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A network-based approach to identify deregulated
pathways and drug effects in metabolic syndrome
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Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia,

hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cho-

lesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous

predisposing genetic risk factors have been identified, the biological mechanisms underlying

this complex phenotype are not fully elucidated. Here we introduce a systems biology

approach based on network analysis to investigate deregulated biological processes and

subsequently identify drug repurposing candidates. A proximity score describing the inter-

action between drugs and pathways is defined by combining topological and functional

similarities. The results of this computational framework highlight a prominent role of the

immune system in metabolic syndrome and suggest a potential use of the BTK inhibitor

ibrutinib as a novel pharmacological treatment. An experimental validation using a high fat

diet-induced obesity model in zebrafish larvae shows the effectiveness of ibrutinib in lowering

the inflammatory load due to macrophage accumulation.
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M
etabolic Syndrome (MetSyn) is a highly prevalent
pathological condition defined by a clustering of
comorbidities that increases the risk of cardiovascular

diseases and type 2 diabetes mellitus. The risk factors commonly
associated with MetSyn are abdominal obesity, hyperglycemia,
hypertension, elevated levels of triglycerides and low levels of
high-density lipoprotein (HDL) cholesterol. According to the
criteria proposed by the main organizations involved in the study
of MetSyn, this clinical condition can be diagnosed when three of
these five metabolic abnormalities are present simultaneously1.
Additional components such as chronic pro-inflammatory and
pro-thrombotic states have been repeatedly implicated in Met-
Syn2, highlighting the multifactorial nature of the disorder. While
lifestyle changes are highly effective in the early phase of MetSyn,
pharmacological treatments are frequently required in more
advanced stages3. Currently, the pharmacological interventions
are mostly directed towards the single MetSyn components
separately, raising the problem of polypharmacy3. Moreover,
although an altered function of adipocytes is recognized as a
pivotal driver of the observed metabolic dysregulation4, most of
the drugs approved for obesity act on the central nervous system
while the perturbed pathways in the adipose tissue remain less
explored5–7.

The increasing prevalence of MetSyn worldwide and the lim-
ited understanding of the pathophysiological mechanisms of
MetSyn give rise to the need to study the underlying biological
pathways and to develop more efficacious treatment strategies.

An effective strategy to reduce time and cost of drug devel-
opment is drug repurposing (or repositioning), which identifies
new therapeutic applications of already approved drugs. For
example, galantamine, a drug approved for Alzheimer’s disease,
was recently suggested as a candidate for MetSyn therapy8. The
growing availability of high-throughput data allows researchers to
establish new computational approaches to systematically inves-
tigate drug repurposing candidates9. For example, signature-
based methods exploiting the Connectivity Map (CMap)10 and

the Library of Integrated Cellular Signatures (LINCS) data11 allow
to identify promising candidates by comparing the transcriptomic
profiles of drugs and diseases12. Usually, algorithms based on this
approach do not consider the potential interactions among the
molecular elements of the expression profiles.

Network-based analysis is a method to study in silico the
complexity of biological systems and to evaluate the interactions
among the different players involved, while serving as a powerful
tool to link pharmacological and disease data13. Recent systems
biology approaches based on network analysis investigated new
indications for existing drugs14–16, predicted new potential
anticancer treatments17 and identified new promising targets18,19.

Here we propose a systems biology approach based on network
integration of genomic data, text mining results, drug expression
profiles and drug target information to identify the disease
molecular mechanisms and to explore possible novel therapeutic
strategies. Potential new therapeutic applications of already
approved drugs are identified using a proximity score, which
integrates a network-based distance and a functional similarity
measurement.

By applying this computational framework to MetSyn, we
identify the BTK inhibitor ibrutinib as a candidate drug for
lowering the chronic inflammatory condition associated with
obesity. Moreover, we show the effectiveness of ibrutinib treat-
ment in lowering obesity-associated inflammation in zebrafish
larvae by reducing macrophage accumulation, confirming the
repurposing potential of ibrutinib in the context of obesity.

Results
Computational framework overview. To obtain a systems
pharmacology view of MetSyn, we devised a network-based
approach that identifies functional disease modules and connects
them with drug targets and drug-perturbed genes. The analytical
workflow consists of three interconnected parts as shown in
Fig. 1. The list of trait-associated genes was established starting
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Fig. 1 Schematic illustration of the computational framework. Step 1 MetSyn-related genes are identified by combining GWAS results and literature findings

followed by a filtering step based on gene-set enrichment analysis. Step 2 Tissue-specific networks are constructed by integrating transcriptional regulatory

networks from23 and PPI networks from HIPPIE db25. Step 3 Drug information is retrieved from DrugBank29 and LINCS database11. Step 4a and b Tissue-

specific MetSyn and drug modules are established using network analysis. Step 5 To measure drug effects, a proximity score between drug and MetSyn

modules is computed on the basis of network distance and semantic similarity
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from the results of published genome-wide association studies
(GWAS)20 and from additional literature search related to
metabolic syndrome (Fig. 1, step 1). Mapping the identified genes
to existing biological networks (Fig. 1, step 2) allowed us to
identify tissue-specific modules (hereafter called MetSyn mod-
ules), for which pathway enrichment analysis provided insight
into the associated biological processes (Fig. 1, step 4a). The
impact of existing drugs on MetSyn was studied by mapping drug
targets and drug modulated genes on the networks in order to
build drug modules (Fig. 1, steps 3 and 4b). Both drugs approved
for MetSyn-related conditions and for other diseases were
included in the study. This allowed us to gain insight into existing
treatments and, at the same time, identify candidates for drug
repositioning. To investigate the relationship between the drug
modules and the MetSyn modules, we defined a proximity score
that combines network-based distance with semantic similarity
(Fig. 1, step 5). A drug obtains a high score if its module is close
to the MetSyn module and if the genes in the drug module and
the genes in the MetSyn module have a similar biological func-
tion. A comparison of our approach with previously published
network-based methods for drug repurposing can be found in
Supplementary Note 1.

