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Abstract

Background: Testing is one of the most effective means to manage the COVID-19 pandemic. However, there is an

upper bound on daily testing volume because of limited healthcare staff and working hours, as well as different

testing methods, such as random testing and contact-tracking testing. In this study, a network-based epidemic

transmission model combined with a testing mechanism was proposed to study the role of testing in epidemic

control. The aim of this study was to determine how testing affects the spread of epidemics and the daily testing

volume needed to control infectious diseases.

Methods: We simulated the epidemic spread process on complex networks and introduced testing preferences to

describe different testing strategies. Different networks were generated to represent social contact between

individuals. An extended susceptible-exposed-infected-recovered (SEIR) epidemic model was adopted to simulate the

spread of epidemics in these networks. The model establishes a testing preference of between 0 and 1; the larger the

testing preference, the higher the testing priority for people in close contact with confirmed cases.

Results: The numerical simulations revealed that the higher the priority for testing individuals in close contact with

confirmed cases, the smaller the infection scale. In addition, the infection peak decreased with an increase in daily

testing volume and increased as the testing start time was delayed. We also discovered that when testing and other

measures were adopted, the daily testing volume required to keep the infection scale below 5% was reduced by

more than 40% even if other measures only reduced individuals’ infection probability by 10%. The proposed model

was validated using COVID-19 testing data.

Conclusions: Although testing could effectively inhibit the spread of infectious diseases and epidemics, our results

indicated that it requires a huge daily testing volume. Thus, it is highly recommended that testing be adopted in

combination with measures such as wearing masks and social distancing to better manage infectious diseases. Our

research contributes to understanding the role of testing in epidemic control and provides useful suggestions for the

government and individuals in responding to epidemics.
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Background

According to statistics from the World Health Organi-

zation (WHO), as of August 28, 2020, there have been

over 24 million confirmed cases of coronavirus disease

(COVID-19) and over 820,000 related deaths worldwide

[1]. The International Monetary Fund (IMF) predicted

that the global economic growth would reach -4.9% in

2020 as a result of the COVID-19 pandemic [2]. In order

to reduce losses caused by COVID-19, testing has been

adopted by many countries as an effective response mea-

sure. The WHO has also called for more tests in response

to COVID-19 [3]. Researchers have found that testing

plays an important role in controlling the spread of infec-

tious diseases [4–9]. Testing can identify individuals who

are infected but remain undiagnosed, which makes it pos-

sible to protect others from infection by quarantining

those who are infected [10–13]. Scholars have also found

that testing data can provide accurate estimates of epi-

demic trends and help governments distinguish whether

an outbreak is increasing or past its peak [14]. Test-

ing is so important for controlling epidemics that it has

increasingly attracted the attention of scholars.

A subset of previous research on testing focused on tri-

als and clinical statistics, mainly in the field of HIV. In the

HIV Prevention Trials Network (HPTN) 071 community-

randomized trial [15], participants were divided into three

groups: a combination of prevention intervention with

universal testing and antiretroviral therapy (ART), pre-

vention intervention with ART provided according to

local guidelines, or standard care. The HIV incidence of

the three groups showed that universal testing and treat-

ment could reduce the population-level incidence of HIV

infection. However, the timing of testing was also found

to be important for controlling HIV[16]. Grinsztejn et

al. studied the effects of early versus delayed testing on

HIV infection, and the clinical results showed that early

testing could reduce HIV transmission [13]. Cohen et

al. also showed that early testing and implementation of

ART treatment could reduce HIV infections [12]. That

said, research also showed that the effectiveness of testing

could be greatly reduced when high-frequency transmit-

ters were not tested or linkage to care was inadequate

[17, 18]. In addition, some scholars demonstrated concern

about the effectiveness of testing strategies. For exam-

ple, Lightfoot et al. reported that using a social network

strategy to distribute HIV self-test kits could reduce undi-

agnosed infections [19]. This suggested that factors such

as age, residence, and education level should also be taken

into consideration to develop more targeted promotion

testing strategies [20, 21].

