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Abstract
Modern scientific computing involves organizing, moving,

visualizing, and analyzing massive amounts of data at

multiple sites around the world. The technologies, the

middleware services, and the architectures that are used to

build useful high-speed, wide area distributed systems,

constitute the field of data intensive computing. In this

paper we will describe an architecture for data intensive

applications where we use a high-speed distributed data

cache as a common element for all of the sources and sinks

of data. This cache-based approach provides standard

interfaces to a large, application-oriented, distributed,

on-line, transient storage system. We describe our

implementation of this cache, how we have made it

“network aware,” and how we do dynamic load balancing

based on the current network conditions. We also show

large increases in application throughput by access to

knowledge of the network conditions. 

1.0  Introduction

High-speed data streams resulting from the operation of

on-line instruments and imaging systems are a staple of

modern scientific, health care, and intelligence

environments. The advent of high-speed networks is

providing the potential for new approaches to the

collection, organization, storage, analysis, visualization,

and distribution of the large-data-objects that result from

such data streams. The result will be to make both the data

and its analysis much more readily available. 

For example, health care imaging systems illustrate the

need for both high data rates and real-time cataloging.

Medical video and image data used for diagnostic purposes

— e.g., X-ray CT, MRI, and cardio-angiography — are

collected at centralized facilities and may be accessed at

locations other than the point of collection (e.g., the

hospitals of the referring physicians). A second example is

high energy physics experiments, which generate high rates

and massive volumes of data that must be processed and

archived in real time. This data must also be accessible to

large scientific collaborations — typically hundreds of

investigators at dozens of institutions around the world. 

In this paper we will describe how “Computational

Grid” environments can be used to help with these types of

applications, and how a high-speed network cache is a

particularly important component in a data intensive grid

architecture. We describe our implementation of a network

cache, how we have made it “network aware,” and how we

adapt its operation to current network conditions.

2.0  Data Intensive Grids

The integration of the various technological approaches

being used to address the problem of integrated use of

dispersed resources is frequently called a “grid,” or a

computational grid — a name arising by analogy with the

grid that supplies ubiquitous access to electric power. See,

e.g., [10]. Basic grid services are those that locate, allocate,

coordinate, utilize, and provide for human interaction with

1.  The work described in this paper is supported by DARPA, Information Technology Office (http://www.darpa.mil/ito/Research

Areas.html) and the U. S. Dept. of Energy, Office of Science, Office of Computational and Technology Research, Mathematical, Informa-

tion, and Computational Sciences Division (http://www.er.doe.gov/production/octr/mics/index.html), under contract

DE-AC03-76SF00098 with the University of California. This is report no. LBNL-42896.
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the various resources that actually perform useful

functions.

Grids are built from collections of primarily independent

services. The essential aspect of grid services is that they

are uniformly available throughout the distributed

environment of the grid. Services may be grouped into

integrated sets of services, sometimes called “middleware.”

Current grid tools include Globus [8], Legion [16], SRB

[3], and workbench systems like Habanero [11] and

WebFlow [2].

From the application’s point of view, the Grid is a

collection of middleware services that provide applications

with a uniform view of distributed resource components

and the mechanisms for assembling them into systems.

From the middleware systems points of view, the Grid is a

standardized set of basic services providing scheduling,

resource discovery, global data directories, security,

communication services, etc. However, from the Grid

implementor’s point of view, these services result from and

must interact with a heterogeneous set of capabilities, and

frequently involve “drilling” down through the various

layers of the computing and communications infrastructure.

2.1  Architecture for Data Intensive Environments

Our model is to use a high-speed distributed data storage

cache as a common element for all of the sources and sinks

of data involved in high-performance data systems. We use

the term “cache” to mean storage that is faster than typical

local disk, and temporary in nature. This cache-based

approach provides standard interfaces to a large,

application-oriented, distributed, on-line, transient storage

system. 

Each data source deposits its data in the cache, and each

data consumer takes data from the cache, often writing the

processed data back to the cache. A tertiary storage system

manager migrates data to and from the cache at various

stages of processing. (See Figur e1.)   We have used this

model for data handling systems for high energy physics

data and for medical imaging data. For more information

see [15] and [14].

