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Abstract—When several radio access technologies (e.g., HSPA,
LTE, WiFi and WiMAX) cover the same region, deciding to which
one mobiles connect is known as the Radio Access Technology
(RAT) selection problem. To reduce network signaling and
processing load, decisions are generally delegated to mobile users.
Mobile users aim to selfishly maximize their utility. However,
as they do not cooperate, their decisions may lead to perfor-
mance inefficiency. In this paper, to overcome this limitation,
we propose a network-assisted approach. The network provides
information for the mobiles to make more accurate decisions.
By appropriately tuning network information, user decisions
are globally expected to meet operator objectives, avoiding
undesirable network states. Deriving network information is
formulated as a Semi-Markov Decision Process (SMDP), and op-
timal policies are computed using the Policy Iteration algorithm.
Also, and since network parameters may not be easily obtained, a
reinforcement learning approach is introduced to derive what to
signal to mobiles. The performances of optimal, learning-based,
and heuristic policies, such as blocking probability and average
throughput, are analyzed. When tuning thresholds are pertinently
set, our heuristic achieves performance very close to the optimal
solution. Moreover, although it provides lower performance, our
learning-based algorithm has the crucial advantage of requiring
no prior parameterization.

Index Terms—Radio access technology selection, semi-Markov
decision process, reinforcement learning, heterogeneous cellular
networks.

I. INTRODUCTION

THE demand for high-quality and high-capacity radio
networks is continuously increasing. It has been reported

that global mobile data traffic grew by 81 percent in 2013
[1]. Furthermore, monthly mobile traffic is forecast to surpass
15 exabytes by 2018, nearly 10 times more than in 2013 [1].
Along with this impressive growth, mobile operators are urged
to intelligently invest in network infrastructure. They also need
to reconsider their flat-rate pricing models [2], seeking positive
return-on-investment.
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To cope with this huge demand for capacity, next-generation
networks rely on densely deployed base stations with hierar-
chical cell structures [3] (i.e., macro, micro, pico and femto
cells). A cost-effective solution is to use existing radio access
technologies (RATs). Upcoming 5G networks are thus being
devised with the vision of heterogeneity [3]. Various RATs,
including 3GPP and IEEE families, are being integrated and
jointly managed. Deciding to which one mobiles connect is
known as the RAT selection problem.

When intelligence is pushed to the network edge, rational
users select their RAT in a way to selfishly maximize their
utility. However, as users have no information on network load
conditions, their decisions may be in no one long-term interest,
causing performance degradation. Moreover, delegating deci-
sions to the network optimizes overall performance, but at the
cost of increased network complexity, signaling and processing
load.

A real challenge is to design a RAT selection method that
jointly enhances network performance and user experience,
while signaling and processing burden remains reduced. We
propose, in this paper, a network-assisted approach. The net-
work provides information for the mobiles to make appropriate
RAT selections. More precisely, mobile users select their RAT
depending on their individual needs and preferences, as well
as on the cost and QoS parameters signaled by the network.
By appropriately tuning network information, user decisions
are globally expected to meet operator objectives, avoiding
undesirable network states. Thus, our approach enables self-
optimization, a key feature of self-organizing networks [4].

Our network-assisted approach has the particularity to in-
volve two inter-dependent decision-making processes. The first
one, on the network side, consists in deriving appropriate
network information, so as to guide user decisions in a way
to satisfy operator interests. The second one, where individual
users combine their needs and preferences with the signaled
network information, consists in selecting the RAT to be
associated with, in a way to maximize user utility. Since, in
their turn, user individual decisions influence the upcoming
network information, the two decision makings are regarded to
be inter-dependent. Thus, RAT selections dynamically involve
operator objectives, and user needs and preferences.

To maximize long-term network performance, network in-
formation should depend not only on present load conditions,
but also on expected future demands. In this paper, deriving
network information is formulated as a Semi-Markov Decision
Process (SMDP) [5]. The aim is to dynamically meet operator
objectives, while mobiles maximize their own utility. Also,
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when network parameters are not perfectly known, a reinforce-
ment learning approach is introduced to derive what to signal
to mobiles. The network learns user needs, preferences and
decision-making algorithms through interacting with them.

II. RELATED WORK

A key driver for heterogeneous cellular networks is to
enable traffic class-aware optimal coverage, capacity, and
reliability with low cost and energy consumption. To maximize
user experience, mobiles select their serving RAT depending
on user needs and preferences. As user experience does
not only depend on their own decisions, but also on the
decisions of other mobiles, game theory is used as a theoretical
framework to model user interactions in [6]–[12]. Players
(i.e., the individual users) try to reach a mutually agreeable
solution, or equivalently a set of strategies they unlikely want
to change. However, the convergence time to the equilibrium
assignment seems to be long [7]. In [13]–[21], multi-criteria
decision-making methods, including Simple Additive Weight-
ing (SAW), Multiplicative Exponent Weighting (MEW), Grey
Relational Analysis (GRA) and Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS) are presented.
They capture the heterogeneity of decision parameters (e.g.,
QoS, cost, energy and security parameters). Users with widely
varying requirements gather their QoS information (e.g., peak
throughput when connected alone to a cell), calculate decision
metrics, and select their RAT accordingly. In [16], [21], [22],
fuzzy logic is also used to deal with the imprecise information
of some criteria and user preferences.

Since decisions are delegated to mobile users, network op-
erations remain reduced. Furthermore, decisions can easily in-
volve user needs and preferences, and various mobile-terminal-
related parameters. However, as mobiles do not cooperate,
their decisions potentially lead to performance inefficiency.
To overcome this limitation, we introduce in this paper a
network-assisted approach. The network provides cost and
QoS parameters to assist mobile users in their decisions. This
decisional information reflects network load conditions and
other potential operator concerns. For instance, by signaling
appropriate network information, mobiles are globally pushed
to some base stations, while others are switched to sleep mode
to save energy. RAT selections are then expected to meet
operator objectives, while mobiles individually maximize their
utility.

