
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

A Network-Based Framework for Mobile Threat Detection

© IEEE, 2018.

Accepted version (Final draft)

Kumar, Sanjay; Viinikainen, Ari; Hämäläinen, Timo

Kumar, S., Viinikainen, A., & Hämäläinen, T. (2018). A Network-Based Framework for Mobile

Threat Detection. In ICDIS 2018 : 1st International Conference on Data Intelligence and Security

(pp. 227-233). IEEE. https://doi.org/10.1109/ICDIS.2018.00044

2018

Abstract—Mobile malware attacks increased three folds in the
past few years and continued to expand with the growing number
of mobile users. Adversary uses a variety of evasion techniques
to avoid detection by traditional systems, which increase the
diversity of malicious applications. Thus, there is a need for an
intelligent system that copes with this issue. This paper proposes
a machine learning (ML) based framework to counter rapid
evolution of mobile threats. This model is based on flow-based
features, that will work on the network side. This model is
designed with adversarial input in mind. The model uses 40 time-
based network flow features, extracted from the real-time traffic
of malicious and benign applications. The proposed model not
only to detects the known and unknown mobile threats but also
deals with the changing behavior of the attackers by triggering
the retraining phase. The proposed framework can be used by
the mobile operators to protect their subscribers. We used several
supervised ML algorithms to build the model and got an average
accuracy of up to 99.8%.

Index Terms—Intrusion Detection, Mobile Threats, Machine
Learning, Concept-drift, Anomaly detection

I. INTRODUCTION

According to Statista [1], a number of mobile users are

rising rapidly, and it will surpass 5 billion by 2019. Nowadays,

people use smart-phones for a variety of purposes from online

shopping to bank transaction, which makes the smart-phones

attractive target to cybercriminals. According to the IDC [2],

85% of the smart-phones running Android and thus it becomes

the most target-able OS.

According to MCafee threat report [3], mobile threats are

evolving with the nature of the mobile devices. These threats

are not limited to smart-phones, but also target the Internet

of things (IoT) devices which are controlled by smart-phones

apps. Some of the common mobile threats include spy-ware,

ransom-ware, banking Trojans, premium messages senders,

and private information stealing.

The protection systems that use signatures to detect threats

are good at identifying known attacks [4], but the minor

modification can easily bypass these signature-based systems

[5]. Nowadays, cybercriminals use a variety of methods to

evade detection from traditional intrusion detection systems

(IDS) and anti-virus systems. In our analysis, we have also

observed that many malicious applications were using Google

Docs for the data transmission and these packets can be

easily bypassed through the traditional systems. Encrypted

traffic also hurdles the deep packet inspection and needs more

computational resources [6]. Shallow Packet inspection can

combat several issues caused by encrypted traffic [7].

In the mobile threats, the weakest link is the user. According

to Nokia [8], 71% mobile users do not install anti-virus

system and the anti-virus systems are not capable of detecting

these sophisticated threats. Another issue with the traditional

anti-virus system is that the adversary can try their evasion

techniques.

Therefore, there is a need for a network-based solution,

which can protect users from these advanced threats efficiently,

while retaining the privacy of the user. The machine learning

and artificial intelligence offer powerful tools to cope with this

issue. In this paper, we propose a network-based framework to

detect mobile threat using machine learning models. Our pro-

posed model uses 40 time-related network traffic features (see

Table 1) to identify known/unknown attacks. This detection

model uses TCP flows of the network traffic, which includes

several bidirectional time-based features. These time-based

features are bi-directional flows of malware communication.

The features used in this study are different from many flow-

based techniques proposed for network-based intrusion detec-

tion systems, due to their characteristics. We have used several

ML algorithms to train and test our model, that include J.48,

random forest (RF), multilayer perceptron (MLP), radial basis

function (RBF) and Deeplearning4j (DL4J). The ML-based

anomaly detections systems often need regular re-training in

a non-stationary environment and adversary can poison the

system. The proposed model also requires re-training, but it is

not possible for the adversary to poison the system by forcing

the system to learn the patterns according to them.

