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Abstract

The growing number and variety of genetic network datasets increases the feasibility of understanding how drugs and
diseases are associated at the molecular level. Properly selected features of the network representations of existing drug-
disease associations can be used to infer novel indications of existing drugs. To find new drug-disease associations, we
generated an integrative genetic network using combinations of interactions, including protein-protein interactions and
gene regulatory network datasets. Within this network, network adjacencies of drug-drug and disease-disease were
quantified using a scored path between target sets of them. Furthermore, the common topological module of drugs or
diseases was extracted, and thereby the distance between topological drug-module and disease (or disease-module and
drug) was quantified. These quantified scores were used as features for the prediction of novel drug-disease associations.
Our classifiers using Random Forest, Multilayer Perceptron and C4.5 showed a high specificity and sensitivity (AUC score of
0.855, 0.828 and 0.797 respectively) in predicting novel drug indications, and displayed a better performance than other
methods with limited drug and disease properties. Our predictions and current clinical trials overlap significantly across the
different phases of drug development. We also identified and visualized the topological modules of predicted drug
indications for certain types of cancers, and for Alzheimer’s disease. Within the network, those modules show potential
pathways that illustrate the mechanisms of new drug indications, including propranolol as a potential anticancer agent and
telmisartan as treatment for Alzheimer’s disease.
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Introduction

Drugs cure diseases by targeting the proteins related to the

phenotypes arising from the disease. However, drug development

does not precisely follow the ‘‘one gene, one drug, one disease’’

paradigm, which has been challenged in many cases. The concept

of polypharmacology was proposed for drugs acting on multiple

targets rather than one target [1,2]. The polypharmacological

concept can lead to drug repositioning, which involves finding new

indications for existing drugs or side effects due to the molecular

mechanisms that may underlie a chemical–disease connection

[3,4].

In order to decipher how drugs exert their effect on diseases, it is

important to understand how a drug acts on targets related to a

disease phenotype, how a gene module causes an abnormal

phenotype, and how, in consequence, the targets and causative

genes interact with each other. Furthermore, it is of great

importance to investigate how drugs exert their activities directly

or indirectly via such gene modules, how patho-phenotypes are

influenced by the abnormality of gene modules, and how drugs

and disease phenotypes are associated on the basis of gene

modules [5]. With this understanding, identifying and analyzing

how a drug and a disease are actually associated at the molecular

level plays a crucial role in the prediction of new drug indications.

Currently, computational methods to predict potential drug-

disease interactions can be divided into the drug-centric approach,

the disease-centric approach, and the drug-disease mutual

approach.

With the drug-centric approach, opportunities are sought to

repurpose drugs using accumulated chemical or pharmaceutical

knowledge. Keiser et al. applied an integrated chemical similarity

approach to drug repositioning using structural similarities among

drug compounds and knowledge of established compound-target

relationships [6]. However, many physiological effects cannot be

predicted by chemical properties alone because drugs undergo

complex, largely uncharacterized metabolic transformations as

they are metabolized and physiologically distributed [7].

The disease-centric approach mainly utilizes the characteristics

of diseases from the perspective of disease management, symp-

tomatology, or pathology [7]. This approach builds a diseasome,

or group of diseases, by incorporating established knowledge about

diseases, or it finds and uses the common characteristics of diseases

associated with an existing drug. Hu and Agarwal established a

disease-similarity network using gene expression profiles and
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incorporated into this network a body of knowledge about drugs

[8]. Suthram et al. constructed a disease network and discovered

functional modules common to diseases that are enriched for

pluripotent drug target genes [9]. This disease-only-based

approach relies heavily on data denoting the characteristics of

diseases, and it can be affected by the quality of the data.

Therefore, outcomes could be restricted according to the means

used to measure gene expression profiles or phenotypic profiles,

which represent the characteristics of diseases.

The drug-disease mutual approach is a combination of the two

approaches described above. It can infer new therapeutic

relationships between drugs and diseases by directly matching

the biomolecular or chemical properties of drugs, or processed

data pertaining to these properties, with the property data or

processed data of diseases. Alternatively, it can infer relationships

indirectly using related or higher-level data or representations of

drugs and diseases. Utilizing knowledge of both drugs and diseases

can be a complementary and successful strategy; in particular, this

approach can overcome missing knowledge with regard to the

pharmacology of a drug, such as unknown or additional targets

[7].