The basic idea of our approach was first presented in [23],
where heuristic policies are introduced to dynamically tune
network information as a function of the load conditions.
In the present contribution, deriving network information is
formulated as a Semi-Markov Decision Process. We first
define network states, actions, state dynamics and rewards.
An optimal policy (i.e., network information to signal in each
state) is then derived through the Policy Iteration algorithm.
As a matter of fact, transitions between network states depend
not only on network actions, user arrival and departure rates,
but also on user needs, preferences and decison-making algo-
rithms. When all these parameters can not be easily obtained in
constantly varying networks, an optimal policy is constructed

through learning. Among the different existing reinforcement
learning (RL) algorithms, we select the Q-learning method for
its simplicity.

Furthermore, SMDP and Q-learning have been widely em-
ployed in RAT selection. In [24]–[30], RAT selection is mod-
eled as a semi-Markov decision process. Network elements
gather information about individual users, particularly their
QoS needs and radio conditions. They decide on user serving
cells in a way to maximize long-term network reward, without
aligning with user preferences. However, network complexity,
processing, and signaling load are drastically increased. More-
over, in [31]–[33], mobiles learn selection decisions through
trial-and-error interaction with their dynamic environment.
Yet, because of the non-cooperative behavior of mobile users,
their performance may be degraded. In this paper, SMDP
and Q-learning are used in a network-assisted approach. They
enable the network to derive information for the mobiles to
make decisions.

The rest of this paper is organized as follows: The network
model is presented in section III. Section IV explains our hy-
brid decision framework. The SMDP and the Policy Iteration
algorithm are introduced in section V. Section VI describes
the Q-learning algorithm. Performance results are analyzed in
section VII. Section VIII concludes the paper.

III. NETWORK MODEL

A. Network Topology

Consider a heterogeneous cellular network composed of two
OFDM(A)-based radio access technologies. Let x1 and x2
designate the two serving RATs within the network. Although
our method adapts to different deployment scenarios, we focus
on a realistic and cost effective one where the two RATs base
stations are co-localized. The modulation and coding scheme,
that can be assigned to a user connected to RAT x, differs
depending on its radio conditions in the cell, more precisely
on its signal-to-noise ratio denoted by SNRx. As the number
of possible modulation and coding schemes is limited, we
decompose the cell into Nx

Z zones with homogeneous radio
characteristics [28]–[30]. Users in zone Zxk , k = 1, ..., Nx

Z ,
are assumed to have a signal-to-noise ratio between δxk and
δxk−1, and then to use modx(k) with codx(k) as modulation
and coding scheme:


none if SNRx(k) < δxNx

Z
,

(modxNx
Z
, codxNx

Z
) if δxNx

Z
≤ SNRx(k) < δxNx

Z−1
,

...
(modx1 , cod

x
1) if δx1 ≤ SNRx(k) < δx0 =∞.

(1)

where δxNx
Z

is the minimum signal-to-noise ratio, that allows
transmission at the lowest throughput, given a target error
probability.

1) Cell Decomposition: Because of fading effects, radio
conditions are time-varying. User signal-to-noise ratio can
take all possible values, leading to different modulation and
coding schemes. However, as RAT selections are made for
a sufficiently long period of time (e.g., session duration, user
dwell time in the cell), users are distributed over logical zones
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depending on their average radio conditions, rather than on
their instantaneous ones.

Another approach is found in [28], where an analytical radio
model, that accounts for interference, path loss, and Rayleigh
fading, is used. It has been demonstrated that users need
to be situated at rk ∈ [Rxk−1, R

x
k [ from their base stations,

so as to have a signal-to-noise ratio between δxk and δxk−1,
with at least a high probability Pth. This means that the cell
may be divided into concentric rings, as illustrated in Fig.
1, and mobiles in ring Zxk will use modx(k) with codx(k) as
modulation and coding scheme, with at least a high probability
Pth. Further, to define the different rings, the distances Rxk
have been analytically derived, mainly as a function of δxk ,
Pth, and radio model parameters.

Ring NZ Ring k Ring 1
x

Fig. 1. RAT x cell divided into Nx
Z concentric rings

In what follows, and for the sake of simplicity, users in a
same zone are assumed to have the same average signal-to-
noise ratios.

B. Network Resources

The radio resource is divided into time-frequency resource
units (RUs). Users in zone Zk can transmit up to bx(k) bits
per resource unit, when connected to RAT x:

bx(k) = Nx
s ·Nx

f ·log2[sz(modx(k))]·R(codx(k))·(1−BLER)
(2)

where Nx
s and Nx

f respectively denote the number of OFDM
symbols and subcarriers per RU, sz(modx(k)) the constella-
tion size of modx(k), R(codx(k)) the coding rate of codx(k)
and BLER the block error rate obtained as a function of the
user signal-to-noise ratio.

In the time dimension, resources are organized into frames
of length T x. When RAT x allocates Nres resource units per
frame to a user in zone Zk, its average throughput d is given
by:

d =
Nres · bx(k)

T x
(3)

C. Traffic Model

Users belong to NC traffic classes. In our work, we focus
on both streaming (c = 1) and elastic (c = 2) traffic classes.
Class c arrivals, in zone Zk, follow a Poisson process of rate
Λ(k, c). We assume that streaming sessions have an average
long-term throughput of Rav . Yet, to improve their content
quality, they can benefit from throughputs up to Rmax. Their
duration is considered to be exponentially distributed with a
mean of 1/µ1.

