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Abstract

Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many
complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the
roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view
to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the
diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the
fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-
disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a
propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by
leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an
AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193
diseases. Furthermore, our results for Alzheimer’s disease, pancreatic cancer, and gastric cancer were verified by other
independent studies.
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Introduction

Long non-coding RNAs (lncRNAs) are similar to mRNAs in

gene structure, with length greater than 200 nt [1–3]. LncRNAs

play critical roles in many important biological processes such as

chromatin modification [4], transcriptional and post-transcrip-

tional regulation [4], and human diseases [2].

More and more studies have reported that mutated and

dysfunctional lncRNAs are implicated in a broad range of human

diseases. For example, Pasmant et al. [5] performed a GWAS and

identified that ANRIL was significantly associated with coronary

disease, type 2 diabetes, and many types of cancers. HOTAIR was

increased from 100 to approximately 2,000-fold in breast cancer

metastases using quantitative PCR [6]. MALAT-1 was significantly

associated with metastasis in NSCLC patients by quantitative RT-

PCR [7]. With regard to Alzheimer’s disease, BCAE1-AS was

shown to have a key role in regulating BACE1 and in driving

pathology [8]. Cui et al. [9] found that the expression of PlncRNA-

1 was significantly higher in prostate cancer cells. Therefore, it is

necessary to analyze the available lncRNA-disease associations

and predict potential lncRNA-disease associations in human. Such

studies will help us understand the molecular mechanisms of

human diseases and identify biomarkers for disease diagnosis,

treatment, and prevention at lncRNA level [10].

Chen et al. [10] reported a LncRNADisease database that

includes approximately 480 entries of experimentally supported

associations between 166 diseases and 118 lncRNAs. Moreover,

we have manually collected 380 lncRNA-disease associations

between 226 lncRNAs and 145 diseases by literature mining. By

integrating these two data sets, we obtained 578 lncRNA-disease

associations between 295 lncRNAs and 214 diseases. These data

were analyzed in a network view and used to predict lncRNA-

disease associations.

In this paper, based on the available lncRNA-disease associa-

tions, a lncRNA-disease association network was constructed.

From the constructed network, two relevant biological networks

‘‘lncRNA-implicated disease network’’ (lncDN) and ‘‘disease-

associated lncRNA network’’ (DlncN) were derived, as shown in

Figure 1. In lncDN, a node represented a disease, and a link

between two nodes indicated that the two corresponding diseases

shared at least one lncRNA as their disease-causing lncRNA

(Figure 1 and Figure 2-(a)). In DlncN, a node represented a

lncRNA, and a link between two nodes represented the fact that

the two corresponding lncRNAs were implicated in at least one

common disease (Figure 1 and Figure 2-(b)). The known lncRNA-

disease associations were represented in a single network

framework, and the network topological properties were analyzed

to help us investigate all of these associations. Furthermore, a

propagation algorithm was applied to predict potential lncRNA-
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disease associations on the lncRNA-disease association network. In

addition, a coding-non-coding gene-disease bipartite network was

constructed by integrating coding gene-disease associations

obtained from OMIM [11] with lncRNA-disease associations.

To achieve better prediction performance, the propagation

algorithm was applied to rank the potential gene-disease pairs

for all the diseases on the coding-non-coding gene-disease bipartite

network. In the Leave-One-Out Cross-Validation (LOOCV)

procedure, our method achieved a reliable Area Under Curve

(AUC) of 0.7881. We then employed our method to the study of

three multi-factorial diseases, Alzheimer’s disease, pancreatic

cancer and gastric cancer, and provided suggestions of novel

disease-causing lncRNAs for further study.

Materials and Methods

Data Sources
The 480 lncRNA-disease associations were downloaded from

LncRNADisease database [10], including 118 lncRNAs and 166

diseases. Note that many other lncRNA-disease associations have

been reported in the literature, but have not been included in the

LncRNADisease database yet. Hence, we retrieved literature from

PubMed (http://www.ncbi.nlm.nih.gov/pubmed), employing the

key words ‘lncRNA and disease’, ‘lncRNA and cancer’, ‘long non-

coding RNA and disease’, ‘long non-coding RNA and cancer’,

‘lincRNA and disease’ or ‘lincRNA and cancer’, and manually

extracted 129 articles that reported lncRNA-disease associations.