Identification of genes associated with MetSyn. A widely used
approach to identify genetic variants associated with common
traits and diseases is the use of GWAS that over the past ten years
have been applied to hundreds of phenotypes. The increasing
availability of GWAS summary data permits the development of
methodologies aiming at understanding the biology of pheno-
types of interest starting from association results21. Thus, we
devised a multi-step procedure to identify genes associated with
MetSyn starting from the results of GWAS of relevant traits. Since
the genetic variants identified by GWAS do not directly yield
specific gene targets or molecular mechanisms, our workflow
includes a pathway enrichment step to identify the altered bio-
logical functions. Moreover, given the incompleteness of the
currently available GWAS data in explaining the heritability of
traits, an external source of information (i.e. literature-derived
knowledge) was included in the study. Working along this line, to
generate a list of MetSyn-related genes, we combined 3 different
data sources. First, we retrieved SNPs related to metabolic syn-
drome from the GWAS catalog (Supplementary Data 1). Despite
being located mainly in introns (Supplementary Fig. 1a), the
identified susceptibility variants showed a regulatory potential

since they are enriched in SNPs located in genomic regions of
epigenetic chromatin marks when compared with non-selected
genome-wide common SNPs (Supplementary Fig. 1b–d). We
retrieved the genes located in the genomic region of the tagging
SNP to assign the association signal to a gene. Second, we
included the genes derived from summary statistics of 15 GWAS
focused on MetSyn-related traits (Supplementary Table 1).
Finally, the GWAS genes were combined with a set of genes
derived from a text mining analysis performed on PubMed
abstracts searching MetSyn related terms co-occurring with gene
names (see Materials and Methods).

Given the heterogeneity of the data sources (GWAS catalog: top-
scoring trait-associated SNPs and related genes, GWAS summary
statistics: gene-level scores and text mining: genes co-occurring
with MetSyn-terms) we devised a customized approach to combine
and filter them. We performed a gene-set enrichment analysis of
the GWAS genes selecting gene ontology biological processes and
pathway databases available in EnrichR22 to obtain pathway-level
biological knowledge and selected the genes belonging to at least
one significant pathway (Supplementary Data 2). In total, we were
able to identify 630 genes associated with MetSyn (Supplementary
Data 3, Fig. 2a, and Supplementary Fig. 2).

With this approach, we identified pathway categories such as
sugar metabolism, lipid metabolism, and fat storage as significantly
enriched (Fig. 2b). This annotation supports the relevance of the
selected genes, as they match the pathophysiological components
of MetSyn, including hyperglycemia and dyslipidemia.

Tissue-specific disease modules. According to the pathological
phenotypes associated with MetSyn, adipose, liver and skeletal
muscle were selected as trait-relevant tissues and the corre-
sponding tissue-specific background networks were generated by
combining regulatory networks and PPI networks as described in
Materials and Methods (Fig. 3a). The tissue-specific regulatory
networks were directly obtained from regulatory circuits23, a
resource that provides transcription factor–gene interactions
inferred from the FANTOM5 data24. On the other hand, the
tissue-specific PPI networks were created from HIPPIE interac-
tions25 by restricting to proteins expressed in the relevant tissue
based on GTEx data26.

The resulting network for adipose tissue contains 886 nodes
and 9152 edges, the network for liver tissue 1544 nodes and 15846
edges, and the network for skeletal muscle tissue 1106 nodes and
10555 edges (Supplementary Data 4). In total, these networks
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Fig. 2 Identification of MetSyn-related genes. a Venn diagram showing the overlap among MetSyn genes identified using GWAS catalog, GWAS summary

statistics and text mining. See also Supplementary Fig. 2 and Supplementary Data 3. b Pathway enrichment map showing shared gene content among the

pathways enriched in MetSyn genes. Each node corresponds to a pathway and edges between pathways indicate the presence of shared genes. Colors

identify the membership to communities as detected by random walk clustering algorithm. See also Supplementary Data 2

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13208-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5215 | https://doi.org/10.1038/s41467-019-13208-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


include 220 MetSyn genes, of which 81 are shared among the
three networks (Fig. 3b). The liver tissue has the highest number
of MetSyn genes not present in the other networks.

To identify trait-relevant network subparts, we tested network
modules for their overrepresentation in MetSyn genes. For both the
liver and muscle network, three significant trait-related modules
could be identified, whereas we found two significant modules for
the adipose tissue. Reactome pathway enrichment analysis of the
genes in the network modules further allowed to link biological
functions to the tissue-specific MetSyn modules. For example, in
the adipose tissue network, the most significantly enriched
pathways of module 1 are related to cellular responses to external
stimuli and immune function (Cellular responses to heat stress:
adjusted p-value 9.65 × 10−7; immune system: adjusted p-value
9.65 × 10−7). Instead, pathways related to metabolism regulation

resulted enriched in module 2 (PPARA activates gene expression:
adjusted p-value 1.25 × 10−11; regulation of lipid metabolism by
Peroxisome proliferator-activated receptor alpha (PPARalpha):
adjusted p-value 1.82 × 10−11). The list of all significant pathways
for the three tissue-specific networks can be found in the
Supplementary Data 5. An overview of the module-related
biological functions in all networks was obtained using the Top
Level Pathways from the reactome database (Fig. 4). Overall, the
resulting pathways show an overlap across tissues, highlighting the
overrepresentation of genes involved in signal transduction and
gene expression. Moreover, our results suggest that the immune
system plays a considerable role for MetSyn; across all three
networks a module with a high number of immune-related genes
and pathways was detected (Fig. 4 and Supplementary Data 5), in
agreement with previous reports27,28.
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The contribution of the different data sources to the
identification of MetSyn modules is described in Supplementary
Note 2 and summarized in Supplementary Tables 2–5. Overall,
we observed that the combination of text mining and GWAS
results allows a more detailed disease characterization than the
two data sources independently. For example, the inflammation-
related MetSyn module in the adipose network would not have
been identified if the analysis had been limited to the genes
derived solely from GWAS.

Drug repurposing. To identify drugs potentially affecting Met-
Syn pathways, we selected approved drugs from DrugBank29

having a target in at least one of the three networks (Supple-
mentary Fig. 3). The interplay of MetSyn modules and 183 drugs
was evaluated by computing the proximity score as shown in
Fig. 5 and described in Materials and Methods. The score is based
on topological properties of the network and functional similarity
of the proteins. The contribution of these two components is
described in Supplementary Note 2 and summarized in Supple-
mentary Fig. 4. Drugs with a significant score point toward a
possible disease indication or drug side effect. For the adipose
network, this analysis resulted in a list of 28 significant drugs, for
the liver network 31 significant drugs were identified, while for
the muscle network the analysis resulted in 50 significant drugs.
(Supplementary Data 6).

To test the effectiveness of our approach, we checked if drugs
with known indication for adiposity, which has a key role in
leading the metabolic disturbances associated with MetSyn, were
identified by our scoring system. Bezafibrate, clofibrate, fenofi-
brate, gemfibrozil, mifepristone, pioglitazone were used for the
evaluation process and 3 of them (pioglitazone, mifepristone and
fenofibrate) were significance considering a threshold of 95 %
(Supplementary Note 3 and Supplementary Table 6). After
lowering the significance threshold to 85%, all six drugs were
significant (Supplementary Fig. 5).