Moreover, elastic sessions adapt to resource availability.
Their needs are expressed as comfort throughput denoted by

Rc, and their size is assumed to be exponentially distributed
with a mean of L bytes. However, in addition to their size,
their service rate µ2 also depends on their average throughputs.

IV. HYBRID DECISION FRAMEWORK

A. Network Information

Periodically or upon user request, network information is
sent to all mobiles using the logical communication channel
(i.e., radio enabler) proposed by the IEEE 1900.4 standard
[34]. This logical channel allows information exchange be-
tween the Network Reconfiguration Manager (NRM), on the
network side, and the Terminal Reconfiguration Manager
(TRM), on the mobile-terminal side (Fig. 2). The purpose
is to improve resource utilization and user experience in
heterogeneous cellular networks.

RAT1

RAT2

RATN

NRM

Network side

Radio Enabler

Terminal side

TRM

Radio Enabler

Network information

Mobile Terminal

 Network Elements

Fig. 2. Hybrid IEEE 1900.4 network architecture

In our work, by appropriately tuning network information,
user decisions are globally expected to meet operator objec-
tives, avoiding undesirable network states. Mobiles make final
decisions regarding selection of their most appropriate RAT.
As a matter of fact, based on their needs and preferences,
as well as on the signaled network information, mobile users
choose their RAT in a way to selfishly maximize their utility.

For RAT x, the network broadcasts QoS parameters, de-
noted by dmin(x) and dmax(x), and the cost to pay per amount
of traffic, denoted by cost(x) [23]. Mobiles are actually
guaranteed an average minimum throughput, namely dmin(x),
and have priority to be allocated up to an average maximum
throughput, namely dmax(x). As dmin(x) and dmax(x) are
derived for a generic user with the most robust modulation and
coding scheme, individual users need to deduce their own QoS
parameters. For that, mobiles in zone Zk multiply the QoS
parameters, signaled by the network, with their modulation
and coding gain, denoted by g(k).

B. RAT Selection

Using the satisfaction-based multi-criteria decision-making
method we have introduced in [14], mobiles compute a utility
function for each of the serving RATs, and select the one with
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the highest score. This utility depends on user radio conditions,
needs and preferences (i.e., traffic class, throughput demand,
QoS-maximizing or cost-minimizing preferences), as well as
on the cost and QoS information sent by the network.

In our work, when cost(x) is maintained fixed, dmin(x)
and dmax(x) are dynamically tuned trying to globally control
user decisions. Let Nx

I be the number of possible (dmin(x),
dmax(x)) couples, that may be signaled to incite mobile users
to join RAT x. In the next section, selecting the (dmin(x),
dmax(x)) couple to be broadcasted, for each RAT x, is
formulated as a Semi-Markov Decision Process (SMDP). The
goal is to dynamically optimize the long-term discounted
network reward, while mobiles maximize their own utility.

V. SEMI-MARKOV DECISION PROCESS

At each user arrival or departure, signaled network infor-
mation may have to vary. In this section, the SMDP is used
to dynamically decide of the QoS parameters in a way that
optimizes the long-term network reward. We first start by
defining network states, actions, state dynamics and rewards.
Next, using the Policy Iteration algorithm, we compute the
optimal solution.

A. Network States

We define a state of RAT x to be the (NZ × NC × Nx
I )-

tuple nx(t) for {k = 1, ..., NZ , c = 1, ..., NC , i = 1, ..., Nx
I }:

nx(t) = (nx(k, c, i, t)),

where nx(k, c, i, t) is a stochastic process representing the
number of class c users in zone Zk, that have the ith (dmin(x),
dmax(x)) couple, at time t. In the remaining, we omit t as we
assume stationarity.

To protect ongoing sessions, an admission control policy is
applied: new arrivals may join RAT x, with the ith (dmin(x),
dmax(x)) couple, to the extent that RAT x available resources
are enough to meet their dmin, while not compromising the
QoS guarantees of ongoing ones. Consequently, the set of
admissible states in RAT x is:

N x
a =

{
nx ∈ NNZ×NC×Nx

I |

NZ∑
k=1

NC∑
c=1

Nx
I∑

i=1

nx(k, c, i) ·Nx
min(i) ≤ Nx

total

}
(4)

where Nx
min(i) is the number of RUs necessary to guarantee

the dmin of the ith QoS parameters couple, and Nx
total is the

total number of RUs used for data transmission in RAT x.
Let the (NZ × NC × Nx1

I + NZ × NC × Nx2

I )-tuple
s = (nx1 , nx2) be the state of the heterogeneous network,
defined as the concatenation of RAT x1 and RAT x2 substates.
The state space S of the network is then defined as:

S = {s = (nx1 , nx2) | nx1 ∈ N x1
a , nx1 ∈ N x2

a }

B. Network Actions

In each state, an action is taken by the network: QoS
incentives to join serving RATs are derived. An action a is the
quadruple defined by a = (dmin(x), dmax(x)), x ∈ {x1, x2},
where dmin(x) and dmax(x) represent the QoS parameters of
RAT x, for the most robust modulation and coding scheme.
Based on their needs (e.g., traffic class, throughput demand)
and preferences, as well as on their modulation and coding
scheme (i.e., geographical position), users act differently upon
these actions. Refer to appendix A for more details.

Obviously, Nx1

I ·N
x2

I actions are possible. However, given
a state s = (nx1 , nx2), not all actions are feasible. We then
denote by A the set of all possible actions, and by A(s) ⊂ A
the subset of feasible actions in state s.

When both RATs provide no QoS incentives (i.e.,
dmin(x1) = dmax(x1) = dmin(x2) = dmax(x2) = 0), action
a is blocking and new arrivals are rejected.

