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A network approach for identifying and
delimiting biogeographical regions
Daril A. Vilhena1 & Alexandre Antonelli2,3

Biogeographical regions (geographically distinct assemblages of species and communities)

constitute a cornerstone for ecology, biogeography, evolution and conservation biology.

Species turnover measures are often used to quantify spatial biodiversity patterns, but

algorithms based on similarity can be sensitive to common sampling biases in species

distribution data. Here we apply a community detection approach from network theory

that incorporates complex, higher-order presence–absence patterns. We demonstrate the

performance of the method by applying it to all amphibian species in the world (c. 6,100

species), all vascular plant species of the USA (c. 17,600) and a hypothetical data set

containing a zone of biotic transition. In comparison with current methods, our approach

tackles the challenges posed by transition zones and succeeds in retrieving a larger number of

commonly recognized biogeographical regions. This method can be applied to generate

objective, data-derived identification and delimitation of the world’s biogeographical regions.
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C
onsiderable attention has been devoted to develop
methods that can confidently assign individuals to
populations1,2, and then group those populations into

phylogenetic entities that deserve the status of species or
evolutionary units3. How species then co-exist and co-interact
to form clusters at higher levels, of similar taxonomic and
eco-physiological characteristics, is much less understood.
This is surprising, considering that already by the 19th century
prominent naturalists such as Humboldt and Bonpland4,
de Candolle5, Prichard6, Sclater7 and Wallace8 had all realized
that the world’s biota is divided into a number of more or less
distinct units.

The recognition and use of biogeographical regions or bioregions,
offers several advantages as compared with studying individual
species or communities, and has therefore gained in popularity in
recent years in both terrestrial and aquatic systems9–12. A
bioregion-based approach in macroecology and evolution can be
used to assess to what extent lineages are able to cross the major
eco-physiological barriers over evolutionary time, that is, their
degree of niche conservatism in a broad sense13,14. Evidence is
growing that different bioregions will be affected differently by
climate change15,16, so understanding their origins and
evolution17,18 may provide further indications of their expected
resilience to future climate changes19. Bioregions may also be used
as operational units in ancestral reconstruction analyses, aimed at
inferring key biogeographical processes (dispersal, vicariance,
speciation and extinction) for particular lineages20. Finally, a
cross-taxonomic approach based on bioregions also offers
important advantages in conservation biology as compared with
focus on single taxa, not least in species rich areas such as seasonally
dry tropical forests21,22. In such areas, conservational efforts may be
better targeted towards protecting remaining patches of the
threatened bioregions rather than focusing on particular species.
In this sense, bioregions may be considered analogous to
biodiversity hotspots, a concept based on species richness,
endemicity and threat, which has received enormous attention in
ecology, biogeography and conservation in the last decades23.

Many studies take for granted the identity and delimitation of
biogeographical regions around the world. Yet, there is little
agreement on how to best classify and name such regions, with
several conceptually related terms being used, often interchange-
ably24,25. These include biome, ecoregion, realm, province, zoo/
phyto-geographic region, ecosystem, ecozone, chorotype,
dominion, areas of endemism, concrete biota, chronofauna,
nuclear area, horofauna, cenocron, phytocorion, generalized
track, biogeographical/taxonomic/species assemblage and
domain. Regionalization concepts vary among disciplines (for
example, between zoology and botany) and regions, with for
example, Africa having a generally accepted system for plants26,
whereas South America lacks a unified, congruent floristic
classification22,27. Moreover, different names may apply to the
same unit; examples in South America include the Cerrado vs the
Brazilian savanna, and the Páramo vs high altitude Andean
grasslands (for an example see ref. 28).

One common feature in most schemes of bioregionalization
(the scientific discipline that deals with identifying, delimiting
and naming biogeographical regions) is an internally implied
hierarchy. This is for instance evident in the terrestrial
classification system of Olson et al.12, which is the one adopted
by the World Wide Fund for Nature (WWF) and recognizes eight
realms, nesting 14 biomes which in turn contain 867 ecoregions.
In that scheme, ecoregions are defined as ‘relatively large units of
land containing a distinct assemblage of natural communities and
species, with boundaries that approximate the original extent of
natural communities prior to major land use change’ and
reflecting ‘distributions of a broad range of fauna and flora

across the entire planet’. This and other classification systems
widely used in biogeography (for an example see ref. 8) include a
key taxonomic component, thus contrasting with purely abiotic
approaches such as the Köppen–Geiger Climate Classification29,
which in its latest update30 is based solely on ranges of
temperature, precipitation and their distribution over the year.