The main contribution and novelty of this paper include the

proposed network-based ML classification model that uses 40

time-related network flow based features to detect known/un-

known threats. These bi-directional features are unique, as

in best of our knowledge these features were not used by

any other study at the time of this research. This model also

comprises a retraining phase to avoid concept-drift situation.

This model can detect known and unknown threats and classify

them according to the family they belong. The features used in

this research were extracted from real-time traffic generated by

several malicious and benign applications. We have developed

this dataset due to the non-availability of any latest labeled

public dataset that applies to mobile threats. The time-based

A network-based framework for mobile threat

detection

Sanjay Kumar∗, Ari Viinikainen† and Timo Hamalainen‡

Faculty of Information Technology

University of Jyvaskyla

Jyvaskyla, Finland

Email: ∗sanjay.k.kumar@jyu.fi, †ari.viinikainen@jyu.fi, ‡timo.t.hamalainen@jyu.fi

bidirectional flows of malware communication are used in this

research, that makes it different from several other studies.

The proposed solution is also unique in the way that it also

comprises the retraining phase to reduce the chance of concept

drift. This framework can deal with the changing behavior of

the attacker by initializing the re-training phase which can

increase the performance of the classifiers.

The structure of this paper is as follows. In Section 2, we

discuss the previous work in Network-based mobile intrusion

detection systems and their limitations. Section 3 describes

the methodology, proposed ML model/framework and the

development steps. Section 4 is based on the experiments con-

ducted in this study and the obtained results from the machine

learning classifiers. Finally, in Section 5 the conclusion and

future work of this research are outlined.

II. RELATED WORK AND THEIR LIMITATIONS

Artificial intelligence and machine learning are becoming

prevalent in the field of cybersecurity. Most studies in the

area of Android malware detection, have only focused on

features such as system or API calls. Some of the solutions

proposed for mobile threat detection such as [9]–[12], are

device-based and need to be installed on the mobile device,

like a traditional anti-virus. However, many users do not install

security applications on their devices. Due to ignorance of the

users, there is a need for an efficient network-based mobile

threat detection system. Several researchers such as [13],

[14] focused on network-based solutions to detecting mobile

malware and intrusions and produced effective results. Drebin

[10], a very popular method of detecting android malicious

application, uses SVM to classify applications using several

features such as Permissions, API calls, or Network address.

In 2014 Narudin et al. [9] proposed a model of detecting

Android-based malware using ML classifiers. The research

was carried out on the samples from the MalGenome [15]

dataset and produced good results on the know data, i.e.,

99.7% true positive rate (TPR), while the significant decrease

was seen on unknown data with TPR of 74.5%. In 2014, a

mobile botnet detection model was proposed that uses TCP

Size, connection duration, and GET/POST parameters detect

botnet [11]. The features were extracted from 100 botnet

samples. The study produced TPR of 99.94% and false positive

rate (FPR) of 0.06% on the known data. The study used

only 3 features and attackers change their traffic patterns, so

there is high chance that it produces false positives or false

negatives after an interval of time. In 2012, a framework

to check malicious applications on the Android store was

proposed by Su et al. [12] and it used J.48 and Random

Forest for the classification of the malicious applications. The

system checks the system calls and if any anomaly found

in the system calls then the traffic is generated from the

sample to do packet inspection to make the decision [12]

. All of these systems need to be installed on the device

itself. Our proposed system works on the network side, which

is the black box to the attacker. Several researchers [16]–

[18] used flow-based techniques to detect botnet. Flow-based

techniques are extremely useful in detecting threats [7], as

most of the malware communication is encrypted [6]. Flow-

based techniques also proven to be successful in detecting

website fingerprinting attacks [19], [20].