C. State Dynamics

As the network does not completely control individual
decisions, transitions between network states do not only
depend on network actions, user arrival and departure rates,
but also on user needs and preferences. The decision-making
on the mobile side, using a multi-criteria decision-making
method, then has a probabilistic impact on the transition rates.

Let px(k, c, a) represent the probability that class c users in
zone Zk select RAT x, when action a is adopted. As action
a may be blocking, px1(k, c, a) + px2(k, c, a), ∀k, c, is not
necessarily equal to one: it can be either zero or one. Transition
rates T (s, s′, a) between states s = (nx1 , nx2) and s′ are then
expressed as:


Λ(k, c) px1(k, c, a) if s′ = (nx1 + ex1(k, c, i), nx2)
Λ(k, c) px2(k, c, a) if s′ = (nx1 , nx2 + ex2(k, c, i))
nx1(k, c, i) µx1

c (s) if s′ = (nx1 − ex1(k, c, i), nx2)
nx2(k, c, i) µx2

c (s) if s′ = (nx1 , nx2 − ex2(k, c, i))
0 Otherwise

(5)
where ex(k, c, i) is defined as a (NZ × NC × Nx

I )-tuple
containing all zeros except for the (k, c, i)th element, that
is equal to one, and new arrivals join RAT x with the ith

QoS parameters couple proposed by action a. Hence, for
example, when a class c user in zone Zk joins RAT x1, with
the ith QoS parameters couple, the network moves to state
s′ = (nx1 + ex1(k, c, i), nx2).

The state dynamics can equivalently be characterized by the
state transition probabilities p(s, s′, a) of the embedded chain:

p(s, s′, a) = T (s, s′, a) · τ(s, a) (6)

where τ(s, a) is the expected sojourn time for each state-action
pair, defined as follows:

{∑
x

∑
k

∑
c

[Λ(k, c)px(k, c, a) +
∑
i

nx(k, c, i)µxc (s)]

}−1
(7)
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D. Network Reward
To formulate optimization objectives, let r(s, a) denote the

permanence reward earned by the network in state s, when
action a is adopted. Unlike the impulsive reward, received
upon transitions, the permanence reward represents the benefit
and penalty continuously received by the network whilst in
state s (i.e., it is actually defined on a per unit time basis). In
our work, we express r(s, a) as the sum of a network utility
N(s, a) and a blocking term B(s, a):

r(s, a) = N(s, a) +B(s, a) (8)

The network utility is given by:

N(s, a) =
∑
x

∑
k

∑
c

∑
i

nx(k, c, i)dx(k, c, i) (9)

where dx(k, c, i) represents the average throughput of class
c users in zone Zk, that have joined RAT x with the ith

(dmin(x), dmax(x)) couple. In fact, mobiles are first pro-
vided with their minimum guaranteed throughput given by
dmin ·g(k). Then, fair time scheduling is used to provide them
with up to their maximum throughput given by dmax · g(k).
Remaining resources may afterwards be equitably shared (i.e.,
after receiving their maximum throughput, all mobiles have
the same priority leading to fair time scheduling).

Furthermore, the blocking term reflects the penalty of reject-
ing future arrivals. B(s, a) is thus proportional to the arrival
rates in blocking states, and is expressed as follows:

B(s, a) = − b ·
∑
k

∑
c

Λ(k, c)(1−
∑
x

px(k, c, a)) (10)

where b is the cost per unit time inflicted on the network for
blocking a new arrival.

E. Uniformization
In our work, we make use of the Policy Iteration algorithm

to solve the SMDP problem (i.e., to determine the action the
network takes in each state). A stage of uniformization is thus
required. The continuous-time Markov chain is transformed to
its discrete equivalent.

Time is first discretized into intervals of constant duration
τ , that is smaller than the expected sojourn time in any state:
0 ≤ τ < τ(s, a), ∀s ∈ S.

Transition probabilities are then modified as follows:


p̄(s, s′, a) = p(s, s′, a) τ

τ(s,a) for s′ 6= s

p̄(s, s′, a) = 1−
∑
s′ 6=s

p̄(s, s′, a) Otherwise (11)

where p̄(s, s′, a) represents the probability that the network
moves from state s to s′ within τ , when action a is adopted.

Moreover, the reward is also modified as follows: r̄(s, a) =
r(s, a)τ , where r̄(s, a) is the reward earned for a time τ .

F. Policy Iteration Algorithm
A policy π is a mapping from S to A. π(s) represents the

action to take in state s. Let Hπ(s) = s, s1, s2, ..., sn, ... be

a trajectory of the Markov chain, when policy π is adopted.
The long-term discounted reward dr(Hπ(s)) of state s is the
discounted sum of the rewards earned on that trajectory (that
starts from s), and is expressed as follows:

r̄(s, π(s)) + ψr̄(s1, π(s1)) + ...+ ψnr̄(sn, π(sn)) + ...

where ψ is the discounting factor (0 < ψ < 1). In our work,
we set the value function of state s, denoted by Vπ(s), as the
expected value of dr(Hπ(s)) over all possible trajectories.

Our goal is to find an optimal policy πopt, that maximizes
the expected long-term discounted reward of each state:

Vπopt(s) ≥ Vπ(s), ∀s, π

We therefore use the following Policy Iteration algorithm:
• Step 0 (Initialization): We choose an arbitrary stationary

policy π.
• Step 1 (Value Determination): Given the current policy
π, we solve the following system of linear equations to
calculate the discounted value function Vπ of all states:

Vπ(s) = r̄(s, π(s)) + ψ
∑
s′∈S

p̄(s, s′, π(s))Vπ(s′)

• Step 2 (Policy Improvement): When any improvement is
possible, we update the current policy π. For each s ∈ S,
we find:

π̂(s) = arg max
a∈A(s)

{
r̄(s, a) + ψ

∑
s′∈S

p̄(s, s′, a)Vπ(s′)

}
• Step 3 (Convergence test): If π̂ = π, the algorithm is

stopped with πopt = π. Otherwise, we go to step 1.

