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Abstract

In the network approach to psychopathology, disorders are conceptualized as networks of mutually interacting symptoms
(e.g., depressed mood) and transdiagnostic factors (e.g., rumination). This suggests that it is necessary to study how
symptoms dynamically interact over time in a network architecture. In the present paper, we show how such an architecture
can be constructed on the basis of time-series data obtained through Experience Sampling Methodology (ESM). The
proposed methodology determines the parameters for the interaction between nodes in the network by estimating a
multilevel vector autoregression (VAR) model on the data. The methodology allows combining between-subject and within-
subject information in a multilevel framework. The resulting network architecture can subsequently be analyzed through
network analysis techniques. In the present study, we apply the method to a set of items that assess mood-related factors.
We show that the analysis generates a plausible and replicable network architecture, the structure of which is related to
variables such as neuroticism; that is, for subjects who score high on neuroticism, worrying plays a more central role in the
network. Implications and extensions of the methodology are discussed.
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Introduction

Theoretical considerations and empirical evidence in psychol-

ogy point towards a network perspective, in which psychological

constructs are conceptualized as networks of interacting compo-

nents instead of measurements of a latent construct, as hypoth-

esized in traditional perspectives [1–6]. From this perspective,

mental disorders are understood as networks of interacting symptoms [3]

that form mechanistic property clusters [7]: sets of causally intertwined

properties that need not share one fundamental underlying cause.

By focusing on the interaction between symptoms, the network

approach naturally captures the fact that symptoms of psychopa-

thology co-evolve dynamically [8]: if one symptom arises (e.g.,

insomnia), that symptom can cause other symptoms to arise as well

(e.g., concentration problems [3]).

Such patterns of symptom interaction are likely to vary across

individuals. For instance, some people have a higher degree of

emotional variability than others, and such differences are known

to be related to personality traits, such as neuroticism [9].

Likewise, some people may feature stronger connections between

sleep deprivation and affect, such that a night of bad sleep quickly

leads to depressed mood, whereas others may be more resilient

(see e.g., [10]). By focusing on patterns of symptom dynamics, the

network approach may potentially yield important insights into

how the dynamics of psychopathology relate to intra- and inter-

individual differences. Despite the fact that the network perspec-

tive is highly suggestive in this respect, techniques to actually

empirically chart differences in the dynamical structure of

individuals’ symptom dynamics have so far been lacking. In this

paper, we present a methodology suited for this task and we apply

this methodology to data of individuals with residual depressive

symptoms [11] to illustrate its potential use in psychopathology

research.

The natural starting point for the study of symptom network

dynamics lies in the analysis of symptoms measured over different

time points. Such time series data have recently become available

due to the rising popularity of data collection approaches using the

Experience Sampling Method (ESM), where data about the

experiences and affect of participants in their daily life are

collected repeatedly over time [12–14]. However, current

statistical tools for inferring networks from empirical data, as they

have been developed and applied mostly in systems biology (see

e.g., [15]) and neuroscience (see e.g., [16,17]), are not optimally

suited for data from ESM studies, for several reasons. First, ESM

studies do not feature very long time series on a single system (i.e.,

the number of time points per subject is limited), which hampers

the application of typical time series modeling techniques (e.g.,

[18,19]). Secondly, ESM data are hierarchically structured

because several persons are measured repeatedly leading to

measurements that are clustered within persons [20]. This

hierarchical structure necessitates the use of separate models for

each individual. In combination with the relatively short time

series, this leads to unstable results when traditional network

models are applied.
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In the present article, we demonstrate a statistical method that is

tailored to extract network structures from ESM data. We present

a multilevel approach to vector autoregressive (VAR) modeling

that optimally utilizes the nested structure that typically arises in

ESM protocols. This approach is applied to data from an ESM

study with a sample of people who feature residual depressive

symptoms after a depressive episode (see [11]), and validated in a

normal sample. This paper presents the first glimpses of the

dynamic weighted network architecture of psychopathology, and

develops a methodology that yields new possibilities to analyze and

understand the structure of disorders.

The outline of the paper is as follows: first, we elaborate on the

ESM study used for the analysis and introduce the methodology,

the multilevel-VAR method. Second, we explain how a network

can be inferred from the data by estimating the average

connection strengths between symptoms or variables of interest.

Third, we show how the multilevel-VAR method provides

information about inter-individual differences in addition to the

average network. Fourth, we discuss how network models can be

extended with explanatory variables, and how the networks as

such can be further analyzed through local and global analyses. In

the fifth section, we show how much of the main results can be

replicated using an independent dataset that serves as cross-

validation. The software code (in R; [21]) and data necessary to

perform the analyses that result in the main figures reported in this

article are included in Appendix S1 and Data S1 respectively.

Method

Data
We inferred a network structure of six items from an ESM study

[11]. The ESM study followed 129 participants with residual

depressive symptoms over the course of 12 days, of which the first

six days were the baseline period. The following six days took

place after 2–3 months, after the participants had been randomly

divided into a treatment group (63 participants receiving

mindfulness therapy (mean age of 44.6 years and SD = 9.7; 79%

female) and a control group (66 participants assigned to a waiting

list with a mean age of 43.2 years and SD = 9.5; 73% female).

Every day subjects were randomly notified by a beeper in each of

ten 90-minute time blocks between 7:30 am and 10:30 pm. When

signaled, they had to fill out the ESM self-assessment form

assessing mood and social context in daily life. This resulted in a

maximum of 60 responses per period (baseline or post-baseline).