Among drug-disease mutual approaches, one study that directly

matched the properties of drugs and diseases constructed a

signature of a drug and a signature of a disease using gene

expression microarrays. This approach identified new therapeutic

potentials of the drug by matching the two signatures [10].

Another attempt introduced the concept of a co-module, which is

a representation of a drug-gene-disease relationship [11]. A

network-based gene-closeness profile was defined to relate the

drug to the disease, and new drug-disease associations were

identified.

As another drug-disease mutual approach, Gottlieb et al.

indirectly utilized the properties of drugs and diseases [12]. Based

on the observation that similar drugs are indicated for similar

diseases, they constructed drug-drug and disease-disease similarity

measures and exploited these measures to construct classification

features, with the subsequent learning of a classification rule. For

reproducible implementation, it is limited to gather all the

required properties of drugs and diseases.

With the increasing number and variety of high-throughput

datasets, functional genetic networks are becoming more accurate

and complete. These networks make it possible to understand how

drugs and diseases are associated at the molecular level. If the

network features of drug-disease associations can be properly

selected, these can be used to infer novel indications or side effects

of existing drugs with increased accuracy, providing more concrete

evidence.

Here, we propose scoring methods to quantify drug-disease

relationship. Network adjacencies of drug-drug, disease-disease

were quantified. Furthermore distance between topological

module of drug-drug and disease, and distance between topolog-

ical module of disease-disease and drug were quantified. These

quantified scores were used as features for the prediction of novel

drug-disease associations. Our method obtains an AUC of 0.845

when predicting drug-disease associations and shows better

performance compared to other methods. We confirmed that

our prediction method covers a number of current clinical trials

(over 34%). Also, we extracted the topological modules of novel

predictions, which involve propranolol for certain types of cancer

and telmisartan for Alzheimer’s disease. The module of propran-

olol shows significant enrichment in cancer pathways and putative

inhibition mechanism of cancer growth and proliferation. In

addition, the module of telmisartan indicates its therapeutic action

related with inhibition of the defective signaling that usually

occurred in Alzheimer’s disease. Our approach provides promis-

ing drug-disease relationships for drug repositioning and reveals

potential mechanism of them.

Methods

The proposed method consists of two processes, as shown in

Figure 1. In the first stage, the degree of the drug-disease

association is scored by means of adjacency-based inference and

module-distance-based inference. Detailed descriptions of the

adjacency-based inference and module-distance-based inference

methods are given in section ‘‘Two methods for scoring drug-

disease associations’’. In the second stage, the scores from the first

stage are regarded as features characterizing the drug-disease

relationship; a classifier is subsequently built using these features

by means of learning. With this classifier, predictions are made

regarding whether an unknown drug-disease pair has an

association. Finally, new drug-disease associations are discovered.

The details of this stage are given in section ‘‘Characterizing a

drug-disease relationship via features’’.

Datasets
We used an integrative genetic network that combines three

types of protein and gene networks. They comprised 152,388

protein-protein interactions from the Online Predicted Human

Interaction Database (version 2.0) [13], 13,106 gene regulation

data consisting of 13,046 activation and 1,085 inhibition

interactions, and 16,302 inferred protein-protein interactions from

known protein complexes in the human pathways of the Pathway

Interaction Database [14]. We assumed that each protein in a

protein complex also has an interaction that is equal to the

interactions of the protein complex. For instance, we can get four

binary interactions when a protein complex with four proteins has

an interaction with a gene [44]. In total, we used 177,672

interactions for the integrative genetic network, with 15,804

unique proteins. To integrate the networks, we mapped the

proteins and genes with UniProt ID.

We obtained drugs and their targets from DrugBank [15]. We

selected drugs FDA approved as candidate drugs having multiple

targets ($2) on the integrative genetic network, resulting in 832

drugs and 4,889 drug-target relationships. Diseases and their

susceptible genes were sourced from OMIM (Online Mendelian

Inheritance in Man) [16]. We secured 239 diseases having multiple

susceptible genes ($2) in the integrative network and 4,013

disease-gene relationships. We note that, since drug targets and

disease susceptibility genes are not completely revealed and the

networks including PPI and the gene regulatory network are

incomplete, we used drugs and diseases with multiple target genes

and susceptibility genes.