III. METHODOLOGY

We proposed a network-based framework to detect mobile

threat using Machine Learning techniques. By analyzing the

time-related flow-based features of the network traffic, it can

detect malicious network patterns. Fig. 1 shows the process of

the model. The model was developed in several phases. The

first phase was sample collection and traffic generation from

the malicious and benign application. In the second phase,

40 time-based features were extracted from the bi-flows of

the traffic generated by these applications and then labeled

accordingly. After that, the model was built using several ML

algorithms. This model is different from many other studies

as it uses many different time-related features and it has a

retraining phase to deal with concept drift situation. It is

usually seen that adversary change the attack patterns and

evasion techniques with the advent of time and the ML models

produce false positives or false negatives. Our framework is

capable of coping with this kind of situations. There is another

advantage of this network-based framework, the algorithm and

features used in the system are unknown to the adversary. So,

it will be hard for the attacker to try their evasion techniques

in comparison to traditional antivirus’. Also, the concept-drift

function is designed in a way that the ”Poisoning” by the

adversary could not be possible.

A. Sample collection and Traffic Generation

We have used the same sample collection and traffic

generation method as used in our last paper [13]. Traffic

was generated for both benign and malicious applications.

Virustotal [21] was used to download a number of malware

samples while the benign samples were collected through

Google playstore.

1) Normal Traffic Generation: Several benign applications

were downloaded in different android virtual machines. These

applications were executed at a different interval of time.

Traffic generated by these virtual machines was captured and

features were extracted from the traffic flows. Table I shows

the benign applications used in this study.

2) Malicious Traffic Generation: The traffic used in this

study was generated by the method mentioned in our previous

work [13]. We have used some previously generated traffic

and also generated new traffic for the testing purposes. We

have used around 700 malicious samples of several malware

families to generate our malicious traffic dataset. Virustotal

was used to download these samples using several conditions.

A public sandbox ”Anubis (Andrubis)” [22] and ”Cuckoo”

[23] was used to generate the traffic.

B. Preprocessing

In the Preprocessing, the PCAPs of the generated traffic

were converted into meaningful datasets, by extracting features

TABLE I: Benign Applications downloaded from Google App Store

S.No Google App Action Performed

1 Facebook Messenger Login with a valid account and sent messages
2 Facebook Login with a valid account, visited several timelines, did comments etc
3 Gmail Login with a valid accounts, sent and received emails.
4 Google Maps Searched for some locations
5 Twitter Login with a valid account and performed several actions
6 Youtube Watched some videos
7 Chrome Navigate through several webpages
8 Skype Login with a valid account. Skype video chat and sent messages.

Figure 1: Machine Learning model for Mobile threat detection

TABLE II: Feature List

Feature No. Feature Description

1 DstPort The destination port number
2 DurationmSec The duration of the flow (in microseconds)
3 StoDPackets No. of packets in source to destination
4 StoDBytes Bytes sent from source to destination
5 DtoSPackets No. of packets in destination to source
6 DtoSBytes Bytes sent back from destination to sources
7 SmallStoDPktBytes Smallest packet sent from Source to Destination
8 MeanStoDPktBytes The mean size of packets sent from Source to Destination
9 LargeStoDPktBytes Largest packet sent from Source to Destination
10 StDevStoDPktBytes Standard deviation from the mean of the packets sent from Source to Destination
11 SmallDtoSPktBytes Smallest packet sent from Destination to Source
12 MeanDtoSPktBytes The mean size of packets sent from Destination to Source
13 LargeDtoSPktBytes Largest packet sent from Destination to Source
14 StDevDtoSPktBytes Standard deviation from the mean of the packets sent from Destination to Source
15 MinStoDmSec Minimum time (in microseconds) between two packets sent from Source to Destination
16 MeanStoDmSec Mean time(in microseconds) between two packets sent from source to Destination
17 MaxStoDmSec Maximum time(in microseconds) between two packets sent from source to Destination
18 StDevStoDmSec Standard deviation from the mean time (in microseconds) between two packets sent from source to Destination
19 MinDtoSmSec Minimum time (in microseconds) between two packets sent from Destination to Source
20 MeanDtoSmSec Mean time (in microseconds) between two packets sent from Destination to Source
21 MaxDtoSmSec Maximum time (in microseconds) between two packets sent from Destination to Source
22 StDevDtoSmSec Standard deviation from the mean time(in microseconds) between two packets sent from Destination to Source
23 AvgsFlowStoDPackets The average number of packets in a sub flow from Source to Destination
24 AvgsFlowStoDBytes The average number of bytes in a sub flow from Source to Destination
25 AvgsFlowDtoSPackets The average number of packets in a sub flow from Destination to Source
26 AvgsFlowDtoSBytes The average number of packets in a sub flow from Destination to Source
27 MinActivemSec Minimum time (in microseconds) flow was active before going idle
28 MeanActivemSec Mean time (in microseconds) flow was active before going idle
29 MaxActivemSec Maximum time (in microseconds) flow was active before going idle
30 StDevActivemSec The standard deviation from the mean time (in microseconds) that the flow was active before going idle.
31 MinIdlemSec The minimum time a flow was idle before becoming active (in microseconds)
32 IeanIdlemSec The mean time a flow was idle before becoming active (in microseconds)
33 MaxIdlemSec The maximum time a flow was idle before becoming active (in microseconds)
34 StDevidlemSec The standard deviation from the mean time a flow was idle before becoming active (in microseconds)
35 StoDPSHCount No. of times PSH flag was set in packets traveling from Source to Destination
36 DtoSPSHCount The number of times the PSH flag was set in packets traveling from Destination to Source
37 StoDURGCount The number of times the URG flag was set in packets traveling from Source to Destination
38 DtoSURGCount The number of times the URG flag was set in packets traveling from Destination to Source
39 TotalStoDHdrLen The total bytes used for headers from Source to Destination
40 TotalDtoSHdrLen The total bytes used for headers from Destination to Source