The high-speed cache serves several roles in this

environment. It provides a standard high data rate interface

for high-speed access by data sources, processing

resources, mass storage systems (MSS), and user interface /

data visualization elements. It provides the functionality of

a single very large, random access, block-oriented I/O

device (i.e., a “virtual disk”). It serves to isolate the

application from tertiary storage systems and instrument

data sources, helping eliminate contention for those

resources

This cache can be used as a large buffer, able to absorb

data from a high rate data source and then to forward it to a

slower tertiary storage system. The cache also provides an

“impedance matching” function between a small number of

high throughput streams to a larger number of lower speed

streams, e.g. between fine-grained accesses by many

applications and the coarse-grained nature of a few parallel

tape drives in the tertiary storage system.

Depending on the size of the cache relative to the

objects of interest, the tertiary storage system management

may only involve moving partial objects to the cache. In

other words, the cache may contain a moving window for

an extremely large off-line object/data set. Generally, the

cache storage configuration is large (e.g., 100s of

gigabytes) compared to the available disks of a typical

computing environment (e.g., 10s of gigabytes), and very

large compared to any single disk (e.g. hundreds of ~10

gigabytes). 

2.2  Network-Aware Applications

In order to efficiently use high-speed wide area

networks, applications will need to be “network-aware”[6].

Network-aware applications attempt to adjust their

demands in response to changes in resource availability.

For example, emerging QoS services will allow

network-aware applications to participate in resource

management, so that network resources are applied in a

way that is most effective for the applications. Services

with a QoS assurance are likely to be more expensive than

best-effort services, so applications may prefer to adjust

rather than pay a higher price. Network-aware applications

will require a general-purpose service that provides

information about the past, current, and future state of all

the network links that it wishes to use. Our monitoring

system, described below, is a first step in providing this

service.

Figure 1     The Data Handling Model
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3.0  The Distributed-Parallel Storage System

Our implementation of this high-speed, distributed

cache is called the Distributed-Parallel Storage System

(DPSS) [7]. LBNL designed and implemented the DPSS as

part of the DARPA MAGIC project [18], and as part of the

U.S. Department of Energy’s high-speed distributed

computing program. This technology has been successful

in providing an economical, high-performance, widely

distributed, and highly scalable architecture for caching

large amounts of data that can potentially be used by many

different users. 

Typical DPSS implementations consist of several

low-cost workstations as DPSS block servers, each with

several disk controllers, and several disks on each

controller. A four-server DPSS with a capacity of one

Terabyte (costing about $80K in mid-1999) can thus

produce throughputs of over 50 MBytes/sec  by providing

parallel access to 20-30 disks. 

Other papers describing the DPSS in more detail include

[23], which describes how the DPSS was used to provide

high-speed access to remote data for a terrain visualization

application, [24], which describes the basic architecture

and implementation, and [25], which describes how the

instrumentation abilities in the DPSS were used to help

track down a wide area network problem. This paper

focuses on how we were able to greatly improve total

throughput to applications by making the DPSS “network

aware.”

The application interface to the DPSS cache supports a

variety of I/O semantics, including Unix-like I/O semantics

through an easy to use client API library (e.g. dpssOpen(),

dpssRead(), dpssWrite(), dpssLSeek(), dpssClose()). The

data layout on the disks is completely up to the application,

and the usual strategy for sequential reading applications is

to write the data “round-robin,” striping blocks of data

across the servers. The client library also includes a flexible

data replication ability, allowing for multiple levels of fault

tolerance. The DPSS client library is multi-threaded, where

the number of client threads is equal to the number of

DPSS servers. Therefore the speed of the client scales with

the speed of the server, assuming the client host is powerful

enough.

The internal architecture of the DPSS is illustrated in

Figur e2. Requests for blocks of data are sent from the

client to the “DPSS master” process, which determines

which “DPSS block servers” the blocks are located on, and

forwards the requests to the appropriate servers. The server

then sends the block directly back to the client. Servers

may be anywhere in the network: there is no assumption

that they are all at the same location, or even the same city.