All self-assessments were rated on 7-point Likert scales.

For the purpose of our analysis, we selected a number of items

that captured distinctive kinds of mood states. Mood states can be

broadly differentiated in terms of their valence (positive/negative)

and their degree of arousal (high/low [22–26]). We included four

items that covered different values of the two factors of the mood

space. Regarding positive mood, we chose the items ‘I feel

cheerful’ and ‘I feel relaxed’ to represent high and low arousal

respectively. For representing negative mood, we chose the items ‘I

feel fearful’ and ‘I feel sad’, which capture the subjective

experience of high and low arousal respectively [27–29].

Furthermore, we included the item ‘worry’ because worrying is

thought to play a significant role in emotion regulation, including

the onset and maintenance of negative mood [30–32]. The sixth

item of the network, ‘pleasantness of the event’, concerned the

environmental context, and assessed the pleasantness of the most

important event that happened between the current and the

previous response.

Introducing Multilevel-VAR
To overcome the difficulties that accompany the analysis of nested

longitudinal data we developed a novel combination of VAR (e.g.,

[18,33]) and multilevel modeling (e.g., [34]). A VAR model is a

multivariate extension of an autoregressive (AR) model [19]. An AR

model is typically applied to a repeatedly measured variable

obtained from a single subject. In this way, the time dynamics

within an individual are modeled. An AR model can be considered

as a regression model in which a variable at time point t is regressed

to a lagged (measured at a previous time point, t{1) version of that

same variable [35]. In VAR the time dynamics is modeled for

multiple variables. Thus, variables are regressed on a lagged version

of the same variable and all other variables of the multivariate

system. By combining the VAR model with a multilevel model, time

dynamics can be modeled not only within an individual, but also at

group level, since the multilevel model allows the VAR coefficients to

differ across individuals. Thus, a combination of both models allows

for modeling both individual and population dynamics.

The combination of both modeling approaches has, to the best of

our knowledge, not yet extensively been studied or applied in the

statistical, psychometric or econometric literature. The methods

developed in Lodewyckx, Tuerlinckx, Kuppens, Allen, and Sheeber

[36] and Oravecz, Vandekerckhove, and Tuerlinckx [37] have an

approach that comes close to what is presented in this paper.

However, both methods have a Bayesian and more complex

modeling approach and are not easily generalizable to ESM data

[36] or can only estimate bivariate symmetric models [37].

Consequently, the specific disadvantages of [36] and [37] make

them not directly applicable for network inference as we envision it.

The modeling approach of Pe and Kuppens [38] has a similar goal to

the method presented in this paper, but makes more approximations

(because only bivariate models are used, even though a network of

four variables is inferred). Other recent approaches using VAR and/

or multilevel can be found in the literature [39–43]. However, in the

majority of these studies, the dynamic parameters are not treated as

random effects but as mere fixed effects (for an exception, see

Horváth and Wieringa [43]). In addition, many of these studies do

not consider a network approach, nor do they present an accessible

way of applying the proposed methodology. In the present paper we

present a comprehensive random effects modeling strategy that is

optimized to the context of network inference in psychopathology, is

implemented in R [21], and can be easily passed on to network

analysis routines.

The Population Network
In this section we explain how a population network of the six

variables (cheerful, relaxed, sad, worry, fear and event) can be

inferred with the multilevel-VAR method. The main goal is to

estimate the average connection strengths between all variables in

the population. These connection strengths can then be repre-

sented in a network. To estimate these connection strengths we

apply the multilevel-VAR method to the measured values at

baseline of the six variables. For an arbitrarily chosen criterion

variable j (i.e., cheerful, relaxed, sad, worry, fear or event, for

j~1,2,:::,6, respectively), the model equation is as follows:

Ypdtj~c0pdjzc1pdj
:cheerfulp,d,t{1zc2pdj

:sadp,d,t{1

zc3pdj
:worryp,d,t{1zc4pdj

:fearp,d,t{1z

c5pdj
:eventp,d,t{1zc6pdj

:relaxedp,d,t{1zepdtj :

ð1Þ

A Network Approach to Psychopathology
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In our case, Ypdtj represents the measurement for person px

(p = 1,2,…,129) at day d (d = 1,2,…,12) and time t of the j-th

criterion variable. Equation (1) represents the multiple regression

of a single variable at time point t on all other variables at time

point t{1. Because there are six variables, there are six such

regression equations – one for each variable. At baseline (i.e., at

days 1 to 6 before the therapy treatment is applied, such that

dv7), the regression coefficients (i.e., intercept and regression

weights) are decomposed as follows:

ckpdj~bbase
kj zbkpj , ð2Þ

where bbase
kj represents the population average effect (fixed effect) at

baseline of the lagged variable k(for k~0, this is the intercept) on

the criterion variable j, and bkpj is the person-specific deviation

(random effect) of this general effect. In the remainder, person-

specific effects will always be denoted in Roman letters.

