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1. STM vs DFT distances 

 

Figure S 1. 2.5×2.5 nm2 STM image of TBTANG on Au(111) at RT. b) gas phase DFT model of the intact model, with the 

calculated Br-Br distance, compared with the experimental one obtained from STM line profile (c).  

 

 

 

Figure S 2. 3×3 nm2 STM image of TBTANG on Au(111) at 100 °C. b) gas phase DFT model of a dimer, with the calculated N-N 

distance, compared with the experimental one obtained from STM line profile (c). 

 

 

 

 



2. Additional XPS data 

 

 

Figure S 3. C1s, Br3p, O1s and N1s XPS spectra of TBTANG at different temperatures. 

 

 

3. Additional DFT data 

 

 

Figure S 4. Electrostatic potential (ESP) maps showing the interactions within a pair of molecules in the (a) Br∙∙∙Br phase, 

showing Br–Br and Br–H halogen bonding and (b) the Br∙∙∙O phase, showing primarily a Br–O interaction. The double 

polarization of the C–Br bond is reflected in the positive charge (blue) in the bond direction (σ-hole) and negative charge (red) 

around the Br atom (belt). The ESPs are expressed in atomic units (a.u., Rydberg/e) on 0.006 e/Bohr3 isodensity surfaces with a 

color scale range of ±0.02 a.u..  

 

4. Details of Monte Carlo simulations 

The main intermolecular interactions between the TBTANG molecules used for the MC 

simulations were determined by using DFT (B3LYP, 6-31G(d,p)). We calculated five different pair 



interactions (1-2, 1-5, 2-4, 2-5, 3-4) of the six-molecule hexagon of the Br∙∙∙Br phase (Figure S5a) 

and also the main nearest neighbor interaction of the Br∙∙∙O phase (Figure S5b). The molecular 

pairs for the calculations of the intermolecular energy were isolated without further optimization 

from the extended structures of both phases as obtained by the PBC DFT explained in the main 

text. 

The obtained interaction energies are given in Table S1 demonstrating that the dominant 

interaction in the Br∙∙∙Br phase is between the molecules “1” and “2”. This interaction 
corresponds to e1 in our model for the MC simulations (Figure 4a). In the halogen-halogen 

bonding scheme the 1-2 interaction is classified as combined X-bond and H-bond three-center 

binding motif (X2H synthon).1 Other calculated interactions are rather weak or weakly repulsive. 

Interaction 7-8 corresponds to e2 interaction in our model for TBTANG ordering (Figure 4b). Note 

that e2 ≈ 0.5e1. 

 

 

Figure S 5. a) Six-molecule hexagon of the Br∙∙∙Br phase and b) fragment of the Br∙∙∙O phase as obtained by the PBC DFT. 

 

 

Phase Br∙∙∙Br Br∙∙∙O 

Interacting molecules 1-2 1-5 2-4 2-5 3-4 7-8 

Energy (kcal/mol) -5.692 1.144 -0.284 0.139 0.586 -2.886 
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Table S1: Intermolecular interaction energies calculated by DFT (B3LYP, 6-31G(d,p)) using molecular arrangements obtained by 

the PBC DFT. 




