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Abstract

Stochastic Petri Nets are used extensively to find performance measures for com-
munication protocols. This paper illustrates how equilibrium distributions for the
markings of a wide class of nets can be found directly without the need to generate
a large state space and then resort to equilibrium balance equations.

1. Introduction

A Petri net is a graph model useful for analysing systems which exhibit con-
current and conflicting behaviour. A good introduction to the properties
and applications of Petri net theory is given in Peterson [11]. Of particular
interest to researchers in communications is the use of Petri nets in the spec-
ification and verification of protocols (see Symons [13], Billington, Wheeler
and Wilbur-Han [3] and Billington [2]).

By allowing the firing times of transitions to be non-negative random vari-
ables a Petri net can be modified to a Stochastic Petri Net (SPN). The purpose
of an SPN model is to enable us to discover additional information, such as
performance measures, about the protocol under consideration (see Marsan,
Balbo and Conti [9], Florin and Natkin [5] and Marsan, Chiola and Fumagalli
[10]).

The major problem in finding such performance measures is the need to
work with the equilibrium equations based on the reachability graph of the
SPN. The size of the reachability graph increases exponentially with both
the number of places and the number of tokens in the initial marking and

'Applied Mathematics Department, University of Adelaide, South Australia 5001.
2 Mathematics Department, University of Western Australia, Australia.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

176

https://doi.org/10.1017/S0334270000006573 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006573
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consequently, even for simple nets, these equations are an extremely difficult
medium through which to work.

A similar problem in networks of queues was partially overcome by find-
ing product form solutions for a reasonably wide ranging class of networks.
Much of the early work in queueing networks was not generally applicable to
SPNs because only single arrivals and single services were permitted, whereas
most SPNs have groups of tokens moving through the net at the same time.
Some very recent work by Henderson, Pearce, Taylor and Van Dijk [6] and
Henderson and Taylor [7] has found that simple equilibrium solutions can
still be found for certain networks in which batch arrivals and batch services
can occur. In this paper we will show how the ideas used in Henderson and
Taylor [7] can be successfully applied to classes of SPNs and in particular
how some nets with conflict sets, probabilistic routing and marking depen-
dent firing rates yield a tractable equilibrium solution. A major advantage of
adopting this approach is that the analysis is not based on the reachability
graph created from the SPN. The technique involves finding the equilibrium
distribution for a Markov chain with states comprising the transitions in the
SPN. Using this information we can directly find the equilibrium distribution
for the markings of the net.

Balbo, Bruell and Chanta [1] have applied the knowledge of product form
solutions to the analysis of SPNs, by replacing subnets which possess a prod-
uct form solution with a single "equivalent server" transition, thereby re-
ducing computational complexity. Since the SPNs presented in this paper
possess a closed norm solution it should be possible to extend Balbo et al's
[1] work to cover a wider class of SPNs.

In Section 2 we introduce the necessary notation. Sections 3 and 4 give
our main results and examples are given in Section 5.

2. Description of the model

Consider a live and bounded SPN with a finite set & = { 1 , . . . , P} of places
and a finite set &~ of transitions. The Markov process representing the SPN
has markings m e Zp, to denote the state when there are m(i) tokens at
place i. When the state is m, transition t € &~ has a state dependent firing
rate given by q(m, t), and when transition t fires it moves tokens from an
input bag 1(0 e Zp to one of a set of possible output bags Oj{t) e Zp with
probability p(I(t),t,Oj(t)) where £_,-p(I((0.'»O;(0) = 1- Thus the marking
of the net changes from m to m-1(0 + 0 , ( 0 with probabilityp(I(0,f,O/(0).

It is worth noting that there are a variety of SPN structures which can be
transformed to give a net of the above form. Two examples follow.

https://doi.org/10.1017/S0334270000006573 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006573


178 W. Henderson, D. Lucic and P. G. Taylor [3]

1. If a set A of transitions enabled together can fire simultaneously as well
as independently we can alter the original SPN by adding a new transition
to replace the firing time "clock" for the set A. The new transition will have
input bag given by \JteA 1(0 and output bag \Jl€A O(0, where 1(0 and O(0
are input and output bags respectively for transition /. This new SPN is
equivalent to the original. The reason for making such a technical change is
to keep the notation relatively simple.

