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A network based approach to drug
repositioning identifies plausible candidates
for breast cancer and prostate cancer
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Abstract

Background: The high cost and the long time required to bring drugs into commerce is driving efforts to

repurpose FDA approved drugs—to find new uses for which they weren’t intended, and to thereby reduce the

overall cost of commercialization, and shorten the lag between drug discovery and availability. We report on the

development, testing and application of a promising new approach to repositioning.

Methods: Our approach is based on mining a human functional linkage network for inversely correlated modules

of drug and disease gene targets. The method takes account of multiple information sources, including gene

mutation, gene expression, and functional connectivity and proximity of within module genes.

Results: The method was used to identify candidates for treating breast and prostate cancer. We found that (i) the

recall rate for FDA approved drugs for breast (prostate) cancer is 20/20 (10/11), while the rates for drugs in clinical

trials were 131/154 and 82/106; (ii) the ROC/AUC performance substantially exceeds that of comparable methods;

(iii) preliminary in vitro studies indicate that 5/5 candidates have therapeutic indices superior to that of Doxorubicin

in MCF7 and SUM149 cancer cell lines. We briefly discuss the biological plausibility of the candidates at a molecular

level in the context of the biological processes that they mediate.

Conclusions: Our method appears to offer promise for the identification of multi-targeted drug candidates that

can correct aberrant cellular functions. In particular the computational performance exceeded that of other CMap-

based methods, and in vitro experiments indicate that 5/5 candidates have therapeutic indices superior to that of

Doxorubicin in MCF7 and SUM149 cancer cell lines. The approach has the potential to provide a more efficient

drug discovery pipeline.
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Background

The high cost and the long time required to bring drugs

into commerce [1–3] is driving efforts to repurpose FDA

approved drugs—to find new uses for which they weren’t

intended, and to thereby reduce the overall cost of

commercialization, and shorten the lag between drug

discovery and availability [4]. Among the successes of

this approach are sildenafil, originally developed as a car-

diovascular drug [5] and repositioned to treat erectile

dysfunction; and zidovudine (AZT), originally developed

as an anticancer drug [6], and repositioned for the treat-

ment of HIV. These discoveries, though serendipitous,

motivated more systematic approaches which might

amplify the number of discoveries many-fold.

Systematic approaches generally begin with some form

of computer based screening to generate large numbers

of plausible candidates [7–11]. Many current computa-

tional strategies exploit shared similarities among drugs

or diseases and infer similar therapeutic applications or

drug selections. Drug similarities include chemical st-

ructures [12–14], drug-induced phenotypic side effects

[12, 15], molecular activities [16]. Disease similarities in-

clude phenotypic similarity constructed by identifying

similarity between MeSH terms [17] from OMIM
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database [18]; semantic phenotypic similarity [12]. The

efficacy of the candidates generated by such approaches

would not exceed that of existing drugs since the disease

biomarkers remain the same.

A more general approach searches for disease (Gene Ex-

pression Omnibus, GEO) and drug (CMap) induced tran-

scriptional profiles that are inversely correlated [19–23].

Strong anti correlation between the gene expression pro-

files of an FDA approved drug and those of a disease for

which it was not intended identifies the drug as a candi-

date for repositioning. This procedure, though useful, is

relatively agnostic with respect to the functional relations

between profiles (the ordered lists of perturbed genes). A

drug identified this way is limited in that it is not informed

by cellular function, but simply targets a group of gener-

ally non-interacting differentially expressed genes.

The idea underlying our method, which we refer to as

the method of functional modules (MFM), is to impose

the condition that candidates must affect the same

cellular functions in opposite ways, and to use informa-

tion about DNA as well as RNA. In particular we search

for drugs that strongly perturb sets of genes having the

following properties: (i) they share a strong functional

relationship (ii) they are mutated in the disease state (iii)

their expression is highly perturbed by the disease (iv)

they are within significantly perturbed pathways of dis-

eases. Functional association is based on position in a

human functional linkage network (FLN) [24]—an evi-

dence weighted network that provides a quantitative

measure of the degree of functional association among

any set of human genes. This means the method inte-

grates multiple sources of evidence such as protein-

protein interactions and is not limited to catalogued

functional associations, e.g. KEGG, but uses a general

approach to find functional modules.

We used genome-wide transcriptional data for more

than 3500 compounds provided by LINCS [25] and

identified 519 (410) repositioned drug candidates for

breast (prostate) cancer. We also compared the accur-

acy of our method with that of comparable ap-

proaches [20, 22] (see Results). We applied CMap

datasets and ranked bioactive compounds using differ-

ent methods, then compared the predictability of the

ranked lists of compounds (see Statistical validation).

We then presented evidence that a set of disease mu-

tated genes and their nearest FLN neighbors (muta-

tion associated genes (MAGs), see Methods) provided

more functional insight than a set of differentially

expressed genes in the disease.