VI. REINFORCEMENT LEARNING

In the previous section, knowing r(s, a) and p(s, s′, a), an
optimal policy πopt is solved through the Policy Iteration
algorithm. The transition probability function p(s, s′, a) de-
pends on user arrival and departure rates, needs, preferences,
and decision-making algorithms. However, when p(s, s′, a)
may not be easily obtained, reinforcement learning (RL) turns
out to be a good fit to derive network information. The
network does not estimate user behavior, but rather learns what
action to take by trial-and-error. Among the different existing
RL algorithms, we select Q-learning [35] for its simplicity.
Although originally used to solve Markov decision processes,
Q-learning may be applied with slight modifications to semi-
Markov decision processes [36].

A. SMDP Q-learning Algorithm

The network interacts with its environment over a sequence
of discrete time-steps (t, t+ 1, t+ 2, ...), trying to learn what
QoS parameters to signal. These time-steps refer to time
intervals of fixed duration τ . The quality function of state-
action pair (s, π(s)), denoted by Qπ(s, π(s)), is defined as the
expected long-term discounted reward of state s, using policy
π. Our aim is to find an optimal policy πopt, that maximizes
the quality function of each state s, also referred to as its
Q-value:
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πopt(s) = arg max
a∈A(s)

Qπ(s, a), ∀s, π

Without knowledge of p(s, s′, a), the network, also referred
to as the agent, iteratively learns optimal Q-values. At discrete
time-steps, when the network state has changed, the network
action terminates. QoS parameters to be signaled may have to
vary. Unlike in Markov decision processes, where all actions
are assumed to take constant time to complete, actions in
our work can span several time-steps. They are said to be
temporally-abstract. At time-step t, when state-action pair
(s, a) is visited (i.e., when the network in state s selects and
performs action a), the network earns reward R, and ends in
state s′ at t+k. The Q-value of state-action pair (s, a) is then
updated as follows:

Q(s, a)← Q(s, a) + ρ
(
R+ ψk max

a′∈A
{Q(s′, a′)} −Q(s, a)

)
(12)

where ρ is the learning rate (0 < ρ < 1), that determines to
what extent the learned Q-value will override the old one.
When ρ = 0, the network does not learn. When ρ = 1,
the network considers only the most recent Q-value. R is the
discounted accumulation of all single-step rewards rτ , received
while executing action a for a time τ , and is given by:

R =

k−1∑
i=0

ψi rτ

Moreover, it has been proved that, while the number of
visits of each state-action-pair is sufficiently large, and ρ is
reduced to zero over time, Q(s, a) is guaranteed to converge
to Qπopt

(s, a) [35].

B. Exploration and Exploitation

At decision epochs, the network decides, randomly or
based on previously learned Q-values, what QoS parameters
to signal. To receive high reward, the network may prefer
actions it has tried in the past and found effective. This is
known as the exploitation mode. Yet, to discover effective
ones, the network needs to try actions it has not selected
before. It may then randomly select one of the possible actions,
aiming to enhance its future decisions. This is known as
the exploration mode. Since Q-learning is an online iterative
learning algorithm, exploration and exploitation should be
simultaneously performed. The agent must discover a variety
of actions, and progressively favor effective ones. However,
to estimate reliable Q-values, actions need to be sufficiently
tested.

In our work, we adopt an ε-greedy exploration-exploitation
policy. At decision epochs, the network in state s explores with
probability ε(s), and exploits stored Q-values with probability
1−ε(s). To enhance long-term network performance, exploring
is never stopped, but rather reduced over time. We define
β(s, a) to be the number of visits of state-action pair (s, a)
up to current time-step, and choose ε(s) to be as follows:

ε(s) =
1

ln(
∑
a∈A β(s, a) + 3)

(13)

ε(s) then belongs to [0, 1], and has a logarithmic decay.
Furthermore, for Q(s, a) to converge to optimal Q-values, we
set ρ to be a state-action pair varying over time:

ρ(s, a) =
1√

β(s, a) + 3

Algorithm 1 describes our SMDP Q-learning algorithm
for deriving network information. We summarize below the
main steps. Q-values are first set to zero. The network state
is randomly initialized. Once in state s, depending on ε(s),
exploration or exploitation is executed. In exploration mode,
the network randomly selects and performs action a. However,
in exploitation mode, it opts for the action with the maximum
Q-value: a = max

a
Q(s, a). After, at each time-step, the

network state is observed. While the network is in state s,
action a is maintained, and the discounted accumulation of
single-step rewards R is updated. Yet, if it is in state s′ (i.e.,
the network state has changed), action a is terminated, and
Q(s, a) is updated according to equation 12. This is repeated
until the end of the learning period.

Initialize
• Q-values: Q(s, a)← 0,∀s ∈ S and a ∈ A
• Number of state-action visits: β(s, a)← 0,∀s ∈ S and
a ∈ A

• Time-step: t← 0

repeat
Observe state s
if exploration then

choose action a at random
else

choose a = max
a

Q(s, a)
end
β(s, a)← β(s, a) + 1
Update ε(s) according to equation 13
R← 0
k ← 0

while the network is in state s do
Perform a
Wait for a fixed duration τ
Observe reward rτ
R← R+ ψk rτ
k ← k + 1

end
Observe state s′

Update Q(s, a) according to equation 12
s← s′

t← t+ k
until End of the learning period;

Algorithm 1: SMDP Q-learning
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VII. PERFORMANCE RESULTS

For illustration, we consider a heterogeneous cellular net-
work composed of mobile WiMAX and LTE, respectively
designated by W and L. For simplicity, users are of two
types: those with good radio conditions (or cell-center users
that belong to zone 1) and those with bad radio conditions (or
cell-edge users that belong to zone 2). Their peak throughputs,
when connected alone to mobile WiMAX and LTE cells, are
depicted in Table I. Further, class c arrivals are assumed to
be uniformly distributed over the two zones, and to follow a
Poisson process of rate Λc = Λ (i.e., Λ(k, c) = Λ/NZ , ∀k, c).