2. Without loss of generality we can assume that there is a one to one
correspondence between input bags and transitions. Any SPN in which a
set of transitions, 3§ c &~ have a common input bag can be modelled by
amalgamating the transitions in & into a single transition, noting the fact
that whenever one of these transitions in enabled then all are enabled. For
any state m in which the transitions in 38 are enabled the firing time dis-
tribution of the new transition will be negative exponential, with parameter
Yln&ss <i(m> 0- The routing probabilities for the next marking are appropri-
ately weighted by the probabilities, q{m, t)[J2se& q(m, s)]~', / G 38 indicating
which transition has fired.

The above procedures can be performed on any SPN before analysis takes
place. Thus without loss of generality we can assume henceforth that the
SPN is structured so that transitions fire independently of one another and
no two transitions have the same input bag.

If / is not enabled in m then q(m, 0 is equal to zero. Otherwise we assume
that q(m, 0 is of the form

where q>{-), <D(-) and x(-) are arbitrary but given positive functions.
The following examples illustrate the flexibility of this definition.

EXAMPLE 2.1. The standard SPN models assume that transition firing times
are marking independent. In such a SPN transition t fires first with rate #(0
(i.e. mean firing time [q(t)]~l). This can be modelled using equation (1) by
choosing <p{) = O() = 1 and #(1(0) =

EXAMPLE 2.2 The functions <p(-) and <!>(•) have an important role when the
nets being modelled have marking dependent transition firing rates. For ex-
ample, consider a net which has the structure in Figure 1 where C is an
arbitrary SPN configuration.

When the marking is m we wish to choose q>{) and O() so that the transi-
tions in C have marking independent firing times and so that the firing rate
for t* is q{t*,m(l),m(2)), i.e. dependent on the number of tokens in p(l)
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FIGURE 1.

and/>(2). Define

and

O(m) = <p(m) =

Substitution into (1) gives

•{
1

q(t)
if« = /•

otherwise

min(m(l),m(2))
i - i

/=o

q(t)
if t = f

otherwise

as required.

EXAMPLE 2.3. More generally, let

) = 1 and <t>(m) = q(r,m(l),m(2))<p(m-e1-e2),

where e,, i = 1,2 is a unit vector with a 1 in the /th position and zeros
elsewhere. This again gives the result q(m,t*) = q{t*,m(\),m{2)) without
placing any restrictions in C.

32. The routing process

The central feature of our analysis is to consider the transitions of the SPN
to be themselves states in a Markov chain, which we call the routing process.
This is achieved by first considering the input and output bags of the SPN
to be the states of a Markov chain and under suitable conditions finding a
one to one correspondence between the states of this Markov chain and the
transitions of the net.

Although each transition t of our SPN has a unique input bag the proba-
bilistic routing allows for a number of different output bags. Let &(t) be the
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set of output bags of transition t and define

31 is the set of all vectors which are either output or input bags for the SPN.
We assume the net is such that 31 is finite.

Define single step transition probabilities on the set 31 as

p(r,f')=p(I(t),t,Oj(t))

whenever there exists a transition / and a j , with r = I(0>r/ = O;(0- Oth-
erwise let p~(r, r1) = Sn> where dn> is the Kronecker delta. Note that the
requirement that no vector can be the input bag of two distinct transitions
means that these probabilities are well defined.

Now define the set,

& = {/(•): / W > 0, *(r)/(r) = ^ ( r W W . r ) , Vr e3l),
r'

where x(j) is the function given in (1) when r = I(/) for some t and x(r) = 1
otherwise. Note that *(•)/(•) is an invariant measure for the routing process.

In Section 4 we need 9~ to be nonempty. The effect of this assumption on
the structure of the net is examined in the following results.

LEMMA 1. For & to be nonempty all vectors l(t),t e ff must be in positive
recurrent communicating classes of the routing process.

PROOF. For t to fire in some marking, x{t) > 0. Assume there exists a
function /(•) e &~, then #(I(/))/(I(0) *S positive. Since the set 31 is finite,
and #(•)/(•) is an invariant measure of the routing process this implies that
I(t) is in a positive recurrent communicating class.

COROLLARY 1. For & to be nonempty,
(a) allre& must be the input bag for some transition t,
(b) a / / t e j ? must be an output bag for some transition t.

PROOF, (a) Assume & is nonempty and that r is not an input bag for any
transition t. Since state r is not the input bag to some transition then ~p{x, r7) =
5n> and r is an absorbing state in the routing process. Hence r resides in its
own communicating class. Also, r 6 <f(t) for some transition t means that
there exists an r1 such that J^r7, r) > 0, implying that r1 is not in a positive
recurrent communicating class. This contradicts Lemma 1.

