 625?2�. Please note that 62 and ?2 are NOT 
given to the mobile device since they are determined by the 
cloud controller. Let �T�	 � U�0	� �8	� 9 � ��T0	 � ��V0	 �9 � �.	W 
denote the offloading probabilities of all the mobile devices 
other than the i-th one. �T�	  is also not given in prior to the i-
th mobile device. Thus we can write ��<=>�6	5 625 ?2� ���<=>���	� �T�	 5 625 ?2
 . The weight coefficients S0  and S8 
do not have to be the same for a mobile device at all times. 
For example, when a mobile device’s battery is full, it could 
reduce the value of S0 because the battery energy is not a 
bottleneck at this time; when its battery drops under a critical 
level, it could increase the weight on �&'(�)*�����	
  and 
perhaps offload more computation. 

In the second stage, the cloud computing controller 
dispatches the service requests to various servers and 
allocates a portion of its total resources for service request 
processing, i.e., finding the optimal 62 and ?2, depending on 
the request offloading rate of all mobile devices. The 
objective of the cloud computing controller is to maximize 
its own profit given by (13), which is equivalent to 
minimizing the following objective function:  

� @ M @-�12 @ �12��125 312X6	
&
1/0 + 

���P�QR @-I�D*EF�1��� ��12X6	
 + �D*EF�1$% �312
J&
1/0  

(15) 

where �12��125 312X6	
 and �D*EF�1���� ��12X6	
 are the functions �12��125 3125 6	
  and �D*EF�1���� ��125 6	
  when 6	  is given, 
respectively. 

Suppose that the resource allocation results in the cloud 
computing facilities, i.e., the vectors 62  and ?2 , are pre-
announced to the mobile devices. Then in the first stage of 
the game, all the mobile devices compete for the allocated 
resources, which becomes a normal-form game (i.e., all the 
players in the game choose strategy simultaneously [32].) 
Each i-th mobile device chooses the optimal strategy ��	 so 
as to minimize the following cost function: S0 @ �&'(�)*�����	
 + S8 @ ��<=>�6	Y625 ?2� � S0 @ �&'(�)*�����	
 + S8 @ ��<=>���	� �T�	 X625 ?2
 (16) 

where ��<=>�6	Y625 ?2�  (and ��<=>���	� �T�	 X625 ?2
) is the 
function ��<=>�6	5 625?2� when 62 and ?2 are given. 

Therefore, the MCC interaction system is essentially a 
nested two stage game [33] since its first stage itself is a 
normal-form game. We provide the optimization procedure 
of the nested two stage game in Section IV. 

IV. GAME THEORETIC OPTIMIZATION 
In this section, we provide the optimization method for 

the nested two stage game of the MCC system. Based on the 
backward induction principle, we start with the optimization 
procedure in the second stage, i.e., the cloud computing 
controller. After that, we derive the optimal strategy for the 
mobile devices.  

A. Optimization for the Cloud Computing Controller 
The cloud computing controller finds the optimal control 

variables 62  and ?2  in order to minimize the objective 
function stated in (15), when 6	  is given. We name this 
profit optimization problem the Resource Allocation and 
Request Dispatching (RARD) problem. The constraints of 
the RARD problem are: 4 � �12 � �� Z[\�]^ (17) 4 � 312 � �� Z[\�]^� (18) 

-�12 � �&
1/0 � (19) 

�12 
-��	 
 ��.
�/0 _ 312 
 �12� Z[\�]^ (20) 

We propose the following Theorem I, which provides the 
optimal solution for the request dispatching phase, i.e., 
finding the optimal 62, in the RARD problem. The detailed 
proof of Theorem I is omitted in this paper due to space 
limitation. 

Theorem I (Optimal Request Dispatching): In some 
optimal solution of the RARD problem, the optimal request 
dispatching probabilities are all equal, i.e., �12 � ��,  for � � ^ � ,. 

Based on Theorem I, the original RARD problem 
becomes the optimal resource allocation problem, i.e., 
finding the optimal ?2  to minimize the objective function 
(15) with given 62 (all components in 62 are equal to ��,.) 
The constraints of the optimal resource allocation problem 
are (18) and (20).  