RAT k = 1 k = 2
Mobile WiMAX (3 MHz) 9.9 Mb/s 4.4 Mb/s

LTE (5 MHz) 16.6 Mb/s 7.4 Mb/s
TABLE I

PEAK THROUGHPUTS IN MOBILE WIMAX AND LTE

Moreover, for streaming sessions, we suppose that Rav = 1
Mb/s, Rmax = 1.5 Mb/s, and 1/µ1 = 45 s. For elastic
sessions, we consider that L = 5 Mbytes, and RC is fixed to
either 1.25 or 0.75 Mb/s, depending on the QoS-maximizing
or cost-minimizing preferences of mobile users. For network
information, we assume that cost(W ) = 4, cost(L) = 6,
NW
I = NL

I = 3, IW = {(0, 0), (0.5, 1), (1, 1.5)} Mb/s, and
IL = {(0, 0), (0.75, 1.25), (1.5, 2)} Mb/s.

The probabilities px(k, c, a) are calculated according to
the satisfaction-based multi-criteria decision-making method,
we have introduced in [14]. They mainly depend on user
preferences, traffic classes and throughput demands. Note that
half of the users are ready to pay for better performances.

For comparison purposes, we also investigate the staircase
tuning policy [23]. Load factors are defined as the ratios of
the number of guaranteed allocated RUs to the total number
of RUs. The highest QoS parameters are first signaled. Next,
when a RAT load factor exceeds S1 threshold, QoS parameters
are reduced following a step function (cf. Fig. 3). However,
if S2 is reached, QoS incentives are no longer provided. QoS
parameters to signal in RAT x, depending on the load factor
φx, are reported in table II.

Low-load

Load factorS1 S2

QoS parameters

parameters

Fig. 3. QoS parameters reduction using the staircase policy

Before we discuss performance results, we remind in table
III some notations, useful for the following.

A. Staircase Policy

Using the staircase policy, we study the impact of S1

and S2 thresholds on network performance. Figures 4 and 5

QoS parameters φx < S1 S1 ≤ φx ≤ S2 φx > S2

dmin(W ) 1 Mb/s 0.5 Mb/s 0
dmax(W ) 1.5 Mb/s 1 Mb/s 0
dmin(L) 1.5 Mb/s 0.75 Mb/s 0
dmax(L) 2 Mb/s 1.25 Mb/s 0

TABLE II
QOS PARAMETERS DEPENDING ON THE LOAD FACTOR φx

Parameters Notation
Tuning thresholds of the staircase policy S1, S2

Discount factor ψ
Cell arrival rate Λ
Blocking cost b

Blocking term (penalty term) B
Duration of learning periods T

Duration of time-steps τ

TABLE III
SUMMARY OF NOTATIONS

respectively show the network throughput, defined as the sum
of user throughputs, and the blocking probability, as a function
of the cell arrival rate Λ, for different threshold values. For
fixed S1, the higher S2 the more mobiles are admitted. Yet,
higher S2 thresholds limit user throughputs to their guaranteed
ones. Besides, for fixed S2, the lower S1 the less mobiles
benefit from the largest QoS guarantees, but much more are
admitted with reduced QoS parameters. Therefore, the average
number of simultaneous sessions increases.
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Fig. 4. Staircase policies: network throughput

Obviously, the more mobiles are admitted for a fixed cell
arrival rate (i.e., the lower S1 or the higher S2), the lower
the blocking probability. Also, the network throughput aug-
ments. Typically, streaming sessions have limited throughput
demands, and hence the more mobiles are admitted the larger
the network throughput will potentially be.
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Fig. 5. Staircase policies: blocking probability

B. Optimal Policy
The optimal policy, solved through the Policy Iteration

algorithm, and the staircase policy are compared. Using the
optimal policy, we study the impact of the blocking cost b,
and the discount factor ψ on network performance.

1) Impact of the blocking cost: We start by inspecting the
impact of the blocking cost b on network performance. So as
to enlarge the number of states involved in the value function,
the discount factor ψ is fixed at 0.99.

Figure 6 illustrates the average reward as a function of the
cell arrival rate Λ, for different blocking costs. When b is
zero, the reward function is reduced to the network utility
representing the sum of user throughputs. Otherwise, it also
includes a penalty term, that is proportional to the blocking
cost b and to the cell arrival rate.
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Fig. 6. Impact of b on network reward

At low arrival rate, no blocking occurs leading to similar
rewards regardless of b. The reward function, reduced to the

network throughput, then increases with the cell arrival rate.
Yet, as the latter increases further, or equivalently, when the
average number of simultaneous sessions augments, network
resources are always nearly exhausted, and not enough are left
to cope with future arrivals. Therefore, the blocking probability
(i.e., the long-term fraction of time spent in blocking states)
also increases. Moreover, and since the penalty term is pro-
portional to the cell arrival rate, the reward function received
by the network whilst in a blocking state is as reduced as
the arrival rate is increased. For all these reasons, the average
reward decreases more when the cell arrival rate increases,
except for b equals zero. In fact, when b is null, the average
reward stagnates at high arrival rate. It represents the long-
term sum of user throughputs. Otherwise, the average reward
obviously decreases with increasing blocking costs. We further
note that the optimal policy always outperforms the staircase
one. However, when S1 and S2 are respectively set to 0.3 and
0.95, the staircase policy provides higher network reward in
comparison with the case when S1 = 0.35 and S2 = 0.85,
denoted as Staircase policy (2).
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Fig. 7. Impact of b on network throughput