(b) If r is not the output bag for some transition t then there exists no r7

with pir1, r) > 0. Thus r must be a transient state. This contradicts Lemma 1
in conjunction with Corollary l(a).
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COROLLARY 2. If &~ is nonempty there exists a one to one correspondence
between distinct elements of 31 and elements ofST.

PROOF. It follows from Corollary l(a) that each vector r e 3t is the input
bag for some transition t e y . By the assumption in Section 2 each input
bag has a unique transition. The result follows.

REMARK. Corollary 2 states that for nets with nonempty 9~ each output bag
of a transition is the input bag of another transition. That is each r € J 1

can be uniquely identified with a transition. Consequently we can define the
routing process to be a Markov chain on the set of transitions y , rather than
on the set of input and output bags 3$. Without loss of generality we will
retain the same notation by assuming that the one step transition probabilities
for the routing process on y are p~{t, s) = jo(I(O> !(•*))> s,t e 9~. y can also
be redefined as

& = {/(): /(') > 0, X(t)f(t) = J2 X(s)f(s)p(s, t) W e

and #(•)/(•) is an invariant measure for the routing process. As the routing
process consists of only positive recurrent communicating classes it may be
assumed that *(0/(0 > 0 V/

4. Closed form solution

THEOREM 1. Assume that there exists a function /(•) e y and a function
{g(): Zp —• R} which have the property that, for all t e y and m + l(t) in
the reachability graph,

f(s) l ;

whenever "p{t,s) > 0.

Then the equilibrium distribution of the SPN is given by

7r(m) = #<D(m)s(m) (3)

where O() is given in (1) and K is a normalising constant.

PROOF. Define the reversed time transition probabilities for the routing pro-
cess as

VR{S t) _ X{t)f{t)p{t,8)
M M ) ~ X(s)f(s) ( 4 )

and postulate an equilibrium distribution for the SPN given by (3) subject
to (2).
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Note that any marking change of the SPN begins with a marking m +
1(0 with / e &~ enabled. Transition t fires producing an output bag which,
because &~ is nonempty, is the input bag of another transition, 5 say. The
resultant marking is m + l(s), and transition s is enabled. In reversed time
the markings and enabled transitions are unchanged but the reverse operation
occurs.

Postulate that the marking change rate for the SPN in reversed time is

^ ( - +1(,), m +1(0) - ^ ^ ^ ( , , 0 (5)

From Kelly [8], the validity of

7r(m + W)q(m + 1(0, t)p(t,s) = *("» + I(*))«*(m + l(s), m +1(0) (6)

and

(m, 0 = E E «*(m.m + W " W) (7)
is sufficient to establish that n{m) as given by (3) subject to (2) is the equi-
librium distribution of the SPN and that the postulate of (5) is correct.

This can be easily verified using (1), (2), (3), (4) and (5).

Conventionally the phrase "product form" has been associated with the
equilibrium solution of Jackson networks which involves a product over the
nodes of the network. In Example 5.1, following, it is shown how Jackson
networks and their solution can be derived as a special case of the above
results.

Theorem 1 also gives a product form solution. The product is between two
distinct terms. The first of these is $(•)> a function related to the transition
firing rates and to marking dependent properties of the SPN. The second,
g(), can be evaluated by analysing the network skeleton provided by the
transitions and the routing process. The effect is to reduce the problem of
finding a stationary distribution for the number of tokens in each place of
a SPN from that of solving balance equations for a Markov process on the
markings, which grows exponentially in size with an increase in the number
of tokens, to solving balance equations for a Markov chain on the transitions,
the size of which does not change with an increase in the number of tokens.
Example 5.2 following, illustrates this effect.

5. Examples

EXAMPLE 5.1. Jackson networks. Consider a SPN as defined in Section 2
with the additional property that each input and output bag of any transi-
tion contains just a single arc. Let #(0 = 1, W € ZT and <D(m) = <p(m) =

l l ) ) ~ i - With these parameter values and assumptions on the
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net structure, /(•) e & satisfies

(s)p{s, t) Wte^ (8)

and q(m,t) = q{m{t),t). A function g(-) given by g(m) = Y[ie^ / ( 0 m ( 0

satisfies (2) for all m and the equilibrium solution for the SPN is
-i —l

n(m) = K H /(0m('» Y\q(l,t) • (9)
tesr i= l

With the above choices the SPN under consideration becomes a Jackson
network of queues. Each place has its own transition. Tokens are served
one at a time, through transition t with service rate q{m{t),t) when m(t)
tokens are available. These tokens are then independently routed according
to the probability distribution p(t,s), t, s e ST. Equations (8) are the traffic
equations for the Jackson network and the standard solution is given by (9).