DPSS performance, as measured by total throughput, is

optimized for a relatively smaller number (a few thousand)

of relatively large files (greater than 50 MB). Performance

is the same for any file sizes greater than 50 MB. We have

also shown that performance scales well with the number

of clients, up to at least 64 clients. For example, if the

DPSS system is configured to provide 50 MB/sec to 1

client, it can provide 1 MB/sec to each of 50 simultaneous

clients. The DPSS master host starts to run out of resources

with more than 64 clients. 

Because of the threaded nature of the DPSS server, a

server scales linearly with the number of disks, up to the

network limit of the host (possibly limited by the network

card or the CPU). The total DPSS system throughput scales

linearly with the number of servers, up to at least 10

servers.

The DPSS provides several important and unique

capabilities for data intensive distributed computing

environments. It provides application-specific interfaces to

an extremely large space of logical blocks; it offers the

ability to build large, high-performance storage systems

from inexpensive commodity components; and it offers the

ability to increase performance by increasing the number of

parallel disk servers.

DPSS data blocks are available to clients immediately as

they are placed into the cache. It is not necessary to wait

until the entire file has been transferred before requesting

data. This is particularly useful to clients requesting data

from a tape archive. As the file moves from tape to the

DPSS cache, the blocks in the cache are immediately

available to the client. If a block is not available, the

application can either block, waiting for the data to arrive,

or continue to request other blocks of data which may be

ready to read. 

The DPSS is dynamically reconfigurable, allowing one

to add or remove servers or disks on the fly. This is done by

storing the DPSS hardware resource information in a

Globus Metacomputing Directory Service (MDS)[5]

formatted LDAP database, which may be updated
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dynamically. Software agents are used to monitor network,

host, and disk availability and load, storing this information

into the LDAP database as well. This information can then

be used for fault tolerance and load balancing. We describe

this load balancing facility in more detail below.

4.0  Network-Aware Adaptation

For the DPSS cache to be effective in a wide area

network environment, it must have sufficient knowledge of

the network to adjust for a wide range of network

performance conditions and sufficient adaptability to be

able to dynamically reconfigure itself in the face of

congestion and component failure.

4.1  Monitoring System

We have developed a software agent architecture for

distributed system monitoring and management. We call

this system Java Agents for Monitoring and Management

(JAMM) [13]. The agents, whose implementation is based

on Java and RMI, can be used to launch a wide range of

system and network monitoring tools, extract their results,

and publish them into an LDAP database. These agents can

securely start any monitoring program on any host and

manage the output of any monitoring data. For example, we

use the agents to run netperf [19] and ping for network

monitoring, vmstat and uptime for host monitoring, and

xntpdc for host clock synchronization monitoring. These

results are uploaded to an LDAP database at regular

intervals, typically every few minutes, for easy access by

any process in the system. We run these agents on every

host in a distributed system, including the client host, so

that we can learn about the network path between the client

and any server.

4.2  TCP Receive Buffers

The DPSS uses the TCP protocol for data transfers. For

TCP to perform well over high-speeds networks, it is

critical that there be enough buffer space for the congestion

control algorithms to work correctly [12]. Proper buffer

size is a function of the network bandwidth-delay product,

but because bandwidth-delay products in the Internet can

span 4-5 orders of magnitude, it is impossible to configure

the default TCP parameters on a host to be optimal for all

connections [21]. 

To solve this problem, the DPSS client library

automatically determines the bandwidth-delay product for

each connection to a DPSS server and sets the TCP buffer

size to the optimal value. The bandwidth and delay of each

link are obtained from the agent monitoring results which

are stored in the LDAP database. 

There are several open issues involved in obtaining

accurate network throughput and latency measures. One

issue is that the use of past performance data to predict the

future may be of limited utility. Another issue is whether to

use active or passive measurement techniques.