In order to illustrate our model, let us consider the regression

equation for the variable ‘‘cheerful’’. Because we identify all

variables explicitly with their names, we only use the j-index to

distinguish the regression coefficients, but not to identify the

variables (hence, the variables carry only three indices, as

compared to Equation (1)). At baseline (d = 1,2,…,6), the model

reads (not all predictors are explicitly included in the interest of

clarity):

cheerfulpdt~ bbase
01 zb

pre
0p1

� �
z bbase

11 zb1p1

� �
:cheerfulp,d,t{1

z bbase
21 zb2p1

� �
:sadp,d,t{1z . . .

z bbase
61 zb6p1

� �
:relaxedp,d,t{1zepdt1:

Focusing on the baseline level, we may now construct a 6-by-6

matrix Bbase with the fixed effects bbase
kj (k,j~1, . . . ,6). The matrix

Bbase captures the dependence of the 6-dimensional state (i.e.,

cheerful, sad, worry, fear, event, and relaxed) of a typical

individual (i.e., for which bkpj~0) upon the previous 6-

dimensional state (all effects at baseline). A specific element bbase
kj

thus expresses the extent to which variable k at time point t{1 is

related to variable j at time t, while controlling for all other

variables. The elements on the diagonal (i.e., bbase
jj ) are the

autoregressive effects (self-loops), while the off-diagonal elements

are the cross-regressive effects (bbase
kj ; connections between different

variables). Note that, in general, Bbase is asymmetric.

The matrix Bbase can be viewed as an adjacency matrix [44] of a

weighted network. The matrix Bbase contains the fixed effects of

the multilevel-VAR model and represents the lag 1-links between

the nodes (i.e., the variables). Thus the matrix Bbase can be thought

of as the population average of the network structure. Because we

are looking at several specific links, we control for multiple testing

by controlling the False Discovery Rate (FDR method; [45]) at

5%. The generated network structure can be visualized through

the R-package qgraph [46]. Only connections that surpass the

significance threshold are shown in the visual representation.

Since fitting a multilevel-VAR model directly to the multivariate

time series of the participants in the sample is computationally

challenging, we approach the problem by breaking up the

complicated multivariate problem into a series of easier-to-

compute univariate models which are integrated in a second step

(i.e., by representing them as a network). This approach can be

considered as an instance of the so-called pseudo-likelihood

method [47,48].

By using univariate models, most parameters are estimated

directly (e.g., all fixed effects bkj and variances of the error terms

epdtj ). However, some parameters of the model such as the

correlations between error terms of the different univariate

regression models can only be estimated indirectly in our

approach. In Appendix S2, a more elaborate description of the

pseudo-likelihood method is given, and it is shown through

simulations that point estimates of most directly and indirectly

estimated parameters are on average close to the true values. This

indicates that the pseudo-likelihood fitting procedure of the

multilevel-VAR approach is a feasible alternative to full likelihood

fitting procedures. The modeling is carried out using the lme4

package in R [49] (see R-code in Appendix S1).

Individual Differences
The multilevel-VAR method provides information about inter-

individual differences (random effects) in the network, in addition

to the population average network (see Equation (2)). Through the

random effects we can construct networks of individual variability

and infer a network for each subject of the ESM study separately

(see R-code in Appendix S1).

In this paper, we take a random effect approach to estimate inter-

individual differences, and assume that these person-specific

parameters bkj are drawn from a multivariate normal distribution

with a zero mean vector and an unstructured covariance matrix (see

e.g., [50]; see Equation (2)). Other approaches to deal with inter-

individual differences are fixed-effects analysis (i.e., constructing a

dummy variable for each subject [51]) and conditional analysis (see

e.g., [52]). In the multilevel-VAR method a random-effects

approach is taken because it avoids possible problems related to

the two previously mentioned approaches. The approach is more

parsimonious in terms of number of parameters: instead of having to

estimate explicitly all person-specific parameters as in the dummy

variable approach, only the variance parameters have to be

estimated [53], which at the same time avoids problems of

inconsistent estimators [54]. The random-effects approach also

allows one to evaluate all effects, in contrast to the conditional

analysis approach, in which effects of between-person variables,

such as possible therapy effects, cannot be evaluated [55].

To construct a network representing individual variability, we

take the estimate of the population standard deviation of the

person-specific (random) effects SD(bkpj). Thus, each connection

in the network represents the SD of the random effects for that

specific connection. Connections in the network that have a large

standard deviation represent a high variation of the value

(connection strength) of that specific connection over individuals.

In addition, the model in Equations (1) and (2) allows for

constructing a network of a single subject. These N~1 networks are

a combination of the individual random effect, which is added to the

fixed effect of the relevant link (connection) in the network. For

instance, in the individual network of person p at baseline, the link

from node k to node j has a value of bbase
kj zbkpj (see Equation (2)).

Extending the Network Model with Explanatory
Variables: Local and Global Network Analyses

As is the case in a standard multilevel analysis, explanatory

variables that might explain part of the inter-individual variability

can be added (called level-2 variables in standard multilevel

terminology, see [34]). In this paper, we present two examples. In

the first example, the explanatory variable ‘‘therapy-intervention’’

is added to the standard model. We compare the network of the

A Network Approach to Psychopathology
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therapy group with the non-therapy group by comparing specific

links in the networks. A therapy effect on the network structure

implies a significant three-way interaction. For example, if there is

a therapy effect on the link from sad to cheerful, this means that

the interaction between the variables therapy (therapy or control),

time (pre or post baseline) and sad (ranging from 1 to 7) is

significant in the regression model that applies to the variable

cheerful, signifying that the effect of feeling sad on feeling cheerful

has changed from pre- to post-therapy.

In the second example, we explain variability in individual

networks by relating it to covariates; here, neuroticism functions as

an example. We present a global network analysis, in which the

overall structure of the network is taken into account; these

analyses contrast with local network analyses, which compare

specific connections across networks. A representative example of

such a network analysis is a centrality analysis. We will examine

whether the structure of the network regarding centrality changes

when the degree of neuroticism changes. This question is

approached by looking at differences in the network structure of

three different groups: low, mid and high neuroticism.