In addition to these computational assessments, in vitro

viability tests confirmed that 4 our predicted drug candi-

dates were more efficacious than Doxorubicin–an FDA-

approved drug for breast cancer–against MCF7 and

SUM149 cell lines.

Methods
The method built non-incrementally on the work of Shi-

gemizu et al. [22]. In particular: (i) we took account of

information on mutations (DNA) as opposed to just ex-

pression (RNA); and (ii) we took account of functional

information by using a so-called FLN [24], as explained

below. Specifically, we annotated mutated genes on the

FLN [24], and identified and eliminated all genes that 1)

are not within a specified distance of a mutated gene

(the functional module constraint); 2) have a differential

expression below some threshold (the disease condition

constraint); 3) are not in pathways that distinguish the

cancer/normal phenotype.

An FLN [24] is represented as a network of nodes

(genes/proteins) connected by links whose weights are

proportional to the likelihood that the connected nodes

share common biological functions. We set a threshold

on linkage weight so as to exclude approximately 95 %

of the neighbors of any given node, leaving clusters of

functionally related aberrant genes. We carried out the

procedure twice, once starting with mutated genes and

their first nearest neighbors, and then with mutated

genes and their first and second nearest neighbors.

We considered each drug in turn and identified two

FLN landscapes: one defined by genes that are up-

regulated by the disease and down regulated by the

drugs (Up regulated Cancer gene, Down regulated

Bioactive target gene–UCDB) and, the other defined

by genes that are down regulated by disease and up

regulated by the drug (DCUB). Each landscape was

thus an interconnected set of drug and disease per-

turbed genes. Finally we assigned a score, mutual pre-

dictability (discussed below), which measured the

connectivity within each landscape, which is roughly

speaking the extent to which the drug and disease

genes sets are correlated. The greater the relationship,

the higher the likelihood that the drug is a viable

candidate for repositioning. The methodology is sum-

marized in Fig. 1. The specifics follow.

Data sources

Well-documented mutated genes were downloaded from

the Online Mendelian Inheritance in Man (OMIM)

(http://www.ncbi.nlm.nih.gov/omim) [18]. 40 breast can-

cer and prostate cancer and 69 leukemia well-documented

genes were obtained from OMIM (see Additional file 1).

FLN was downloaded from http://visant.bu.edu/misi/fln/.

Transcript levels

The differentially expressed genes were obtained from

the Illumina HiSeq 2000 RNA Sequencing platform for

108 breast and 51 prostate paired tumor and normal

samples, downloaded from the TCGA portal (http://

cancergenome.nih.gov/). Differential expression data in
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response to leukemia (GSE1159, GSE9476) were ob-

tained from the National Center for Biotechnology In-

formation (NCBI) Gene Expression Omnibus (GEO)

(http://www.ncbi.nlm.nih.gov/geo/). The ranked list of

differentially expressed genes was generated using edgeR

[26] and a t-statistic.

Ranked list of differentially expressed genes in re-

sponse to compounds treated in breast cancer (MCF7

cell line), myelogenous leukemia (HL60 cell line), and

prostate cancer (PC3 cell line) were obtained from con-

nectivity map (CMap) build 02 [20], https://www.broa-

dinstitute.org/cmap) and LINCS (level 4) (http://

www.lincscloud.org/) [20].

Mutation-associated genes (MAG)

The procedure maps to the FLN, known mutated drivers

for the disease of interest, and their first nearest neigh-

bors. It then sets the linkage threshold to 0.2, eliminat-

ing 95 % of the links and leaving gene clusters each of

which is relatively homogeneous functionally. The

remaining genes are further selected by 1) setting a

threshold on transcription level; 2) filtering out the

genes that are not in pathways that distinguish pheno-

type (i.e. cancer from normal–see Pathway enrichment

analysis). As indicated below we were left with relatively

small gene sets at the end of the process. In order to

identify well-correlated drug-disease gene sets, the defi-

nitions of up- and down-regulated genes were not tightly

constrained. In particular, we looped through m sets of

various sizes, ranging from the 1000 most up-regulated

genes, to the top half of the total number of genes in

our universe–which depends on the number of probes

on the chip–in increments of 2,000. A similar procedure

was followed to obtain networks of the most down-

regulated genes.

Networks were obtained for each member of our uni-

verse of bioactive compounds. A drug was ranked in ac-

cord with the intersection between its functional

network and the disease functional network, as de-

scribed below. The procedure was then repeated, by

starting with first and second nearest neighbors. The

final number of MAG ranged from 75 to 1074 for breast

cancer; 15 to 460 for prostate cancer; and 46 to 772 for

leukemia.