Network information such as available bandwidth varies

dynamically due to changing traffic and often cannot be

measured accurately. As a result, characterizing the

network with a single number can be misleading. The

measured bandwidth availability might appear to be stable

based on measurements every 10 minutes, but might

actually be very bursty; this burstiness might only be

noticed if measurements are made every few seconds.

These issues are described in more detail in [17] and

[27]. We plan to adopt techniques used in other projects

such as NWS, once they are proven to be sound.

4.3  Load Balancing

The DPSS can perform load balancing if the data blocks

are replicated on multiple servers. The DPSS master uses

status information in the LDAP database to determine how

to forward a client's block request to the server that will

give the fastest response. A minimum cost flow algorithm

[1][9] is used by the DPSS master to optimize the

assignment of block requests to servers.

Our approach is to treat load balancing as a

combinatorial problem. There is some number of clients

and servers. Each client must be assigned to one or more

servers without any server being overloaded. 

The minimum cost flow approach is a good match for

the combinatorial nature of the problem, but there are

several practical challenges to overcome. In particular, the

minimum cost flow algorithm is an offline algorithm; the

number of blocks each client will request must be know in

advance in order to generate a flow of blocks from servers

to clients for a given period. However, client arrivals and

departures are unpredictable, and for some clients, the

request rate and the amount of data requested is also

variable. Our solution is to run the algorithm each time a

client request arrives, using the actual request for the

current client and estimates for every other client. The

algorithm itself is fast (less than 1 ms for typical graphs),

so this solution is workable.

We model the DPSS load balancing problem as a

transportation problem [1] (p. 99). Each server has a supply

of blocks that must be delivered to the clients. The network

is represented as a bipartite graph, where each node is a

client or server and each edge is a network path from server

to client. Each edge has a per-block cost and a maximum

capacity. The algorithm finds a flow of blocks from servers

to clients that minimizes the total cost. It is defined for a

balanced network, where the total demand is equal to the
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total supply. For the DPSS, this situation occurs only when

the clients have saturated the servers. To create a balanced

problem, we introduce a ghost client and a ghost server that

have infinite capacity and high-cost links to other servers

and clients, respectively. Supply or demand is assigned to

one of the ghosts to create a balanced problem. 

We assign a cost and capacity based on the assumption

that network latency is the dominant factor affecting

application performance, so that selecting servers with the

lowest latency will maximize application performance. The

total latency from a client's request to its receipt of the first

tile from a server is affected by three different network

paths: the paths from client to master, master to server, and

server to client. The master obtains the latencies from these

three paths from the LDAP database. The total delay for the

edge cost is the sum of the three latencies, the processing

delay at the master and server, and the transmission delay

of a data block across the link between server and client.

Data blocks are large (typically 64KB), so the transmission

delay is non-trivial, even across a high-speed network.

One limitation of this approach is that the graph does not

represent the actual network topology. Several edges in the

graph may actually share the same bottleneck link in the

real network, but the graph does not capture this

information. The minimum cost flow algorithm could

accommodate a more detailed model of the network, but

the monitoring system only collects information about

host-to-host performance.

The edge capacity is set to the bandwidth obtained from

the LDAP database. This capacity may be reduced based on

the degree of replication of the data blocks. When data is

loaded into the DPSS, blocks are distributed acros n

servers and each block is replicated m times, where m <= n.

If we assume blocks are uniformly distributed to servers,

then it is unlikely that any one server will store more than

m/n percent of the blocks requested. The actual edge

capacity assigned is the minimum of the bandwidth and

m/n percent of the data requested by the client.

The bandwidth data from the LDAP database is also

used to set the server's supply. The supply at a server is the

total bandwidth available to all clients. This bandwidth

must be determined heuristically because the monitoring

system only reports the maximum bandwidth available to

each client. We might naively assume that the total

bandwidth is the sum of the bandwidth available to each

client. If several clients share the same bottleneck link,

however, the total bandwidth will be less. We

conservatively assume that all clients share the same

bottleneck link and set the total bandwidth to the maximum

bandwidth available to any one client.