After having obtained the preliminary list of significant
predictions, we performed a filtering and prioritization analysis
to identify the most promising repurposing candidates (Supple-
mentary Fig. 6). First, to exclude drugs with undesirable side
effects, we evaluated information about contraindications from
the DrugCentral platform30 (Supplementary Data 7). For the

adipose results we excluded seven drugs, while for liver and
muscle 12 and 24 drugs were excluded, restricting the list of
repurposing candidates to 21, 19, and 26 drugs, respectively
(Supplementary Data 6). Second, we filtered those drugs by
focusing on their targets that were investigated using data from
the OpenTargets platform31. For the adipose results, among the
targets of the 21 drugs without known MetSyn-related side
effects, 10 (AR, EGFR, HDAC6, IKBKB, NR3C1, PGR, PPARA,
PPARG, RXRG, and VDR) have already been investigated for
therapeutic interventions related to MetSyn and therefore we
excluded them from further analyses (Fig. 6). For liver and
muscle, six (NR3C1, NR3C2, PPARA, PPARD, PPARG, RXRG)
and eight targets (ADRB2, AR, EGFR, ESR1, IKBKB, NR3C1,
PPARA, RXRG) were removed, respectively (Supplementary
Fig. 7, Supplementary Fig. 8).

After this filtering procedure, we identified the following drugs
as having a potential novel therapeutic application for MetSyn:
adapalene, afatinib, alitretinoin, belinostat, bosutinib, crizotinib,
dequalinium, doconexent, erlotinib, ibrutinib, lapatinib, ninteda-
nib, panobinostat, rucaparib, ruxolitinib, tamibarotene, tofacitinib
(Table 1).

A final prioritization step was then carried out to evaluate if the
tissue expression of the targets was concordant with the disease
manifestations. Among the 18 targets of the drugs, only bruton
tyrosine kinase (BTK), the target of ibrutinib, and nuclear
receptor subfamily 1 group I member 2 (NR1I2), the target of
erlotinib, showed a tissue-specific expression relevant for MetSyn.
According to the Human Protein Atlas32, GTEx26 and FAN-
TOM524 databases, BTK gene expression is consistently enhanced
in immune-related tissues, and NR1I2 expression is enriched in
liver, while the other targets did not show any relevant tissue-
specificity (Supplementary Tables 7, 8, and 9).

NR1I2 is a nuclear receptor that regulates hepatic detoxifica-
tion, and is involved in glucose and lipid metabolism. Recent
studies indicate that an activation of the protein could contribute
to the development of MetSyn and diabetes33. Since erlotinib is an
agonist of NR1I2, we concluded that the significance of the
proximity score in the liver network could be explained by this
finding. On the other hand, the BTK inhibitor ibrutinib is
currently FDA-approved for the treatment of B cell cancers and
the chronic graft-versus-host disease34 while ongoing clinical
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trials evaluate the use of BTK inhibitors in autoimmune diseases,
such as multiple sclerosis (ClinicalTrials.gov Identifier:
NCT02975349) and rheumatoid arthritis (ClinicalTrials.gov
Identifier: NCT03233230). Given the important role of inflam-
mation in the alteration of adipose tissue biology in obese
patients, we investigated the relationship between BTK and the
immune system in obesity using public datasets. According to
ImmGen mouse RNAseq data35, the immune cell populations
expressing high levels of Bruton tyrosine kinase transcripts are B
cells and myeloid lineage cells such as neutrophils and
macrophages (Supplementary Fig. 9). Interestingly, gene expres-
sion analysis of macrophages derived from adipose tissue of obese
type II diabetic subjects (GSE54350)36 showed higher BTK
expression compared to macrophages of obese non diabetic
subjects (Student’s t-test p-value 0.026) (Fig. 7a). To further
investigate Btk expression in obesity, we re-analyzed the adipose
tissue transcriptome of a mouse model deficient in gpr120, a
receptor for long-chain free fatty acids involved in nutrient
sensing and body weight regulation (GSE32095). This mouse
model, when fed with a high fat diet (HFD), was shown to
develop obesity, insulin resistance, increased adipocyte size, and
increased expression of macrophage markers37. Interestingly, we
observed that these changes are coupled with an increased Btk
expression in the adipose tissue, indicating the presence of an
association between the pathophysiological changes observed in
obesity and the increased expression of Btk in adipose tissue. In
addition, the estimated composition of the adipose tissue-
infiltrating immune cells in of the HFD-fed mouse, computed
with CIBERSORT38, revealed a significant increase in macro-
phages (Fig. 7d) compared with the mouse fed with a normal diet,
underlining the prominent role of these immune cells in
mediating the obese-related adipose tissue inflammation.

Since the macrophage-related inflammation in obese diabetic
mice has been associated with inflammasome-dependent IL-1β
production, we also evaluated the levels of Btk mRNA in
adipose tissue of inflammasome-compromised mouse models

(GSE2520538). This dataset includes expression data derived from
mice lacking Caspase-1, the enzymes that mediates the produc-
tion of active IL-1β, or the inflammasome adaptor protein ASC.
Btk expression was lower in white adipose tissue from HFD-fed
Caspase-1 null mice than in wild type mice fed with the same diet
(Fig. 7c), On the other hand, mice lacking the inflammasome
adaptor protein ASC did not show a reduction in Btk expression
in adipose tissue (Fig. 7c), suggesting a nonessential role of this
protein for macrophage recruitment. This is in agreement with
the results reported by Stienstra and colleagues, showing that
HFD-fed ASC-null mice, despite displaying a healthier metabolic
profile than HFD-fed wild-type mice, maintain an elevated
macrophage infiltration in adipose tissue38. Overall, the analysis
of these expression data shows an increased Btk expression in
obese adipose tissue that is associated with the presence of
macrophage infiltration. A similar pattern is observed by
comparing BTK expression in human adipose tissue of obese
and non-obese subjects, although the differences are less
pronounced (Supplementary Fig. 10).