Besides, the impact of the penalty term on the reward func-
tion, and thereafter on the optimal policy, strongly depends on
the blocking cost b. On the one hand, the higher b the more
the network avoids blocking actions, even if at the expense
of the network utility. On the other hand, the lower b, the
more the network tries to maximize its throughput, even if
leading to more blocking states. We, respectively, depict in
figures 7 and 8 the network throughput and the percentage
in number of blocking states, as a function of the cell arrival
rate. The optimal policy is illustrated for different values of
b. Particularly, when b is zero, the network throughput, but
also the percentage of blocking states, are maximized. The
blocking cost b may therefore be tuned to control optimization
objectives. Further, when S1 = 0.3 and S2 = 0.95, the
staircase policy achieves a higher throughput in comparison
with when S1 and S2 are respectively set to 0.35 and 0.85.
As a matter of fact, when these thresholds are carefully chosen,
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the staircase policy provides quite similar performances as the
optimal one (b = 50). They both effectively avoid blocking
actions and guide user decisions. In the remaining, we only
consider the case where S1 = 0.3 and S2 = 0.95.
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Fig. 8. Impact of b on the percentage of blocking states

It is worth noting that for a given b, when the cell arrival
rate is different, the state dynamics and penalty terms are
also different. This may lead to dissimilar optimal policies.
Thus, and as shown in Fig. 8, the percentage in number of
blocking states first increases with the cell arrival rate. Then,
when the latter increases further, for b different from zero, this
percentage decreases as the penalty term becomes relatively
very significant.
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Fig. 9. Impact of b on blocking probability for elastic sessions

Moreover, the blocking probability Pb depends not only on
the number of blocking states, but mostly on the stationary
distribution achieved by the different policies (i.e., on the
long-term fraction of time spent in the different states). In the

following, to efficiently analyze the impact of the blocking cost
on Pb, we separately consider streaming and elastic sessions.

The service time of elastic sessions depends both on their
size assumed to be exponentially distributed with a mean of 5
Mbytes, and on their perceived throughputs. As shown before,
the lower b, the higher the network throughput leading to lower
average service times. When the optimal policy is adopted
(i.e., the actions are fixed to the optimal ones), the SMDP
may be reduced to a Markov chain, where departure rates
increase with decreasing blocking costs. As a result, for a given
cell arrival rate, the lower b, the lower the long-term number
of simultaneous sessions. This also means that, although the
lower b the higher the percentage of blocking states, the long-
term fraction of time spent in these states is reduced as b is
low. Accordingly, the lower b, the lower Pb for elastic sessions
as illustrated in Fig. 9.

Nevertheless, the service time of streaming sessions exclu-
sively depends on their duration, considered to be exponen-
tially distributed with a mean of 45 s. Thereby, maximizing the
network throughput will not reduce their average service times.
Consequently, as the number of blocking states increases with
decreasing b, the blocking probability for streaming sessions
also increases (cf. Fig. 10). The long-term fraction of time
spent in blocking states will actually be higher. Here again,
for both traffic classes, the performance of the staircase policy,
with carefully chosen S1 and S2 thresholds, is comparable to
the optimal solution (b = 50).
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Fig. 10. Impact of b on blocking probability for streaming sessions

2) Impact of the discount factor: In this paragraph, we
investigate the impact of the discount factor ψ on network
performance. When the blocking cost b is set to zero, the
network reward is reduced to the sum of user throughputs.

Figures 11 and 12 respectively illustrate the network
throughput and the blocking probability as a function of the
cell arrival rate, for different ψ values. Recall that the higher ψ,
the larger the number of states involved in the value function.
Also, next states contribute more to the expected long-term
network reward as ψ gets higher.
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The discount factor ψ can thus be tuned to control the
optimization scope. Typically, higher ψ values imply more
long-run optimization, leading to higher throughput and lower
blocking probability.
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Fig. 11. Impact of ψ on network throughput
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Fig. 12. Impact of ψ on blocking probability

Further, we note that the network throughput at low arrival
rate and the blocking probability at high arrival rate are
obviously quite similar, regardless of the discount factor.

Figures 13 and 14 compare the optimal policy with the
staircase one. On the one hand, we notice that, at low arrival
rate (typically below 1), the staircase policy outperforms the
optimal one with ψ = 0.3 and ψ = 0.8. This means that the
intuitive and low-complexity staircase policy efficiently guides
user decisions at low arrival rate. Yet, to maximize network
performance, the number of states that are involved in the
value function should be large enough. This can be seen with
ψ = 0.99.
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Fig. 13. Optimal vs. staircase policies: network throughput
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Fig. 14. Optimal vs. staircase policies: blocking probability

On the other hand, when the cell arrival rate increases,
taking into account next states becomes more relevant. In fact,
when the network is expected to approach its saturation, deriv-
ing QoS parameters considering future arrivals enhances long-
term network performance. Also, reducing QoS parameters
in all serving RATs, following the staircase policy, proves to
provide close performance to the optimal solution (cf. Fig. 13
and 14).