From the Comparative Toxicogenomics Database (CTD), we

obtained known drug-disease associations (Sep. 2013, downloaded)

[17]. The CTD consists of two types of chemical (drug)-disease

relations: curated and inferred. We used only curated relations.

We mapped chemicals to their DrugBank identifiers and diseases

to their OMIM identifiers. Through the mapping processing, we

obtained 5,201 drug-disease associations. We selected drug-disease

instances with identifiers belonging to the list of drugs and diseases

in our set. Finally, 1,295 known associations consisting of 377

drugs and 80 diseases were used in this study.

Two methods for scoring drug-disease associations
1) Adjacency-Based Inference. We devised a scoring

method for drug-disease relationships based on known drug-

disease associations and adjacencies. In this method, three

Classification Model for Deriving Novel Drug-Disease Associations
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Figure 1. System overview. (a) ‘‘Adjacency-Based Inference’’ measures the drug-drug (disease-disease) adjacency among known drug-disease
associations, and infers new drug-disease association. ‘‘Module-Distance-Based Inference’’ derives drug-drug (disease-disease) gene module among
known drug-disease associations, measures the distance between the gene module and disease (drug), and infers new drug-disease association. (b)
Drug-disease relationship represented by score becomes features. Various machine learning based classifiers are built with those features, and
predict unknown drug-disease relationship.
doi:10.1371/journal.pone.0111668.g001
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approaches are used: drug-adjacency-based inference, disease-

adjacency-based inference, and combined adjacency inference.

The basic idea of drug-adjacency-based inference stems from

the hypothesis that if there is a known association between a drug

and a disease, another similar drug would also have an association

with the disease. Figure 2 (a) describes this concept. When d’ is the
drug and p is the disease in a known association, d, which is

adjacent to d’, can be inferred to have an association with p. It can
be said that the inferred association is stronger if the adjacency

score is higher; therefore, the drug-drug adjacency score of d and

d’ is used as the measure of the inferred association.

The disease-adjacency-based inference approach infers a drug-

disease association based on disease-disease adjacency. It is

described in Figure 2 (b).

The combined-adjacency inference approach combines the

scores from drug-adjacency-based inference and disease-adjacen-

cy-based inference. Although the ways in which drug-target

proteins and disease-genes work during the biological process

differ, the same scoring method is applied. This method prevents

one of the scores from being given a greater weight and considers

both compounds’ mechanisms of action and disease molecular

pathologies.

These three approaches are heavily affected by the degree of

adjacencies of the drug-drug or disease-disease relations. A higher

adjacency score implies a tighter drug-disease association.

Measuring the adjacency score is crucial. We used target proteins

for drugs and disease genes for diseases. In the integrative genetic

network, the closeness of the association between each target

protein set of two drugs is measured, and this measure is used as

the drug-drug adjacency score. Also, the closeness of disease gene

sets in the integrative network is used for the disease-disease

adjacency score. Figures 2 (d) and (e) display examples of drug-

drug (disease-disease) adjacency.

Figure 2 (f) displays the process of scoring the drug-drug

adjacency in Figure 2 (d). In the integrative genetic network, when

finding a shortest path for each pair of proteins, one protein from

drug d and another protein from drug d’ are shown. There are

three types of paths: R0, R1, and R2. In R0, the target protein of d
and the target protein of d’ are identical. In R1, the target protein

of d and the target protein of d’ are directly connected. In R2, the

target protein of d and target protein of d’ are indirectly connected
by means of another protein between them. If the length of a path

is shorter, the score is higher. The scores of all pairs are summed

and then scaled according to the number of targets. The scaled

score becomes the drug-drug adjacency score, as follows:

Adj d, d 0ð Þ~

P

ti [ T dð Þ

P

tj [ T d0ð Þ
Sti tj

scaling factor
, ð1Þ

Here, ti is a target protein of drug d in its target set T(d), and tj is
a target protein of drug d’; scaling factor essentially denotes the

number of proteins in T(d)multiplied by the number of proteins in

T(d’), which allows Adj d, d 0ð Þ to vary from 0 to 1. Additionally,

Sti tj
is the shortest path between ti and tj, and it is one of three

types of paths, i.e., R0, R1, and R2. We set the score of R0 to the

reciprocal number of median degree of a network, which is one

sixth. We then set R1 and R2 to the square of R0 and the cube of

R0, respectively. Among the drug-drug adjacency scores for

multiple drugs, the maximum value becomes the final score for the

association between d and p, as follows:

A d, pð Þ~ max
1ƒkƒn

Adj d,d 0
k

� �� �

d=d 0
k, ð2Þ

In this equation, n is the number of drugs that have a known

association with disease p. We computed disease-disease adjacency

scores in a similar manner using disease genes in the network. The

scores for the association between d and p from the drug-drug and

disease-disease adjacency scores are combined into a single score

by computing their weighted geometric mean, as follows:

C d, pð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AD d, pð Þ | AP d, pð Þ
p

: ð3Þ

Each AD d, pð Þ and AP d, pð Þ value indicates each maximum drug-

drug and disease-disease adjacency score for the association

between d and p.

Figure 2. Adjacency-Based Inference.
doi:10.1371/journal.pone.0111668.g002
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2) Module-Distance-Based Inference. We selected a topo-

logically related gene set that is called a topological module. The

topological module that is shared by two drugs is extracted for a

particular disease. One drug is from a known drug-disease

association and the other is among the candidate drugs for the

disease. This topological module common to two drugs is called d-

module, and is used for repurposing a new drug-disease

association. In the same manner, a topological module that is

common to two diseases is called p-module, and is extracted to

discover new drug-disease associations. We applied three ap-

proaches: d-module distance-based inference, p-module distance-

based inference, and a combined module-distance inference

method.

From the two drugs (d, d’), the common topological drug-drug

gene module (d-module) is derived and the distance between the d-

module and the disease is measured, as described in Figure 3 (a).

This module distance indicates how closely common features of

the drugs actually relate to the disease. In our assumption, the

higher the distance value, the more likely it is that the pathway of

the drug in the known drug-disease association is shared with the

other drug’s expected pathway.

Inferring drug-disease association by means of the drug-drug

topological module is named as d-module distance-based infer-

ence. As shown in Figure 3 (d), every interaction in each target

protein set from d and d’ is displayed in the integrative genetic

network, and the d-module is extracted according to the level

parameter v. The distance between the d-module at each level and

the disease is measured according to the distance parameter k. In
Figure 3 (e), the module distance between the d-module in level 2

and the disease is measured. Given drugs d and d’ and disease p,
the d-module distance is computed as follows:

Mdis d, d 0ð Þ~

P

ti [ Modv d, d0ð Þ

P

gj [ T pð Þ

Sk
ti gj

scaling factor
, ð4Þ

Here, ti is a protein of d-module Modv d, d 0ð Þ and gj is a gene of
disease p; scaling factor essentially denotes the number of proteins

in Modv d, d 0ð Þ multiplied by the number of genes in T(p), which

allows Mdis d, d 0ð Þ to vary from 0 to 1. Also, Sk
ti gj

is the score of

the path between ti and gj; k is a fixed length of the path, which is

used to calculate Sk
ti gj

. The value of Sk
ti gj

changes according to k,

as follows:

Sk
ti gj

~

R0 if k~0

R1 if k~1

R2 if k~2

8

>

<

>

:

: ð5Þ

In the case of k=0, only the intersections between ti and gj
receive a score. When k=1, only the paths whose length is one

receive a score. When k=2, only the paths whose length is two are

scored. We set the score of R0 to the inverse number of median

degree of a network, which is one sixth. We then set R1 and R2 to

the square of R0 and the cube of R0, respectively. Among the

module distances for multiple drugs, the maximum values become

the final score for the association between d and p, as follows:

Figure 3. Module-Distance-Based Inference.
doi:10.1371/journal.pone.0111668.g003
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M(d, p)~ max
1ƒiƒn

Mdis d,d 0
i

� �� �

d=d 0
i, ð6Þ

In this equation, n denotes the number of drugs with a known

association with disease p. When the d-module of d and d’ is
closely related to the disease genes, we can expect that the two

drugs show a similar biological function.

In the p-module distance-based inference method, the common

topological disease-disease gene module (p-module) from two

diseases is extracted, as shown in Figures 3 (b), (f), and (g). The p-

module represents the pathological molecules shared by the two

diseases. The shorter the module distance between the p-module

and the drug, the more safely it can be assumed that the drug also

works for the other disease. The method of calculating the distance

follows the d-module-based inference method.