This problem is a convex optimization problem since the 
objective function (15) is a convex function of ?2 when 62 
is given, and constraints (18) and (20) are linear inequality 
constraints. It can be solved optimally with polynomial time 
complexity using standard convex optimization techniques 
[31]. We have the following corollary about the optimal 
solution of the optimal resource allocation problem. 

Corollary I (Optimal Resource Allocation): In the 
optimal solution of the resource allocation problem, the 
components in the optimal optimization variable vector ?2 
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are all equal to each other. This conclusion also applies to the 
original RARD problem. 

Proof: When 62 is given, the optimal resource allocation 
problem can be separated into a set of , local optimization 
problems, one for each server. Each local optimization 
problem finds the optimal 312 value such that the following 
objective function is minimized: � @ M @ �12 @ �12��125 312X6	
 + ���P�QR @ I�D*EF�1��� ��12X6	
 + �D*EF�1$% �312
J 

(21) 

The constraints are 4 � 312 � � and �12 
 ` ��	 
 ��.�/0 _ 312 
�12. The local optimization problems for different servers are 
exactly the same since (i) the �12  values are equal to each 
other and (ii) the servers are homogeneous. Hence the 
corollary is proved.                                                                a 

Based on Corollary I, we only need to find the optimal 
solution of the above-mentioned local optimization problem 
for only one server. We effectively reduce the computation 
complexity in solving the RARD problem through this 
observation. 

B. Optimization for the Mobile Devices 
Suppose that the portion of allocated resources in the 

cloud facilities is pre-announced to the mobile devices, i.e., 62 and ?2 are given in prior. Then in the first stage of the 
nested two stage game, each mobile device i determines the 
portion ��	  (4 � ��	 � � ) of service requests for remote 
processing, in order to minimize the objective function (16). 
The constraints on ��	 are given as follows: 4 � ��	 � �� Z[\�]� (22) �� � ��	
 
 �� � ��	 � G� Z[\�]� (23) ��	 
 �� � ��� � G� Z[\�]� (24) 

�12 
-��	 
 ��.
�/0 � 312 
 �12 � G� Z[\�]^ (25) 

-��	 
 ��.
�/0 � �; � G (26) 

where G b �  is a small positive number, which is 
incorporated to make the domain of 6	  a closed set. 
Constraints (23), (24), (25), and (26) are derived from 
equations (1), (2), (7), and (8), respectively. This distributed 
optimization problem is essentially a normal-form game in 
which every player (i.e., mobile device) chooses its strategy ��	 simultaneously in order to minimize (16). We name the 
game the Offloading Probability Decision (OPD) game for 
each mobile device.  

As the mobile devices are considered to be non-
cooperative among each other, we are interested in the 

existence and uniqueness of the Nash equilibrium [32]. Nash 
equilibrium is the optimal strategy profile for all the players 
in the sense that no player can find better strategy if he 
deviates from the current strategy unilaterally. In other 
words, no player (mobile device) will have incentive to leave 
this strategy. Therefore, the Nash equilibrium is of particular 
interest to a non-cooperative normal-form game. We prove 
the existence and uniqueness of the Nash equilibrium in the 
OPD game. 

Theorem II (Nash Equilibrium in the OPD Game): The 
Nash equilibrium in the OPD game exists and is unique.  

Proof: The OPD game is a strictly concave n-player 
game [22][23] since (i) we minimize a convex objective 
function (16) for each player i, which is equivalent to 
maximizing a concave payoff function for each player, and 
(ii) the domain of the strategy profile 6	 , which is 
constrained by (22) – (26), is a closed convex set. In this 
case, the existence and uniqueness of the Nash equilibrium 
are directly resulted from the first and third theorem in [23]. 

Each mobile device finds the Nash equilibrium of the 
corresponding OPD game using standard convex 
optimization technique [31], with detailed procedure shown 
in Algorithm 1. 

 

Algorithm 1: Finding the Nash Equilibrium in the OPD Game 
for Each Mobile Device i. 