from network flows and labeling them. Before the extraction

of features, raw traffic was further analyzed to identify any

normal traffic generated by malicious samples, as incorrect

labels could lead to inefficient model. Several tools and tech-

niques including an online PCAP Analyzer ”NetworkTotal”,

were used to verify the PCAPs.

1) Feature Extraction: The features were extracted accord-

ing to ”RFC-5103 BiFlow Export” using IPFIX [24] and RFC

2724. According to [25], there are several advantages of using

bi-directional flows in security analysis.

40 time-based features (see Table II) were extracted from

each traffic flow, known as ”Instance”. ”Flowtbag” was used

to extract these features. The flow is a 5-tuple in which all

the packets having the same Source IP, Destination IP, port

numbers(source and destination ports) and protocols. These

features have unique characteristics so that the attackers cannot

change most of these traffic features to evade detection. It was

also seen in our previous study [26], that using an ensemble

of multiple ML classifiers can increase the performance and

reduce the chance of concept drift.

2) Labeling: The instances were labeled as ”Normal” or

”Malicious” accordingly. We have also created a dataset in

which the instances were labeled according to the malware

family they belong.

C. Machine learning classification model

The ML algorithms that were used in this research are RBF,

Random Forest, DeepLearning4j, J.48, and MLP. The training

of the ML model is based on the real-time traffic from the

malicious and benign samples. We have used ten-fold cross-

validation and percentage split for the training and testing

the classifier. The classifiers were also tested on the new test

dataset.

D. Concept-Drift Detector

Adversary always tries to change their traffic patterns to

evade detection, and therefore concept-drift occurs in machine

learning methods. To avoid concept-drift, a retraining phase

is introduced in our framework. As this solution is network

based, so it is hard for the adversary to test their evasion tech-

niques. Although, there are many studies that show limitation

related to the security of ML models [27]–[30]. This concept-

drift feature was designed while keeping these limitations in

mind. The retraining phase will trigger according to several

TABLE III: Experiment 1: Cross validation

Performance Evaluation on Dataset 1 using 10 Fold Cross Validation

ML Algorithm TPR FPR TNR FNR Accuracy F1 Measure Precision Area Under ROC (AUC)

RBF 1.000 0.105 0.895 0.000 0.996 0.998 0.996 0.983
Random Forest 0.999 0.004 0.996 0.001 0.999 0.999 1.000 1.000
MLP 0.999 0.021 0.979 0.001 0.998 0.999 0.999 0.999
Deep Learning 4j 0.999 0.015 0.985 0.001 0.999 0.999 0.999 0.996
J.48 0.999 0.024 0.976 0.001 0.998 0.999 0.999 0.989