In vivo validation of ibrutinib in a MetSyn model. To validate
the potential benefits of ibrutinib treatment for MetSyn, we
established two zebrafish models of the disease by feeding 4 day
postfertilization (dpf) larvae with high fat diets, containing either
high fat cream (HFD39) or high cholesterol (HCD40), as shown in
Fig. 8a. The efficiency of the two diets to induce fat accumulation
was assessed with Oil Red O (ORO) (Fig. 8b) and Nile Red
staining (Supplementary Fig. 11a) and we observed that both
HFD and HCD were able to induce a significant increase of lipid
accumulation in comparison with the standard diet (Fig. 8c). To
evaluate the effects of the diets on the inflammatory response, we
used transgenic lines with fluorescent macrophages—tg(mpeg1:
eGFP)gl2241 or fluorescent neutrophils—tg(mpx:GFP)i11442.
Macrophages and neutrophils were clearly visible in live, anaes-
thetized larvae examined 7 dpf using an automated imaging
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system (Operetta, Perkin Elmer) (Fig. 8d, Supplementary
Fig. 11b, c). The number of fluorescent macrophages in the total
body was significantly increased in larvae fed with HFD (Fig. 8e)
whereas in cholesterol-fed larvae the increase was significant only
in the region of head and yolk (Supplementary Fig. 11c, d).
Moreover, we observed that macrophages in the two high fat diet
conditions were morphologically different from those in larvae
fed with a standard diet and appeared less dendritic (Fig. 8d,
lower panels). On the other hand, there was no increase in the
number of neutrophils (mpx:GFP+ cells) with any of the two
high fat diets (Supplementary Fig. 11e). The analysis of gene
expression for key regulators of lipid metabolism (srebf1) and
inflammatory responses (il1β) showed a significant increase in the
expression of these markers in larvae fed with HFD (Fig. 8f-g),
while the analysis of btk gene expression revealed that both diets
resulted in a slight, although not significant, increase of btk
expression (Fig. 8h). We then evaluated the effect of the Btk
inhibitor ibrutinib on fat accumulation and inflammatory
responses. Larvae were treated with 5 μM ibrutinib for 30 min,
followed by HFD, HCD or control diet as shown in Fig. 9a.
Treatment of HFD-fed zebrafish larvae with ibrutinib was able to
significantly diminish the expression of srebf1 (Fig. 9b), and this
reduction was coupled with a slight, albeit not significant, con-
traction of the number of larvae with high fat deposition (Sup-
plementary Fig. 12a). In addition, the number of macrophages in
HFD and HCD-fed larvae was significantly reduced by ibrutinib

treatment (Fig. 9c, d, Supplementary Fig. 12b) and the dendritic
morphology seemed restored (Fig. 9c, lower panels). Moreover,
the increase of the expression of the inflammatory cytokine il1β
observed in HFD zebrafish larvae, was prevented by ibrutinib
treatment (Fig. 9e).

Discussion
The computational pipeline herein proposed depicts a systems
biology approach to study the biological processes involved in
MetSyn and to determine potential new pharmaceutical treat-
ments via drug repurposing. Given their high interconnectivity
and the multifactorial etiology, the metabolic disorders related to
MetSyn are particularly suited to a system-level analysis that
integrates multiple data types43.

Although in this study we focused on MetSyn, the proposed
method can be applied to other diseases. The only requirement is
a list of disease genes that can be derived from many sources (e.g.
from GWAS results or gene/protein expression profiles). Even in
the case of Mendelian diseases, for which repurposing is an
important opportunity to identify treatment strategies44,45, the
pipeline can be applied using information about affected path-
ways as input. Moreover, the network can be adapted for the
specific requirements of the study. For example, if a disease-
specific gene regulatory network is available, this can replace the
GTEx-derived, tissue-specific networks selected here. On the
other hand, the method can also provide useful insights for a

Table 1 List of the drugs identified as possible repurposing candidates

DrugBank ID Drug Name Action Target Score Module Network

DB00210 Adapalene agonist RARG 1.6618 2 Adipose

DB00210 Adapalene agonist RXRB 1.6925 2 Adipose

DB00523 Alitretinoin agonist RARG 1.6661 2 Adipose

DB04209 Dequalinium antagonist, inhibitor XIAP 1.7909 1 Adipose

DB03756 Doconexent activator RXRA 1.7103 2 Adipose

DB03756 Doconexent activator RXRB 1.6660 2 Adipose

DB09053 Ibrutinib inhibitor BTK 1.6147 1 Adipose

DB12332 Rucaparib antagonist PARP1 1.6678 2 Adipose

DB08877 Ruxolitinib inhibitor JAK1 1.7721 1 Adipose

DB04942 Tamibarotene agonist RARA 1.7222 2 Adipose

DB00210 Adapalene agonist RXRB 1.6871 2 Liver

DB03756 Doconexent activator RXRA 1.7047 2 Liver

DB03756 Doconexent activator RXRA 1.4948 3 Liver

DB03756 Doconexent activator RXRB 1.6819 2 Liver

DB03756 Doconexent activator RXRB 1.5372 3 Liver

DB00530 Erlotinib agonist NR1I2 1.6684 2 Liver

DB09079 Nintedanib inhibitor FGFR3 1.4473 2 Liver

DB04942 Tamibarotene agonist RARA 1.6667 2 Liver

DB00210 Adapalene agonist RXRB 1.6759 2 Muscle

DB00210 Adapalene agonist RARG 1.6676 2 Muscle

DB08916 Afatinib inhibitor ERBB2 1.6765 3 Muscle

DB00523 Alitretinoin agonist RARG 1.7756 1 Muscle

DB00523 Alitretinoin agonist RARG 1.6643 2 Muscle

DB00523 Alitretinoin agonist RXRB 1.6620 2 Muscle

DB00523 Alitretinoin agonist RARA 1.6810 2 Muscle

DB05015 Belinostat inhibitor HDAC1 1.7540 1 Muscle

DB05015 Belinostat inhibitor HDAC2 1.7615 1 Muscle

DB05015 Belinostat inhibitor HDAC4 1.8027 1 Muscle

DB06616 Bosutinib inhibitor ABL1 1.6090 3 Muscle

DB08865 Crizotinib inhibitor MET 1.7883 1 Muscle

DB03756 Doconexent activator RXRA 1.7134 2 Muscle

DB01259 Lapatinib antagonist ERBB2 1.8184 1 Muscle

DB06603 Panobinostat inhibitor HDAC3 1.6110 2 Muscle

DB08877 Ruxolitinib inhibitor JAK1 1.6745 3 Muscle

DB08877 Ruxolitinib inhibitor JAK2 1.7140 3 Muscle

DB04942 Tamibarotene agonist RARA 1.6708 2 Muscle

DB08895 Tofacitinib antagonist JAK1 1.7100 3 Muscle

DB08895 Tofacitinib inhibitor JAK2 1.6920 3 Muscle
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specific drug of interest once network modules for various dis-
eases are defined.

To identify MetSyn genes, we exploited GWAS and text mining
results. The use of genetic evidence has been demonstrated as a
powerful resource to support drug discovery, both for pointing
out disease-related pathways and for the identification of new
drug targets46. Indeed, the targets of many drugs approved before
the GWAS era are located in GWAS risk loci, thus supporting
further exploration of this data47,48. Moreover, the integration of
GWAS results with literature findings allowed us to take into
account the knowledge derived from additional sources, such as
functional studies, and thus to have a more comprehensive view
of the pathways involved.

The tissue-specific integrated networks were generated by
merging a protein–protein interaction network and a transcrip-
tional regulatory network. While the first describes known asso-
ciations between proteins, such as the formation of protein
complexes or kinase-substrate interactions, regulatory networks
are fundamental to take into account the regulation exerted by
transcription factors on gene expression. This is of particular
importance when studying complex traits, because the regulation
of gene expression in a tissue-specific manner is a key element in
determining the pathological phenotype26,49. Moreover, it has
been shown that several GWAS traits show higher connectivity in
regulatory networks than in other types of networks23, further

supporting our choice of including regulatory interactions in the
background network.