The combined module-distance inference method is a combi-

nation of the previously described d-module distance-based

inference and the p-module distance-based inference methods. It

is expressed as follows:

C d, pð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MD d, pð Þ|MP d, pð Þ
p

, ð7Þ

Here, MD d, pð Þ and MP d, pð Þ indicate the maximum of the d-

module distance-based inference and p-module distance-based

inference methods, respectively. It makes the two methods

complementary while considering not only the molecular activity

shared by the drugs but also the causative genes shared by the

diseases (Figure 3 (c)).

Characterizing a drug-disease relationship via features
The scores from adjacency-based inference and module-

distance-based inference are converted into features, and a

classifier predicting a new drug-disease association is thereby

learned. The drug-adjacency-based inference score, disease-

adjacency-based inference score, and combined adjacency infer-

ence score from the adjacency-based inference method become

the first three features for each drug-disease relationship.

The d-module distance-based inference scores, p-module

distance-based inference scores, and combined module-distance

inference scores from the module-distance-based inference are

used as 27 features. In the process of calculating the module, we set

the level parameter v to range from 0 to 2, which denotes the

scope of the module. When calculating the shortest path between

proteins in a module and the target proteins (disease genes) of a

drug (disease), we set the distance parameter k to range from 0 to

2, which determines the shortest paths (R0,R2 in Figure 3).

Accordingly, 27 features are generated from the module-distance-

based inference method. Each drug-disease pair has 30 features

overall, including 3 features from the adjacency-based inference.

We note that calculating all 30 features for 2,590 positive and

negative associations takes about five minutes on Intel Core i7

CPU (3.50 GHz).

The training set used for 10-fold cross-validation includes 1,295

known drug-disease associations as a positive set and randomly

generated drug-disease pairs as a negative set. The negative set is

randomly generated from drugs and diseases in the positive set,

taking the same size as the positive set. We note that a random

negative set might give optimistic results, but it is challenging to

create an exact negative set. To obtain a precise AUC score, 10-

fold cross-validation is independently conducted 10 times. Each

cross-validation is conducted with different random negative sets,

and generates an AUC score. We then average the resulting AUC

scores. Table S1 shows one sample of an actual training data set. A

classifier is learned with these features. Ten-fold cross-validation is

done for a performance evaluation.

Results

We selected 1,295 known drug-disease associations from the

CTD and their elements, along with 377 drugs and 80 diseases.

The integrative genetic network used here consists of a gene

regulation database and inferred and experimental protein

interaction databases. For each drug-disease pair, specific feature

scores are calculated using adjacency-based inference and module-

distance-based inference on top of the integrative genetic network,

and a classifier is learned with the feature scores. This classifier

predicts unknown drug-disease associations.

Performance evaluation
For performance testing, independent 10-fold cross-validations

were conducted ten times. The training set in each 10-fold cross-

validation consisted of a positive set of true drug-disease

associations and a negative set of randomly generated drug-

disease pairs. Each training set was arbitrarily separated into 10

parts (trained on nine of them and tested on the remaining one),

and the process was repeated ten times for cross-validation. This

procedure was applied to all of the ten different training sets, and a

random negative set was respectively generated for each of them.

The resulting AUC scores of the ten 10-fold cross-validations were

averaged. We used C4.5, Multilayer Perceptron and Random

Forest, as implemented in Weka v3.6 [18]. The 10-fold cross-

validation results with the 10 training data sets are shown in

Figure 4 and Table S2. The highest AUC (area under the ROC) is

0.855.

In our study, two methods were implemented for scoring the

features. Figure 5 shows the AUC when each method was used

alone and when both methods were used. The performance when

both methods were used exceeds that when only one method was

used. In Table S3, we evaluated the contribution of all features,

when both methods were used. We also used the integrative

genetic network, which consists of gene and protein interaction

databases. Figure 6 shows the AUC of three individual networks

and the integrative network. Using PPI only results in a higher

AUC compared to the use of gene regulation data alone or the use

of the inferred PPI alone. Additionally, using integrative networks

shows a slightly better AUC for C4.5 compared to the use of PPI

alone.