Initialize ��	 (the offloading probability of the i-th mobile device 
itself) as well as �T�	  (the anticipation of the offloading 
probabilities of other mobile devices.) 
Do the following procedure iteratively: 

For each � � �c � �: 

Find the optimal ���	  (i.e., the best response of the �c -th 
mobile device) with respect to �T��	 , by solving the convex 
optimization problem for the �c -th mobile device with 
objective function (16) and constraints (22) – (26).  

Update ���	 to be the new value. 

End 
Until the solution converges. 

 
In the MCC system, however, 62 and ?2 are not given in 

prior to the mobile devices since these values are determined 
by the cloud computing controller. Based on the backward 
induction principle in sequential games [32], each mobile 
device optimizes its offloading probability ��	 based on an 
anticipation of 62  and ?2 . We provide an iterative 
algorithm, stated in Algorithm 2, in order to find the optimal 
strategy for each mobile device in the nested two stage game. 
In each iteration, Algorithm 2 has a Nash equilibrium finding 
phase and a resource allocation anticipation updating phase. 
In the Nash equilibrium finding phase, the mobile device 
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runs Algorithm 1 to find the Nash equilibrium of the 
corresponding OPD game with anticipated resource 
allocation results in the cloud computing facilities. In the 
resource allocation anticipation updating phase, the mobile 
device updates the anticipation of 62  and ?2  based on the 
updated Nash equilibrium. An optimal or near-optimal 
strategy for each mobile device in the nested two stage game 
can be derived by executing Algorithm 2. 

 

Algorithm 2: Deriving an Optimal or Near-Optimal Strategy 
for Each Mobile Device in the Nested Two Stage Game. 

Initialize the anticipation of 62 and ?2. 
Do the following procedure iteratively: 

Finding the Nash equilibrium: Find the Nash equilibrium of the 
OPD game based on the anticipation of 62  and ?2 , by 
executing Algorithm 1. 
Updating the anticipation of resource allocation results: Find 
and update the anticipation of 62 and ?2, by solving the RARD 
problem based on 6	 obtained from the Nash equilibrium. 

Until the solution converges. 
 

V. EXPERIMENTAL RESULTS 
In this section, we implement the interaction system of 

multiple mobile devices and the cloud computing facilities 
and demonstrate the effectiveness of the proposed game 
theory-based optimization framework. 

We consider an MCC interaction system comprised of � � d4  (we will change this parameter later) mobile 
devices, as well as a cloud computing infrastructure. The 
data center in the cloud computing system consists of 10 
servers. We use normalized amounts of most of the 
parameters in the MCC interaction system instead of their 
real values. The service request generating rate ��  of each 
mobile device is a uniformly distributed random variable 
between 1 and 1.5. The average service request processing 
rate ��	  in the mobile CPU is 1.6. The average service 
request sending rate ���  in every mobile device is 2. The 
maximum dynamic power consumption values in each 
mobile CPU and RF components, ����������� !  and �"#������� ! , 
are uniformly distributed between 4 and 6, and between 1 
and 1.5, respectively. The static power consumption values 
in each mobile CPU and RF components, ������$% �  and �"#��$% � , 
are uniformly distributed between 2 and 3, and between 1 
and 1.5, respectively. In the cloud computing system, the 
maximum average service request processing rate �12 in each 
homogenous server (i.e., when all its resources are allocated 
for request processing) is 3. The maximum dynamic power 
consumption �D*EF�1����� !�  and maximum static power 
consumption �D*EF�1$% �� !�  of each server are 10 and 5, 

respectively. The average response sending rate �;  in the 
cloud computing system is 50. For the utility function in the 
cloud computing system, parameter L  is set to 5 and 
parameter M is 1. The unit energy price �P�QR is 0.2.  

In the first experiment, we test on the MCC interaction 
system and compare the average power consumption and the 
average request response time of all the mobile devices using 
the nested two stage game-based optimization framework 
and using the two baseline methods. In the first baseline 
system, service requests generated from all the mobile 
devices are processed locally in the mobile device. In the 
second baseline system, the mobile devices send all of their 
generated service requests to the cloud computing system for 
remote processing, and then the cloud computing controller 
performs optimal request dispatching and resource allocation 
based on the total service request arrival rate as described in 
Section IV.A. Figure 3 illustrates the tradeoff between the 
normalized average power consumption and the normalized 
average service request response time, obtained by changing 
the weight coefficients S0  and S8  simultaneously for each 
mobile device. Figure 3 also illustrates the normalized 
average power consumption and average service request 
response time of the two baseline systems. 