A key point of the performed network analysis has been the
definition of a proximity score that attempts to efficiently connect
drug modules and MetSyn modules. In addition to the network-
based distance between MetSyn and drug genes, our scoring system
takes into account the similarity of biological gene functions. This
approach increases the ability to identify potentially effective new
therapeutic strategies because it adds direct biological knowledge to
the topological information derived from the network.

The results obtained from the analysis of the adipose
network remark the key role exerted by inflammation in obesity
and suggest the adoption of anti-inflammatory therapies. This is
in agreement with a growing body of literature supporting
the use of anti-inflammatory agents to treat the chronic low-
grade inflammation accompanying metabolic-related pathological
conditions50,51. In particular, our results suggest ibrutinib as the
most promising candidate for drug repurposing. This finding is
based on the integration of genetic and literature data that
allowed us to identify immune-related pathways as significantly
enriched in disease genes. It is worth noting that the absence of
text mining genes would have hampered the identification of
ibrutinib.

Ibrutinib is a small molecule that inhibits BTK, a protein well
known for its essential role in B cell development and
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maturation52. In addition to B cells, BTK is also expressed by
macrophages, known key players in the development of the
obesity-related chronic inflammation and insulin resistance. At
the molecular level, BTK is involved in the regulation of mac-
rophage Toll-like receptor-mediated immune response53,54 and is
essential for the activation of the NLRP3 inflammasome and IL-
1ß production55. Importantly, NLRP3 activity has been linked to
obesity and insulin resistance both in human and mouse stu-
dies56. In addition to macrophages, B cells themselves have been
implicated in adipose tissue inflammation and insulin
resistance57,58, providing additional support for BTK involvement
in obesity-related inflammation.

In vivo zebrafish experiments support the potential of ibrutinib
in reducing obesity-related inflammation. Indeed, in our zebrafish
models of high fat diet-induced inflammation, the number of
macrophages in the yolk and in the head region was reduced by
ibrutinib administration. The reduction of macrophage number
was accompanied by a diminished expression of molecular
markers of lipid metabolism and inflammation, suggesting that
ibrutinib may have long-term effects on lipid accumulation and
associated inflammation.

Overall, this work describes a methodology based on the
integration of genetic and expression data with previous biolo-
gical knowledge, which enables the identification of drug repur-
posing candidates for complex diseases. Currently, this
framework allows to test only drugs with a known target. A future
extension could provide a method to also investigate compounds
without a defined mechanism of action. Moreover, further
developments may consider a refined fine mapping of the GWAS
casual variants, for example by taking into account epigenomic

annotations. The application of the computational pipeline to
MetSyn led us to identify the inhibition of Btk by ibrutinib as a
promising repurposing strategy. Additional experiments are
warranted to further investigate the effect of BTK inhibitors in
obesity and the possible benefits for patients with metabolic
syndrome.

Methods
List of genes associated with MetSyn. To establish a list of genes associated with
MetSyn, we used three different sources: GWAS catalog, GWAS summary statistics
and text mining, as detailed below.

Data-mining of the GWAS catalog. Results of published genome-wide associa-
tion studies were obtained from the NHGRI-EBI GWAS catalog (Ensembl release
version E93, downloaded on 8 October 2018)20. MetSyn-related traits were
manually selected among all those available, and the results were filtered for SNPs
with an association p-value < 5E-08 (Supplementary Data 1). The extracted SNPs
were mapped to official gene symbols based on their genomic location. All genes
located in the genomic interval were considered. As reference genes, we used the
RefSeq genes, downloaded from the UCSC genome browser using the table browser
tool (human genome assembly: Dec 2013/HG38, downloaded on 11 October 2018
from: http://genome.ucsc.edu/index.html). Genes not assigned to chromosomes 1
to 22 were removed and the different transcriptional variants of one gene (iso-
forms) were merged by considering the minimal starting and the maximal ending
position as new range of the gene. Moreover, the gene region was extended 110 kb
upstream and 40 kb downstream of the transcript boundaries, following the
approach used by MAGENTA59. The mapping procedure was executed with the R
package GenomicRanges.

SNP functional annotation. The SNPs obtained from the GWAS catalog were
annotated for their position within genes using the R package VariantAnnotation
and TxDb.Hsapiens.UCSC.hg19.knownGene as annotation object. To evaluate the
enrichment of the GWAS SNPs in regulatory regions, we used the chromatin state
annotations from the NIH Roadmap Epigenomics project60. Specifically, the 18-
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state models for adipose nuclei (E063), liver (E066) and skeletal muscle female
(E108) were downloaded from https://egg2.wustl.edu/roadmap/web_portal/ and
the overlap of the GWAS SNP locations with regulatory regions was computed
using the R package GenomicRanges. For comparison, we downloaded the full set
of HapMap CEU SNPs from the UCSC website (http://genome.ucsc.edu/) using
Table Browser and annotated them in the same way we did for the GWAS SNPs.
Two-sided Fisher’s exact test was used to compare GWAS SNPs and
HapMap SNPs.

GWAS summary statistics. A further resource for genetic factors associated with
MetSyn is provided by GWAS summary statistics. Previously published results
obtained by applying the PASCAL tool were used61. 15 GWASs connected to
metabolic components were chosen (Supplementary Table 1) and genes with a p-
value below the threshold of 5e-8 were selected.

Text mining. Additional MetSyn genes were identified using text mining of
PubMed abstracts. The following MeSH terms were identified as being relevant to
metabolic syndrome and its primary symptoms: metabolic syndrome x, hyper-
glycemia, insulin resistance, hyperinsulinism, glucose intolerance, hypertension,
obesity, abdominal, hypertriglyceridemia, hypercholesterolemia, waist cir-
cumference, waist-hip ratio. The search was limited using the tags [Majr:NoExp],
to restrict to articles having major focus on the searched MeSH terms (and no
automatic inclusion of child terms of the searched term), and english[language] to
restrict the search to English abstracts. In addition, we complemented the MeSH
search with a keyword search using the PubMed [TIAB] tag. The following search
terms were used: metabolic syndrome, hyperglycem*, insulin resistan*, hyper-
insulin*, glucose intoleran*, hypertension, abdominal obesity, central obesity,
hypertriglyceridemia, high triglycerides, hypercholesterolemia, high cholesterol,
waist circumference, waist-hip ratio, waist-to-hip ratio. To limit the results to the
most relevant articles, the keyword search results were filtered as follows. First, we
removed those articles already annotated with MeSH terms, because either the
major topic of the article was not considered MetSyn related by the MeSH
reviewers, or the articles were already captured by our MeSH search. The
remaining articles were further reduced to those waiting for MeSH annotation
according to the MedlineCitation Status in PubMed (In-Data-Review, In-Process,
Publisher), to cover the recent literature not yet included in the MeSH indexing.