Another subset of previous research explored the

impact of testing on epidemic transmission by math-

ematical models. A series of established mathematical

models showed that universal testing could control the

epidemic [22–26]. Ng constructed an agented-based

model to explore the effect of testing on the COVID-19

epidemic in the United States. They found that broad-

ening testing would accelerate the return to normal life

and random testing was too inefficient unless a major-

ity of population was infected [27]. Berger et al. found

that testing at a higher rate in conjunction with targeted

quarantine policies can dampen the economic impact of

the coronavirus and reduce infection peak [28]. Granich

et al. proposed a mathematical model to simulate the

spread of HIV and found that universal voluntary test-

ing and treatment could drive HIV transmission to an

elimination phase within 5 years [22]. Similarly, a com-

partmental model was proposed by Aronna et al. to study

the impact of testing, and an explicit expression for the

basic reproduction number R0 in terms of testing rate

was obtained. From the expression of R0 , the conclu-

sion was drawn that testing among asymptomatic cases is

fundamental to the control of epidemics [29]. Moreover,

Kolumbus and Nisan established a susceptible-exposed-

infected-recovered(SEIR) model to study the effect of

tracking and testing on suppressing epidemic outbreaks.

They found that testing could reduce both economic

losses and mortality, but required a large testing capacity

[30]. According to a report by the Imperial College Lon-

don, testing healthcare workers(HCWs) and other at-risk

groups weekly could reduce their contribution to trans-

mission by 25-33% [3]. Similarly, Priyanka and Verma

adopted the susceptible-infected-recovered(SIR) model to

compare the effectiveness of testing and lockdown mea-

sures and found that testing outperformed lockdowns

[31]. Omori et al. reported that the limited testing capacity

had a significant influence on the estimation of epidemic

growth rate [32]. The effect of specificity and sensitivity of

testing has also been studied [33, 34].

A limitation of previous studies is that they primar-

ily examined infectious diseases with a slow transmission

process, such as HIV. In other words, the number of infec-

tions remain relatively small over a short period. As a

result, the upper bound of testing volume does not need

to be considered. However, when epidemics such as SARS

and COVID-19 occur, infections multiply rapidly in a

short time, and a much larger number of individuals need

to be diagnosed through testing. In this case, the upper

bound of daily testing volume cannot be ignored, and the

impact of testing on suppressing epidemic transmission

requires in-depth research. In mathematical models, it is

often simply assumed that individuals are tested and quar-

antined with a certain probability. However, in real life,

the daily testing volume gradually increases as the under-

standing of the epidemic deepens, and an individual is

typically not tested again for a certain period (such as two

incubation periods) after being tested negative, consider-

ing the limited testing resources. In order to bridge the
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gap, an epidemic transmission model combined with a

testing mechanism was proposed to study the role of test-

ing in epidemic control. The paper is organized as follows.

In “Methods” section, we state the epidemic transmis-

sion model and testing mechanism in detail. In “Results”

section, a series of numerical simulations are detailed,

and the results are described. The discussion is presented

in “Discussion” section, and conclusions are stated in

“Conclusions” section.

Methods

We proposed a model to study the impact of testing on

epidemic transmission. The model consists of two parts:

an epidemic transmission model, and a testing mecha-

nism. The former simulates the epidemic transmission

process in the population, and the lattermodels the testing

process implemented by the government. We also stated

the strategy used to validate the proposed model.

Epidemic transmission model

Complex networks have been a good framework for

describing the population structure in real world. A net-

work is composed of nodes and edges. Nodes represent

individuals and edges represent social contacts between

individuals. The number of edges connected with a node

is called the degree of the node. Studies have shown

that the degree distribution of social networks obeys a

power-law distribution [35–37], which indicates that vast

majority of individuals have small degrees, but there exist

some individuals who contact with many individuals (also

called super spreaders in the context of epidemics). These

networks whose degree distribution obeys the power-

law distribution are called scale-free networks, and the

Barabasi-Albert (BA) network [38] is one kind of scale-

free networks. When generating the BA network, we start

with a small nucleus ofm0 connected nodes. Then, a new

node is added every step to connect to the old nodes.

The probability of the new node connected to node i is

proportional to the degree of node i. After enough steps,

a network with a power-law degree distribution will be

generated. Then, we simulate the epidemic transmission

process on the generated networks.