Therapy: Local Network Analysis
In order to analyze whether therapy had a significant effect on

the network structure we added the variable ‘‘therapy-interven-

tion’’ to the baseline model (see Equation (2); see R- code in

Appendix S1). Thus, besides reports measured at baseline (i.e.,

dv7), we also added post-baseline measurement instances (i.e.,

d§7). The regression coefficients (for which k~0 is the intercept

and kw0 are the regression weights) are now equal to:

ckpdj~bbase
kj zbpost

kj zdkjTherapypzbkpj , ð3Þ

where d§7 and the term Therapyp equals to 0 if person p belongs

to the control group, and takes value 1 if the person received

mindfulness therapy. As can be seen from the equation, b
post
0j

represents the difference between the intercept at baseline and post-

baseline for the control group. In general, Equation (3) allows for a

difference between the mean of the control and the therapy group,

so differences between the two groups post-baseline are accommo-

dated for. A comparison of Equations (2) and (3) shows that the

model assumes person-specific deviations from the regression

weights to be the same pre- and post-baseline (i.e., persons who

deviate in a particular way from the mean structure during baseline

will continue to do so post-baseline). This restriction is made for

reasons of parsimony. However, for the intercept, the model allows

person-specific deviation of the general intercept to be different pre-

and post-baseline (therefore the pre-baseline person-specific devi-

ation will be denoted as b
pre
0pj and post-baseline as b

post
0pj ).

To illustrate this model, let us consider the regression equations

for the variable ‘‘cheerful’’. The post-baseline (d~7, . . . 12) model

for the controls becomes

cheerfulpdt~ bbase
01 zbpost

01 zb
post
0p1

� �
z bbase

11 zbpost
11 zb1p1

� �

:cheerfulp,d,t{1z bbase
21 zb

post
21 zb2p1

� �

:sadp,d,t{1z . . . z bbase
61 zb

post
61 zb6p1

� �

:relaxedp,d,t{1zepdt1,

while that for the therapy group equals

cheerfulpdt~ bbase
01 zbpost

01 zd0jTherapypzb
post
01

� �

z bbase
11 zb

post
11 zd11Therapypzb1p1

� �

:cheerfulp,d,t{1z bbase
21 zb

post
21 zd21Therapypzb2p1

� �

:sadp,d,t{1z . . . z bbase
61 zb

post
61 zd61Therapypzb6p1

� �

:relaxedp,d,t{1zepdt1:

ð4Þ

Analogous to the construction of Bbase, as described in the pre-

vious section, we may construct matrices Bpost{control and

Bpost{therapy, which can be interpreted as network structures that

describe the post-intervention behavior of the relevant variables as

they apply to control and therapy groups. Through this model we

can evaluate the effect of therapy, by looking at the three-way

interactions between a predictor variable, the post-baseline

indicator and the therapy-indicator (the parameters of interest

are dkj in Equations (3) and (4)). Because we are looking at several

specific links, we control for multiple testing. This is done by

controlling the False Discovery Rate (FDR method; [45]) at 5%.

Neuroticism: Global Network Analysis
Important information about a network can be gained by

analyzing its global structure, for example by looking at the

relative centrality of different nodes. In a centrality analysis, nodes

are ordered in terms of the degree to which they occupy a central

place in the network. Relevant centrality measures can be

constructed in different ways [56]; here, we focus on betweenness

centrality. Betweenness centrality takes direct and indirect weighted

links between the nodes into account. First, for each pair of nodes x

and y (e.g., worry and cheerful), the strongest direct and/or

indirect connecting paths from x to y and from y to x are

determined. Then for each node, it is calculated to which degree

the node lies on the shortest path between two other nodes. The

more often a node lies on the shortest path between two other

nodes, the more the node can funnel and influence the flow in the

network, and the higher its betweenness centrality is [56].

To evaluate whether betweenness centrality of the network

changes when the degree of neuroticism changes we added the

variable neuroticism to the regression model in the same way as

the variable therapy was added (see R-code in Appendix S1):

ckpdj~bbase
kj zb

post
kj zdkjTherapypzgkjNeuroticismpzbkpj : ð5Þ

In this study, neuroticism was assessed with the NEO-FFI scale

of neuroticism [57]. In order to be able to deal with possible

nonlinear effects of neuroticism on the network structure, the

continuous neuroticism measure was subdivided into three groups

(based on the three quartiles) resulting in a low, middle and high

neuroticism group, corresponding respectively to sum scores 12–

34, 35–45, and 46–60 on the NEO-FFI scale. The term

Neuroticismp equals to 0 if person p belongs to the low neuroticism

group, takes value 1 if the person p belongs to the middle

neuroticism group and equals to 2 if the person p belongs to the

high neuroticism group. For reasons of parsimony, we let

neuroticism interact with the connection strengths of the baseline

network only.

For computing betweenness centrality, we used the R package

qgraph [46]. To assess the uncertainty of betweenness centrality, we

A Network Approach to Psychopathology
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used a parametric bootstrap method to construct the distribution

of the betweenness statistic under the null hypothesis that the fitted

model is correct [58]. To achieve this, we followed a three-step

procedure. First, the model as outlined above was fitted to the

data. Based on the model estimated from the observed data, we

computed the predicted values and residuals for each observation.