In this way, we collected an additional 380 lncRNA-disease

associations between 226 lncRNAs and 145 diseases by literature

mining. Integrating these two data sets from both LncRNADisease

database and literature search, we finally obtained 578 associations

between 295 lncRNAs and 214 diseases. All of these 578 lncRNA-

disease associations were then merged into a lncRNA-disease

association network.

Of the 214 diseases, 160 diseases and their causative genes could

be found using their MIM number in OMIM database [11]. In

total, we downloaded 801 disease genes for these 160 diseases from

OMIM database. Such data resulted in 980 protein-coding gene-

disease associations that were used in our method.

Integrating lncRNA-disease associations and protein-coding

gene-disease associations obtained above, we obtained 1558

coding-non-coding gene-disease associations between 1096 genes

(295 lncRNAs and 801 protein-coding genes) and 214 diseases.

These associations were used to construct the coding-non-coding

genes-disease bipartite network.

Figure 1. Construction of the lncRNA-disease bipartite network. (Center) A subnetwork of the full lncRNA-disease association network (Figure
S1), where the blue circles and red hexagons correspond to diseases and lncRNAs, respectively. A link is placed between a disease and a lncRNA if
mutations or dysfunctions in that lncRNA lead to the specific disease. The size of a blue circle is proportional to the number of lncRNAs participating
in the corresponding disease. The size of a red hexagon is proportional to the number of diseases associated with the corresponding lncRNA. (Left)
The lncDN projection of the center graph, in which two diseases are connected if there is a lncRNA implicated in both diseases. (Right) The DlncN
projection of the center graph where two lncRNAs are connected if they are involved in the same disease.
doi:10.1371/journal.pone.0087797.g001
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Figure 2. The lncDN and DlncN. (a) In lncDN, each node corresponds to a distinct disease, colored based on the disease class [26] to which it
belongs. The names of 20 disease classes are shown on the right panel. A link between two diseases exists if they share at least one implicated
lncRNA. The size of the node is proportional to the degree of the node in lncRNA-disease association network. We label the diseases associated with
more than five lncRNAs by their names. (b) In DlncN, each node is a lncRNA, with two lncRNAs being connected if they are implicated in the same
disease. The size of each node is proportional to the number of diseases in which the lncRNA is implicated. The color of a node is based on the class
of diseases in which the corresponding lncRNA implicated. Nodes are light purple if the corresponding lncRNAs are associated with more than one
disease class. We label the lncRNAs implicated in more than five diseases by their names.
doi:10.1371/journal.pone.0087797.g002
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Methods

Given a bipartite network G X ,Y ,Eð Þ, X and Y were two

disjoint node sets, E was the edge set in which the element

represented the edge connecting the node from X and the node

from Y . The bipartite network could be viewed in one-mode

projection onto X and one-mode projection onto Y , called X

projection and Y projection respectively. The X projection of G

was a network in which nodes were from X , and the edge

indicated that the connected nodes were associated with at least

one same node from Y . Similarly, the Y projection of G was a

network in which nodes were from Y , and the edge indicated that

the connected nodes were associated with at least one same node

from X . With regard to the lncRNA-disease association network,

which could be claimed as a bipartite network, lncDN and DlncN

were the disease projection and lncRNA projection of the

lncRNA-disease association network. The properties of these two

projections were analyzed in the ‘‘Results’’ section. It was found

that the lncDN could reflect the relationships between any two

diseases at the lncRNA level and that DlncN could reflect the

relationships between any two lncRNAs at the disease level.

Moreover, we tried to exploit these relationships to predict the

hidden lncRNA-disease associations. For better performance,

both protein-coding genes and lncRNAs that were implicated in

diseases were considered together. As a result, a coding-non-

coding gene-disease bipartite network was constructed to reflect

the associations between diseases and all the disease-causing

genes (i.e. protein-coding genes or lncRNAs). The resource-

allocation process [12], as one of the best weighting methods for

one-mode projection of a bipartite network, was used to weight

the gene projection of the coding-non-coding gene-disease

bipartite network. Then a propagation algorithm was applied to

compute the association score for each gene that was used to

measure how much the gene could be implicated in a disease on

the weighted gene projection. For a disease q, every gene had its

initial information. Our propagation algorithm could be assumed

as a process where genes pumped their initial information to their

neighbors, and every gene propagated the information received

in the previous iteration to other genes via edges in gene

projection.

Next, we illustrated the principle of the resource-allocation

process, and then provided the propagation algorithm to compute

the score of genes with respect to a specific disease.