The load balancing implementation maintains a graph

data structure that is modified whenever clients arrive or

leave. The edge costs are recomputed every three minutes

based on data from LDAP. We use the CS2 [4] minimum

cost flow solver. For a particular request, the solver

determines what proportion of the blocks will be delivered

by each server. Each block must be looked up in the block

database to determine which specific servers it is loaded on.

A stride scheduler [26] chooses one of the available servers

based on the proportions assigned by the solver.

5.0  Results

5.1  TCP Buffer Tuning 

Table 1 shows the results from dynamic setting of the

TCP receive buffer size. This table illustrates that buffers

can be hand-tuned for either LAN access or WAN access,

but not both at once. It is also apparent that while setting

the buffer size big enough is particularly important for the

WAN case, it is also important not to set it too big for the

LAN environment.

If the buffers are too large, throughput may decrease

because the larger receive buffer allows the congestion

window to grow sufficiently large that multiple packets are

lost (in a major buffer overflow) during a single round trip

time (RTT), which then leads to a timeout instead of a

smooth fast retransmit/recovery. [20] 

5.2  Load Balancing

We first ran a series of tests to verify that latency is the

dominant factor in determining which server to use in the

load balancing algorithm. Figure 3, Figur e4, and Fig ure5

show the results of using dynamic load balancing varying

one factor at a time. In Figure 3 we used servers with the

same load and latency, and varied the available network

throughput (the first two servers were on OC-3, the third on

10BT ethernet, and the fourth on 100BT ethernet). In

Figur e4 we used DPSS servers with the same network

throughput and latency, but varied the server CPU power

available by using servers with other jobs running

Table 1 

buffer method network Total 

Throughput

hand tune for LAN

(64KB buffers)

LAN 33 MBytes/sec

WAN 5.5 MBytes/sec

hand tune for WAN

(512 KB buffers)

LAN 19 MBytes/sec

WAN 14 MBytes/sec

auto tune in DPSS 

library

LAN 33 MBytes/sec

WAN 14 MBytes/sec

LAN RTT = 1 ms over OC-12 (622 Mbit/sec) network

WAN RTT = 44 ms over OC-3 (155 Mbit/sec) network
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simultaneously. The first server had no load, the second had

33%, the third had 50%, and the fourth had 66% load. For

the test shown in Figu re5, we used servers with the same

network throughput and load, but with varied latencies,

where the first server had a latency of 0.5 ms, the second

and fourth of 40 ms, the third of 2 ms.   

Note that the results for the DPSS without load

balancing actually decrease starting with the third server in

Figur e3, which is on 10 Mbit/sec ethernet, because without

load balancing total throughput is constrained by the speed

of the slowest server. The same thing happens in Fi gure4

and Figure 5. Therefore, the total throughput of the system

with no load balancing is the speed of the slowest server,

times the number of servers. The overall throughput in

Figure 5 is less than in Figures 3 and 4 because the servers

used were considerably less powerful, and were connected

by networks with a throughput of only 12 Mbits/sec. 

5.3  Test Environment

We used the testbed environment shown in Figure 7 to

evaluate the effectiveness of load balancing in the DPSS.

The network performance in the testbed limits the

performance improvements we could achieve with load

balancing. This section outlines the basic network

performance data obtained from the monitoring system,

based on its netperf and ping measurements. These

measurements are performed every five minutes.

The platforms and operating systems varied from host to

host, which caused each host to have slightly different

performance characteristics. Server A at LBNL is a 2-CPU

UltraSparc 2 running Solaris 2.6, while Server B is 2-CPU

200 MHz Pentium II running Solaris X86. The sustained

bandwidth from Server A to Client A is 112 Mbps, but only

80 Mbps to Server B. 

A network configuration problem limited the bandwidth

between Server C and Client B to 11 Mbps, although

Server C achieved 107 Mbps to Client A and Client B to

Server A achieved 56 Mbps. All West Coast hosts can ping

each other with 0 or 1 ms delay. Server D and Client C,

both in Kansas, achieved 85 Mbps throughput; the delay is

3ms.