Perhaps more importantly than the lack of consensus in
terminology and classification system used for biogeographical
regions, which is to some extent more of a semantic issue rather
than a true biological problem25, there remains controversy on
how to best identify and delimit these regions—regardless of their
hierarchical status. In the last decades, deductive approaches have
started to be replaced by more analytical, transparent and
reproducible methods31–33. However, bioregionalization based on
species distribution data needs to deal with particular challenges
such as biased taxonomic sampling. Even so, it has been shown to
outperform even high-resolution remote sensing techniques that
rely on structural differences in vegetation22 and may therefore be
more sensitive to human-mediated effects on the landscape, such
as changes in land use and land cover (for example, clearing,
plantations, irrigation, drainage and urbanization).

The detection of bioregions is impacted by how we choose to
quantify biogeographical structure, which up to now has been
chiefly a variety of species turnover measures based theoretically
on beta diversity31,32,34. Species turnover, as measured by set
based similarity measures such as the Jaccard35, Sørenson36 and
b-similarity34,37, quantifies the relationship of one region to
another, typically by dividing the number of shared species
between two regions by some measure of the total species in both
regions38.

Despite their widespread use, species turnover measures can
miss intricacies of distributional data that are relevant for
bioregion detection. First, species turnover tends to increase with
greater geographical distance from a source, bringing into
question whether bioregions are determined by distance alone
or real changes in taxonomic affinities39. Second, for small spatial
scales the turnover can overestimate disparity due to competitive
exclusion, spatial clustering and environmental gradients40.
Although this problem can be reduced with large plot sizes, it
is expected to persist even for large spatial scales. Furthermore,
competitive exclusion can create geographical boundaries
between species that cohabit the same bioregion. Third, some
generally recognized bioregions span many degrees of latitude,
such as the North American Rocky Mountains and the American
Great Plains, and may contain climatic and environmental
heterogeneities that can cause narrowly distributed taxa to occupy
non-overlapping fractions of the same bioregion (Fig. 1). Fourth,
differences in taxonomic sampling are expected to inflate
turnover. For example, taxonomic standards may differ within
bioregions for rare species. For deep time studies, marine fossil
assemblages may for instance not co-preserve aragonitic and
calcitic shells. These processes collectively bias turnover measures,
because the number of shared species cannot always be trusted as
good gauge of bioregion identification.

Here we present a data-driven approach that uses associational
networks to minimize the problems described above and to
extract more community level information from species occur-
rence data. We show that this method can be used to successfully
detect biogeographical regions in two well-validated empirical
data sets: all amphibians of the world, and all vascular plants of
the United States of America. The empirical data sets provide
contrasting examples of how biodiversity data is currently
available: they are aggregated at different scales (global and
national), grain sizes (two degree grid cells versus US counties),
and were constructed under different sampling methodologies.
We then further validate our method on a hypothetical data set
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containing a zone of biotic transition. Our results are strikingly
congruent with opinion based bioregions, indicating that the
network method developed here holds the potential to greatly
improve the identification and delimitation of the world’s
biogeographical regions.

Results
Amphibians of the world. In an occurrence network (Fig. 2a),
bioregions appear as groups of localities and taxa that are highly
interconnected. Figure 2b shows a visualization of the network of
all native amphibian species of the world. In this network, the
broad spatial separations of clusters are closely equivalent to
realms8,33, while the bioregions are coloured differently within
each larger cluster. The links that cross between realms
correspond to the relatively few widespread species that inhabit
multiple bioregions on multiple realms and continents.

Our analysis identified 10 major bioregions (closely equivalent
to zoogeographical realms) and 55 smaller biogeographical
regions as the optimal representation of the full amphibian data
set (Fig. 3a). This differs from the approach in Holt et al.33 using
a species turnover measure, which identified 19 bioregions as
optimal. These results differ also qualitatively, showing some
differences in the boundaries of the biogeographical regions
detected. For instance, the network method is able to successfully
detect Wallacea, a well known and thoroughly studied
biogeographical region situated between Wallace’s and Weber’s
line41,42 (thick black lines in Fig. 3a). Weber’s line emerges as the
major boundary between the Oceanian and Oriental faunas,
corroborating the results by Holt et al.33 which, however, did not
recover Wallacea under the analysis of amphibian data. To
illustrate how well range limits reflect bioregion structure, we
coloured geographical ranges by the region they were assigned to
(Fig. 3b).

Vascular plants. Comparing species turnover visually between
different distance metrics is one way to build intuition about the
differences between those metrics. Many network clustering
methods do not use an explicit distance measure, but one can be
derived to compare bipartite networks against the similarity
approach. One such measure can be created as follows for the
plant data: for a given focal county, extract its species occurrence
list. Now, for each species in the occurrence list, give vote to each
county that species i is distributed in, where ni is the number of
counties that species i occupies. This builds a distance measure
for the focal county against all other counties that share the focal
county’s species. Figure 4 shows this approach applied to the
plant data, revealing more localized distribution patterns than the
similarity approach. We suggest this leads to a sharper delimi-
tation of biogeographical regions (Fig. 4a) as compared with
distributional data clustered by a similarity index, in which the
taxonomic affinity of grids decreases gradually across space,
diluting biogeographical signal (Fig. 4b).