Principle of the resource-allocation process
We divided the nodes of a bipartite network into two sets X and

Y , and only the connections between two nodes in different sets

are allowed. The resource-allocation process is one of the best

weighting method for one-mode projection of a bipartite network

[12]. This process was illustrated in Figure 3 and included the

following two steps. First, we allocated resources from X to Y .

Second, we then allocated resources from Y back to X . The initial

resource of five nodes was a,b,c,d and e in set X . These two steps

of the resource-allocation process were merged into one, and the

final resource of X nodes denoted by a’,b’,c’,d ’ and e’, could be

written as:
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The 5|5 matrix, W , represented the weighted X projection. The

element wij represented the fraction of resource that the j-th X

node transferred to i-th X node, and could be considered as the

importance of node i on node j [12].

For a bipartite network G X ,Y ,Eð Þ, and Xj j~n, Yj j~m, xi was

the i-th X node and yl was the l-th Y node. wij could be

calculated as follows [12]:

wij~
1

k xj
� �

X

m

l~1

ailajl

k ylð Þ
ð2Þ

where 1ƒi,jƒn, ail was the n|m adjacent matrix of G X ,Y ,Eð Þ,
and k xið Þ was the degree of xi.

The propagation algorithm
The coding-non-coding gene-disease bipartite network was

denoted by A G,D,Eð Þ, where G was the node set of the genes, D

was the node set of the diseases, and E was the edge set. The

weighted gene projection of A was denoted by W , where wij was

calculated by Formula (2) and represented the importance of gene

i on gene j in terms of their association with disease.

Our propagation algorithm was based on a semi-supervised

learning algorithm [13], which had been previously used to

prioritize protein-coding genes implicated in human diseases [14]

and annotate functions of lncRNAs [15]. The input of the

Figure 3. Principle of the resource-allocation process in a
bipartite network. The green rectangles represent X nodes and red
hexagons represent Y nodes. The whole process consists of two steps:
First, the resource flows from X to Y (a?b), and then returns to X
(b?c).
doi:10.1371/journal.pone.0087797.g003
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algorithm included A G,D,Eð Þ, a query disease q, and W . For

disease q, every gene had its own initial information. If a gene was

connected with q in the coding-non-coding gene-disease bipartite

network, the initial information was one; otherwise the initial

information was zero. For a given disease q, the score vector f of

genes represented the association scores of genes with q, which was

computed by an iterative algorithm. The genes were ranked for q

by the final score vector. Of all the genes not associated with

disease q, the top 1% ranked genes were considered as the

predicted genes. The score vector f was defined as:

f~W|f ð3Þ

An iterative process [14] was applied to compute the score vector

in Formula (3). Considering the initial information on the genes for

the given disease, the score vector f was computed iteratively as

follows,

f t~a|W|f t{1
z 1{að Þ|f 0 ð4Þ

In Formula (4), the score vector was initialized as f 0 by the initial

information on genes. The parameter a[ 0,1ð Þ gave the relative

importance between the contributed information of other genes

and the initial information of itself. The final score vector with

respect to disease q was determined by both the information on

other genes and its initial information. The iterative computation

was controlled by the mean score deviation of the two neighboring

score vector. All the testes on the real data and random data had

shown that the iterative computation converges eventually (Table

S1).

Results

Properties of lncRNA-disease association network
The available lncRNA-disease associations were modeled as a

bipartite network, and a subnetwork of this network was shown in

Figure 1. In this bipartite network, one node set corresponded to

the disease set; the other set corresponded to the lncRNA set. A

lncRNA and a disease were connected by a link if the lncRNA was

associated with the disease. The constructed bipartite network

contained 578 edges between 295 lncRNA nodes and 214 disease

nodes.

The degree distribution of the full lncRNA-disease association

network (Figure S1) closely followed a power-law distribution

(Figure S2-(a)). We also analyzed the degree of disease nodes and

that of lncRNA nodes separately. The degree of a disease node,

which meant the number of lncRNAs associated with the disease,

was denoted by s and had a broad distribution (Figure S2-(b)).

These results indicated that most disorders were associated with a

small number of lncRNAs, whereas a handful of diseases, such as

breast cancer and lung cancer, were related to a large number of

lncRNAs. For example, 41 lncRNAs were involved in breast

cancer (s=41), 18 lncRNAs were related with prostate cancer

(s=18), and 28 lncRNAs were involved in lung cancer (s=28).

