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Abstract

Background: Pathway analysis combining multiple types of high-throughput data, such as genomics and

proteomics, has become the first choice to gain insights into the pathogenesis of complex diseases. Currently, several

pathway analysis methods have been developed to study complex diseases. However, these methods did not take

into account the interaction between internal and external genes of the pathway and between pathways. Hence,

these approaches still face some challenges. Here, we propose a network-based pathway-expanding approach that

takes the topological structures of biological networks into account.

Results: First, two weighted gene-gene interaction networks (tumor and normal) are constructed integrating

protein-protein interaction(PPI) information, gene expression data and pathway databases. Then, they are used to

identify significant pathways through testing the difference of topological structures of expanded pathways in the

two weighted networks. The proposed method is employed to analyze two breast cancer data. As a result, the top 15

pathways identified using the proposed method are supported by biological knowledge from the published

literatures and other methods. In addition, the proposed method is also compared with other methods, such as GSEA

and SPIA, and estimated using the classification performance of the top 15 expanded pathways.

Conclusions: A novel network-based pathway-expanding approach is proposed to avoid the limitations of existing

pathway analysis approaches. Experimental results indicate that the proposed method can accurately and reliably

identify significant pathways which are related to the corresponding disease.
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Background
Complex diseases are likely to be associated with the

effects of multiple genes, proteins and biological pathways

[1]. Pathway analysis methods that combine multiple

types of high-throughput data, such as genomics and pro-

teomics, have become the first choice to gain insights into

the pathogenesis of complex diseases. A biological path-

way that reduces data involving thousands of altered genes

and proteins into a smaller and more interpretable set of

altered processes and combines multiple types of high-

throughput data plays an important role in understanding
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the mechanisms of complex diseases, improving

clinical treatment, and discovering drug targets and

biomarkers [2].

The most commonly employed traditional pathway

analysis methods use classical pathway databases (i.e.,

KEGG [3], MSigDB [4], Reactome [5], BioCyc [6], Meta-

Cyc [7], RegulonDB [8], PantherDB [9] and Gene Ontol-

ogy [10]) to analyse gene expression profile data. These

analyses use statistical methods to identify significant

pathways in a particular biological process, such as GSEA

[11], PAGE [12], GAGE [13] and MeanAbs [14]. A limita-

tion of this class of algorithms is their ignorance of interac-

tions between genes and proteins because neither network

topology nor dynamics is taken into account [15]. These

limitations are addressed by network-based pathway anal-

yses. Accordingly, several pathway analysis models that
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reflect the laws of life activities and employ network topol-

ogy information have been proposed [16], such as SPIA

[17], PARADIGM [18], PathOlogist [19], Active Mod-

ules [20], AMBIENT [21], GIGA [22] and GANPA [23].

Although the above methods utilize network topology

information, they only consider the topological structure

of the pathway itself and do not take into account the

information of pathway external genes in biological net-

works; thus, they do not fully mine pathway information.

For example, only the pathway internal topology is uti-

lized by the SPIA method, whereas the PathOlogist model

only computes the probability of an interaction of path-

way internal genes being active when it is consistent with

the known regulatory logic of the pathway. Hence, how to

take the interactions between internal and external genes

of the pathway and between pathways into account in the

pathway analysis method is the main problem addressed

in this paper.

To that end, we proposed a novel network-based path-

way analysis method. First, we integrated protein-protein

interaction (PPI) information, gene expression profile data

and pathway databases into the pathway analysis and con-

structed two whole-genome level gene-gene interaction

networks. Then, we expanded pathways based on the k-

walks algorithm [24, 25] to two small networks in two

weighted networks (tumor and normal). Finally, we scored

the pathways corresponding to the gene expression profile

data based on the correlations of these two small networks

to identify significant pathways (see Fig. 1).

Methods

Construction of a weighted gene-gene interaction network

PPI network provides a valuable framework to eluci-

date the functional organization of the proteome. How-

ever, existing PPI networks cannot accurately describe

the interactions between proteins in specific conditions

and have different degrees of false positive and false

negative results because most large-scale PPI networks

are obtained in different experimental conditions, pre-

dicted/extracted using different algorithms [26, 27]. Addi-

tionally, the interaction or the intensity between proteins

varies in different cells or tissues.

The gene co-expression network (GCN) is an undi-

rected graph where each node corresponds to a gene and a

pair of nodes is connected with an edge if there is a signifi-

cant co-expression relationship between them [28]. Using

gene expression profiles obtained from a number of genes

for several samples or experimental conditions, a gene

co-expression network can be constructed by looking for

pairs of genes that show a similar expression pattern

across samples. In this study, the weight of each pair of

genes is calculated by the Pearson’s correlation coefficient.