Before performing the gene tagging, we removed those articles already present
in our GWAS catalog results.

The genes mentioned in the titles and abstracts of the selected articles of both
search strategies were annotated using the PubTator gene annotation62, and filtered
for human genes using the R package org.Hs.eg.db. PubMed was accessed on 24
October 2018 and PubTator annotation was downloaded on 25 October 2018.

Combining the data-driven and text mining approach. The approach we fol-
lowed is based on genomic regions and thus includes also genes that are not
causative risk factors for metabolic syndrome. Furthermore, the possibility of
including false-positive results from the text mining approach cannot be discarded.
To deal with these two limitations, gene set enrichment analysis for the genes
identified by the data-driven approach was carried out and genes were prioritized
based on their biological function. The enrichment analysis was performed using
the enrichr tool22, accessed through the RESTful API on October 12,2018. We
selected the following databases: GO biological processes, KEGG, WikiPathways,
Reactome, Biocarta, Humancyc, NCI-Nature, and Panther. The analysis resulted in
47 significant gene sets (BH adj. p-value < 0.05).

Constructing tissue-specific background networks. Integrated tissue-specific
networks were constructed by combining two types of networks: transcriptional
regulatory networks composed of interactions between transcription factors and
the regulated genes, and human protein–protein interaction networks. We consider
adipose tissue, liver tissue and skeletal muscle tissue as the three tissues mostly
affected by MetSyn.

Regulatory networks were downloaded from http://regulatorycircuits.org/
download.html as presented in23. These tissue-specific gene regulatory networks
were inferred by combining transcription factor sequence motifs with activity data
for promoters and enhancers from the FANTOM5 project24. Among the available
individual networks, adipose_tissue_adult, liver_adult and skeletal_muscle_adult
were selected. Based on the activity scores, edge weights in the range of [0, 2] are
provided. To filter for interactions with high evidence scores, we chose a cut-off
value for these edge weights of 0.4. This value is based on the considerations, that
(a) a threshold over 0.5 results in networks without/with only few nodes, (b) a
threshold beneath 0.1 rises the possibility of false positives steadily as the
distribution of edge weights is highly skewed, and (c) the threshold of 0.4 is the
maximal value which secures that at least 25% of the TFs and PRs of the resulting
network are also expressed in the tissue-specific corresponding network from
HIPPIE as additional source for protein–protein interactions.

Protein–protein interactions (PPI) were obtained from HIPPIE (v2.0)25.
HIPPIE is a comprehensive database combining protein interactions from different
sources. Furthermore, a confidence score for each interaction is provided. This
score ranges in [0, 1] and reflects the reliability of the interaction based on the

number and the quality of the experimental technique, the number of studies
mentioning the interaction, and the number of non-human organisms in which the
interaction was reproduced. To include only the most reliable interactions, the cut-
off value of 0.73 was chosen considering that the curators of HIPPIE refer to this
value for high evidence interactions. Following25, tissue-specific PPIs were created
using tissue expression RNA-Seq data from GTEx, while a gene was considered
tissue-relevant if it showed an RPKM ≥ 1 in the given tissue. To generate the
adipose tissue network, we combined the data obtained from subcutaneous and
visceral adipose tissue.

After this preprocessing analysis, the regulatory circuits were extended with
high evidence interactions from the respective tissue-specific PPI. Relations for
nodes in the gene regulatory networks as well as their first neighbors were included
during this process.

Drug data. To evaluate the drug effect on MetSyn we combined drug target
information and drug expression profiles.

Target information. Information about drugs, their indication, their stage of
development (e.g. approved, experimental, withdrawn) and their target was
obtained from the public database DrugBank29 (version 5.1.1, release date: 2018-
07-03, download date 11 September 2018). Drugs were retained if they were
annotated to have a target gene and if they had an approved status. We further
restricted our analysis to pharmacological active drug-target interactions. All target
proteins were mapped and annotated using Entrez IDs and official gene symbols.
In total, we obtained 3814 drug-target interactions for 1482 distinct drugs and 705
distinct targets.

Drug expression profiles. The identified drug-target relations were extended by
including knowledge about the gene expression profile related to the drug, obtained
from the Library of Integrated Cellular Signatures (LINCS)11, which provides
gene expression profiles obtained by analyzing cellular responses (cellular sig-
natures) across different cell-lines in response to a range of perturbations, including
also single drug perturbations. We accessed the data using the RESTful API
(https://clue.io/) in October 2018 and for each drug the 100 most up- and down-
regulated genes were retrieved, relying on high quality signatures (is_gold= 1). If
for a certain drug more than one signature was available, we selected the one with
the highest signature strength parameter (distil_ss).

Network-based MetSyn modules. Trait-relevant network modules were detected
using the walktrap algorithm63 (implemented in the R package igraph) in com-
bination with an overrepresentation test. The walktrap algorithm identifies network
communities based on the concept that random walks of a short length tend to stay
in the same network area (identified as module). The algorithm was run using the
default parameters. The enrichment in MetSyn genes was tested using one-sided
Fisher’s exact test (p-value < 0.05). The communities significantly enriched in
MetSyn genes were tested for their biological functionality using pathway enrich-
ment analysis (R package reactomePA).

Network-based drug modules. Network-based drug modules were generated by
mapping drug profiles to the networks and connecting the mapped proteins.
Starting from the drug target, the list of signature proteins was filtered to extract
those having a medium to high semantic similarity with the target protein using the
R package GoSemSim (Wang method64, cut-off value 0.5). The network-based
drug module was then formed by the drug target, the selected subset of drug
signature proteins and the shortest paths connecting them.

Proximity score. A proximity score was defined to quantify the interplay between
a drug profile and a MetSyn module. This score combines the network-based
distance between a drug- and a MetSyn-module, and the semantic similarity of the
two modules. The network-based distance was calculated using the closest distance
introduced in15, where it has been shown to outperform other distance measures.
This measurement represents the average shortest path length between the drug
module genes and their nearest disease proteins in the network:15

dc ¼
1

Tj j

X

t2T

mins2S d s; tð Þ; ð1Þ

where T is the drug module, S the disease module and d(s,t) the shortest distance
between two nodes s and t. Normalizing this measurement with the diameter of the
network and considering the linear transformation 1–dc, norm defines a score in
[0,1]. To include knowledge about the biological function of the drug and disease
proteins, their GO annotation restricted to biological processes was used to cal-
culate a similarity score in [0,1]. Wang’s method64 combined with the Best-Match
Average strategy was used as implemented in the R package GoSemSim. Summing
the two above measurements led to our final score in [0,2].