Applying a commonly used similarity approach to our three
United States Department of Agriculture (USDA) data sets of
native plants, the number of clusters selected as optimal was 11
for all plants, 22 for trees and 14 for non-trees. The resulting
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Figure 1 | Comparison between similarity based clustering and the

network method. (a) Three species (Sp1, Sp2, Sp3) occur in the generally

recognized Bioregion X, which spans a large latitudinal gradient. Species

diversity is measured from five grid cells (numbered 1–5). Note that there is

little geographical overlap between the species ranges, represented by

circles. (b) Diversity similarity (set measures) between grid cells, which

computes the similarity in number of shared species (the Jaccard index is

shown here). Note that the distance between grid cell 1 and 5 is zero, since

they do not share any species. (c) In the network method, connectivity

between grid cells is established through the species they contain. In this

case, grid cells 1 and 5 are ‘connected’ by a single step through one species

(Sp2), which does not occur in either cell but occurs in other cells (2 and 4)

occupied by species that also occur in cells 1 and 5 (Sp1 and Sp3,

respectively).
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Figure 2 | Bipartite occurrence network. (a) Schematic representation

showing the different classes of network connectivity that can be formed.

Species 1 and 2 jointly occur in Locality 1 and 2, which creates a 4-path that

loops, while Species 3 and 4 share a 4-path that does not loop, revealing

that the species range of an intermediary species (Species 2) ‘connects’ the

two. (b) A visualization of the global amphibian network analysed here

(N¼ 6,100 species). The geographical ranges of widespread species act as

highways between biogeographical regions, creating links between clusters.

Each cluster received a different, arbitrarily defined colour to increase

contrast. Node positions were determined by the Force Atlas algorithm in

the Gephi package66.
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optimal partition of counties for all data sets (Fig. 5, middle
column) reveals little biogeographical structure. For all native
plants, the boundary between the two largest clusters approx-
imates the boundary between the American Great Plains and
Eastern Temperate Forests, but it is dominated by rigid-state
boundaries and fails to distinguish, for example, the Everglades in
southern Florida, the Pacific Coast and the Rocky Mountains. The
tree data set separates the Everglades from the rest of the United
States, and the non-tree data set mimics the major boundaries in
the data set with all plants but contains more clusters that are also
US states.

To explore whether the similarity approach could be arbitrarily
forced to unveil deeper structure, we also chose to visualize the
partitions with 40 clusters selected, although this delineation is
not optimal (Fig. 5, right column). Some biogeographical
structure becomes apparent at this level—the American Great
Plains is cleanly separated from the American West, although this
bioregion unrealistically extends into the American Southwest
desert. The reconstruction based on these 40 clusters is also
plagued by a number of boundaries coincident with the US state

boundaries in the American midwest. In the tree level data, the
Great Plains division becomes apparent, as well as a clean
separation of the Southwest desert from the American West. In
the non-tree data set, a latitudinal boundary is evident in the
Eastern Temperate Forests bioregion, but also contains ample
state-level biases.

To test the application of our network method on vascular
plants, we generated a network data set from the same USDA
plant data, with county nodes connected to species nodes if the
species was identified as natively present in that county. We
clustered these data with the map equation—an algorithm that
detects community patterns in networks43–45. A pilot analysis
revealed little hierarchical structure in the data set, so we opted to
use a two-level implementation of the map equation, which
produces k clusters instead of hierarchically nested groups of
clusters43. The apparent lack of hierarchy in the data set is likely
an issue of large grain and low scale (counties within a single
country). Higher-resolution data, such as a database produced
from geographical coordinates, might produce greater
subdivision. Applied to the three USDA data sets of native

Amphibian bioregions

Range limit patterns

a

b

Figure 3 | Results from the network analyses for the world’s amphibians. (a) Amphibian biogeographical regions of the world determined from

geographical range data. Similar colours indicate membership to a higher level clustering, in this case equivalent to realms. The analysis used a resolution of

two degree grid cells. (b) Species range limits coloured by region. Geographically close and neighbouring regions were given contrasting colours to highlight

boundaries and boundary mixing. Each geographical range polygon was plotted with a low opacity (0.1), from largest to smallest on a global level, so that

regions with more species appear brighter. (N¼6,100 species).
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plants, the number of clusters selected as optimal by the map
equation was 25 for all plants, 19 for trees and 16 for non-trees.
Because the algorithm that seeks the best partition is stochastic,
we ran it 1,000 times and selected the partition that minimized
the scoring function in the map equation.