 
Figure 3.  The normalized average power consumption versus normalized 
average service request response time of all the mobile devices, using the 

proposed game theory-based optimization framework and the baseline 
methods. 

We observe from Figure 3 that the mobile devices can 
achieve simultaneous reduction in average power 
consumption and average service request response time, by 
21.8% and 31.9%, respectively, when using the proposed 
game theory-based optimization framework compared with 
Baseline 1. This is because the mobile devices have high 
power consumption in the mobile CPU and large service 
request response time due to congestion in request 
processing, if all the service requests are processed locally. 
On the other hand, the mobile devices can achieve significant 
average service request response time reduction, by up to 
89%, compared with Baseline 2. However, the mobile 
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devices cannot achieve reduction in average power 
consumption compared with Baseline 2. This is a natural 
result since offloading all the service requests for remote 
processing turns out to be the most energy-efficient policy 
for the mobile devices, although it may often incur 
unbearable delay. 

For more comparisons, we compare the average values of 
the objective function (14) in each mobile device. This 
objective function shows a desirable tradeoff of power 
consumption and service request response time in the mobile 
devices. The data are collected in the above experiment. We 
show in Table I the minimum and maximum reduction in the 
average values of the objective function (14) when 
employing the game theoretic optimization framework 
compared with the baseline methods. We can observe that 
the maximum reduction in average objective function value 
is up to 89.5%, demonstrating the effectiveness of the nested 
two stage game-based optimization framework.  

TABLE I.  REDUCTION OF THE AVERAGE OBJECTIVE FUNCTION 
VALUE USING THE PROPOSED GAME THEORY-BASED OPTIMIZATION 

FRAMEWORK 

Minimum reduction over 
Baseline 1 

Maximum reduction over 
Baseline 1 

15.4% 41.2% 
 

Minimum reduction over 
Baseline 2 

Maximum reduction over 
Baseline 2 

0% 89.5% 
 
In the second experiment, we fix the weight coefficients S0 and S8 to be 5 and 1, respectively, whereas we change 

the number �  of mobile devices in the MCC interaction 
system. We test on the MCC interaction system under the 
nested two stage game-based optimization framework, and 
compare the normalized average power consumption and the 
normalized average service request response time of each 
mobile device with respect to the number � . Figure 4 
illustrates the results of this experiment. We can observe 
from Figure 4 that both the average power consumption and 
the average service request response time increase with the 
increase of � . This is because of the increasing in the 
congestion level and therefore the increasing in the average 
service request response time in the data center. The mobile 
devices are aware of this congestion and assign more service 
requests for local processing, which in turn increases their 
power consumption levels. 

 
Figure 4.  The normalized average power consumption and normalized 

average response time versus the number of mobile devices using the 
proposed game theory-based optimization framework. 

VI. CONCLUSION 
Cloud computing and virtualization techniques provide 

mobile devices with battery energy saving opportunities by 
allowing them to offload computation and execute 
applications remotely. In this paper, we consider an MCC 
interaction system consisting of multiple mobile devices and 
the cloud computing facilities. We provide a nested two 
stage game formulation for the MCC interaction system. In 
the first stage, each mobile device determines the portion of 
its service requests for remote processing in the cloud. In the 
second stage, the cloud computing facilities allocate a 
portion of its total resources for service request processing 
depending on the request arrival rate from all the mobile 
devices. The objective of each mobile device is to minimize 
its power consumption as well as the service request 
response time. The objective of the cloud computing 
controller is to maximize its own profit. Based on the 
backward induction principle, we derive the optimal or near-
optimal strategies for all the mobile devices as well as the 
cloud computing controller in the nested two stage game 
using convex optimization approach. Experimental results 
demonstrate the effectiveness of the proposed nested two 
stage game-based optimization framework on the MCC 
interaction system. The mobile devices can achieve 
simultaneous reduction in average power consumption and 
average service request response time, by 21.8% and 31.9%, 
respectively, compared with baseline methods. 
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