The degree of a lncRNA node, i.e. the number of diseases

associated with the lncRNA, was denoted by d , and had a broad

distribution as well (Figure S2-(c)). This indicated that many

lncRNAs were related to a few diseases whereas a small number of

lncRNAs could be related to dozens of diseases. For example,

XIST (d =50) was associated with 50 diseases, including 40 skin

diseases [16] and certain types of cancers such as testicular cancer

[17] and breast cancer [18]. H19 (d =39) was associated with 39

diseases, including Beckwith-Wiedemann syndrome [19], Silver-

Russell syndrome [20,21] and many types of cancer [22]. MEG3

(d =23) was associated with 23 diseases, including breast cancer

[23], bladder cancer [23], glioma [24], and Wilms’ tumor [25],

etc. These lncRNAs represented major hubs in DlncN (Figure 2-

(b)).

Network analysis of lncDN and DlncN
We performed a network analysis of lncDN and DlncN to help

us understand the lncRNA-disease associations. Two biologically

relevant network projections, lncDN and DlncN, were generated

(Figure 2) based on the lncRNA-disease association network.

Specifically, lncDN provided a disease centered view of the

lncRNA-disease association network (Figure 2-(a)). DlncN was

complementary to lncDN and offered a lncRNA centered view of

the lncRNA-disease association network (Figure 2-(b)). Especially,

the links between two lncRNAs in DlncN signified the disease

phenotypic associations, which might be a measure of their

functional correlations and could be used in future studies.

Degree distributions of lncDN and DlncN. The degree

distribution of the lncDN was investigated (Figure S3-(a)). The

results showed that most disorders linked to only a few other

diseases, whereas only few disorders represented hubs that were

connected to a large number of distinct disorders. Such hub

disorders included breast cancer (linked to 150 other disorders, i.e.

n=150, here n meant the degree of a node in lncDN), prostate

cancer (n=144), and lung cancer (n=73). The degree distribution

of the DlncN (Figure S3-(b)) was similar to that of lncDN. We

could see that the degrees of most lncRNAs were small, whereas a

few lncRNAs linked to a large number of lncRNAs. For example,

MEG3 linked to 196 other lncRNAs, ANRIL linked to 166 other

lncRNAs, and PVT1 linked to 162 other lncRNAs. These highly

connected lncRNAs represented hubs in DlncN which connected

to a large number of diseases in lncRNA-disease association

network. We concluded that the degree distributions of both

lncDN and DlncN networks closely followed a power-law

distribution, despite of the incompleteness and false positive rate

of the known lncRNA-disease associations.

Comparison of lncDN and DlncN with random

networks. In lncDN, there were 3061 links among 214

individual diseases. Of the 214 diseases, 197 had at least one link

to other diseases and 182 diseases formed a giant connected

component. In DlncN, there were 6989 links among 295

lncRNAs. Of the 295 lncRNAs, 276 had at least one link to other

lncRNAs and 265 lncRNAs formed a giant connected component.

We randomly shuffled the lncRNA-disease association network

for 104 times, while keeping the degree of each lncRNA and each

disease in the bipartite network unchanged [26]. We constructed

the corresponding r-lncDN and r-DlncN respectively for the

disease and lncRNA centered view of the randomized lncRNA-

disease association network. Comparing lncDN and DlncN with r-

lncDN and r-DlncN, respectively, we found that the topology

property of the two generated networks, lncDN and DlncN,

deviated from random. The average size of the giant connected

components of 104 r-lncDNs was 137+6, which was significantly

smaller than 182 (p-valuev10{8, z-test), the actual size of the

giant connected component of lncDN. Similarly, the average size

of the giant connected components of 104 r-DlncNs was 215+7,

which was significantly smaller than 265 (p-valuev10{8, z-test),

the actual size of the giant connected component of DlncN.

Considering disease classes as defined in the Goh et al.’s study

[26], we found that diseases (lncRNAs) were more likely to be

linked to the diseases in the same class in the actual networks. For

example, in the lncDN, there were 806 links between diseases of
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the same class, a two-fold enrichment with respect to 397+47

links obtained between the same set of nodes in the randomized

networks. These differences suggested important pathophysiolog-

ical clustering of diseases and disease associated lncRNAs.