Pathway enrichment analysis

We focused on the enrichment of pathways abnormally

perturbed in the disease state compared to the normal

Fig. 1 Analytic workflow. (1) After mapping mutated genes to the FLN, identify the functional neighbors that are up or down regulated (DEG:

differentially expressed genes) and within significantly enriched disease pathways (FDR < 0.05). (2) Map the genes that are down or up regulated

by drug candidates to the FLN (3) Compute the MP score; i.e. the significance of the functional overlap between the drug and disease perturbed

genes (see text). (4) Rank the compounds according to the MP score. (5) Compute the sensitivity and specificity of the ranked list of compounds.

(6) Repeat the process with different groups of MAG and DRG (Drug Response Gene) generated by looping over the parameters (m & k). (7)

Choose the parameter set that has highest sensitivity and specificity. (8) The drug candidates are chosen form the ranked list generated by the

best parameter set. (9) The top ranked drug candidates are chosen for in vitro experimental validation
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state. PWEA [27] (http://zlab.bu.edu/PWEA/down-

load.php) was used to identify significantly perturbed

pathways in the gene expression profiles of breast can-

cer, leukemia and prostate cancer described above.

Drug response genes (DRG)

The top (up-regulated) and bottom (down-regulated) k

most differentially expressed genes in response to bio-

active compounds in disease cell lines were selected as

DRG. We restricted the number of up (down)-regulated

DRG to be within +/− 500 genes of the matched down

(up)-regulated MAG. For example, if 500 up-regulated

MAG are in an FLN cluster, k would from a low of 100

to a high of 1000 in increments of 100.

Library of Integrated Cellular Signatures (LINCS)

LINCS profiles are generated using 3,678 and 4,228 bio-

active compounds for breast cancer and prostate cancer,

respectively, each compound typically applied at 6 differ-

ent concentrations (0.0003-177 μM) and 2 time points

(6 and 24 h). We retained the expression profile of a

compound that produced maximal mutual predictability

score before ranking the compounds. Twenty of the

3678 (11 of 4228) were FDA approved drugs for breast

(prostate) cancer.

Connectivity map

We used CMap datasets for comparing the performance

between our method with others. CMap profiles are gen-

erated using 1251, 1079 and 1182 bioactive compounds

for breast cancer, leukemia and prostate cancer, respect-

ively. Eight of the 1251, 6 of 1079, and 7 of 1182 were

FDA approved drugs for breast cancer, leukemia and

prostate cancer respectively.

Drug and clinical trial information retrieval

We collected data from DrugBank (http://www.drug-

bank.ca/). FDA approved drugs from FDA service:

Drugs@FDA. Clinical trial data were downloaded from

https://clinicaltrials.gov.

Mutual predictability (MP)

We used mutual predictability [4] to score the correl-

ation between mutation associated genes (MAG) and

drug response genes (DRG). In essence, mutual predict-

ability is a measure of the degree to which MAG can be

used as seed genes to predict DRG (predictability M-D),

and vice versa (predictability D-M). The mutual predict-

ability of the two sets measures the extent to which

genes in one set can be used to identify (predict) genes

in the other [24]. A disease drug pair with high mutual

predictability has a strong functional relation; the higher

the score, the stronger the relation.

To quantify the predictability M-D, we use MAG as

seeds, and score and rank each gene connected to a seed

using the disease mutual predictability score Si:

Si ¼
X

j∈seeds

wij

where wij weights the link between gene i and seed j,

and the score is 0 if there is no seed connection.

We obtained the sensitivity and specify variation by

using a series of cutoffs on the ranked list. The number

of true positives is taken to be the number of DRG

above a particular cutoff; the number of true negatives is

the number of non-DRG below the cutoff; the number

of false positives is the number of non-DRG above the

cutoff, and the false negatives are the number of DRG

below the cutoff. AUC scores range from 0 and 1, with

0.5 and 1.0 indicating random and perfect predictive

performance, respectively.

AUCD-M as a measure of predictability D-M is simi-

larly calculated. The mutual predictability between

MAG and DRG is then defined as the geometric mean

of AUCD-M and AUCM-D:

Mutual Predictability MAG and DRGð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AUCD−M

p

� AUCM−D

Each bioactive compound is thereby ranked by its mu-

tual predictability score.

A detailed example of MP score computation is shown

in Additional file 2, 2-1 and Additional file 3 Figure S1.

Evaluation of predictability

Statistical validation

We determined the extent to which FDA approved can-

cer drugs were enriched in our ranked list by again cal-

culating an AUC as indicated above. Briefly, focus on a

position t from the top. The ratio of FDA approved

drugs for target disease at or above position t, to total

drugs at or above t is counted as TP; the ratio of non-

FDA approved drugs below t to total drugs below t is

TN. The running index t is varied to produce a ROC,

and the area under the curve (AUC) is used as a meas-

ure of predictability. This is of course a non-normalized

result, but as we now indicate it is used only in a relative

way, to compare different parameter sets.