Broad similarities are evident across the network clustering
results for all native plants, trees and non-trees (Fig. 5, left
column). There are, however, a number of differences. For
instance, the Everglades are only evident from the tree only data
set. The West Coast forms a separate bioregion under the analysis
of all plants as well as all non-trees, but the Pacific Northwest is
omitted from this bioregion when only trees are considered. In
the American midwest, the American Great Plains appear much
smaller when only trees are considered. These differences may
reflect intrinsic biological differences among the data sets
analysed (for example, differences in ecological niche conserva-
tism, edaphic adaptations, dispersal ability), but sampling issues
are also apparent. For instance, the southern deserts of Arizona
and surrounding areas follow some rigid-state boundaries,
suggesting that large county sizes in the area obscure finer
demarcation. State-level biases are also evident in Lousiana for
the native tree data, but not for the other two data sets.

Hypothetical data set. We compared the performance of the
species turnover and the network approaches on a simulated
data set. Using b-similarity and the unweighted pair group
method with arithmetic mean on the hypothetical data set of
Kreft and Jetz46, the transition zone is engulfed by the Northern
realm for a choice of two clusters, and it is a distinct cluster if
three clusters are chosen (Fig. 6b). The data are symmetric, so if
the matrix rows are swapped the transition zone is engulfed by
the Southern realm.

Applying the network method to the same data results in an
optimal partition of four clusters: one contains all of the Southern
fauna and grid cells 1–14, one contains all of the Northern fauna
and grid cells 17–30, while grid cells 15 and 16 each form their
own cluster (Fig. 6c). This partition is slightly preferred over a
two cluster solution, which cuts the data evenly into two
biogeographical zones. This example reveals the benefit of
clustering both species and grid cells together as under the
network method, as opposed to clustering grid cells with
distances proportional to the number of shared species; grid
cells 15 and 16 can easily be identified as transition zones because
no species are clustered with them (Fig. 6c).

Discussion
Our network analyses of empirical and hypothetical data sets
reveal important differences as compared with approaches based
on species similarity. These are not only quantitative in terms of
resolution—that is, the total number of regions identified—but
also qualitative, affecting both the areas and the boundaries of
biogeographical regions.

For the amphibian data set, the differences in number of
zoogeographical realms and bioregions found by our network
method as compared with the similarity analysis by Holt et al.33

do not arise from a lower cutoff threshold for our approach,
because we followed their procedure for merging regions with
o10 grid cells into the closest regions. Rather, we interpret this
difference as stemming from a fundamental difference in
methodology—our approach clusters patterns of presence–
absence relationships, while theirs identifies clusters of grid cells
with low distributional and phylodistributional turnover.

Our results suggest that, at least for amphibians, turnover
measures based on species distribution data alone may be
sufficient to identify realm boundaries. This conforms with the
distribution only approach undertaken in Holt et al.33, which
similarly identifies Weber’s line as the realm boundary between
the Oriental and Oceanian faunas, although it does not identify
Wallace’s line. This suggests that Weber’s line may be more
robust and independent of methodology than Wallace’s line.

At a finer scale, our analysis was able to recover many expert
based biogeographical regions around the world. Taking South
America as an example, our analysis not only identified the 2–3
major regions found by Holt et al.33, but also successfully
recovered climatically and physiognomically distinct bioregions—
roughly equivalent to biomes in WWF’s classification12. These
include the seasonally dry and fire prone Brazilian Cerrado, the
evergreen Atlantic forest of eastern Brazil and the geologically old
and nutrient poor Guianan highlands, among several other
regions that were not recognized by our benchmark example
using similarity33. We also note some important differences in the
area and delimitation of these bioregions. The western limits of
the Amazonian region inferred by Holt et al.33, for instance, cuts
across the Andean mountains, despite the enormous altitudinal
and physiological differences between these two regions. Our
delimitations better conform to the commonly recognized
boundaries between the Andes and Amazonia47, thus reflecting
not only taxonomic differences but also current topography,
climate and evolutionary history48.

The inference of biogeographical regions for vascular plants of
the United States of America led to similar methodological
differences as compared with the analysis of amphibian data. In
particular, the species clustering approach based on similarity
exhibited both quantitative as well as qualitative shortcomings: it
was unable to distinguish more than a few biogeographical
regions under its optimal clustering, and it was heavily biased by
political state boundaries (Fig. 5).