Clustering coefficients of lncDN and DlncN. To further

address the topological properties of lncDN and DlncN, we

calculated the average clustering coefficient, a measure of the

tendency of nodes in a network to form clusters or groups [27], by

NetworkAnalyzer [28], a plugin of cytoscape software [29]. We

found that the average clustering coefficients of nodes in both

networks approximately diminished when the degree of node

increased (Figure S4), indicating that nodes with high degrees

tended to be hub nodes in both networks. In addition, we

calculated the clustering coefficients of lncDN as the average of the

clustering coefficient of all the vertices in lncDN [30], and the

clustering coefficients of 550 randomly generated networks with

the same degree sequence as lncDN [31]. The average clustering

coefficient of the randomized networks was 0:45+0:01, which was

significantly smaller than 0.81 (p-valuev10{10, z-test), the

clustering coefficient of lncDN. Likewise, we generated 550

randomized networks with the same degree sequence as DlncN.

The average clustering coefficient of the 550 randomized networks

was 0:53+0:01, which was significantly smaller than 0.91

(p-valuev10{10, z-test),the clustering coefficient of DlncN. These

results indicated that lncDN and DlncN revealed obvious

community structure. Therefore, in the following section, we

would like to analyze the modules of lncDN and DlncN.

Modules of lncDN and DlncN. We clustered the lncDN and

DlncN by MINE (http://apps.cytoscape.org/apps/mine), a plugin

of cytoscape software [29]. As a result, we obtained 14 modules of

lncDN and 19 modules of DlncN. The size of each module had a

board distribution (Figure S5).

Although the lncDN layout was generated without any

knowledge on the disease classes, the resulted network was visibly

clustered according to major disease classes (Figure 2-(a)). For

example, most (seven in 11) diseases that belonged to cardiovas-

cular were associated with ANRIL and were clustered together.

Most (seven in eight) dermatological diseases were associated with

XIST and were also clustered into one cluster. However, some

lncRNAs might be of special importance as they were implicated

in different cancers which were not clustered into a single cluster.

For example, ANRIL was associated with 14 types of cancer and

MEG3 was associated with 18 types of cancer. These observations

suggested the complexity and heterogeneity of different types of

cancers.

In DlncN, lncRNA nodes were colored based on the class of

diseases in which these lncRNAs were implicated. Nodes were

light purple if the corresponding lncRNAs were associated with

more than one disease class (Figure 2-(b)). We found that most

lncRNAs were only implicated in certain type of cancers, and they

were mostly clustered into one module. For example, 17 lncRNAs

were only related to brain cancer, 22 lncRNAs were only related

to breast cancer, and 84 lncRNAs were only related to glioma.

However, the major hubs were related to more than one disease

class, such as XIST that was related to 12 disease classes, H19 was

related to seven disease classes, ANRIL was related to six disease

classes, and MEG3 was related to four disease classes. These results

were consistent with the fact that many lncRNAs exhibited tissue-

specific expression [32] and that a few lncRNA were expressed

across many tissues, such as MEG3, XIST, and H19 [33].

Prediction of lncRNAs implicated in diseases
We applied the propagation algorithm to predict the candidate

gene-disease associations on the coding-non-coding gene-disease

bipartite network. In this algorithm, there were two parameters to

be tuned: a and t. The parameter a gave the relative importance

between the information that other genes contribute and the initial

information. This parameter was tuned by LOOCV tests and

‘‘0.618’’ was chosen as our a based on this procedure. The

parameter t represented the number of iterations. The iterative

computation would stop if the mean square deviation of the

coding-non-coding gene-disease association score matrix between

the t-th iteration and the (t{1)-th iteration was not greater than

0.00001. With these two parameters, our algorithm ranked 2139

potential gene-disease pairs (768 lncRNA-disease pairs and 1371

coding gene-disease pairs) within top 1% for all the diseases. In the

LOOCV procedure, our method achieved an AUC of 0.7881.

Robustness of our bipartite network
We tested the robustness of the coding-non-coding gene-disease

bipartite network using the method of Multiple Survival Screening

(MSS) [34], which was introduced to test the robustness of cancer

causing genes by re-sampling experiments. Here, we performed

1000 times of re-sampling of our coding-non-coding gene-disease

associations to predict the potential gene-disease associations. In

each re-sampling experiment, we randomly removed 10% edges

from the coding-non-coding gene-disease bipartite network, and

then applied the propagation algorithm to predict the potential

gene-disease associations on the remaining bipartite network with

90% edges.