TABLE IV: Experiment 2: New test-set

Performance Evaluation on Dataset 1 using unseen dataset

ML Algorithm TPR FPR TNR FNR Accuracy F1 Measure Precision Area Under ROC (AUC)

RBF 0.999 0.129 0.871 0.001 0.994 0.997 0.995 0.978
Random Forest 0.998 0.010 0.990 0.002 0.998 0.999 1.000 1.000
MLP 0.998 0.030 0.970 0.002 0.997 0.999 0.999 1.000
Deep Learning 4j 0.960 0.005 0.995 0.040 0.965 0.979 0.999 1.000
J.48 0.998 0.030 0.970 0.002 0.996 0.998 0.999 0.995

parameters. The concept drift detector analyzes a labeled test

dataset after a certain interval of time. The test dataset is based

on latest malicious samples from different malware families,

selected by the security expert. The dataset will be tested to

analyze the efficiency of the classifier. If the accuracy of the

classifier is below the threshold for any particular malware

family, the detector will trigger the retraining phase after

including the instances of that family to the training dataset.

These testing samples will be collected and labeled by the

security expert, so it will be difficult or nearly impossible for

an adversary to poison our concept-drift system by forcing the

learning algorithm to learn the patterns suitable for her. The

full working principle and architecture of this concept-drift

detector will be discussed in our future work.

IV. PERFORMANCE EVALUATION

The following parameters were used in order to evaluate

ML Classifiers.

TABLE V: Confusion Matrix

Predicted

Malicious Normal

Actual
Malicious TruePositive FalseNegative

Normal FalsePositive TrueNegative

True Positive (TP): Malicious instance classified as Malicious.

False Positive (FP): Normal instance classified as Malicious.

False Negative (FN): Malicious instance classified as Normal.

True Negative (TN): Normal Instance classified as Normal.

TPR =
TP

TP+FN

FPR =
FP

FP+TN

TNR =
TN

TN+FP

FNR =
FN

TP+FN

Accuracy =
TP+TN

TP+FP+TN+FN

Precision =
TP

TP+FP

F1Measure =
2∗(TPR∗Precision)
TPR+Precision

=
2TP

2TP+FP+FN

ROC (Receiver Operating Characteristic) curve is a plot

between TPR and FPR at various threshold settings [31]. The

area under ROC Curve (AUC) used in this study is derived

from ROC Curve. AUC tells how efficient will be the classifier

on the unseen data. AUC value is the best parameter to

compare different algorithms. Furthermore, accuracy depends

on both TP and FP and therefore considered as an important

parameter when it comes to ML classifiers performance eval-

uation.

V. EXPERIMENTS

We have performed two experiments using 5 ML algo-

rithms. These experiments were performed in WEKA [32].

The tuning of the hyper-parameters of the ML algorithms

was also performed using WEKA. In the first experiment, the

cross-validation [33] method was used for the performance

evaluation. The cross-validation (CV) is very famous method

when evaluating the machine learning algorithms. In this

method, the validation set is not needed, while the test-set

is held out for final evaluation. We have used 10 fold CV, it

divides the training set into 10 smaller subsets. The optimizing

iteration goes for 10 times and in each iteration, 9 data subsets

were used as training set and 1 remaining subset used for

testing and evaluating the accuracy of the ML algorithm.

The overall performance of the classifier will be the average

of values obtained in each iteration. Although CV method

is computationally expensive, it avoids the chance of over-

fitting the model. Furthermore, in the second experiment, the

classifier was tested on the unseen data. To avoid the issue

of over-fitting, the dataset was divided into three portions: the

training set, validation set and test set. The training was done

on the training dataset and then evaluation was performed on

Figure 2: Performance evaluation: Cross validation

Figure 3: Performance evaluation: New Test Dataset

the validation set for optimization. Finally, the evaluation was

performed on the test set.