In the second step, we created 1000 simulated datasets by

sampling at random from the vector of residuals and adding the

sampled residuals to the predicted values. In the third step, a

model was fitted to each of the 1000 simulated datasets, and from

the estimated coefficients, the betweenness at baseline for low, mid

and high levels of neuroticism was computed. From the

distribution of betweenness scores, we calculated the median and

the 50% and 95% bootstrap confidence intervals.

The parametric bootstrap procedure is computationally inten-

sive because the model has to be re-estimated for each of the 1000

datasets. This is prohibitively time consuming using a mixed

model, and therefore we used a traditional linear model containing

only fixed effect coefficients instead of a multilevel model.

However, the agreement with point estimates from the linear

model is very strong (e.g., the correlation between the fixed

parameter estimates from the multilevel model and the linear

model is 0.93) and this strong correspondence justifies the

approximation step.

Replication of the Results: A Validation Dataset
In order to test if results found with the multilevel-VAR method

could be replicated, we compared the main outcomes of the main

dataset with a second validation dataset. The validation data we

used was from an ESM study of Kuppens (part of the data are

published in [59,60,61]). In this ESM study, 97 university students

(with a mean age of 19.1 years, SD = 1.3; 63% female) were

followed over the course of seven days. The participants had to fill

out an ESM self-assessment form assessing mood and social

context in daily life 11 times a day. This resulted in a maximum of

77 responses. All self-assessments were rated on scale from 0 to

100. From this dataset, we selected the variables that this set had in

common with the variables of the main dataset: cheerful, relaxed,

sad, worry and fear. Note that ‘‘worry’’ was assessed slightly

differently in the validation study: ‘‘How much have you worried

since the previous beep’’ instead of ‘‘I am worrying at the

moment’’. Furthermore, the pleasantness of events was not

measured in this study. To increase comparability, networks

inferred from these five variables were compared with networks

inferred from the five corresponding variables of the main dataset.

First, we inferred a population network containing the five

variables cheerful, relaxed, sad, worry and fear for both the main

dataset and the validation dataset. Then the connection strength of

the links of the main network was correlated with the links of the

validation network. The higher the correlation, the better the two

inferred networks agree. To assess the correlation, we used both

Pearson’s product moment correlation and Spearman’s rank order

correlation coefficient. In addition, we assessed to which extent the

variances of inter-individual differences are comparable in the two

studies. The correlation between the variances of the random

effects of the links of both networks was calculated using

Spearman’s product moment correlation and Pearson’s rank

order correlation coefficient.

In the validation dataset, there is no therapeutic intervention, so

the local network analysis could not be replicated. However,

neuroticism was measured in the validation set, and thus we

applied the global network analysis to the validation set. Hence,

we tested whether the centrality of the network changes in the

same way in both datasets when the degree of neuroticism varies.

Again, we used only the five variables that both sets have in

common. In this ESM study, neuroticism was measured with the

Dutch version of the Ten Item Personality Inventory [62,63] with

a sum score ranging from 1 to 7. Neuroticism was again

subdivided into three groups: a low, middle and high neuroticism

group, corresponding respectively to sum scores 1–2, 2.5–4.5, and

5–7 on the TIPI scale.

Model Assumptions
In order to apply the multilevel-VAR model three assumptions

on which the model is built need some further commenting. The

first assumption is that we start the clock again at the start of each

day as to avoid the day-night problem, which means that we do

not use the measurements of yesterday to predict the measure-

ments of today (because a night separates the two days). A night is

a relatively large time interval and is psychologically and

physiologically qualitatively different from daytime (e.g., [64]).

Thus, the first measurement of the day was excluded from

analysis. With regard to time it is furthermore assumed that the

time intervals between two consecutive measurements are

approximately equal. We will come back to both aspects when

discussing the results.

Stationarity is a second important assumption inherent to the

model. In order for a process to be (weakly) stationary, the mean

and variance of the series must stay unchanged over time [65].

Stationarity was tested with the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test separately for every subject and variable pre and

post intervention. The null hypothesis of the KPSS test is that a

time series is stationary [66]. Furthermore, a general check was

executed to test for a trend, and thus non-stationarity, in the

overall data. This was done by comparing the model outlined in

the previous section with a model into which a person-specific

linear deterministic trend was added (using the beep number as a

predictor). For both models, the Bayesian Information Criterion

(BIC) was calculated (by summing the separate BICs of the six

univariate models). The BIC is a comparative model selection

method that takes both the goodness-of-fit of a model and the

complexity of the model (as measured by the number of

parameters) into account. Models with a large number of

parameters are penalized [67]. The model with the lowest BIC

is the preferred model.

The specific order of the model is the third assumption. For

reasons of parsimony, we present only the results of the baseline

models with lag-1 predictors included. However, we also fitted

competing models of orders two and three (i.e., with all lags

included up to the specified order). In order to keep the problem

computationally tractable, we did not allow for random effects on

predictors of lags larger than one and in the main dataset we

constrained the additional lag effects to be equal at pre- and post-

baseline and in control and therapy groups.

Results

This section is organized as follows. We start by discussing the

validity of the stated assumptions (because the validity of the results

depends on the veracity of the assumptions). Subsequently, we

discuss the population network, individual differences, and the

effect of explanatory variables.