If a gene g was ranked within top 1% among all the genes

according to the score vector for a given disease q, then the gene g

was predicted to be associated with the disease q, i.e. the gene-

disease pair g,qð Þ was considered as a predicted association.

Applying the propagation algorithm on the coding-non-coding

gene-disease bipartite network, we obtained 2139 predicted

associations. For a predicted association gi,qið Þ (1ƒiƒ2139), if

the rank of gi was within top 1% in a re-sampling experiment,

then ni was increased by one. A vector N~ n1,n2, � � � ,n2139ð Þ was
obtained, where ni[ 0,1000½ �, meant the times of the predicted

association gi,qið Þ could be also predicted in 1000 re-sampling

experiments. Furthermore, we performed 1000 times of random

experiments. In each experiment, we randomly shuffled the coding

non-coding gene-disease bipartite network, while keeping the

degree of each gene and each disease in the bipartite network

unchanged as above, and then applied the propagation algorithm

to the randomized network. Similarly, a vector

Nr
~ nr1,n

r
2, � � � ,n

r
2139

� �

(r represented random) was obtained. We

found that N was significantly larger than Nr (p-valuev10-10, z-

test), with most of nis larger than 700, and most of nri s smaller than

250 (Figure 4). These findings suggested that even the 10% edges

of the coding-non-coding gene-disease bipartite network were

deleted, the predictive results were still stable. Therefore, our

coding-non-coding gene-disease bipartite network was sufficiently

robust to predict potential coding or non-coding gene disease

associations.

Leave-one-out cross-validation tests
To evaluate the power of our method, we applied the LOOCV

procedure. In each test of LOOCV, a single gene-disease

association was removed from the coding-non-coding gene-disease

bipartite network, and the method was evaluated by its success in

reconstructing the hidden association. If the degree of gene or

disease node in the removed gene-disease association was exactly

one, then the gene or disease would be an isolated node. An

isolated node in the propagation algorithm could not get any

information, so we removed the nodes whose degree was one in

Investigation of lncRNA-Disease Association
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LOOCV. Finally, we kept 532 links between 103 diseases and 163

genes (mapped to 44 lncRNAs and 119 protein-coding genes) that

were to be used in LOOCV. To the best of our knowledge, this

was the first work of predicting potential lncRNA-disease

associations in a network view, therefore, no previous methods

could be directly compared with our method. We would compare

the predictive performance of the propagation algorithm on

different networks.

The receiver operating characteristics (ROC) curve was used to

measure the performance of our method, which plotted the true

positive rate (TPR) versus the false positive rate (FPR) at different

rank thresholds. In LOOCV, for a rank threshold k (1ƒkƒ100),

TPR meant the percentage of the leave-out associations obtaining

the rank within top k%; FPR meant the percentage of

unassociated gene-disease pairs obtaining the rank within top

k%. When the rank threshold was varied between 1 and 100, the

corresponding TPR and FPR were obtained. In this way, the

ROC curve could be plotted, and the AUC could be calculated.

Following this procedure, we performed LOOCV over lncRNA-

disease association network, and achieved an AUC of 0.6820. The

ROC was shown in Figure 5.

Aiming at improving the performance of our method, we

integrated the protein coding gene-disease associations with

lncRNA-disease associations to construct the coding-non-coding

gene-disease bipartite network. Here, we also performed LOOCV

procedure over coding-non-coding gene-disease bipartite network

and obtained an AUC of 0.7881. The ROC was shown in Figure 5.

Clearly, the integration of protein coding gene-disease associations

could improve the performance of our method. One reason of the

improvement was that the number of edges in the bipartite

network was increased by the integration. Therefore, potential

genes could get more information from other genes and diseases in

propagation and could be better predicted. The better perfor-

mance might be also attributed to the fact that coding and non-

coding genes were cooperated in human diseases. Therefore, the

performance of our method would be further improved after

obtaining more known lncRNA-disease associations, and more

associations between coding genes and non-coding genes.

Moreover, we performed the LOOCV procedure over 50

random networks. The mean FPR and mean TPR were used to

plot the ROC curve (Figure 5), and we achieved an AUC of

0.5005, smaller than AUCs of other two cases. This indicated that

our coding-non-coding gene-disease bipartite network could reflect

some mechanisms of human complex diseases, and our method

could discover potential lncRNA-disease associations.