Parameter optimization

Each set of parameters (rank cutoffs m & k for filtering

MAG and selecting DRG) generated different ranked

lists of bioactive compounds. We computed the AUC

score using the ranked list, and chose the best set of

parameters based on the maximum AUC score. Re-

positioned drug candidates were selected from the

ranked list generated by the best parameter set. After
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optimization, the best parameters (number of MAG and

DRG (MAG/DRG)) are 237/700 (UCDB) and 75/100

(DCUB) for breast cancer; and 333/100 (UCDB) and 46/

100 (DCUB) for prostate cancer.

For the ranked list, the significance of the mutual pre-

dictability scores for each compound was estimated by

randomly selecting a set of n DRG, computing the mu-

tual predictability score given the MAG, repeating the

process 100,000 times to generate a null distribution,

and then estimating the probability that our observation

was obtained by chance. We computed the false discov-

ery rate (FDR) for individual compounds by calculating

the expected number of false positives, given the actual

distribution of mutual predictability scores and the null

distribution.

We assessed the significance of the best AUC score by

randomly selecting from LINCS, 20 out of 3678 drugs

for breast cancer and 11 out of 4228 for prostate cancer

as true positives. For CMap, we randomly selected 8 out

of 1251 drugs for breast cancer; 6 out of 1079 for

leukemia; and 7 out of 1182 for prostate cancer. We

then computed the AUC for each parameter set, re-

peated the process 100,000 times and generated a null

distribution. The p-value was used to estimate FDR for

multiple tests.

Comparison with other methods

We applied the methods (Lamb et al. and Shegemizu et

al.) that used CMap data to breast cancer, leukemia and

prostate cancer and compared them with MFM.

Lamb et al. [20]

We queried the 50 to 500 (in increments of 50) up- and

down-regulated signature genes of breast cancer

(MCF7), leukemia (HL60) and prostate cancer (PC3) on

(https://www.broadinstitute.org/cmap/newQuery?servle-

tAction=querySetup&queryType=quick), and obtained

ranked lists of bioactive compounds. The disease signa-

ture genes (FDR < 0.05) were generated from the same

expression data used for MFM, as described in Tran-

script levels. The total number of compounds and the

corresponding cell lines were the same as those were

used for MFM. Then we followed the same procedure as

that was used for MFM to assess the performance. The

highest AUC score was selected for comparison.

Shegemizu et al. [22]

We used the same expression profiles (GDS2617,

GDS2908 and GDS1439) and parameters (1200 and 1400

for UCDB and DCUB for breast cancer; 700 and 800 for

UCDB and DCUB for leukemia; 5200 and 4200 for UCDB

and DCUB for prostate cancer) reported in the [22] to

generate ranked lists of compounds. Performance was

assessed with the same procedure used for MFM.

Experimental validation

Cell cultures and reagents

Cell lines MCF7, SUM149 and MCF10A were obtained

from ATCC (American Type Culture Collection, Manas-

sas, VA) and maintained as recommended. The growth

medium was supplemented with 10 % fetal bovine serum

(FBS), 50 units/ml of penicillin and streptomycin, and

incubated at 37 °C with 5 % carbon dioxide. Dimethyl

sulfoxide (DMSO), at 0.2 %, was used as the vehicle

control.

MTT assay

Metabolic activity of MCF7, MCF10A and SUM149 cells

treated with vehicle (0.1 % DMSO) or repositioned drug

candidates was assessed with the MTT (3-(4,5-dimethyl-

thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay.

Cells were placed in 96-well plates and treated for 24 h

with drugs with concentrations ranging from 0–1000 μM,

then assayed for metabolic activity. 10 μl of MTT solution

(10 mg/ml in PBS) was added to each well and incubated

for an additional 3 h. The medium was then replaced with

200 μl of DMSO. Absorbance was determined at 570 nm

(experimental absorbance and 690 nm (background ab-

sorbance) by an ELISA plate reader. The inhibitory effect

of drug candidates was expressed as the relative metabolic

activity (% control) and calculated as shown below. The

relative viability was calculated as relative viability =

(experimental absorbance - background absorbance)/

(absorbance of vehicle controls - background absorbance

of vehicle controls) × 100 %.

Results

We screened repositioned drug candidates by using

mutual predictability [24] to score correlation be-

tween mutation-associated genes up-regulated in dis-

ease samples and genes down-regulated by bioactive

compounds (DCUB), and vice versa (UCDB). Since a

high mutual predictability score indicates strong

functional linkage between sets of disease and drug

related genes, our hypothesis is that candidate drugs

so identified have potential to correct the sets of

disease genes and have therapeutic effect on the

disease.