Assumptions
Since a measurement is not allowed to predict the following

measurement overnight, we deleted the first measurement of each

day. Furthermore the data had to be lagged. Together this led to a

reduction in the number of reports included in the analysis: The
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average number of useable data points went down from an

average of 49 to an average of 35 reports for each period (baseline

and post-baseline). Regarding the assumption of equally spaced

time points, the ESM study, having a quasi-random beeping

scheme, violates this assumption. However, the extent of the

violation is taken to be small, since the variation in between-

measurement points is relatively small with an average of 1.5 hours

and a standard deviation of 0.54.

Concerning stationarity, the KPSS test indicated that a vast

majority of the data was stationary (about 77%). In addition, the

BIC indicated that the models without trend were a better fit to the

data (BIC = 172896) than the models with linear trend

(BIC = 172995). Thus, overall the data are judged to be sufficiently

stationary.

Regarding the lag order, the BIC indicated that the order-3

model fitted best and the order-2 model fitted better than the

order-1 model. However, the lag-1 coefficients were very similar

across the three models. Since the impulse response functions

[18,68] also did not reveal any substantive effects of interest, which

could have warranted a more complex analysis, we proceeded

with the order-1 results.

The Population Network
The inferred population network at baseline is presented in

Figure 1 (i.e., the matrix Bbase). Each variable is represented by a

node in the network and relations between items are represented

by the weighted arrows (connection strength) between nodes. The

arrow from item k to item j is a visual depiction of the weight bkj ,

expressing the strength of the relation between item k at time t{1
and item j at time t. Arrows can be either red, indicating a

negative relationship (i.e., bkjv0), or green, indicating a positive

relationship (i.e., bkjw0). Furthermore, the strength of the relation

from item k to item j (i.e., a more extreme value of bkj ) is

translated into the thickness of the arrows: the thicker the arrow

between two nodes, the stronger the relation between the nodes or

items. Note that item responses can also be predicted from the

previous state of the item itself. These arrows are the self-loops in

the network.

In Figure 1, only arrows that surpass the threshold for

significance (i.e., p-value of the t-statistic is smaller than 0.05) are

represented in bold in the network; the non-significant arrows are

made transparent. Controlling for multiple testing by controlling

the False Discovery Rate (FDR method; [45]) at 5% does not lead

to qualitatively or quantitatively different conclusions.

From Figure 1, a few general insights on the dynamical network

structure between the six items can be derived. First, in

accordance with a dynamical view on emotions, both the positive

and the negative items form a cluster representing self-perpetu-

ating cycles in which the components of negative and positive

emotions interact (see also [69,70]). We find that positive or

Figure 1. Estimated population network at baseline. The six items are: C = cheerful, E = pleasant event, W = worry, F = fearful, S = sad and
R = relaxed. Solid green arrows correspond to positive connections and red dashed arrows to negative connections. Only arrows that surpass the
significance threshold are shown (i.e., for which the p-value of the t-statistic is smaller than 0.05). Arrows can be either red, indicating a negative
relationship (i.e., bkjv0), or green, indicating a positive relationship (i.e., bkjw0). Furthermore, the strength of the relation from item k to item j (i.e.,
an extremer value for bkj ) is translated into the thickness of the arrows: the thicker the arrow between two nodes, the stronger the nodes or items are

related. Note that item responses can also be predicted from the previous state of the item itself. These arrows are the self-loops in the network.
doi:10.1371/journal.pone.0060188.g001

A Network Approach to Psychopathology

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60188



excitatory connections exist among items of the same valence,

while negative or inhibitory relationships exist among clusters of

mood states of opposite valence (e.g., cheerful, relaxed and

pleasant event on the one hand and sad, worry and fearful on the

other hand). This is in line with existing theories in affect research

[38,71–73].

A second insight from Figure 1 is that the self-loops or

autoregressive effects are always positive and they are generally

among the strongest connections in the network, indicating that,

for instance, the current experience of worry or cheerfulness

predicts future feelings of worry or cheerfulness. At a more

detailed level, we see that in the baseline model, for example,

worry leads to increases in negative affect by enhancing negative

moods and inhibiting positive moods. This lines up well with

previous findings (e.g., [74–76]) and supports the validity of our

approach.

Individual Differences
The multilevel-VAR method also provides information about

inter-individual differences (random effects) in the network in

addition to the population average network (fixed effects). The

links with the largest inter-individual differences are shown in

Figure 2.

The arrows in the network now represent the estimated

variance of the relevant VAR parameters over individuals. Only

arrows containing a SD(bkpj) larger than 0.1 are emphasized in

Figure 2. For example, the pronounced self-loop on the item

‘worry’ indicates a high individual variability.

This individual variability can also be immediately observed in

the networks of individual subjects. Figure 3 illustrates the

individual networks at baseline for two persons. The network on

the left has a quite strong self-loop for the item ‘worry’, which

means that when this person worries, he or she tends to worry for a

longer time. On the other hand, the network of the participant on

the right has a weak self-loop for the item ‘worry’, meaning that

when this person starts to worry he or she is likely to worry for only

a short time. Thus, not only can we verify which arrows have a

high inter-individual variability; we can also immediately indicate

what these arrows look like in networks that apply to an individual

person.