In the first experiment, DeepLearning4j and Random Forest

produced the highest accuracy of 99.9%, while the RBF

produced the worst performance with FPR of 10.5%, as shown

in the Table III. In the Fig. 2, the best TPR and TNR

were observed by Random Forest and DeepLearning4j. In

the second experiment, the training dataset and test dataset

were different. The Random forest, MLP and Deeplearning4j

produced best results with an accuracy of 99.9% as shown in

the Table IV. It can be seen in Fig. 3, RBF produced worst

performance among all as it produced high FPR. The best

performance in both experiments was observed by Random

Forest, MLP and Deeplearning4j.

VI. CONCLUSION

The threat detection model developed in this study can

detect known and unknown threat by using time-based fea-

tures. ML-based Intrusion detection systems need frequent re-

training. The framework proposed in this paper automates the

retraining phase when the accuracy goes below the threshold.

The retraining-phase overcomes many limitations in ML-based

Intrusion detection systems that produce false positives or false

negatives after an interval of time. In our previous studies, we

have observed that ensemble of ML algorithms could be used

to further enhance the performance of the classifiers. Proper

feature extraction plays a vital role in ML-based Intrusion

detection systems. Wrong features could overfit the model and

produce less accuracy on unseen traffic. The classifiers built in

this study were able to provide the accuracy of 99.9%, which

is higher than many of the other studies in this field. Future

work in progress is to build a model which contains several

other malware families and list of other benign applications.

The concept drift detector will be further enhanced to behave

towards the changing attack patterns.

REFERENCES

[1] Statista, “Mobile phone users worldwide 2013-

2019,” Tech. Rep., Access Date 30 Nov, 2017.

[Online]. Available: https://www.statista.com/statistics/

274774/forecast-of-mobile-phone-users-worldwide

[2] “Smartphone os market share, 2017 q1,” IDC, Tech.

Rep., Access Date 30 Nov, 2017. [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/os

[3] McAfee, “Trojans, ghosts, and more mean bumps ahead

for mobile and connected things (what lies ahead

for 2017),” Tech. Rep., 2017, Access Date 30 Nov,

2017. [Online]. Available: https://www.mcafee.com/us/

resources/reports/rp-mobile-threat-report-2017.pdf

[4] K. Timm, “Strategies to reduce false positives

and false negatives in nids,” Tech. Rep.,

2001, Access Date 10 Sep, 2017. [Online].

Available: http://www.symantec.com/connect/articles/

strategies-reduce-false-positives-and-false-negatives-nids

[5] K. Julisch and M. Dacier, “Mining intrusion detection

alarms for actionable knowledge,” in Proceedings of

the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD 02. As-

sociation for Computing Machinery (ACM), 2002.

[6] R. Koch, “Towards next-generation intrusion detection,”

in Cyber Conflict (ICCC), 2011 3rd International Con-

ference on. IEEE, 2011, pp. 1–18.

[7] J. A. Copeland III, “Flow-based detection of network

intrusions,” Feb. 27 2007, uS Patent 7,185,368.

[8] “Malware detection and subscriber protection

infographic,” Nokia, Tech. Rep., Access Date 30

Nov, 2017. [Online]. Available: https://networks.nokia.

com/solutions/security-guardian-infographic

[9] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani,

“Evaluation of machine learning classifiers for mobile

malware detection,” Soft Comput, nov 2014.

[10] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,

K. Rieck, and C. Siemens, “Drebin: Effective and ex-

plainable detection of android malware in your pocket,”

in Proceedings of the Annual Symposium on Network and

Distributed System Security (NDSS), 2014.

[11] A. Feizollah, N. B. Anuar, R. Salleh, F. Amalina, R. R.

Maarof, and S. Shamshirband, “A study of machine

learning classifiers for anomaly-based mobile botnet

detection,” Malaysian Journal of Computer Science,

vol. 26, no. 4, 2014.

[12] X. Su, M. C. Chuah, and G. Tan, “Smartphone dual

defense protection framework: Detecting malicious appli-

cations in android markets,” in Mobile Ad-hoc and Sensor

Networks (MSN), 2012 Eighth International Conference

on. IEEE, 2012, pp. 153–160.