Identification of repositioned drug candidates for breast

cancer and prostate cancer using LINCS

We performed analysis on the most updated data of

gene expression signatures of bioactive compounds from

LINCS [25]. We evaluated the significance of mutual

predictability score of each compound, and FDRs as ex-

plained under Methods.

Chen et al. BMC Medical Genomics  (2016) 9:51 Page 5 of 11

https://www.broadinstitute.org/cmap/newQuery?servletAction=querySetup&queryType=quick
https://www.broadinstitute.org/cmap/newQuery?servletAction=querySetup&queryType=quick


Statistics of significant bioactive compounds

Breast cancer

LINCS includes breast cancer cell line expression in re-

sponse to 3678 compounds. We calculated the mutual

predictability score for each of these, as described in

Method – Mutual Predictability Score. The gene sets

associated with each cancer/compound were assigned

p-values as described in Method – Parameter

optimization, to obtain ranked lists of 2435 DCUB

compounds and 1875 UCDB compounds with FDR <

0.05 (Table 1). Of these 510 were FDA approved drug

candidates for repositioning to breast cancer. The de-

tailed description of candidates is in Additional file 4.

Prostate cancer

LINCS includes prostate cancer cell line expression in

response to 4228 compounds. The gene sets associated

with each cancer/compound were assigned p-values to

obtain ranked lists of 2500 DCUB compounds and 1668

UCDB compounds with FDR < 0.05 (Table 1). Of these

291 were FDA approved drug candidates for reposi-

tioning to prostate cancer (Additional file 4).

Supporting evidence

Sensitivity and specificity

To evaluate the predictability of the ranked drug candi-

dates, ROC curves were generated using 20 FDA breast

cancer drugs and 11 FDA prostate cancer drugs as true

positive. The highest AUC scores were 0.86 (p = 1.0E-6)

and 0.83 (p = 4.5E-5) for breast cancer and prostate can-

cer, respectively. We estimated the significance of the

AUC scores as described in Parameter optimization

session.

Comparisons with computational drug repositioning

methods

We compared the predictability of our method with that

of the computational drug repositioning methods, which

screen drugs based on the anti-correlation between simi-

lar gene and disease signatures, omitting the functional

correlation between genes. In order to compare the per-

formance with Shegimizu et al. [22], and CMap [20], we

obtained the expression data of 1251, 1079 and 1182

compounds treated in MCF7, HL60 and PC3 from

CMap data sets. We used methods to generate ranked

drug lists and compared the highest AUC scores. As

shown in Fig. 2 MFM consistently outperforms the 2

pervious methods, sometimes by wide margins.

Recall rate

Among 2587 bioactive compounds with FDR less than

0.05, 20/20 (p = 2.5E-4) FDA breast cancer drugs and 150/

173 (p = 3.1E-10) clinical drugs (compounds that have

been in clinical trials for breast cancer, Additional file 5)

were recalled. For prostate cancer, among 1668 bioactive

compounds with FDR less than 0.05, 10/11 (p = 2.6E-2)

FDA prostate cancer drugs and 89/113 (p = 6.3E-6) clin-

ical drugs were recalled. Significance was calculated using

the Fisher exact test.

Functional plausibility

Breast cancer

One way to characterize the functional implications of

breast cancer MAGs is by estimating the chance prob-

ability of their observed distribution over KEGG path-

ways. We took the MAGs (MAG-UP, see, Additional file

6) that produced the drug ranked lists with the highest

AUC scores after optimization. The MAGs contain 40

breast cancer mutations and their 237 filtered first

Table 1 Breast cancer and prostate cancer repositioned drug candidates identified from analysis of LINCS. Complete lists of

repositioned drug candidates for breast cancer and prostate cancer are shown in Additional file 13

Breast Cancer Prostate Cancer

Total compounds 3678 4228

Compounds that are FDA drugs 632 676

Compounds that are FDA drugs for target disease 20 11

Compounds that are in clinical trial for target disease 154 106

UCDB DCUB UCDB DCUB

Compounds with FDR < 0.05 2435 1875 2500 1668

Compounds that are clinical drugs with FDR < 0.05 (p-value) 131 (6.2E-8) 109 (2.7E-7) 82 (4.9E-5) 67 (4.8E-7)

FDA drugs with FDR < 0.05 427 325 456 317

FDA drugs with FDR < 0.05 in both UCDB and DCUB 244 291

FDA drugs for target disease with FDR < 0.05 (p-value) 20 (2.5E-4) 19 (2.7E-5) 10 (2.6E-2) 9 (5.3E-3)

AUC (p-value) 0.86 (<1.0E-6) 0.81 (<1.0E-6) 0.77 (9E-3) 0.83 (4.7E-5)

Number of MAG/DRG 237/700 75/100 333/100 46/100
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nearest neighbors on the FLN, which are up regulated in

breast cancer (see Additional file 6).