Comparison with other methods
We compared our method with two previous methods,

PREDICT [12] and CMap [19]. PREDICT observes similar

drugs that are indicated for similar diseases based on multiple

drug-drug and disease-disease similarity measurements. PRE-

DICT uses a gold standard set of drug-disease associations as

known associations. We obtained our classification result using this

gold standard set and compared their classification performances.

Out of 1,933 associations, 247 known associations, composed of

179 drugs and 80 diseases that have multiple targets and multiple

susceptibility genes, were used to make the training set. The AUC

score of our method shows slight better performance

(AUC=0.917) than that of PREDICT (AUC=0.900).

CMap searches for drug response gene-expression profiles that

relate to the disease signature and predicts drug-disease associa-

tions. We downloaded 21 disease gene signatures out of 80 diseases

in our study from ArrayExpress [42]. Given that CMap is

restricted to include only signatures having up-regulated or down-

regulated genes and to include signatures not exceeding 1,000

Classification Model for Deriving Novel Drug-Disease Associations
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genes, we were able to secure only five disease signatures. The

number of drugs used in both our method and CMap is 201.

There are 31 known drug-disease associations between 201 drugs

and five diseases. These 31 known associations and their elements,

30 drugs and four diseases, were used for a comparison. Even with

this limited number of known drug-disease associations, the AUC

in our method is 0.991, while the AUC of CMap is 0.360. In the

Table S7, we show AUC reports of CMap based on the different

proportion of input genes.

New predictions
Among 30,160 drug-disease pairs (377 drugs and 80 diseases),

we predicted 6,143 novel drug-disease associations using the

classifier (Table S4). We compared our predictions and clinical

trials for validation, and 7,854 unique drug-disease associations

were obtained from a registry of publicly and privately conducted

worldwide clinical studies (http://clinicaltrials.gov/). The MeSh

term was used to map the conditions of the clinical trials to an

MIM number and to map interventions to DrugBank entries. Out

of 7,854 associations, 942 associations involve drugs and diseases

that are present in our data set. The coverage rate of the 6,143

predicted associations with respect to 942 clinical trial associations

is 36.2 percent as shown in Table 1 (Fisher’s exact P = 4.02E-30).

In order to validate that the prediction is not trivial due to

structurally same drugs, we computed chemical similarity between

known drugs and predicted drugs for same disease. We calculated

Tanimoto score between drugs based on their fingerprints

downloaded from DrugBank. Among all the drug pairs, only

0.58% of them show chemical similarity (Tanimoto coefficient .

0.7) as displayed in Figure S1.

We also examined extended drug-disease pairs that consist of

832 FDA-approved drugs extracted from DrugBank and 239

diseases taken from OMIM. Among 198,848 drug-disease pairs,

26,909 associations were predicted using our classifier (Table S5).

Out of 7,854 clinical trials, 1,100 associations involve drugs and

diseases that are present in the extended data set. The coverage

rate of the predicted associations with respect to 1,100 clinical trial

associations is 36.8 percent (Fisher’s exact P = 3.71E-84). These

two coverage rates are relatively high compared to that reported

by Gottlieb et al., who demonstrated coverage of 27 percent [12].

Discussion

Path types used in the genetic network
To measure the network traits between genes derived from drug

and disease, we defined three types of paths between two genes:

R0, R1 and R2. First, R0 denotes that the two genes are identical.

Second, R1 indicates that the two genes are linked by direct

Figure 4. Ten-fold cross-validation.
doi:10.1371/journal.pone.0111668.g004

Figure 5. Performance evaluation of each method. Results from the adjacency-based inference (ABI) method, the module-distance-based
inference (MDBI) method, and the integrated method of ABI and MDBI (INTG) are compared.
doi:10.1371/journal.pone.0111668.g005
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interaction. Third, R2 means that indirect interaction through

another gene connects two genes (see method section). We conduct

the independent experiments using only single type of gene pair

and comparing them with original method which uses all types of

gene pairs. Table S6 shows that it is better to consider all the paths

together than consider only single type of path in improving

classification performance. Additionally, in most cases, the

classifier using only R2 shows higher performance than the

classifier using only R0 or R1. Table S3 indicates the feature

contribution of these paths by changing k value, which means

alteration of path type. The features of which k= 2, meaning only

R2 being used, generally show higher rank than other features

where k = 1 or k = 0, and the features of which k= 1 usually have

higher information gain than other features where k = 0.