(Network)

Focal grid

Focal grid

(Similarity)

Figure 4 | Species turnover of vascular plants. Map of the USA showing

how affinity decreases relative to an arbitrarily chosen county under (a) a

network measure of distance and (b) a species similarity measure (here

b-similarity). The colour gradient ranges from dark (high similarity) to light

(low similarity). The network measure allows mid to narrow ranged species

to contribute more strongly to the metric, revealing sharper boundaries of

biogeographical regions.
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These shortcomings are perhaps unsurprising given a few
challenges of the task, which we chose to illustrate the potential
pitfalls encountered in empirical data sets of species distribution.
First, we clustered raw occurrence data as presence or absence of
a species in a county. This becomes evident in the output of the
similarity analyses, as presence/absence data is often compiled at
the state rather than the county level, producing apparently
unique floras at the state level (mostly evident in Fig. 5, right
column). Second, county sizes differ substantially, creating an
artifactual richness bias that is correlated with county size
(Supplementary Fig. 1). This pitfall might have been avoided by
re-aggregating data by evenly sized grid cells and using an equal
area coordinate system to remove latitudinal biases, but it should
be already minimized by the Simpson’s similarity index utilized.
The compilation of spatial data under different aggregation
schemes is well known to produce systematic biases in spatial
analyses, a phenomenon termed the modifiable areal unit
problem49,50.

In cases where the taxa studied show clear geographical biases,
such as American plants51, species distribution models (SDMs)
could have been used as an alternative to range maps. This would
have reduced the bias of identifying political state boundaries as
bioregion limits in our empirical example using the similarity
approach (Fig. 5). However, we identify two inherent pitfalls.
First, SDMs are still largely sensitive to the data and methodology
used52, carrying their own sets of problems and assumptions—
such as reliance on interpolated climatic data, general
unavailability of non climatic niche variables and exclusion of

potentially crucial lineage-specific traits such as dispersal ability,
biotic interactions, population dynamics and evolutionary
history53. Second, using SDMs for bioregion inference could
become conceptually circular. If we are to understand how species
cluster into distinct bioregions, and how the boundaries of these
bioregions relate to environmental gradients, this comparison
needs to be post hoc. We cannot use SDMs to delineate the same
bioregions that are then used to compare their correspondence
with the environmental variables, because these variables are
already the major component of SDMs.

Considering these pitfalls, we argue that new methods for
biogeographical delineation must be designed around the
current challenges offered by real occurrence data—which are
geographically and taxonomically biased, but nevertheless
constitute the most reliable evidence on where species occur.
Here we have provided evidence that the network approach
presented here outperforms the current methods based on
similarity.

In conclusion, the tendency of species to remain in their
optimal environment over evolutionary time has been
suggested as a crucial feature shaping the uneven distribution
of the world’s biota13,18,54, including the establishment and
maintenance of the tropical gradient in species richness.
The origin and evolution of bioregions is also gaining
focus in macroecological meta-analyses using phylogenetic,
palaeontological and distribution data14,33,48.

Phylogenetic turnover measures have been used as alternative
to55, as well as in combination with33, species distribution data.

All native

Network

Similarity

(knee)

Similarity

(n=40)

Native trees

Native

non-tree

Figure 5 | Biogeographical regions of plants in the USA. The maps show demarcations for three subsets of the USDA plant database: all native plants,

native trees, and native shrubs and herbs. The left column was determined by the map equation (under the optimal number of clusters in each analysis),

while the middle and right columns were determined by a similarity approach (optimal number of clusters and an arbitrarily finer scale delineation,

respectively). In each map, biogeographical regions were coloured differently to aid visualization (rather than reflect identify). Overall, the network

approach captures with broad brushstrokes the patterns of the generally recognized biomes and biogeographical regions of the USA. Although state-level

biases are apparent from both methodologies, they are strikingly more recurrent in the similarity approach. (N¼ 17,600 species).
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However, they rely on robust and well-sampled species-level
phylogenies (which are currently lacking for many organismal
groups) and may introduce circularity when using the identified
bioregions for measuring the degree of phylogenetic niche
conservatism as shifts in bioregions are commonly associated
with speciation events. Phylogenies, especially when time calibrated,
can be subsequently used to shed light on the temporal origin,
evolution and phylogenetic relatedness of bioregions.

Important challenges, however, remain in order to further
advance bioregionalizations:

1. Quantity and quality of species occurrence data. Mapping the
distribution of the world s estimated 8.7 million species56

constitutes a major challenge in biological research57 and is
paramount for bioregion delineation. The ever increasing
digitization of natural history collections worldwide now offers
access to over 500 million records at the Global Biodiversity
Information Facility (www.gbif.org), but this figure is still far
from the estimated total of one billion specimens. It is clear
that the occurrence data currently available contain substantial
spatial, taxonomic and temporal biases58, besides a certain
proportion of errors (for example, misidentified specimens
and poorly or wrongly annotated locality information).
Substantial efforts are required to revise such raw occurrence
data and combine them with field observations and expert
knowledge, for producing GIS based polygons of species
distribution ranges (for example, IUCN and Map of Life,
http://mol.org).