As shown in Additional file 6, we found 95 pathways

over-represented in breast cancer (FDR < 0.05), 18 of

which are classified in KEGG as cancer pathways (22 of

the 287 KEGG pathways, are labeled cancer-related). For

example, [28] found that the spliceosome assembly path-

way is enriched in genes that are overexpressed in breast

cancer samples, compared to benign lesions. They have

shown that siRNA-mediated depletion of SmE (SNRPE)

or SmD1 (SNRPD1) led to a marked reduction of cell

viability in breast cancer cell lines, whereas it had little

effect on the survival of the nonmalignant MCF10A

breast epithelial cells [29].

In addition, signaling pathways that regulate pluripo-

tent stems cells are enriched in overexpressed genes that

are in the functional neighborhood of genes mutated in

breast cancer tissue (MAGs, p = 4E-09). The deregula-

tion of these pathways many play a role in the develop-

ment of chemoresistance of cancer stem cells, including

breast cancer [30]. Other published breast cancer causal

pathways such as Estrogen signaling [31], ErbB [32],

neurotrophin [33], MAPK [34] and PI3K/AKT [35] were

significantly enriched in mutation associated genes

(MAGs).

Prostate cancer

A similar approach was followed for prostate cancer.

As summarized in Additional file 6, we found 117

enriched pathways (FDR <0.05), 18 of which are

KEGG cancer pathways, including the prostate cancer

pathway (p = 6.9E-10). There was also supporting

evidence that showed deregulation of the enriched path-

ways in prostate cancer. For example, T cell infiltration of

the prostate induced by androgen withdrawal has been

found in patients with prostate cancer [36]; the androgen-

androgen receptor (AR) system plays vital roles in prostate

cancer development and progression [37]. Insulin-like

growth factor 1 or insulin signaling has been found

to activate androgen signaling through direct interac-

tions of Foxo1 with androgen receptors. Intervention

of IGF1/insulin-phosphatidylinositol 3-kinase-Akt sig-

naling was reported to be of clinical value for pros-

tate cancer. T cell receptor, PI3K-Akt, FoxO, and

insulin signaling pathways were highly ranked candi-

dates with p < E-05.

A number of studies have shown that breast and pros-

tate cancer are genetically related [38, 39], as are almost

all cancers to various degrees. Our finding that breast

and prostate cancer share 80 pathways is a striking illus-

tration of this connection (see Additional file 6). We ex-

pect that the selected drug candidates having a strong

functional relation (mutual predictability score) with this

set of genes could potentially correct these aberrant

functions.

MFM provides functional insight

We compared the functional information gained from

MAGs with information obtained using disease differen-

tially expressed genes (DEGs) (often referred to as dis-

ease signature genes) exclusively [19, 20]. As shown in

Additional file 6, we found that our current method

identifies more significantly enriched pathways and well-

documented breast cancer and prostate cancer pathways

Fig. 2 Comparison of performance for the MFM with other methods. We applied CMap datasets to compare performance of MFM with

Shegemizu et al. and Lamb et al. The sensitivity and specificity were calculated as explained in the Methods section, and the area under the ROC

curve was used as a measure of performance. UCDB: prediction of drug candidates that can down-regulate genes up-regulated in cancer. DCUB:

prediction of drug candidates that can up-regulate genes down-regulated in cancer. It shows that MFM consistently outperforms the two

methods in different datasets and diseases
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than does the use of differential expression alone. To

make a comparison, we mapped DEGs onto KEGG path-

ways. For breast cancer, one set contains the most up-

regulated 247 DEGs; for prostate cancer, there were 333

up-regulated DEGs. The disease DEGs were generated

from the expression data as explained in Transcript

Level. These results taken collectively suggest that the

inclusion of mutational and functional information into

disease gene signatures, substantially improves prediction

of disease mechanism and adds specificity and accuracy

to the identification of repositioned candidates.

Experimental validation

Repositioned drug candidates inhibit metabolism of breast

cancer cells

We employed an MTT assay to assess cancer cell viabil-

ity after treatments of 5 repositioned drug candidates

(Table 2) [40]. In particular, we tested the viability of 2

breast cancer cell lines: MCF7 (Luminal A subtype), and

SUM 149 (Triple negative, inflammatory breast cancer

subtype). We assessed non specific drug toxicity by com-

paring the inhibition with that obtained against the im-

mortalized but non-malignant MCF10A cell line.