In this study, an extended SEIRmodel [39, 40] was intro-

duced to describe the epidemic transmission process. In

our model, an individual can be classified into one of six

states: susceptible (S), latent (L), asymptomatic infectious

(Ia), symptomatic infectious (Is), recovered (R), and dead

(D). Specifically, the infection process is as follows. Ini-

tially, an individual is randomly chosen as the infection

source (i.e., set it in state Is) and others are suscepti-

ble (S). At each time step, a susceptible (S) individual i

randomly contacts one of their neighbors. Individual i

in contact with symptomatic or asymptomatic infectious

individuals will be infected with a probability of λ and γ λ,

respectively, where λ represents the infection rate in

contact with symptomatic infectious individuals, and γ

measures the relative infectiousness of asymptomatic

infections compared with symptomatic infections. Once

individual i is infected, they will enter the latent (L) state,

and at the end of the latency period 1/ǫ, they will become

asymptomatic or symptomatic infectious, with the prob-

ability pa and 1 − pa, respectively. At the same time,

infectious individuals (asymptomatic and symptomatic)

will recover with probabilityμ and die at rate β . The whole

process will continue to evolve until there are no infected

individuals (latent, asymptomatic, or symptomatic) on the

networks. Figure 1a describes the epidemic transmission

process.

Testing mechanism

In real life, we are not typically aware of infectious diseases

from the time they occur, and thus there is a delay between

the start of testing and the time when infectious diseases

begin. Therefore, in our model, only when the current

time step is greater than T will the testing mechanism be

introduced into the epidemic transmissionmodel. In addi-

tion, because of limited healthcare workers and medical

resources, an upper bound exists in daily testing volume.

At each time, the largest number of people who can be

tested is V, which represents the daily testing volume.

In this model, asymptomatic and symptomatic infectious

individuals will test positive and will be quarantined, and

thus they cannot cause secondary infections by contact

with others. Given the limited testing resources, individu-

als who are tested negative will not be tested again within

two incubation periods, which has been adopted by many

countries as a testing strategy in response to COVID-19

[41, 42].

As the understanding of the epidemic deepens, the daily

testing volume will gradually increase. Considering the

limited medical staff and their working hours, there is also

an upper bound on the daily testing volume. The change

in daily testing volume is

V = max(Vinc × (t − T),Vlimit), (1)

where Vinc and Vlimit indicate the increase speed and

upper bound of the daily testing volume, respectively; t

is the current time step; and T is the time when testing

starts.

In addition, different testing strategies may be used

when implementing testing, such as random testing (RT),

contact-tracking testing (CT), or a combination of the

two. In this study, testing preference, α, which mea-

sures the priority of testing individuals who are in close

contact with confirmed cases, was introduced to repre-

sent different testing methods. If α = 1, individuals in

close contact with confirmed cases will be tested first

(CT). Moreover, α = 0 means random testing (RT), and
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Fig. 1 A diagram illustrating the proposed model. a shows the epidemic transmission process and (b) shows the testing mechanism. The

descriptions of parameters in the figure are described in Table 1

when 0 < α < 1, a combination of RT and CT is

adopted.

The testing process is performed as follows. M repre-

sents the number of individuals who are in close con-

tact with confirmed cases and not tested. At each time

step, if αM ≤ V , αM individuals in close contact will

be tested first, then V − αM individuals will be tested

randomly in the population. Otherwise, if αM > V ,

only V individuals in close contact will be tested ran-

domly. Figure 1b illustrates the testing process. Table 1

presents a summary of parameters and variables, and

respective descriptions as well as values used in our

model.

Model validation

We compared the simulation data with real data to vali-

date our model. In response to the COVID-19 pandemic,

many countries have adopted testingmeasures. As a result

of the different testing capabilities, the number of peo-

ple tested every day varies in different countries. In this

study, the testing-positive rate was used as an indica-

tor to compare the simulation results with real data. The

reason why the number of confirmed cases is not used

is that we think the number of confirmed cases refers

to the number of infected individuals identified by test-

ing, but there are still many infected individuals who

have not been tested in the population. Therefore, it is

not appropriate to use the number of confirmed cases

to estimate the actual infection scale in the population.