To assess the significance of the results, a reference score distribution
corresponding to the expected scores for random sets of drug proteins was created.
The construction of the random module follows the strategy to build drug modules
described above by selecting first a target protein falling in the same degree bin as
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the original target, and by then selecting signature genes keeping the internal
distances of the original module. Finally, we use the shortest paths between the
target and signature genes to construct the random module. A drug resulting in a
score higher than 95% of the reference distribution scores was considered
significant.

Filtering and prioritization of candidate repurposing drugs. We retrieved
data about the targets of the repurposing candidates using the Open Targets
Platform31 REST API (accessed November 2018) to extract known associations
between the target genes and the list of traits associated to MetSyn. Targets with at
least one association score ≥ 0.2 were excluded from further considerations,
because this indicates that the target has already been under investigation for
therapeutic interventions related to MetSyn. Furthermore, we extracted the known
side effects of the candidate drugs using the DrugCentral platform30, accessed via
http://drugcentral.org in November 2018, and excluded the drugs with contra-
indications associated to MetSyn. A final prioritization step was carried out based
on the tissue expression of the drug targets accessed using Human Protein Atlas32,
GTEx26, and Fantom524.

Analysis of BTK gene expression. The mouse and human expression datasets
described in this study are publicly available from NCBI GEO (https://www.ncbi.
nlm.nih.gov/geo/) and EMBL-EBI ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/). From NCBI GEO we downloaded the Series_matrix files of the
following datasets: GSE54350, GSE32095, GSE25205, and GSE27951, while the
processed data of the E-MTAB-54 dataset was downloaded from EMBL-EBI
ArrayExpress. The selected datasets were annotated using the R Bioconductor
annotation packages corresponding to the microarray platform used in the
respective study or the annotation file provided by NCBI and ArrayExpress. The
probe signals were summarized at gene level considering the median. T-test was
used to compare the mean of BTK transcript levels between different subgroups.

Immune cell component estimation. To estimate the abundances of immune
cells in adipose tissue we used the online version of Cibersort65(accessed via
https://cibersort.stanford.edu/), run with default parameters. Cibersort is software
based on a deconvolution algorithm that allows estimating the abundances of
immune cells from gene-expression data on the basis of previous knowledge about
immune cell gene expression (immune signature). For the human datasets, we used
the immune signature provided by Cibersort that contains 22 immune cell types,
while for the mouse datasets, we used the immune signature provided in Chen
et al.66, consisting of 25 immune cell types. For visualization purposes, the mouse
immune cells were grouped in seven main classes: Granulocytes (Mast Cells,
Neutrophil Cells, Eosinophil Cells), B cells (B Cells Memory, B Cells Naïve, Plasma
Cells), T cells (T Cells CD8 Actived, T Cells CD8 Naïve, T Cells CD8 Memory, T
Cells CD4 Memory, T Cells CD4 Naive, T Cells CD4 Follicular, Th1 Cells, Th17
Cells, Th2 Cells, GammaDelta T Cells), Macrophages (M0 Macrophage, M1
Macrophage, M2 Macrophage), Monocytes (Monocyte), Natural Killer cells (NK
Resting, NK Actived), and Dendritic cells (DC Actived, DC Immature).

Animal rearing. Zebrafish (Danio rerio) strains were raised and maintained in the
Model Organism Facility (MOF) at Department of Cellular, Computational and
Integrative Biology (CIBIO) – University of Trento under standard conditions67.
The transgenic zebrafish lines tg(mpeg1:eGFP)gl2241, tg(mpx:GFP)i11442 and Cas-
per68 were used. All animal experiments were performed in accordance with
European guidelines and regulations, and were approved by the ethic board of the
University of Trento. Approval for breeding was granted by the local government
(Città di Trento, C_L378/S022/103359/03.06.2015 to Università di Trento).

Preparation of experimental diets. To create cholesterol-enriched diet (HCD) for
feeding, cholesterol (Sigma) was diluted in diethyl ether (Sigma) to obtain 10%
solution. 400 μl of the solution was added to 0.5 g of standard zebrafish larval food
(ZEBRAFEED, ZM000 ingredients: crude protein 63%, crude fat 14%, crude fiber
1.8%, crude ash 12%). Control diet was obtained adding 400μl of diethyl ether to
0.5 g of ZM000. The diets were left overnight under the chemical hood until the
diethyl ether was evaporated. Before feeding larvae with diets, they were crumbled
into fine particles using a small scoop. Preparation of diets was performed under
sterile condition (adapted from Progatzky et al.40). High-fat diet (HFD) was created
diluting 1:10 clotted cream (Devon Cream Company, ingredients: 55.0 g of fat, of
which saturates 35.5 g, 2.2 g of carbohydrate, of which sugar 2.2, 1.6 g of protein,
trace of salt) in E3 (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2 × 2H2O, 0.33 mM
MgSO4 × 7H2O, 0.0002% methylene blue, pH 6.5) containing 200 μM 1-phenyl 2-
thiourea (PTU, Sigma) (adapted from Schlegel and Stainier39). HFD was prepared
daily, instead HCD and control diet (ZM000) were prepared once and stored at
room temperature.

Feeding of Zebrafish larvae. Larvae were initially maintained at 28.5 °C at a
maximum density of 50 larvae per Petri dish in E3 fish water, containing 0.0002%
methylene blue (Sigma) as an antifungal agent. After 24 h, larvae were placed in E3
fish water, containing 200 μM PTU, to prevent accumulation of melanin and allow

fluorescent imaging of inflammatory cells. Before feeding, mpeg:GFP and mpx:GFP
positive larvae were selected using a Leica MZ10F Stereomicroscope and were
randomly assigned to the differed treatment groups. Sample size per treatment
group was 15 zebrafish larvae, number of experiments was > 3. From 4 dpf to 6 dpf,
larvae were placed in HFD or in E3 in which HCD or standard diet (ZM000) were
added using a small scoop. Feeding was performed for 6 h per day at 28.5 °C. Total
number of macrophages was counted at 18 h post feeding (at 7 dpf) (adapted from
Progatzky et al.40).

Lipid staining. Oil Red O staining was performed on Casper zebrafish fixed larvae
at 7 dpf as described by Progatzky et al.40 and Riu et al.69, with slight modifications.
Briefly, larvae were fixed in 4% paraformaldehyde overnight at 4 °C. Fixed larvae
were washed three times in PBS 1X for 5 min and incubated in 60% isopropanol for
30 min. Larvae were then incubated with freshly prepared Oil Red O staining
solution (0.3% Oil Red O in 60% isopropanol) for 3 h. After staining, larvae were
washed three times in 60% isopropanol for 5 min before being transferred in PBS
×1. Images were acquired at the stereomicroscope in darkfield mode.