As shown in Additional file 7: Figure S2, Additional

file 8: Figure S3, Additional file 9: Figure S4, Additional

file 10: Figure S5, Additional file 11: Figure S6 and

Additional file 12: Figure-S7, MCF7, SUM149 and

MCF10A cells exposed to increasing concentrations of

drugs for 24 h exhibited a dose dependent reduction in

viability. The important measure of efficacy is therapeutic

index (TI), the IC50 of a drug when it targets a non-

tumor cell line, relative to its IC50 when it targets a tumor

cell line. As shown in Fig. 3, the TIs of candidates tested

against MCF7 and SUM149 are all substantially higher

than that of Doxorubicin. In addition, all drug candidates

except for Triprolidine achieved maximum efficacy (Emax)

at lower concentrations than did Doxorubicin.

Discussion

We developed a computational drug screening method

– based on the correlation between functional modules

of genes perturbed by diseases and drugs – that could

potentially accelerate the introduction of new therapeu-

tics for serious diseases and conditions. Our approach

performed substantially better than previous methods by

computational measures, and successfully predicted

novel drugs that had higher inhibitory effect against

breast cancer in vitro than Doxorubicin. The study bene-

fited substantially from LINCS, the most up to date drug

response expression data sets currently available.

A number of computational drug-repositioning methods

that utilized CMap have been devised and the efficacy of

identified drugs have been supported by in vivo [16, 19] ex-

periments. However, the methodologies are exclusively

based on gene expression, without taking disease driver/

mutated genes or functional information between genes

into account. Sirota, M., et al. [15] searched for drug candi-

dates based on similarities between drug response gene sig-

natures (DEG) and [12] predicted drug molecular functions

based on drug response gene signatures.

Here we indicate a method that has taken this into ac-

count and shows better performance than previous

methods that utilized solely DEGs. We also showed that

there was more functional information gained from

MAGs than significantly differentially expressed genes

(DEGs). Therefore, we believe that the method could

screen more effective therapeutics than previous methods.

Of the five drugs for which we did preliminary in vitro

tests, they all have higher TI in both cell types than does

Doxorubicin. Mefloquine is a lipophilic molecule that is

an FDA-approved anti-malaria agent. It has 3 known

protein targets: Fe(II)-protoporphyrin IX, hemoglobin

subunit alpha, and A2A adenosine receptor (A2AR). Its

antimalarial action is believed to result from inhibition

of heme polymerization within the food vacuole in the

blood stages of the malaria life cycle [41]. Its potential

role as a cancer therapeutic; however, stems from its an-

tagonistic action on A2AR [42].

A study has shown that antagonizing A2AR could pro-

vide a basis for cancer immunotherapy [43]. Preclinical

studies have confirmed that blockade of A2a receptor

activation has the ability to markedly enhance anti-

tumor immunity and be effective against melanoma and

lymphoma [44–46].

Tumors may evade immune repose by usurping

pathways; such as adenosinergic signaling pathway,

that negatively regulates immune response. Tumors

and its microenvironment have been found to have

high levels of adenosine and ATP, which is triggered

by increased cellular turnover and hypoxia [43]. The

extracellular adenosine then activates specific puriner-

gic receptors such as A2AR. The activation of A2AR

in cancer results in inhibition of the immune re-

sponse to tumors via suppression of T regulatory cell

function and inhibition of natural killer cell cytotox-

icity and tumor-specific CD4+ and CD8+ T cell activity,

therefore, inhibition of A2AR by specific antagonists may

enhance anti-tumor immunity.

Table 2 aMutual predicatbility score of breast cancer drug

candiates predicted by MFM

FDA Drug aMP score P-value FDR

Clotrimazole 0.7 5.00E-06 4.88E-05

Triprolidine 0.69 2.00E-05 1.64E-04

Thioridazine 0.69 2.00E-05 1.64E-04

Mefloquine 0.69 3.00E-05 2.28E-04

Fluphenazine 0.66 1.11E-02 2.13E-02
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Immunosuppression is associated with hypoxia and ac-

celerated cell turn over. In accordance with the findings,

in our analysis of pathway enrichment of MAGs for

breast cancer, cell cycle, HIF1 and T cell signaling path-

ways were significantly dysregulated in breast cancer.

Therefore, Mefloquine, the A2aR antagonist could be

applied as an effective immunotherapeutic strategy.

Fluphenazine and Thioridazine are both antipsy-

chotics. The mechanism of action of fluphenazine is not

well established, but it is known to antagonize dopamine

by binding to the D2 receptor. Thioridazine binds a

range of receptor types including dopamine and various

serotonin receptor subtypes. The relationship to inhib-

ition of transformed (MCF7 and SUM149) cells is not

entirely obvious.

In our in vitro study, breast cancer cells (MCF7,

SUM149 and MCF10A) had shown resistance against

Doxorubicin. The Emax of Doxorubcin was higher than

4 out of 5 of our candidate drugs, which corresponds

with the reported fact that breast cancer patients show

drug resistance against Doxorubicin. It also suggests the

ability of our drug candidate to overcome the drug re-

sistance. The study [47] has found that Thioridazine an-

tagonized dopamine receptors, which are expressed on

cancer stem cells (CSC) and breast cancer cells, and

could induce death of leukemia cancer stem cells prefer-

entially without harming normal blood stem cells. The

dopamine receptor pathway is known to regulate the

growth of CSCs [48]. Therefore, Fluphnazine and Thiori-

dazine could inhibit drug resistance of breast cancers by

modulating CSC through dopamine receptor signaling

pathway.