Considering that the testing process can be regarded as

a sampling of the population, the testing-positive rate

can represent the actual infection scale in the popula-

tion to some extent. Therefore, when verifying the pro-

posed model, we used the peak of the testing-positive

rate curve to represent the peak of infection scale in the

population.

Table 1 Model parameters, variables and respective descriptions

Parameters Description Value

N Number of nodes
(population size)

Different values

λ Infection rate in contact
with symptomatic
individuals

Different values

γ Relative infectiousness of
asymptomatic individuals

0.5 [39, 40]

ǫ Reciprocal of latency
period

0.2 [39, 40]

pa Transmission rate from
state E to Ia

0.4 [39, 40]

μ Recovery rate 0.2 [39, 40]

β Death rate 0.03 [39, 40, 43]

T Testing start time Different values

V Daily testing volume
(normalized by population
N)

Different values

α Contact-tracking testing
preference

Different values

Vinc Increase speed of daily
testing volume

Different values

Vlimit Limit of daily testing
volume

Different values
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Specifically, the real data came from the daily report of

each country and was collected by Our World in Data

[44]. The real data included the number of people who

had been tested and the number of people who had tested

positive (confirmed cases) every day. Based on the data,

the testing-positive rate was calculated. For country i, its

testing-positive rate curve reaches the peak Pi on date Ti.

We let V t
i be the testing volume of country i on date t. We

calculated the average of V t
i where t < T and obtained

the average testing volume of country i denoted as Vi. The

testing volumes after date T were not considered because

these testing volumes do not contribute to the peak of the

positive rate curve. After calculation process described

above, we obtained a pair of values (Vi, Pi) for each coun-

try. At the same time, based on our proposed model, we

obtained the peak of the testing-positive rate curve under

different testing volumes. In the context of COVID-19, we

set the basic reproduction number R0 = 2.6 [43]. Contact-

tracking testing preference α was set as 1, indicating that

the individuals in close contact with confirmed cases will

be tested with high priority; this has been adopted bymost

countries as their testing strategy. The calculation pro-

cess for simulation data was the same as that for real data

above. We also obtained a pair of values (vi, pi) for each

simulation. If (vi, pi) curve is consistent with (Vi, Pi) curve,

the proposed model will be validated.

Results

In this study, Barabasi-Albert (BA) scale-free networks

were generated and used to describe the contact structure

of population in real life [38]. A series of epidemic spread

simulations were conducted on these networks. All the

results were averaged over 1000 simulations.

We first investigated the impact of the daily testing

volume and the testing start time on the epidemic trans-

mission. Two indicators were considered: the peak value

of infections, vp, and the time when the peak arrives, tp,

because these two indicators are of the most concern to

governments in their response to epidemics. As Fig. 2a

shows, the greater the daily testing volume and the ear-

lier the testing started, the lower the infection peak. To

make vp less than 0.5%, the daily testing volume had to be

at least 0.02 and testing had to start within 70 time steps

(region I in Fig. 2a). As Fig. 2b shows, tp first increased

and then decreased as the daily testing volume grew. This

can be explained as follows. Increasing the daily testing

volume can suppress the spread of infectious diseases and

delay the outbreak. However, if the testing volume contin-

ues to increase, the infectious disease can be controlled to

a great extent and will end early because almost all infec-

tions are identified and quarantined, leading to a smaller

tp. Moreover, tp reached the maximum when the daily

testing volume was between 0.01 and 0.04, and testing

started within 25 time steps (region I in Fig. 2b). Further,

the larger the tp, the more time there was expected to

prepare for the outbreak, which can be very meaningful

in controlling epidemics. The findings indicated that the

greatest impact of testing on the spread of infectious dis-

eases lies in flattening the infection curve, delaying the

arrival of the outbreak, or ending epidemics early. It is rec-

ommended that the government start a wide range of tests

as soon as possible to suppress epidemic transmission.

In real life, the daily testing volume will gradually

increase as understanding of the epidemic deepens.