Therapy: Local Network Analysis
To evaluate the effect of therapy on the local network structure

we compared the arrows in the networks of the therapy and the

control group. After correcting for multiple testing (using FDR

controlled at 5%), none of the arrows indicated a significant effect

of therapy on the network structure, meaning that there was no

Figure 2. Inter-individual differences of the arrows of the network from Figure 1. The thickness of the arrows is based on the size of the
standard deviation of the random effects. To construct the figure, we have put a cutoff of 0.1 on the standard deviation and only the standard
deviations above the cutoff are shown with a non-transparent arrow. As the threshold for the standard deviation of the random effects 0.1 was
chosen because it represents large inter-individual differences. The average coefficient of the self-loops (i.e., autoregression coefficients) is about 0.2
with a random effects standard deviation of 0.1. Therefore, assuming a normal distribution, the range from 0 to 0.4 represents 95% of the individual
self-loop coefficients. With a larger cutoff, such as 0.2, also individuals having negative self-loops would be taken into account. However, more than
95% of the population has a positive self-loop strength.
doi:10.1371/journal.pone.0060188.g002
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significant three-way interaction between the arrow, the post-

baseline indicator and the therapy-indicator. However, this does

not imply that there is no effect of therapy at all. First of all, as

shown in previous research [11], therapy has an effect on the

average levels of some variables, and also in this study we can

detect effects of therapy on the mean level of, for instance,

cheerfulness. Secondly, the fact that we did not find an effect of

therapy on the network structure here could also be due to a lack

of power. Correcting for multiple testing always leads to a decrease

in power, which can lead to missing an effect on the network

structure that is small but still relevant.

Neuroticism: Global Network Analysis
To assess the effect of neuroticism on the global network

structure, we tested whether the structure of the network regarding

betweenness centrality changes as a function of neuroticism.

Figure 4 presents the results of the betweenness analysis for low,

middle and high neuroticism at baseline. For every item, the

model-based estimate of betweenness is calculated, together with a

bootstrap simulated 50% and 95% confidence interval. Plotting

both 50% and 95% confidence interval gives an indication of the

asymptotic distribution of the estimate.

Although the distributions of the betweenness coefficients are

quite wide (as are the associated confidence intervals), the data do

suggest some interesting trends. In order to get a good

interpretation of the effects of neuroticism on betweenness, it is

insightful to look at the effects on the entire betweenness

distribution. Whereas the centrality of the nodes fearful and event

are low and stable across groups, the positive nodes cheerful and

relaxed become less central as neuroticism increases. This is

indicated by the distribution, which clearly shifts downwards.

Additionally, the nodes of both sadness and worry increase in

centrality as neuroticism increases. Notably, worry has a higher

centrality distribution in the high neuroticism group than in the

low and mid neuroticism group. That is, worry becomes one of the

most central nodes in the high neuroticism group. This result is in

line with studies suggesting that worry is an important manifes-

tation of neuroticism [77], and with the idea that worry is a

cognitive concomitant of neuroticism [75].

Replication of the Results: A Validation Dataset
Assumptions. The assumptions for applying a multilevel-

VAR model were also met in the validation dataset. Excluding the

first measurement of each day and lagging the data led to a

reduction in the number of reports included in the analysis: The

average number of useable data points went down from an

average of 60 to an average of 53 reports. In this dataset, the

assumption of equally spaced time points was also only slightly

violated. The variation in between-measurement points was

relatively small with an average of 1.2 hours and a standard

deviation of 0.49. Regarding stationarity, the KPSS test indicated

that a vast majority of the data was stationary (about 70%). In

addition, the BIC indicated that the models without trend

(BIC = 202100) were a better fit to the data than the models with

linear trend (BIC = 202203), indicating that overall the data is

stationary. Because the higher order analyses did not reveal any

substantially different conclusions and the aim was to compare the

results from the two datasets, we pursued an order-1 analysis.

Population network. In the left panel of Figure 5, the

correlation between the connection strengths of the links of the

main population network and the links of the corresponding

validation network is shown. The product moment correlation

between the connection strengths of the two networks is 0.95

(p,0.0001; the rank order correlation is r = 0.96, p,0.0001). This

indicates that the population networks between both datasets agree

almost perfectly. The networks inferred for the validation data are

not shown here, but can be found in Appendix S3.

Figure 3. Individual networks (at baseline) of two different persons.
doi:10.1371/journal.pone.0060188.g003
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Individual differences. In the right panel of Figure 5 the

correlation between the connection strengths of the links of the

main inter-individual differences network and the links of the

corresponding validation network is shown. The product moment

correlation between the connection strengths of the two networks

is a sizeable correlation of 0.50 (p = 0.01; rank order correlation is

r = 0.56, p = 0.004). This indicates that although some links in the

inter-individual differences networks differ between the two

datasets, the majority of them reflect a similar degree of individual

variability. We refer again to Appendix S3 for a visual illustration

of the individual differences networks in both datasets.

Neuroticism: global network analysis. In Figure 6 the

results of the betweenness centrality analysis for low, middle and

high neuroticism of the validation dataset are shown. These results

can be compared with Figure 4, since the results of the main

dataset with five variables are very similar to those with six

variables (see Appendix S3 for the betweenness centrality figure of

the main dataset with only five variables). Although worry is again

one of the most central nodes in the high neuroticism group, there

is no clear shift in centrality between the groups, which we found

in the main dataset (see Figure 4). In fact, worry seems to be also

one of the most central nodes in the low and mid neuroticism

group in this dataset. The difference in centrality between the

datasets could be related to the overall level of neuroticism. After

applying a linear transformation to approximately equate the

neuroticism measures in the two groups, we found that in the main

dataset the average neuroticism score (M = 40.7; SD = 7.4) was

markedly higher than in the validation set (M = 31.1; SD = 12.1; t

(148.68) = 26.9, p,0.0001). Furthermore, as noted in the Method

section, worry was assessed slightly differently in the two datasets,

which could also account for the difference in the centrality of

worry.