Conclusion

MFM, which utilizes a functional-linkage network, known

mutations, and altered RNA levels, appears to be a prom-

ising method for identifying multi-targeted drug candi-

dates that can correct aberrant cellular functions. In

particular the computational performance exceeded that

of other CMap-based methods, and in vitro experiments

indicate that 5/5 candidates have therapeutic indices su-

perior to that of Doxorubicin in MCF7 and SUM149 can-

cer cell lines. This new approach has the potential to

provide a more efficient drug discovery pipeline.

Additional files

Additional file 1: is a table listing well-documented mutated genes for

breast cancer, prostate cancer and leukemia. (XLS 889 kb)

Additional file 2: and 2–1 show detailed process of MP score

computation. (DOCX 106 kb)

Additional file 3: Figure S1. An example of mutual predictability score

computation. For ROC curve M-D (sensitivity plotted against 1-specificity),

sensitivity and 1 – specificity are defined as follows: sensitivity = TP / (TP +

Fig. 3 a FDA approved indications of predicted drug candidates; b Half maximal inhibitory concentration (IC50) (μM) of predicted drug

candidates and Doxorubicin against MCF7, SUM149 and MCF10A; c and d Therapeutic index (TI) and maximal inhibitory concentrations (Emax) of

predicted repositioned drug candidates on MCF7, SUM149 and MCF10A. (*Currently used FDA drug for breast cancer; Therapeutic index (TI) was

calculated as a ratio of the IC50 of MCF10A, to the IC50 of MCF7 and SUM149)
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FN), 1 - specificity = FP / (TN + FP), where TP is the number of DRG genes

above a particular Si cutoff, TN is the number of genes associated with

neither disease below the cutoff, FP is the number of genes associated with

neither disease above the cutoff, and FN is the number of DRG genes below

the cutoff. ROC curve D-M was plotted in the same way. The MP score

(0.73) is defined as the geometric mean of area under the ROC M-D and

ROC D-M curves: AUC M-D (0.81) and AUCD-M (0.65). (PPTX 299 kb)

Additional file 4: shows detailed description of identified drug

candidates for breast and prostate cancer. (XLSX 140 kb)

Additional file 5: lists FDA-approved and clinical drugs for breast and

prostate cancer. (XLSX 52 kb)

Additional file 6: is a table listing MAGs for breast cancer and prostate

cancer, also has the listing enriched KEGG pathways in breast cancer and

prostate cancer. (XLSX 46 kb)

Additional file 7: Figure S2. Titration curves of cell viability under

treatment of Doxorubicin. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Doxorubicin with concentrations ranging from 0.5 μM to 200

μM after 24 h incubation. The relative viability was calculated as relative

viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 6). (PPTX 53 kb)

Additional file 8: Figure S3. Titration curves of cell viability under

treatment of Mefloquine. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Mefloquine with concentrations ranging from 3.125 μM to

100 μM after 24 h incubation. The relative viability was calculated as

relative viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 3). (PPTX 53 kb)

Additional file 9: Figure S4. Titration curves of cell viability under

treatment of Clotrimazole. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Clotrimazole with concentrations ranging from 3.125 μM to

100 μM after 24 h incubation. The relative viability was calculated as

relative viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 3). (PPTX 53 kb)

Additional file 10: Figure S5 Titration curves of cell viability under

treatment of Thioridazine. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Thioridazine with concentrations ranging from 3.125 μM to

100 μM after 24 h incubation. The relative viability was calculated as

relative viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 3). (PPTX 54 kb)

Additional file 11: Figure S6. Titration curves of cell viability under

treatment of Fluphenazine. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Fluphenazine with concentrations ranging from 3.125 μM to

100 μM after 24 h incubation. The relative viability was calculated as

relative viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 3). (PPTX 55 kb)

Additional file 12: Figure S7. Titration curves of cell viability under

treatment of Triprolidine. Viability of MCF10A, MCF7 and SUM 149 cells

exposed to Triprolidine with concentrations ranging from 31.25 μM to

1000 μM after 24 h incubation. The relative viability was calculated as

relative viability = (experimental absorbance - background absorbance)/

(absorbance of untreated controls - background absorbance of untreated

controls) × 100 % (means ± SD, n = 3). (PPTX 55 kb)

Additional file 13: is a table listing predicted drug candidates for breast

and prostate cancer using LINCS dataset. (XLSX 1152 kb)
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