Therefore, we studied the impact of changes in the daily

testing volume on epidemic transmission. The impact of

Fig. 2 The impact of testing volume V and testing start time T on epidemic transmission. a shows the impact on the infection peak. The red and

blue color refer to high and low peak values, respectively. b shows the impact on the arrival time of infection peak. The blue color means that the

epidemic breaks out very early, while the red color means the opposite. In region I of (a), the peak values were smaller than 0.005. In region I of (b),

the peak times were larger than 130 time steps. Starting testing early and increasing daily testing volume could suppress the epidemic transmission
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Fig. 3 The impact of changes in daily testing volume on infection scale. The red color means the large infection scale, while the blue color means

the opposite. Breaking through the limitations of daily testing volume could greatly suppress the epidemic transmission, but promoting the

increase speed of daily testing volume hardly changes the infection scale

Vinc and Vlimit is shown in Fig. 3. As Vlimit increased, the

infection scale decreased significantly. However, the infec-

tion scale was hardly changed with the increase of Vinc,

indicating that in terms of controlling infectious diseases,

it is more important to break through the limitation of

daily testing volume. The solid line in Fig. 3 represents

the contour line where the infection scale is 5%, which

required the upper bound of daily testing volume to reach

at least 5%. The results showed that increasing the upper

limit of daily testing volume was essential to control epi-

demics, which requires the government to invest enough

support resources.

We then investigated the impact of testing preference,

α, on the epidemic transmission, which is shown in Fig. 4.

When the testing start time T and the daily testing vol-

ume V were fixed, the larger the α, the smaller the final

infection scale, which indicated that the higher priority

testing is for individuals in contact with confirmed cases,

the greater control we can have over infectious diseases.

The five curves in Fig. 4 could be divided into two groups

according to the values of T and V : Group A included

solid square, solid circle, and solid triangle curves, and

Group B included hollow, semi-solid, and solid triangle

curves. From Group A and B, we can see that the ear-

lier that testing started and the larger the daily testing

volume, the smaller the infection scale. However, com-

paring Group A and B, it was found that the testing

volume V had a greater impact on the curve, indicating

that the testing volume plays a greater role in control-

ling the spread of infectious diseases than the testing start

time. The findings suggested that the government adopt

contact-tracing testing strategy because contact-tracing

testing could effectively suppress the spread of infectious

diseases.

In order to control infectious diseases merely through

testing (S0), a huge daily testing volume was required

(see Fig. 2). Assuming that a city has a population of 10

million, a daily test volume of 5%means that 500,000 indi-

viduals need to be tested every day, which is difficult to

implement. In order to reduce the testing volume while

achieving the goal of controlling infectious diseases, we

introduced other control measures such as wearing masks

and social distancing. According to reference [45–47], we

assumed that social distancing could reduce individuals’

infection probability by 30%(S30). Some scholars revealed

that wearing masks had limited effects on epidemic trans-

mission because masks cannot filter submicron-sized

airborne particles [45, 48]. However, some studies also

showed that wearing masks could prevent the transmis-

sion of coronaviruses [49–52]. Considering the debate

on the effectiveness of wearing masks, we assumes that

wearing masks could reduce the individuals’ infection

probability by 10%(S10). As Fig. 5 shows, even if the infec-

tion probability was reduced by only 10%, the infection

scale was greatly reduced. When the infection probability

reduced by 30%, the infection scale was less than 2%. In

the inset of Fig. 5, the three different scenarios are com-

pared in detail. To control the infection scale below 5%,

if no other measures are taken, the daily testing volume

had to reach 5.1%. However, if other measures were taken
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Fig. 4 The impact of testing preference on epidemic transmission. Square, circle and triangle curves were obtained under T = 30 (Group A) and

solid, semi-solid and hollow triangle curves were obtained under V = 0.06 (Group B). Priority testing for individuals in contacts with confirmed cases

can suppress the epidemic transmission

to reduce the infection probability by 10%, the daily test-

ing volume reduced by more than 40% and only had to

reach 3%. Once other measures were taken to reduce the

infection probability by 30%, the infection scale was about

1% even if the daily testing volume was 1%. The results

indicated that comprehensive measures performed better

than single measure. Other measures can greatly reduce

the testing volume required to control infectious diseases,

relieving the medical resource pressure during epidemic

outbreaks.