Beta-adrenergic antagonist as a potential cancer
treatment
First, we focused on a potential therapeutic agent as a cancer

treatment. Out of 26,909 new predictions, 5,809 cancer-specific

associations were selected according to the disease category from

earlier work [20]. Nearly 5 percent of the drugs in these

associations target beta-adrenergic receptors. Several recent

epidemiological studies have shown that the use of beta-blockers

reduces the progression and secondary formation of cancer and

improves the potential for relapse-free survival in patients with

cancer [21–24]. Also, Al-wadei et al. indicated that the inhibition

of beta-adrenergic signaling can lead to potential anti-cancer drug

development [25]. Our 162 cancer-related predicted associations

include 21 drugs out of the 24 approved beta-adrenergic blockers

from DrugBank. Generally, beta-adrenergic blockers are known as

antihypertensive agents, and their blood pressure regulation

pathways are well known. However, a few studies recently

explained the mechanism of pathways related to the initiation

and progression of cancer.

To elucidate the role of beta-blockers as a cancer treatment, we

displayed a predicted gene network extending from propranolol to

cancers (Figure 7). The gene regulatory network and disease-gene

are used to construct the network. Propranolol is an antihyper-

tensive agent that is also a beta-adrenergic antagonist. Several

cancers are predicted to have an association with propranolol in

our study. Propranolol inhibits beta-adrenergic signaling, as shown

in Figure 7. It is known that the stimulated beta-adrenergic

receptor activates Gas guanine nucleotide-binding protein, result-

ing in the activation of adenylyl cyclase and the subsequent

formation of cyclic adenosine 39,59-monophosphate (cAMP) [26].

In addition, the cAMP activation of protein kinase A (PKA)

phosphorylates cyclic AMP-responsive element-binding protein

(CREB) and transactivates epidermal growth factor receptor

(EGFR) [27]. Also, cAMP activates serine/threonine-protein

kinase B-raf (BRAF) and mitogen-activated protein kinase

(MAPK), leading to the PKA-dependent activation of downstream

kinases such as Src kinase (Src) and focal adhesion kinase (FAK)

[28]. These kinases and proteins are proto-oncogenes or play a

role in the network as an activator of proto-oncogenes, as shown in

Figure 7. The gene set in the network was significantly enriched in

the cancer pathways such as prostate cancer (P = 1.24E-28,

FDR=5.64E-27), pathways in cancer (P = 1.11E-27,

FDR=2.53E-26), and glioma (P = 2.4E-26, FDR=4.37E-25),

using KEGG biological pathways.

Figure 7 shows that several genes, including HRAS, RAC1,

AKT1, and PIK3CA, which usually undergo somatic mutations in

specific cancers, play an important role in the pathway. In

Figure 7, the cAMP-dependent kinase regulatory chain family and

PKA activate GPCRs to cause the activation of HRAS. Also,

RAC1, AKT1, and PIK3CA are stimulated by various genes,

including FAK, Src, G-beta, the gamma family, and the gene

group in the middle of the network. When PIK3CA and AKT1

are downstream effectors of RAS, both HRAS and RAC1 are

RAS superfamily of small GTPases that cause cancer growth,

invasion, and metastasis [29]. In summary, our network explains

the major mechanism of the beta-adrenergic signaling pathway

that is related to the RAS superfamily and its downstream genes

that cause specific cancers.

Elucidating the mechanism of telmisartan with regard to
Alzheimer’s disease
Many therapeutic agents for Alzheimer’s disease aim to achieve

symptomatic benefits; however, currently no disease-modifying

therapies are approved. Drug repositioning for Alzheimer’s disease

is being considered as an efficient strategy, with several classes of

repositioning drugs presented in recent studies. Among the

potential repositioning drugs, peroxisome proliferator-activated

Figure 6. AUC comparison of three individual networks and the integrated network.
doi:10.1371/journal.pone.0111668.g006
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receptor-c (PPARc) agonists and angiotensin receptor blockers

have been spotlighted for Alzheimer’s disease [30].