[13] S. Kumar, A. Viinikainen, and T. Hamalainen, “Machine

learning classification model for network based intrusion

detection system,” in Proc. 11th Int. Conf. for Internet

Technology and Secured Transactions (ICITST), Dec.

2016, pp. 242–249.

[14] S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng,

and Z. Jia, “Trafficav: An effective and explainable

detection of mobile malware behavior using network

traffic,” in Quality of Service (IWQoS), 2016 IEEE/ACM

24th International Symposium on. IEEE, 2016, pp. 1–6.

[15] Y. Zhou and X. Jiang, “Dissecting android malware:

Characterization and evolution,” in Security and Privacy

(SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 95–

109.

[16] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghor-

bani, and D. Garant, “Botnet detection based on traffic

behavior analysis and flow intervals,” Computers & Se-

curity, vol. 39, pp. 2–16, 2013.

[17] M. Stevanovic and J. M. Pedersen, “An efficient flow-

based botnet detection using supervised machine learn-

ing,” in Computing, Networking and Communications

(ICNC), 2014 International Conference on. IEEE, 2014,

pp. 797–801.

[18] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer,

“Usilng machine learning technliques to identify botnet

traffic,” in Local Computer Networks, Proceedings 2006

31st IEEE Conference on. IEEE, 2006, pp. 967–974.

[19] S. S. Kowsalya, “Website fingerprinting using traffic

analysis attacks.”

[20] A. Hintz, “Fingerprinting websites using traffic analysis,”

in International Workshop on Privacy Enhancing Tech-

nologies. Springer, 2002, pp. 171–178.

[21] Virustotal.com. [Online]. Available: https://www.

virustotal.com/

[22] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,

Y. Fratantonio, V. v. d. Veen, and C. Platzer, “Andrubis

– 1,000,000 Apps later: A view on current android mal-

ware behaviors,” in Proc. Third Int. Workshop Building

Analysis Datasets and Gathering Experience Returns for

Security (BADGERS), Sep. 2014, pp. 3–17.

[23] I. M. Digit Oktavianto, Cuckoo Malware Analysis. Packt

Publishing, 2013.

[24] B. H. Trammell and E. Boschi, “Bidirectional flow export

using ip flow information export (ipfix) : Rfc-5103,”

IETF, Tech. Rep., Access Date 01 Jan, 2015. [Online].

Available: https://tools.ietf.org/html/rfc5103.html

[25] E. Boschi and B. Trammell, “Bidirectional flow measure-

ment, ipfix, and security analysis,” 2006.

[26] S. Kumar, A. Viinikainen, and T. Hamalainen, “Evalua-

tion of ensemble machine learning methods in mobile

threat detection,” in Proc. 12th Int. Conf. for Inter-

net Technology and Secured Transactions (ICITST) , in

press., Dec. 2017.

[27] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.

Tygar, “Can machine learning be secure?” in Proceedings

of the 2006 ACM Symposium on Information, computer

and communications security. ACM, 2006, pp. 16–25.

[28] M. Kloft and P. Laskov, “Security analysis of online cen-

troid anomaly detection,” Journal of Machine Learning

Research, vol. 13, no. Dec, pp. 3681–3724, 2012.

[29] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and

J. Tygar, “Adversarial machine learning,” in Proceedings

of the 4th ACM workshop on Security and artificial

intelligence. ACM, 2011, pp. 43–58.

[30] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwart-

ing signature learning by training maliciously,” in In-

ternational Workshop on Recent Advances in Intrusion

Detection. Springer, 2006, pp. 81–105.

[31] F. J. Provost, T. Fawcett, and R. Kohavi, “The case

against accuracy estimation for comparing induction al-

gorithms.” in ICML, vol. 98, 1998, pp. 445–453.

[32] R. Quinlan, “4.5: Programs for machine learning morgan

kaufmann publishers inc,” San Francisco, USA, 1993.

[33] Cross-validation: evaluating estimator performance.

Access Date 30 Nov, 2017. [Online]. Available: http:

//scikit-learn.org/stable/modules/cross validation.html