2. Methodological development and integration. Bioregionaliza-
tion will greatly profit from bringing together different

techniques, data and disciplines. These could include remote
sensing, climatic mapping and bioregion modelling based on
key species22. New methodologies for bioregion delineation
need to be reproducible and transparent about their
assumptions. They should offer measures of reliability
regarding the number and boundaries of species clusters
identified, for example through bootstrapping techniques. In
some cases, the delimitation of the same bioregion may be
more or less robust along different edges. Finally, they should
be regularly validated through ground truthing.

3. Theory versus reality. Are biogeographical regions real and
natural entities, how were they formed, how are they
maintained through time and space? We still lack an
elementary ecological theory for addressing these questions,
despite the fact that few people contest their existence. We also
need to understand how extrinsic (for example, climate,
geological history and soils) and intrinsic (for example,
functional traits, biotic interactions and physiology) variables
interplay to produce the differences we observe in the number
and delimitation of bioregions based on data from plants,
birds, amphibians and mammals (ref. 33 and this study) and
expand our inferences to many other understudied groups.

More than a century after the first biogeographical regions
were proposed8, we may now have enough data to delimit the
world’s biogeographical regions in greater detail than Wallace
could ever envision. Our study, however, illustrates that new
methodologies play a crucial role in this process and that network
methods offer a new set of exciting tools to classify, delimit and
better understand biodiversity.
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in a transition zone. (b) After clustering these data with the unweighted pair group method with arithmetic meanþ b-similarity, the best representation of

these data are as two or three clusters, but three clusters causes the transition zone to appear as a distinct biogeographical region. (c) In the network

clustering, the best representation is as two or four clusters, with four being optimal (shown). In this optimal partition scheme, the transition zone is

composed by two clusters, each containing a single species—correctly indicating that none of them can be confidently assigned to any of the major biotic

assemblages. In the two cluster solution, the grid cells are divided evenly between the zones. Colours indicate the number of links that each node has: grid

cells with higher richness and species with larger ranges are redder, while grid cells with less richness and species with smaller ranges are bluer. The sizes

of the nodes are similarly proportional. ‘G’ denotes grid cell, ‘N’ denotes Northern species, and ‘S’ denotes Southern species. Node positions were

determined with the Force Atlas algorithm in the Gephi software package66. (N¼ 30 species).
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Methods
Delimiting bioregions with networks. To classify bioregions based on species
distribution data we hierarchically classify groups of species and grid cells into
biogeographical regions. To achieve this goal we borrow from the techniques
developed in network science to create a network that will be meaningful for
biogeographical analyses, and then use network clustering algorithms to hier-
archically partition the groups of nodes into clusters. In this paper we adapt the
methodology presented by Vilhena et al.59 and Sidor et al.45 for modelling species
distributions as a network. We first build the network to be clustered, and then we
choose the best clustering algorithm to infer bioregions.

A bipartite network (Fig. 2) has two disjoint sets of nodes with no links between
nodes of the same set. Many biological systems have been abstracted as bipartite
networks, such as plant-pollinator interactions inferred by visitation60, sexual
contact between heterosexual partners61 and interactions between prey and bait
proteins generated by yeast two-hybrid screening, an experimental method to test
whether pairs of proteins interact62.

Geographical relationships between species and localities can also be
abstracted as a bipartite association network, where links are the occurrences of
species within geographical locations. Interpretations derived from analyses of
presence–absence networks are comparable with plant-pollinator networks,
because relationships between entities of the same set are associational, such as co-
visitation and co-occurrence. Second-order relationships in presence–absence
networks are paths of length two or 2-paths. The number of 2-paths between
species is the number of times those species co-occur, while the number of 2-paths
between a pair of localities, regions or grid cells is the number of species shared by
both the grid cells. Although second-order range overlaps between two species may
not be directly intuitive biologically, in practice it should allow the delimitation of
bioregions comprised of only partially overlapping species. Partial occupancy of a
species’ potential range (Fig. 1a) may be due to intrinsic traits (for example,
dispersal ability, tolerance to specific climatic and environmental variables,
ecological interactions) as well as the region’s physical features (for example, soil
and climatic heterogeneity, geological history, presence of dispersal barriers).