The DS3 link between the West Coast sites and the

machines in Kansas could sustain up to 14 Mbps. The delay

for pings across the DS3 link ranged from 35ms to 44ms,

depending on the specific hosts involved. 

We performed a series of tests using a test client that

reads a single 150MB file from the DPSS. The file is

loaded in 2400 64KB data blocks, and the client requests

64 data blocks (4 MB) at a time. The client waits until all

64 blocks are delivered before issuing the next request.

We compare the load balancing code, which we call the

minimum cost master, to a previous version of the DPSS

master, called the greedy master. We also vary the degree of

replication and the number of clients. The greedy master

uses a two-part server selection strategy. For 75% of the

requests, it uses a greedy strategy, selecting the server that

has the highest bandwidth connection to the client. For the

other requests, it randomly selects a server.

5.4  Performance Result

Our experiments show that replication and load

balancing increase the throughput of the DPSS by a factor

of 2.17 compared to the use of unreplicated data. Using

replicated data, load balancing increases throughput by

33% compared to the greedy strategy. In the testbed

configuration, the minimum cost master sustained a peak

throughput of 128 Mbps to three clients using a fully

replicated data set; without replication, the peak throughput

was only 59 MBps. With replicated data, throughput for the

greedy master was 96 Mbps

We experimented with load balancing and replication

using four different data set configurations. When a data set

is loaded on the DPSS, each data block can be loaded on

one or more servers. We label a configuration as x-by-y,

where x is the total number of servers used and y is the

number of servers each block is loaded on. For example, a

data set that is fully replicated on four servers is a 4x4

configuration. For our tests, one configuration was 4x4. For
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the other tests, three servers (A, C, D) were used. One

configuration was   fully replicated (3x3), one was

replicated twice (3x2), and was not replicated (3x1). Since

we expect this type of storage cache to be mainly used with

very large data sets, in practice the data will likely only be

replicated at most twice.

We performed two series of tests. The first series

measured a single client accessing the DPSS to provide a

performance baseline. The second series measured three

clients using the DPSS simultaneously.

Load balancing has a greater effect when multiple

clients are running, because a small number of clients can

produce more load than a single server can handle. The

master dynamically adapts to the load generated by clients

to reduce contention at busy servers.

Our first test measured the sustained throughput a single

client could achieve for each data set. The test was intended

to show the best possible bandwidth that a client could

achieve for a given configuration, which provides a

baseline for future tests. 

The test client ramps up to maximum performance over

the first two or three block requests. We exclude this ramp

up from the results by measuring the performance over the

last half of the requests. Figure7 s hows the results for these

tests, using clients on hosts A, B and C in Figur e6. They

show that the clients' performance is governed by the

quality of their connections to the servers. For the 4x4 data

set, Client A does the best, while Client C, which has a

slow connection to the local servers, does the worst. 

Our second test measured the total sustained throughput

of the DPSS when three clients were running

simultaneously. These tests require measuring the

effectiveness of the load balancing algorithm at allocating

clients to servers without overloading servers. Figure

shows the results for the 3-client tests. It shows the total

throughput delivered to each client.

 The total throughput for the 4x4, 3-client test is 75% of

the sum of the single client tests. Clients A and B both used

Server A in the single client test. When they run

simultaneously, their total bandwidth requirements are

more than the server can handle. Some of the excess

demand is handle by Server B. As a result, the total

throughput is lower.

The 3x2 case shows the benefits of the minimum cost

flow algorithm. No server has a copy of all the data blocks,

so each client must use two or more servers. This limited

replication increases contention at servers and reduces the

aggregrate throughput of the DPSS. For the 3x2 data set, it

can only get two-thirds of the data from Server D. The rest

of the data comes from Server A, which lowers Client C's

throughput.

Figur e9 shows the performance of the minimum cost

flow load balancing method vs. the greedy server selection

method, showing the sum of the throughput from all three

clients. The greedy strategy does not perform as well as the

minimum cost master, because it does not take into account

latency, the amount of bandwidth needed to satisfy

requests, or the number of clients using the same server.