C. Learning-based Policy

In what follows, the learning-based policy (ψ = 0.99), the
optimal policy (b = 0, ψ = 0.99) and the staircase policy are
compared. Using the Q-learning algorithm, the agent interacts
with its environment over a sequence of T = 100000 and T =
250000 time-steps, of fixed duration τ = 0.5 s. Performance
metrics are then averaged over 20 learning periods.
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Figures 15 and 16 respectively show the network through-
put and the blocking probability, as a function of the cell
arrival rate. The optimal solution, solved using the Policy
Iteration algorithm, provides an upper bound on the network
throughput. It also brings the lowest blocking probability,
and consequently the best network performance. However, the
optimal policy suffers from high computational complexity.
For a fixed discount factor, the Policy Iteration algorithm is
shown to run in at most N

2
s (Na−1)
1−ψ · log(

N2
s

1−ψ ) iterations, where
Ns is the number of states, Na the number of actions, and ψ
the fixed discount factor [37].
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Fig. 15. RL-based vs. optimal vs. staircase policies: network throughput
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Fig. 16. RL-based vs. optimal vs. staircase policies: blocking probability

Moreover, and as discussed before, the staircase policy pro-
vides very close performance to the optimal solution despite its
low complexity. Yet, a practical challenge is to efficiently set
S1 and S2 values. When our heuristic requires no knowledge
on network parameters, its performance strongly depends on
the choice of the tuning thresholds.

Furthermore, unlike the optimal and the heuristic solutions,
the learning-based one needs no parameterization. Theoreti-
cally, after an infinite learning period, our Q-learning algo-
rithm converges to the optimal solution. In our work, we
stop learning after a realistic duration of T = 100000 and
T = 250000 time-steps. Better performances are obviously
observed when T = 250000, in comparison with when
T = 100000. Yet, when learning periods are voluntary limited,
both the optimal and the heuristic policies outperform the
learning-based ones.

VIII. CONCLUSION

In this paper, we have addressed the radio access technology
selection in heterogeneous cellular networks. We have pro-
posed a network-assisted approach, aiming to jointly enhance
network performance and user experience. As a matter of
fact, the network provides information for the mobiles to
make decisions regarding selection of their most appropriate
RAT. Deriving network information was formulated as a semi-
Markov decision process, and optimal policies were solved
through the Policy Iteration algorithm. However, a heavy
computational load was required to find optimal solutions.
Further, as network parameters may not be easily obtained,
we have introduced a RL-based algorithm to determine what
to signal to mobiles. Although our learning-based algorithm
requires no prior parameterization, it does not react fast to
sudden parameter changes. Moreover, we have investigated the
staircase policy, and proved its efficiency for implementation
in practice. When tuning thresholds are pertinently chosen, our
heuristic achieves close performance to the optimal solution.

APPENDIX
USER DECISION-MAKING

We consider a mobile user, in zone Zk, that needs to join
one of the serving RATs. For RAT x, the network broadcasts
the three parameters dmin(x), dmax(x), and cost(x). From
the user point of view, these parameters are the values of the
decision criteria, used to evalute available RATs. As dmin(x)
and dmax(x) are derived for the most robust modulation and
coding scheme, the mobile has first to determine its perceived
QoS parameters, as signaled by the network: dmin(x) · g(k)
and dmax(x)·g(k). Second, using the satisfaction-based multi-
criteria decision-making method we have introduced in [14],
the mobile computes a utility function for each of the available
RATs, and selects the one with the highest score.

The utility function of a class c user, for RAT x, is defined
as follows:

U c(x) = wcdmin
· d̂cmin(x)+wcdmax

· d̂cmax(x)+wccost · ĉost
c
(x)

where d̂cmin(x), d̂cmax(x), and ĉost
c
(x) are respectively the

normalized values of dmin(x), dmax(x), and cost(x). wcdmin
,

wcdmax
, and wccost are the weights of the decision criteria,

reflecting user preferences.
The normalizing functions depend on user traffic class c, and

throughput demands. As streaming sessions (c = S) are usu-
ally characterized by a minimum, an average and a maximum
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bandwidth requirement, their throughput normalizing function
is modeled as an sigmoid function:

d̂′
S

(x) = 1− exp(
−α(d

′(x).g(k)
Rav

)2

β + (d
′(x).g(k)
Rav

)
) (14)

where d′ = {dmin, dmax}. Rav represents session needs:
an average throughput demand. α and β are two positive
constants that determine the shape of the sigmoid function.

Also, when elastic sessions (c = E) adapt to resource
availability, requiring no QoS guarantees, dmin(x) is com-
pletely ignored (i.e., wEdmax

= 0). Moreover, their through-
put normalizing function for dmax has a concave shape.
d̂Emax(x) increases slowly as the throughput exceeds the
comfort throughput demand Rc of the user (i.e., the average
throughput beyond which, user satisfaction exceeds 63% of
maximum satisfaction).

d̂Emax(x) = 1− exp(−dmax(x).g(k)

Rc
) (15)

However, the cost normalizing function is modeled as
a Z-shaped function for both traffic classes. ĉost

c
(x) then

decreases rapidly with the cost.

ĉost
c
(x) = exp(−cost(x)2

λc
), c ∈ {S,E} (16)

where λc represents the cost tolerance parameter, a positive
constant that determines the shape of the Z-shaped function.

Depending on user preferences (e.g., QoS-maximizing or
cost-minimizing preferences), and needs (i.e., traffic class), the
cost tolerance parameter λ and the weights of the decision
criteria are reported in table IV.

Preferences Traffic class λ wdmin
wdmax

wcost
QoS-max Streaming 60 14/30 7/30 0.3
QoS-max Elastic 60 0 0.7 0.3
Cost-min Streaming 25 0.2 0.1 0.7
Cost-min Elastic 25 0 0.3 0.7

TABLE IV
COST TOLERANCE PARAMETERS AND DECISION CRITERIA WEIGHTS
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