A more complicated pattern is the number of joint occurrences, where two species
occupy the same two localities. This can be measured as the number of four paths that
complete a loop (Fig. 2a). These relationships can be combined to reveal properties of
geographical ranges. For example, the number of 3-paths between a species A and
locality B divided by the number of 2-paths exiting from species A is the fraction of
co-occurrences of species A that also occupy locality B. By setting up the machinery to
capture ‘higher-order’ patterns, we can detect complex patterns of presence-absence.

The adjacency matrix A of this network formally expresses species occurrences,
and is written

Aij ¼
1 If node i is linkedwith node j
0 otherwise:

�

ð1Þ

For the rows and columns of this matrix, we order first by species (1...n) and
second by grid cells (n þ 1...n þ m), producing a square matrix with n þ m rows
and n þ m columns. This is expressed

A ¼
0 B
BT 0

� �

; ð2Þ

where B is the binary presence–absence matrix, in which rows are taxa and
columns are localities. The upper left block and lower right block in this matrix are
zeroes, because species cannot occur in species and localities cannot occur in
localities. The square of the adjacency matrix A gives the co-occurrence matrix C
between taxa as the upper left square, or number of co-occurrences between pairs
of species, and the matrix of shared species S as the bottom right square or number
of shared species between the pairs of grid cells

A2 ¼
C 0
0 S

� �

; ð3Þ

where elements in the upper right and lower left squares of the matrix are zeroes
because 2-paths are exclusively between two species or between two localities. Total
paths of length i between nodes can be expressed by raising the matrix to the ith
power. By formulating the data in this way, new measures can be derived and tools
from network theory can be readily applied. In the next section we apply a
common clustering algorithm to this bipartite network.

Clustering the bipartite species network. Among candidate clustering algo-
rithms, the map equation is the most suitable approach to be extended to bipartite
networks43–45. The map equation is a general approach that, for our purposes,
corresponds to an intuitive process. First, the algorithm chooses a random grid cell.
It then randomly chooses a species found in that grid cell, examines the
geographical range of that species, and selects a grid cell at random within its
geographical range. It repeats this process iteratively and exhaustively. In biota with
substantial biogeographical structure, the algorithm would spend long time
intervals within bioregions, crossing only when it selected a cross-bioregion species.

If the algorithm would be requested to report a list of the grid cells and species
chosen, it would save time to simply list the bioregions visited. The map equation
quantifies the tradeoff between losing detail from all visits and saving time by
communicating a shorter list; in biota with strong biogeographical structure, it will

be better on average to communicate a shorter list of visits. The map equation has
been extended to deal with hierarchical partitions, which we use to reveal
biogeographical regions43,44. The software packages for the two level and
hierarchical approaches are available online (http://www.mapequation.org).

Method validation and performance. As a first empirical test case, we apply the
network clustering method to the International Union for Conservation of Nature
(IUCN) amphibian database, which contains range shape files for each of the
world’s c. 6,100 included species. We use only native ranges for the analysis. We
choose to analyse distributional data for amphibians63 because (i) we consider this
database to be thoroughly verified by the scientific community; (ii) we expect that
the eco-physiological tolerance of amphibians should be narrower than for example
that for mammmals or birds, and therefore more closely represent generally
recognized biogeographical regions; and (iii) this would allow a direct comparison
with a recent study by Holt et al.33, where both the species distribution data alone
and combined with phylogenetic information was used to infer zoogeographical
regions and realms at a global scale.

Our second empirical test is performed using the USDA plant database, which
contains the presence or absence of 22,918 native vascular plant taxa
(corresponding to 17,600 species) spread through 50 states and 3,143 counties of
the USA. We use only the range of native plants, delineating bioregion structure for
all plants, only trees and all plants except trees (that is, herbs, lianas, shrubs,
subshrubs and vines). These data are ideal as a benchmark because they contain
several challenges for computational methods. First, the United States county areas
are longitudinally biased, with larger counties in the west and smaller counties in
the east (Supplementary Fig. 1). Second, plant distributions are aggregated
differently across the states, causing systematic compositional biases across state
borders. Third, counties are unevenly sampled. To our knowledge, no quantitative
bioregion delineation of these data are available for direct comparison.

Finally, we use a recent hypothetical data set to illustrate key differences between
our network method and species similarity approaches. In a recent commentary by
Kreft and Jetz46, this data set was created to showcase potential pitfalls for selecting
the wrong number of clusters. The hypothetical data contains a transition zone,
where the most widespread species in a Northern and Southern biota co-occur
(Fig. 6a). In their analysis46, the number of clusters selected as optimal was shown to
fully determine whether or not the transition zone appeared as distinct
biogeographical regions. This result was used to illustrate the danger of classifying
transition zones as distinct biogeographical regions, but also highlights the sensitivity
of inferring biogeographical regions based on species similarity measures.