Discussion

In this paper, we have presented a combination of vector

autoregressive (VAR) modeling and multilevel modeling which, to

the best of our knowledge, is the first method suited for inferring

networks from ESM data. The modeling technique combines time

series with individual differences. This strategy allows us to cope

with the peculiarities of ESM data (e.g., short time series,

significant individual differences) but also opens up unique

Figure 4. Centrality (betweenness) of each item in the network as a function of level of neuroticism at baseline. Low, mid, and high
neuroticism are shown from left to right. The labels of the items are abbreviated by their first letter (C = cheerful, S = sad, R = relaxed, W = worry,
F = fearful and E = event). The black dots are the model-based estimate of betweenness, the darkgrey vertical lines represent 50% confidence intervals
and the light grey vertical lines represent 95% confidence intervals (as estimated from the bootstrap method). Together, the median, 50% and 95%
confidence intervals give information on how the node centrality for every item in all three networks is distributed.
doi:10.1371/journal.pone.0060188.g004
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Figure 5. Correspondence between the basis dataset and the validation dataset. Left panel: Representation of the correspondence
between the population network coefficients (fixed effects) of the basis dataset (x-axis) and the validation dataset (y-axis). Right panel:
Representation of the correspondence between the inter-individual differences (random effects) of the basis data (x-axis) and the validation data (y-
axis).
doi:10.1371/journal.pone.0060188.g005

Figure 6. Centrality (betweenness) of each item in the network as a function of level of neuroticism in the validation dataset. Low,
mid, and high neuroticism are shown from left to right. The labels of the items are abbreviated by their first letter (C = cheerful, S = sad, R = relaxed,
W = worry and F = fearful). The black dots are the model-based estimate of betweenness, the darkgrey vertical lines represent 50% confidence
intervals and the light grey vertical lines represent 95% confidence intervals (as estimated from the bootstrap method). Together, the median, 50%
and 95% confidence intervals give information on how the node centrality for every item in all three networks is distributed.
doi:10.1371/journal.pone.0060188.g006
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possibilities for studying individual differences in dynamic

structure. Thus, the methodology is an important addition to

network methodologies that are currently being developed in

personality and clinical psychology and psychiatry [2,3]. For

simplicity, we limited the analysis to six variables in this paper, but

in principle the analysis is generalizable to larger datasets and to

different time series models (e.g., models with different lags). Thus,

the methodology is sufficiently flexible to give rise to a relatively

comprehensive approach. Furthermore, it is a great advantage

that such complex dynamics between several variables can be

easily visualized as a network with the R package qgraph [46].

Illustrating the dynamical interaction between several variables

helps to give an immediate intuitive understanding of the complex

structure of the model, and is more insightful than a mere verbal

explanation [78,79].

The multilevel-VAR method combines a nomothetic approach,

which makes it possible to generalize findings to a population level,

with an idiographic approach, which models dynamical processes

at the level of the individual person. In our study, for instance, the

fixed effects of the model form a plausible network at group level,

which shows the average dynamics between six mood related

variables at baseline. Importantly, this population network was

replicated in the validation dataset. In both datasets the same

dynamics between the variables were found, supporting the

validity of the multilevel-VAR method.

In addition, individual heterogeneity can be easily assessed using

the random effects estimated in the model. Again, a similar

network of individual heterogeneity was found in the validation

data. Although some links in the networks of individual

heterogeneity differed between the two datasets, the majority of

them showed a similar degree of individual variability. Because the

two datasets contain different populations, it is to be expected that

not all links show the same amount of individual heterogeneity.

Intra-individual time series can also be studied by combining fixed

and random effects for each subject, which results in individual

networks. Thus, our method successfully combines nomothetic

and idiographic approaches to data analysis.

In time, the latter approach may lead to improved understand-

ing of intra-individual functioning; this may in turn lead to better

therapeutic interventions. A network analysis of a subject receiving

therapy may show, for example, that the link between rumination

and sadness is the strongest link in the network and that a therapy

should intervene on that link to improve the overall mood.

In addition to the visualization of the multilevel-VAR analysis,

the inferred networks open a range of new questions and

possibilities that arise from network theory, and thus open a

whole new research field. On the one hand, the local structure or

specific connections can be studied with a local network analysis;

on the other hand, the overall structure of the network can be

studied with a global network analysis.

An example of a network analysis is node centrality as assessed

through a betweenness measure. With this global network analysis

we identified the most central node in a network for three groups

with a different neuroticism level (low, mid and high). Our results

revealed that in general, the node ‘worrying’ was more central in

the high neuroticism group than in the low or mid neuroticism

group. This could be interpreted as indicating that worrying in

general has a greater influence on the network in the high

neuroticism group than in the low and mid neuroticism group. In

the validation dataset there was no clear shift in worry in the high

neuroticism group compared to the low and mid neuroticism

group, but in this study worry was assessed slightly differently than

in the main study, and furthermore, the population was different

(college students instead of older subjects with residual depressive

symptoms); in general, the subjects had lower neuroticism scores.

More research is needed to study the relation between neuroticism

and node centrality in different kinds of populations.

Future research may focus on developing similar local and

global network analyses, specifically suited for networks inferred

from ESM data, and on evaluating the implications of these

results. Thus, the presented methodology enables the use of

network approaches in clinical research and open new possibilities

to analyze and understand the structure of disorders, not only by

inferring and visualizing the interaction between the variables, but

also by further analyzing the new inferred networks.
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