We further explored how testing affects epidemic trans-

mission when the infectiousness of the epidemic changes.

With a different basic reproductive number, R0, and daily

testing volume, V, a series of simulations were conducted.

The results under scenario S0 and S10 are shown in Fig. 6a

and b respectively. S10 means that other measures were

adopted to reduce individuals’ infection rate by 10%, and

S0 indicates that only testing was adopted. We found that

regardless of scenarios S0 and S10, the infection scale

always increased with R0 and decreased with the daily

testing volume. The solid line in Fig. 6 is the contour

line where the infection scale is 5%, which means the

change of minimum daily testing volume required to keep

the infection scale below 5%. It can be seen that regard-

less of whether other measures were taken, the required

daily testing volume almost increased linearly as the basic

reproductive number grew. However, in scenario S0, when

R0 was relatively large (R0 > 3.6), and the required daily

testing volume increased sharply (see Fig. 6a), indicating

that when the infectiousness of the epidemic is strong, the

daily testing volume required to control the epidemic will

be extremely large if only the testing measure is taken.

Comparing Fig. 6a and b, we also concluded that the

required daily testing volume will be greatly reduced if

other measures are taken at the same time.

Aiming to study whether the network scale has an

impact on the results, we conducted a series of simula-

tions on different networks. As Fig. 7 shows, although the

number of nodes in the network is different, the trend

of the infection scale with the daily testing volume was

almost the same, which indicated that our results are use-

ful for understanding the epidemic transmission process

on a larger scale even though they were obtained in a small

network.

Finally, we compared the simulation data with real data

to validate our model, as shown in Fig. 8. We fitted the

simulation data as shown in the red line. In Fig. 8, ISO

country code was used to mark the points of some coun-

tries where a large of confirmed cases have been reported,

such as the United States, France, Italy, and South Africa.

The real data were consistent with the simulation data.

Most of the points representing different countries fall

near the simulation data. In region I, the errors between

real data and simulation data were large. The number of

countries falling in region I was 28, which accounts for less

than 30% of all countries (95) in the figure. The countries

in region I include Bangladesh, Pakistan, the Philippines,

Nigeria, Kenya, Myanmar, Thailand, and Morocco. The
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Fig. 5 The effect of testing on epidemic transmission under different scenarios. S0 means that no other measures were taken except testing. S10

and S 30 indicate the scenarios where other measures were taken to reduce individuals’ infection probability by 10% and 30%, respectively.

Combined with other measures such as wearing masks and social distancing, the daily testing volume could be significantly reduced while the

epidemic will still be controlled

x-axis values of the points in region I are relatively small

(less than 0.5), indicating that a small number of peo-

ple can be tested every day in these countries. Therefore,

because of the small sample size, the actual infection

scale in the population will be biased through the test-

ing data, leading to errors between the simulation data

and real data in region I. Another explanation is that

the true infection rates in these countries are low which

explains the low testing-positive rates. In this case, the

basic reproduction number R0 is less than 1 and epi-

demic outbreak do not occur in these countries. However,

in order to ensure that the infectious disease can spread

on the networks, we set R0 as 2.6 in the simulations. To

apply our model to these countries, we need to adjust

Fig. 6 The effect of basic reproductive number R0 and testing on infection scale under different scenarios. The results of scenario S0 where only

testing measure was adopted are shown in (a), and (b) describes the results of scenario S10 where other measures were implemented to reduce

individuals’ infection rate by 10%. The solid line is the contour line where the infection scale is 5%. The daily testing volume required to control

epidemics increased almost linearly as R0 , but when other measures were adopted, the required testing volume decreased
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Fig. 7 The impact of network scale. The square, circle and triangle curves represent the simulation results on networks with 5000, 8000, and 10000

nodes, respectively. Even if the network scale was different, the trend of the infection scale with the daily testing volume was almost the same

the model parameters. In general, the data we obtained

through the proposed model were consistent with the

real data, which indicates that the proposed model is reli-

able, especially for countries reaching pandemic levels of

infection.