To assess the performance of our network-based clustering with a conventional
species similarity approach, we opted for the methodology selected as best in a
recent methods review by Kreft and Jetz32. To apply that approach to our plant
data, we created a matrix of counties and computed the species similarity between
each pair of the US counties with species data. We applied the bsim index to the
different data sets, written 1� a

minðb;cÞþ a
. Here a is the number of shared species

between two species assemblages and b and c are the total unique species to either
assemblage (quadrat, locality, grid cell and so on). Note that bsim is 0 when the
species assemblages are either identical or the smaller assemblage is a subset of the
larger assemblage, and bsim is 1 when the assemblages contain no shared species.
This measure is considered ideal over more conventional measures (such as the
Jaccard) because it is less sensitive to differences in species richness32.

To further illustrate how the network measure compares with b-similarity, we
calculated taxonomic plant similarity between each US county and an arbitrarily
selected focal grid (the Mohave County in Arizona), following a similar
methodology as described in previous studies10,32,64. We then performed the same
calculation using the network measure and projected the results on a map. Finally,
we clustered the full species similarity matrix with the unweighted pair group
method with arithmetic mean approach to generate a hierarchical dendrogram that
summarizes the distances between counties. From this dendrogram, we selected an
optimum number of clusters by finding the ‘knee’ in the evaluation curve65, with
the average percentage of county level endemics as our evaluation measure32.
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52. Duputié, A., Zimmermann, N. E. & Chuine, I. Where are the wild things? why we
need better data on species distribution. Global Ecol. Biogeogr. 23, 457–467 (2014).

53. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than
simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

54. Laffan, S. W. Spatial non-stationarity, anisotropy and scale: The interactive
visualisation of spatial turnover. MODSIM2011, 19th International Congress on
Modelling and Simulation, Perth, 1652–1658 (2011).

55. Salvador, S. & Chan, P. Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms. In Tools with Artificial
Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on Tools
with Artificial Intelligence 576–584 (IEEE, 2004).

56. Donoghue, M. J. A phylogenetic perspective on the distribution of plant
diversity. Proc. Natl Acad. Sci 105(Supplement 1): 11549–11555 (2008).

57. Rosauer, D. F. et al. Phylo genetic generalised dissimilarity modelling: a new
approach to analysing and predicting spatial turnover in the phylogenetic
composition of communities. Ecography 37, 21–32 (2014).

58. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many
species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).

59. Guralnick, R. & Hill, A. Biodiversity informatics: automated approaches for
documenting global biodiversity patterns and processes. Bioinformatics 25,
421–428 (2009).

60. Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in
species occurrence data. PLoS Biol. 8, e1000385 (2010).

61. Vilhena, D. A. et al. Bivalve network reveals latitudinal selectivity gradient at
the end-Cretaceous mass extinction. Sci. Rep 3, 1790 (2013).

62. Bascompte, J., Jordano, P., Meliaan, C. J. & Olesen, J. M. The nested assembly of
plant-animal mutualistic networks. Proc. Natl Acad. Sci 100, 9383–9387 (2003).

63. Erguon, G. Human sexual contact network as a bipartite graph. Physica A 308,
483–488 (2002).

64. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

65. IUCN. The IUCN red list of threatened species (2012).
66. Bastian, M., Heymann, S. & Jacomy., M. Gephi: an open source software for

exploring and manipulating networks. International AAAI Conference on
Weblogs and Social Media (2009).

Acknowledgements
We thank J. Grummer and J. Wiens for discussions on amphibian distributional patterns,

K. Dexter for discussions on North American biomes, C.T. Bergstrom, M. Rosvall,

Alain Franc and F. Meacham for discussions on network clustering, and H. Tuomisto for

help with species similarity indices. A.A. is supported by grants from the Swedish

Research Council (B0569601), the European Research Council under the European

Union’s Seventh Framework Programme (FP/2007–2013, ERC Grant Agreement n.

331024) and a Wallenberg Academy Fellowship.

Author contributions
D.A.V. and A.A. contributed equally to the design and writing of the paper. D.A.V.

performed the analyses.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/

naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available at http://npg.nature.com/

reprintsandpermissions/

How to cite this article: Vilhena, D. A. and Antonelli A. A network approach for

identifying and delimiting biogeographical regions. Nat. Commun. 6:6848 doi: 10.1038/

ncomms7848 (2015).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7848 ARTICLE

NATURE COMMUNICATIONS | 6:6848 |DOI: 10.1038/ncomms7848 |www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	A network approach for identifying and delimiting biogeographical regions
	Introduction
	Results
	Amphibians of the world
	Vascular plants
	Hypothetical data set

	Discussion
	Methods
	Delimiting bioregions with networks
	Clustering the bipartite species network
	Method validation and performance

	Additional information
	Acknowledgements
	References