Case study
For each disease, all the genes (including coding and non-coding

genes) were ranked according to their association scores with the

disease. The genes ranked within top 10 (this was a user-defined

threshold, and 10 was used here) were considered as the potential

genes involved in the given disease. For all the 214 diseases in the

coding-non-coding gene-disease bipartite graph, we uncovered

768 novel lncRNA-disease associations between 66 lncRNAs and

193 diseases.

To further demonstrate the power of our method, we examined

the results for three multifactorial diseases (i.e. Alzheimer’s disease

(MIM: 176807), pancreatic cancer (MIM: 260350) and gastric

cancer (MIM: 137215)) as case studies. For each case, the top 10

genes including protein-coding genes and lncRNAs were listed in

Table 1.

Results for Alzheimer’s disease. Alzheimer’s disease (AD)

is the most common form of dementia in the elderly [35] and it is

characterized by slow progressive loss of memory, cognitive

abilities, and intellectual functions [36]. Currently, it has been

reported that 23 genes including 6 lncRNAs and 17 protein-

coding genes are associated with AD. The association scores of

these 23 genes were higher than unassociated genes. In the top-10

ranked genes unassociated with AD, we found that the rank of

lncRNA H19 was two, and the rank of lncRNA PVT1 was three.

H19 had been associated with glioblastoma [37] and PVT1 had

been associated with glioma [24]. Both glioblastoma and glioma

Figure 4. Comparison between re-sampling and random experiments to investigate the robustness of the bipartite network. Two
box graphs represent the re-sampling experiments (left) and the random experiments (right), ni means the time of predicted association gi ,qið Þ can
be also predicted in re-sampling experiments and random experiments.
doi:10.1371/journal.pone.0087797.g004
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Figure 5. A comparison between the performance of our propagation algorithm on coding-non-coding gene-disease bipartite
network and that on lncRNA-disease association network. The blue line represents the ROC curve of taking LOOCV over coding-non-coding
gene-disease bipartite network, and an AUC of 0.7881 was obtained. The cyan line represents the ROC curve of taking LOOCV over lncRNA-disease
association network, and an AUC of 0.6820 was obtained. The light blue line represents the ROC curve of taking LOOCV over random networks, and
an average AUC of 0.5005 was obtained.
doi:10.1371/journal.pone.0087797.g005

Table 1. The top-10 ranked genes for three case studies.

Alzheimer’s disease

gene ACC/MIM Rank gene ACC/MIM Rank

COL4A2 120090 1 IL1RN 147679 6

H19 NR_002196 2 EPO 133170 7

PVT1 NR_003367 3 SOD2 147460 8

ALOX5AP 603700 4 VEGF 192240 9

PON1 168820 5 F2 176930 10

Pancreatic cancer

gene ACC/MIM Rank gene ACC/MIM Rank

H19 NR_002196 1 FGFR3 134934 6

ANRIL NR_003529 2 UCA1 NR_015379 7

BC200 NR_001568 3 PIK3CA 171834 8

MEG3 NR_002766 4 CDH1 192090 9

XIST NR_001564 5 SRA AF092038 10

Gastric cancer

gene ACC/MIM Rank gene ACC/MIM Rank

XIST NR_001564 1 ANRIL NR_003529 6

MALAT-1 NR_002819 2 TP53 191170 7

MEG3 NR_002766 3 FGFR3 134934 8

PVT1 NR_003367 4 PTEN 601728 9

BRCA2 600185 5 RAD54L 603615 10

In this table, the susceptibility genes (protein-coding genes and lncRNAs) for three case studies including Alzheimer’s disease, Pancreatic cancer and Gastric cancer were
listed. The genes in italic were lncRNAs and the others were protein-coding genes.
doi:10.1371/journal.pone.0087797.t001
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were brain or neuron related diseases and AD was described as a

neurological disease. All these suggested the relationship between

these two lncRNAs and AD.
Results for Pancreatic cancer. Pancreatic cancer has a

high mortality rate and the 5-year relative survival rate is less than

5% [38]. It has been previously shown that 18 genes including 5

lncRNAs and 13 protein-coding genes are implicated in pancreatic

cancer. The association scores of these 18 genes were also higher

than unassociated genes. In the top-10 ranked genes unassociated

with pancreatic cancer, we found that the rank of ANRIL was two.