EXAMPLE 5.2. A SPN with conflict sets. Consider the SPN depicted in
Figure 2. In this example the routing process on the transitions consists of
three communicating classes, C\ = {*i, f3, f7}, C2 = {*4, t5}, C$ - {t2, t6} with
routing probabilities given by, p(tut3) = p(t3>h) = p(h,ti) = 1, p{U,h) =
P(t5,t4) = 1 andp('2,*6) =p(t6)t2) = 1.

Assume that xiU) = q(i), 1 < /' < 7. Consequently

f a , i f / - 1 , 3 , 7
X { t i ) f { t i ) = q { i ) f { t i ) = l a 2 i f i = 4 , 5

I a 3 if i = 2,6
where a\, a2, aj are arbitrary and for this example can be set to unity.

Hence /(f,-) = [q(i)]~l-
A function g(m) which takes the form

f

satisfies (2) for all pairs of immediately reachable markings.
As an example, for markings m + I(t\) and m 4-1(^3), the left hand side of

(2) is
g(m+ !(<,)) 1 = g ( 3 ) / « )

fg Ah)
as required.

The equilibrium distribution for this SPN is

n{m) = KQ>{m)g{m) (12)
with £(m) given by (10).
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FIGURE 2.

1. Note that neither cp{-) nor O() have yet been specified but that the
solution has been found. As shown in Section 2 choosing q>{-) and O()
appropriately results in meaningful marking dependent firing rates.

2. The initial marking has not been used to find the solution given by (10),
therefore any choice of the initial marking would result in the SPN having
the same equilibrium solution. The solution given by (10) has normalising
constant K, as its only unknown. Once given the initial marking, the reach-
ability graph comprising the set of markings Jf may be found. By summing
(1) over the markings in Jf and noting that YLm&Jt ^C1") = *> ^ e normalising
constant can be calculated by

K=

EXAMPLE 5.3. Consider the SPN illustrated in Figure 3. As the input bags
of the transitions t\ and t" are identical we follow the pre-analysis procedure
outlined in Section 2. We amalgamate these two transitions and introduce
probabilistic routing to create a SPN of the form given in Figure 4.

If the SPN of Figure 3 has mean transition firing times, [q(l')]~l,
M l " ) ] " 1 , [9(2)]"', [0(3)]- ' , fo(4)]->, for transitions t[,t'{,t2,h,U respec-
tively, then the SPN of Figure 4 has mean firing times [q(l)]~l, [q(2)]~l,
[9(3)]"', [0(4)]-' , with 0(1) = q(V) + g(l"). The probabilistic routing when
11 fires produces output bags (0,1,2,0,0) (solid arcs) and (0,0,1,1,0) (dashed
arcs) with probabilities, a = q(l')/q(l) and b = q(l")/q(l) respectively.
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FIGURE 3.

FIGURE 4.

The routing process has one step probabilities p{t\,t2) = a, P~(tuh)
V{h, t\) = p(t3, U) = p{t4, t2) = 1 and invariant measure, (1,1, b, b).

In a similar manner to that adopted in Example S.2, let

W)\ [bW)\
where S = min(w(2) + m(5) + w(4), [(w(3) + 2m(5) + w(4))/2]) and [(w(3) +
2m(5) + m(4))/2) denotes the integer part of (m(3) + 2m(5) + m(4))/2.
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Again it is simple to show that g(m) satisfies (2) for all pairs of immedi-
ately reachable markings and the equilibrium distribution is again given by
7r(m) = K<P(m)g(m).

This example involves transitions with common input bags, but as in Ex-
ample 5.2, there is no need to specify the form of the functions <!>(•) and
<p(-), nor is there a need to give the initial marking. Again the initial mark-
ing specifies the reachability graph and therefore influences the solution only
through the normalising constant.

6. Conclusion

This paper has considered the relevance to SPNs of recent work on batch
movement around networks. We have introduced some basic ideas on finding
equilibrium distributions based on a net analysis rather than the underlying
state space analysis. Since many common protocols produce reachability
graphs with 106 or 107 markings, a performance analysis based on the solution
of the global balance equations is unmanageable.

Consequently approaches such as the one presented in this paper become
crucial if a performance analysis is required for any complex protocol. Calcu-
lating the normalising constant may also be difficult in our method. However
since we have shown the SPN has a type of product form solution, there is
scope to apply methods similar to the convolution algorithms and mean value
analysis of queueing networks (see Buzen [4] and Reiser [12]).
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