Each problem occurs in practice. For the 3x2 test, Client C

had to use some servers on the West Coast. The highest

bandwidth link also had the highest latency; the load

balancing algorithm got better performance by choosing a

server with lower bandwidth and lower latency. In other

Figure 7:  Results for 1 client
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Figure 8: Results for 3 simultaneous clients
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tests, the greedy master causes a single server to be

overloaded by choosing the same server for several clients.

Overall, load balancing and replication increase the

bandwidth delivered to applications. Replication allows

clients to use multiple servers, but without load balancing

clients are still limited by the speed of the slower server.

The minimum cost flow approach to load balancing

increases the total throughput of the system by adapting to

varying client demand. A summary of the total throughput

results for the 3 server, 2-way replicated scenario is shown

in Table 2 below.

5.5  Future Work

Our work on the DPSS is continuing in several areas.

We plan to test the DPSS in a larger testbed, with an

OC-12 wide area link and more clients. This will allow us

to evaluate the minimum cost master under heavier load,

where we expect load balancing to have a greater impact.

The specific minimum cost flow algorithm used is also

being studied. We currently model load balancing as a

single-commodity flow problem, which requires that

different data sets used by clients as be loaded on the same

servers and with the same degree of replication. A

multi-commodity flow algorithm, while computationally

more expensive, would not impose this requirement.

We would also like to investigate the use of a more

detailed network model to drive the minimum cost flow

algorithm. One improvement would be to monitor

performance between end hosts and internal network

nodes, which would allow the master to detect contention

on shared links. We also plan to experiment with other

network monitoring methods, such as passive methods, for

collecting network throughput information.

6.0  Related Work

Research on automatic TCP receive buffer tuning in the

operating system is being done by the Pittsburgh

Supercomputer Center [21]. While this is a very nice

approach, it will currently only help applications running

on hosts with a customized version of the NetBSD

operating system. Our approach can be used by any

distributed application on any Unix system.

Other network-aware application or middleware projects

include the Remulac project [6][22], which is also doing

network monitoring and application adaptation based on

the current network conditions. This project focuses on

designing a middleware API for applications to use; we

focus instead on issues for data intensive computing.

The goals of our network monitoring system are similar

to that of the NPACI Network Weather Service (NWS)[27].

NWS is a distributed system that allows one to periodically

monitor various network and computational resources.

NWS then dynamically forecasts the performance of these

resources based on their past performance. The advantage

of our system is that the agent mechanism makes it very

easy to dynamically change what is being monitored, and

our use of LDAP to publish results makes it easy for any

application to access the results. The advantage of NWS is

that it maintains historical information and can do

predictions of future performance. This ability to predict

future performance would be extremely valuable for this

system, and we plan to try to incorporate NWS into our

JAMM system.

Our monitoring system is also somewhat similar to the

Globus network performance tool, GloPerf, which supports

dynamic measurement and publication of network and

bandwidth information. 

7.0  Conclusions

We have described a data architecture for widely

distributed data intensive applications, which is centered

around the use of a high-speed network-aware cache. We

believe that this type of network-aware data cache will be

an important architectural component to building effective

data intensive computational grids.

We have also shown that adding network-awareness to a

distributed system can greatly improve its performance. We

are using real time network and system monitoring

information as input to a load balancing algorithm. While

more testing is needed to validate the utility of this

particular load balancing algorithm in more general

network environments, clearly this type of monitoring will

be required to enable high performance grid-like systems. 

Finally, in order to achieve best performance we have

shown that data should be replicated. There is clearly a cost

involved in doing this, namely the cost of additional

servers/disks. However, this cost is relatively small, and

much less that the cost of enhancing other resources such as

network capacity. Moreover, replication has the added

benefit of providing redundancy for fault tolerance.

Table 2 

number 

of clients

no 

replication 

(3x1)

greedy 

master 

(3x2) 

min flow 

master 

(3x2)

1 60 Mbps 71 Mbps 87 Mbps

3 60 Mbps 82 Mbps 124 Mbps
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