Nile Red staining was performed on 7 dpf Casper zebrafish live larvae, as
described by Ma et al.70. Larvae were incubated in 5 ml E3 fish water with 0.5 μg/ml
Nile Red solution (1.25 mg/ml stock solution in acetone, diluted in E3 fish water)
for 30 min in the dark at room temperature. Images were acquired at the confocal
microscope.

Automated count of macrophages and neutrophils. Embryos at 7 dpf were
manually arrayed into 384-well plates (Corning®) in 70 μl of E3 fish water. They
were anesthetized with 0.2 mg/ml MS-222 (Sigma-Aldrich) and manually posi-
tioned on their side in the upper left corner along the diagonal of the well. Image
acquisition was performed by Operetta High Content System (Perkin Elmer) of the
HTS Facility at CIBIO Department (University of Trento). Region of interest was
acquired in three fields of view, with a 10X objective (NA= 0.4) and included the
head, the yolk and the tail. Images were acquired in Widefield mode with two
channels: brightfield and 460-490 Ex/500-550Em for EGFP. Nine z-stacks with 20
μm steps were sufficient to obtain a representative image for each fish. Resulting
maximum projection was analyzed using Harmony® software (Perkin Elmer). All
measurements were taken from distinct samples.

Images were pre-processed by filtering and smoothing. Signal normalization
was performed to reduce artifacts and increase the inter-plate comparability. Fish
region was defined using the eGFP diffuse signal. Cell detection in the defined
region was performed using a highly inclusive method based on the eGFP
normalized signal (Supplementary fig. 11b). Multiple properties of the cells were
calculated and macrophages or neutrophils were selected in the respective
transgenic larvae by automated pattern recognition relying on supervised machine
learning (PhenoLOGIC™ Perkin Elmer). Based on the selected training objects, a
linear combination of properties is identified which best separates the training
samples (Supplementary Fig. 11b). The number of objects per field of view was
counted and summed to obtain the total number of cells per larva. The resulting
cell segmentation and eGFP positive cell selection is shown in Supplementary
Fig. 11b.

Treatment with ibrutinib. Treatment with ibrutinib was tested at different dosages
(5–50 μM); as some toxicity was present at 50–20 μM (not shown), we used a dose
of 5 μM. From 4 dpf to 6 dpf, zebrafish larvae were pre-treated for 30 min with 5
μM ibrutinib, followed by feeding for 6 h with HFD, HCD or control diet (ZM000).
Pre-treatment and feeding were performed at 28.5 °C. Quantification of total
number of macrophages was analyzed at 18 h post last day of feeding (at 7 dpf). For
pre-treatment, ibrutinib was administered into E3 fish water containing PTU.
Regarding feeding with HCD and control diet (ZM000), ibrutinib was administered
into E3 fish water containing PTU, in which each diet was added; instead for HFD,
ibrutinib was directly administered into this specific diet.

RNA extraction, cDNA synthesis, and qPCR. RNA extraction was performed
using ReliaPrepTM RNA Tissue Miniprep System (Promega), according to the
manufacturer’s protocol. At the final step, RNA was eluted with 15 μl water to
increase its concentration. Quantity and quality of RNA were assessed through
NanoDrop 2000c (Thermo Scientific). 0.5 nanograms of total RNA was retro-
transcribed to cDNA using SensiFAST™ cDNA Synthesis Kit (Bioline), according to
the manufacturer’s protocol. Quantitative PCR reaction mix was prepared using
qPCRBIO SybGreen Mix (PCR Biosystems), according to the manufacturer’s
protocol. cDNA was diluted 1:4 with water. qPCR reaction was performed on a
CFX96 Real-Time PCR Detection System (Bio-Rad) machine to amplify btk, il1b70,
srebf170, and rps11 (housekeeping gene used as a reference) mRNA. All mea-
surements were taken from distinct samples.

Primers were purchased from Eurofins Genomics: btk forward primer 5′-CCCA
CGAGTATTGCGCTTCT-3′, btk reverse primer 5′-GACTTCAGGAGGTGACC
AGC-3′; srebf1 forward primer 5′-CATCCACATGGCTCTGAGTG-3′, srebf1
reverse primer 5′-CTCATCCACAAAGAAGCGGT-3′; il1b forward primer 5′-AC
ACCGAGCGCATCATTAAC-3′, il1b reverse primer 5′-TGCGTCAGTAGTGTTG
GTCT-3′; rps11 forward primer 5′-ACAGAAATGCCCCTTCACTG-3′, rps11
reverse primer 5′-GCCTCTTCTCAAAACGGTTG-3′.
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Statistical analysis of zebrafish data. Statistical analyses of zebrafish data were
conducted using GraphPad Prism 6.0e software. Analysis of macrophage and
neutrophil count was carried out applying two-tailed unpaired Student’s t-test and
values were presented showing the standard error of the mean (SEM). Analysis od
Oil Red O staining data was conducted by applying the two-way ANOVA test with
Bonferroni post-test and values were presented showing the SEM. Analysis of
qPCR data was conducted applying the two-tailed Mann–Whitney test for
unpaired sample and values were presented showing the standard error of the
mean (SEM). Statistical values of p-value < 0.05 were considered significant: ****
stands for p-value < 0.0001, *** stands for p-value < 0.001, ** stands for p-value <
0.01 and * stands for p-value < 0.05.

Fluorescence imaging. A fluorescence stereomicroscope (Leica MZ10F) was used
for phenotype selection of tg(mpeg1:eGFP)gl22 and tg(mpx:GFP) i114 larvae, using
an eGFP filter. For live imaging, zebrafish larvae were anaesthetized in 0.2 mg/ml
MS-222. Images were acquired through confocal laser scanning microscope (Leica,
SP5; objectives: ×10/0.8, ×20/0.8). Live imaging was performed mounting 7 dpf
larvae per each treatment in 1% low melting point agarose (Life Technologies) with
a lateral orientation.

Image preparation. Images were prepared for publication using ImageJ 1.50i (Fiji)
program.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The list of SNPs associated with metabolic syndrome analyzed in this study was obtained

from the NHGRI-EBI GWAS catalog. The gene regulatory networks were retrieved from

regulatory circuits portal. The protein–protein interaction network was downloaded

from HIPPIE. The drug expression profiles were retrieved from the Library of Integrated

Cellular Signatures (https://clue.io/) portal. The gene expression datasets were

downloaded from NCBI GEO database and from EMBL-EBI ArrayExpress. The list of

drugs and targets was downloaded from DrugBank. The data about the drug targets were

downloaded from Open Targets platform. The data about the side effects were

downloaded from Drug central platform. The data produced by the analyses in this

manuscript are available within the article and its Supplementary Information files. The

source data underlying Figs. 6a-b, 7a-d, 8c, 8e-h, 9b, 9d-e and Supplementary Figs. 7a-b,

8a-b, 10a-d, 11d-e, 12a-b are provided as a Source Data file.
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