Telmisartan is a therapeutic agent that is prescribed for

hypertension. It is known as a unique angiotensin II receptor

blocker with PPARc agonistic properties, and it was predicted to

be associated with Alzheimer’s disease in our study. Amyloid-b

(Ab) deposition is a key pathological hallmark of Alzheimer’s

disease, and it was reduced by the use of low doses of telmisartan

in an Alzheimer’s disease mouse model in vivo [31,43]. In

addition, the epidemiological feasibility of telmisartan was recently

identified in a small Alzheimer’s patient cohort [32].

The potential pathways of the PPARc agonist in Alzheimer’s

disease are fairly well known. PPARc agonists regulate multiple

processes, including Ab homeostasis through the suppression of

BACE1 expression, energy metabolism, insulin sensitivity, dysli-

pidemia, and microglial inflammatory responses [33,34]. Mean-

while, animal studies suggest that angiotensin receptor blockers

decrease Ab oligomerization [35]. Hajjr et al. provided the first

autopsy evidence that angiotensin receptor blockers are associated

with reduced amyloid accumulation and Alzheimer’s disease-

related pathological change [36]. However, the mechanisms of

angiotensin receptor blocker have not been annotated and thus

need to be clarified.

We depicted the potential pathway starting from telmisartan to

Alzheimer’s disease through a gene regulatory network. In

Figure 8, angiotensin II receptor (AGTR1) activates MTG1 to

translocate group A genes, which activate the transcription of

alpha-2-macroglobulin (A2M). On the other hand, group B genes

activated by MTG1 inhibit the transcription of A2M. In other

words, the signaling of the angiotensin receptor interrupts the

transcription of A2M, which mediates the clearance and

degradation of Ab. The angiotensin II receptor blocker telmisar-

tan may work such that the transcription of A2M is not

interrupted. In addition, PPARc, denoted as PPARG, inhibits

the transcription of IL2, which plays a role similar to that of

MTG1 in that it partially activates genes in groups A and B.

A GO enrichment analysis for group B shows that the insulin

receptor signaling pathway (P= 1.43e-06; FDR=3.48e-05), the

cellular response to an insulin stimulus (P = 3.17e-06;

FDR=6.55e-05) and the response to an insulin stimulus

(P = 5.88e-06; FDR=8.58e-05) are ranked as significantly en-

riched biological processes. Insulin signaling has a direct role in the

development of neurodegenerative diseases [37], and insulin

administration improves memory [38]. However, defective insulin

signaling is a characteristic feature of the AD brain, and oligomeric

amyloid-b induces insulin resistance in the brain [39,40]. In this

regard, Figure 8 shows a potential mechanism of telmisartan, i.e.,

showing how it blocks the defective insulin signaling cascade,

resulting in the inhibition of A2M transcription.

The Ab peptide mediates synapse loss through cAMP-response

element binding protein (CREB) signaling, and the altered CREB

signaling plays a crucial role in cognitive dysfunction [41]. In

Figure 8, group B, IL2, and their downstream components

activate CREB1, resulting in the activation of NOS3 transcription.

NOS3 was reported to show various polymorphisms and a

significant association with Alzheimer’s disease. Therefore, anoth-

er potential mechanism of telmisartan may be explained by the

inhibition of altered CREB signaling.

Thus, we suggest that the potential mechanism of the

angiotensin receptor blocker and the PPARc agonist is related

to defective insulin signaling and altered CREB signaling.

Therefore, telmisartan is expected to be a robust candidate drug

for Alzheimer’s disease.
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Conclusion

We proposed a method of drug repositioning based on feature

extraction from integrative genetic networks and known drug-

disease associations. Our method showed high classification

accuracy in terms of large-scale prediction of drug indications,

and it obtained novel predictions that were validated by their

overlap with clinical trials. Furthermore, we discussed interesting

examples of novel drug-disease associations at the molecular level.

Based on shared pathways of existing drug-disease associations, we

can infer more specifically how newly predicted drugs work on the

disease. However, there is a limitation in inferring whether a

particular drug indication is adverse or effective. For future work,

Figure 7. Gene regulatory network between ADRB2 and cancer-specific genes.
doi:10.1371/journal.pone.0111668.g007

Figure 8. Visualization of potential pathway associated with targets of telmisartan and genes related to Alzheimer’s disease.
doi:10.1371/journal.pone.0111668.g008
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we plan to develop our method for predicting the side effects of

existing drugs.
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