Pasmant et al. [5] confirmed the pivotal role of ANRIL in

regulation of CDKN2A/B expression through a cis-acting mecha-

nism in mice and ANRIL implicated in proliferation and

senescence. Furthermore, the association of CDKN2A

(MIM:600160) with pancreatic cancer had been curated in

OMIM [11]. The rank of UCA1 was seven, and Kaneko et al.

[39] showed that UCA1 and BMF were upregulated in gallbladder

epithelia of children with pancreaticobiliary malfunction. There-

fore, our results suggested that UCA1 might be associated with

pancreatic disease.
Results for Gastric cancer. Gastric cancer is a high

morbidity cancer and has varied morbidities in different popula-

tions [40]. It has been presented that 15 genes including 4

lncRNAs and 11 protein-coding genes are implicated in gastric

cancer. The association scores of these 15 genes were higher than

unassociated genes. In potential genes implicated in gastric cancer,

the rank of XIST was one. Weakley et al.’s study [41] showed that

XIST was differentially expressed in preneoplastic cells located in

gastric fundus that could lead to gastric cancer. The rank ofMEG3

was three, and MEG3 was reported to function as a novel lncRNA

tumor suppressor [42].

Discussion

The lncRNA-disease association network was constructed, from

which two relevant networks, lncDN and DlncN, were generated

accordingly. These networks provided a unified framework of all

known lncRNA and disease associations and a new network view

for the study of the lncRNA-disease associations. The detailed

lncRNA-disease association network (Figure S1) showed all the

known lncRNA-disease associations. Furthermore, a computa-

tional iterative algorithm was applied to mine the hidden lncRNA-

disease associations. The results showed that our method could

provide insightful suggestions of lncRNA implicated in diseases.

Our method had some limitations that should be acknowledged.

First, the analysis of the function of lncRNAs on a whole genome-

wide scale was limited due to the diversity, lack of knowledge and

specificity of expression of lncRNAs, and the lack of lncRNA

functional annotation. Second, the shortage of lncRNA-disease

associations limited the analysis of the mechanism of lncRNAs

implicated in disease on a larger network. Finally, due to the lack

of interactions and similarities between non-coding genes and

protein coding genes, it was insufficient in biological meaning to

replace the gene similarity matrix in Formula (4) by the weighted

gene projection W .

Supporting Information

Table S1 20 tests on random networks to show that the

propagation method converges. We did 20 tests. In test i

(1ƒiƒ20), we applied the propagation method on 100 random

networks with the mean square deviation threshold between t-th

iteration and t{1ð Þ-th iteration being 10E-i. The average

iteration times were calculated and listed.

(XLSX)

Figure S1 Bipartite-graph representation of the

lncRNA-disease association network. A disease (circle) and

a lncRNA (hexagons) are connected if the lncRNA is implicated in

the disease. The size of a node is proportional to the degree of the

node. The color of a disease node (circle) represents the class which

it belongs. The names of 20 disease classes are shown on the right

panel. The color of a lncRNA node (hexagons) is based on the

class of diseases in which the corresponding lncRNA implicated.

LncRNA Nodes are light purple if the corresponding lncRNAs are

associated with more than one disease class. We label the diseases

(lncRNAs) associated with more than five lncRNAs (diseases) by

their names.

(TIF)

Figure S2 Degree distribution of full lncRNA-disease

association network. (a) The degree distribution of the full

lncRNA-disease association network. It closely follows a power-law

distribution. Here, k represents degree, p kð Þ denotes the fraction

of nodes with a given degree k. (b) Degree distribution of disease

nodes in lncRNA-disease association network. (c) Degree distri-

bution of lncRNA nodes in lncRNA-disease association network.

(TIF)

Figure S3 Degree distribution of lncDN and DlncN. (a)

Degree distribution of lncDN. It closely follows a power-law

distribution. Here, k represents degree, p kð Þ denotes the fraction

of nodes with a degree k. (b) Degree distribution of DlncN. It

closely follows a power-law distribution. Here, k represents degree,

p kð Þ denotes the fraction of nodes with a degree k.

(TIF)

Figure S4 Degree distributions of average clustering

coefficients of nodes in lncDN and DlncN. (a) Degree

distribution of average clustering coefficients of nodes in lncDN.

(b) Degree distribution of average clustering coefficients of nodes

in DlncN. Both distributions are closely following a power-law

distribution.

(TIF)

Figure S5 Distribution of module sizes in lncDN and

DlncN. (a) The module sizes of 14 modules in lncDN. (b) The

module sizes of 19 modules in DlncN.

(TIF)
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