Discussion

In response to epidemics, different testing strategies may

be adopted by governments, such as random testing,

contact-tracking testing, or a combination of the two

methods. Moreover, as the understanding of epidemics

Fig. 8 The simulation data versus real data. A hollow square point (real data) indicates one country, representing the average testing volume (x-axis)

and the peak of the testing-positive rate curve (y-axis). The red circle points show the peak of positive rate curve under different testing volumes in

the simulations. We set R0 = 2.6 and α = 1
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deepens, the daily testing volume will gradually increase.

However, considering the limited medical staff and their

working hours, there is an upper bound to the daily testing

volume. Therefore, in this study, an epidemic transmission

model combined with testing mechanism was proposed

to study the role of testing in epidemic control. The com-

bined model incorporates different testing methods as

well as an increased speed and upper bound of the daily

testing volume.

Through a series of simulations, we found that testing

could inhibit the spread of infectious diseases. In addi-

tion, the priority testing for individuals in close contact

with confirmed cases could enhance the effect of test-

ing on infectious diseases. However, in order to control

the epidemic (i.e., control the infection scale below 5%),

the daily testing volume had to reach 5.1%. When the

urban population is relatively large, 5.1% means a huge

amount of testing every day. Our results were consistent

with previous studies that concluded that only large-scale

testing can effectively control epidemics [3, 30]. Fortu-

nately, effective algorithms such as group testing have

been proposed by other scholars [53–55], and these make

it possible to greatly increase the daily testing volume.

We also found that when other measures such as wear-

ing masks and social distancing were adopted, the daily

testing volume required was greatly reduced. Assuming

that other measures could only reduce individuals’ infec-

tion probability by 10%, the daily testing volume required

were reduced by more than 40%, which further empha-

sized the importance of taking comprehensive measures

in response to epidemics. We conducted simulations on

networks with different scales and obtained the same

results, which indicates that our results are also meaning-

ful for epidemic control on a large scale.

In this study, we focused on the impact of testing on

the spread of infectious diseases. Therefore, the impact

of testing specificity was not considered. How an infected

individual can affect the spread of infectious diseases after

being tested negative is worthy of further study.

Conclusions

In this study, an epidemic transmission model com-

bined with testing mechanisms was proposed to study the

impact of testing volume, testing start time and testing

preferences on the spread of infectious diseases. Through

extensive numerical simulations, we made the following

observations:

1 The infection peak decreased with an increase of

daily testing volume. Early testing could also reduce

the infection peak. Increasing the upper bound of

daily testing volume could greatly reduce the

infection scale, but the increased speed of daily

testing volume hardly impacted the infection scale.

2 The higher priority there was for testing individuals

in close contact with confirmed cases, the smaller the

infection scale. However, when the daily testing

volume was large, testing preferences had little

impact on the infection scale.

3 When testing was combined with other measures are

adopted in response to epidemics, the daily testing

volume required was reduced by more than 40% even

if other measures could only reduce the infection

probability by 10%. Plus, the daily testing volume

required increased almost linearly with the basic

regeneration number R0.

4 The scale of the network had little effect on the

results. Although the nodes of the networks were

different, the trend of infection scale with the daily

testing volume was basically the same.

The above findings indicated that testing can reduce the

infection peak and delay the outbreak of epidemics. This

is very important for governments to deal with epidemics

because it means that we have more time to prepare med-

ical resources. Testing has become one of the most effec-

tive measures to deal with infectious diseases. We also

provided some suggestions for dealing with epidemics. It

is important to increase the daily testing volume because a

larger testing volumemeans thatmore infected people can

be identified and then treated, thereby reducing the infec-

tion scale and saving more lives. However, in response

to the COVID-19 pandemic, some countries are not able

to implement large-scale testing. In this case, interna-

tional cooperation is important in increasing the testing

volume and controlling the epidemic, especially in under-

developed countries. Starting testing as early as possible

is another way to suppress the epidemic transmission. In

addition, comprehensive measures can greatly reduce the

daily testing volume required, and therefore it is recom-

mended that testing be combined with measures such as

wearingmasks and social distancing. Our proposedmodel

was also validated by COVID-19 testing data. In sum-

mary, our research contributes to understanding the role

of testing in controlling epidemics and provides useful

suggestions for governments and individuals in response

to infectious diseases.
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