Pearson’s correlation coefficient was selected as the co-

expression measurement because it was the most popular

co-expression measurement used in the construction of

gene co-expression networks. The absolute values corre-

spond to an interaction mechanism where the intensity

of one gene is related to its co-expressed gene. How-

ever, a gene co-expression network does not guarantee the

existence of a real interaction between the correspond-

ing proteins; instead, it only suggests that there may be an

interaction between the proteins.

To accurately describe the change in gene interactions

for several samples or experimental conditions, here we

constructed twoweighted gene-gene interaction networks

(tumor and normal) with PPI and GCN (see Fig. 2).

Pathway-based extension of the sub-network

The gene-gene interaction of pathway is different in dif-

ferent tissues or samples. These differences may be caused

by changes in the interactions between internal genes of

the pathway or between pathway and neighbor genes. To

assess the significance of the pathway in different pheno-

typic data, we expanded the pathway based on the k-walk

algorithm [25] by considering all of the above factors in

two weighted gene-gene interaction networks separately.

The pathway-based extension of the sub-network was

constructed as follows:

Let G = (V ,E) comprise a set V of genes and a set E

of edges denote the weighted gene-gene interaction net-

work with E ⊆ V × V . Let n =| V |reflect the number of

genes. Symmetric matrix A represents the weighted n× n

adjacency matrix of G, where aijdenotes the weight of the

edge connecting gene i to gene j. Let di(i ∈ 1 · · · n) repre-

sent the weighted degree of each gene node i where di =
∑n

j=1 aij. Then, aij is calculated by Pearson’s correlation

coefficient as:

aij =

⎧

⎨

⎩

|cor(xi, xj)|
β xi, xj is expression

data of gene Vi,Vj

0 otherwise

(1)

where β = 1.

Given a gene set S (|S| ≥ 2) of a pathway belonging to

a subset of G, we formally define an edge relevance func-

tion ER:E → R
+ that maps any edge to its relevance. The

extended process of a gene set of a pathway simulates ran-

dom walks on a graph by the Markov Chain model. The

possibility of transiting from gene i to gene j is calculated

as:

Pij =
aij

di
(2)

Here, a gene set S is a set of absorbing states of the

Markov chain. If the random walk starts from gene x, the

modified transition will be:

xPij =

⎧

⎨

⎩

1 i ∈ S\{x} and i = j

0 i ∈ S\{x} and i �= j

Pij otherwise

(3)
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The difference between expanded pathways

Normal Tumor PPI Network

Fig. 1Workflow of the proposed method

Then, the transition matrix is described as follow:

xP =

(

xQ xR

0 I

)

(4)

where xQ is a matrix that denotes transient states, xR is a

matrix that denotes the transition probability from tran-

sient states to absorbing states, and I is the identity matrix.

After k steps, the transition matrix becomes (xQ)k .

Given that the walk started in state x, the joint probabil-

ity of visiting the edge E(i, j) between step k and k + 1 is

calculated as follow:

P
[

Xk = i,Xk+1 = j, L|X0 = x
]

=
{

f (i, j, k, x, r, L) j is a transient state
[

(xQ)L−1
]

xi[ (
xR)] ij j is an absorbing state

(5)

where L is a total walk length, f ( i, j, k, x, r, L) =
∑

r∈S\{x}

[ (xQ)k] xi[ (
xQ)] ij[ (

xQ)L−k−2(xR)] jr , [ (
xQ)k] xi is the pro-

bability of transiting from x to i in k steps.

The probability of a walk of length L starting in x is

calculated as follow:

P[ L|X0 = x]=
∑

r∈S\{x}

[ (xQ)L−1(xR)] xr (6)

The e(x, i, j) is defined as the number of times a ran-

dom walk starts in x using the transition from i to j. Given

that the walk length is L, the conditional expectations of

e(x, i, j) is given by:

E[ e(x, i, j)|L]=

L−1
∑

k=0

P[Xk = i,Xk+1 = j, L|X0 = x]

P[ L|X0 = x]
(7)

Let Lmax denote a maximal walk length. Then:

E[ e(x, j, i)|L ≤ Lmax]=

Lmax
∑

L=1

E[ e(x, i, j)|L] (8)

Finally, the edge relevance ER is given by:

ER(i, j) =

∑

r∈S

lx|E
[

e(x, i, j)|L ≤ Lmax

]

− E
[

e(x, j, i)|L ≤ Lmax

]

| ∀(i, j) ∈ E

(9)

where the vector lx represents an initial probability distri-

bution. Here, the maximal relevance score that can lead to

a connected subgraph is chose as the threshold θ . Finally,

a subnetwork is obtained by keeping only edges with rele-
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The PPI network 

The co-expression weighted network 

The weighted gene-gene interaction network

Fig. 2 Construction of the weighted gene-gene interaction network (the edge width reflects weight size in the weighted gene-gene interaction

network). The PPI network comes from I2D, the co-expression weighted network is from gene expression profiling, and the weight of each pair of

genes is calculated by Pearson’s correlation coefficient. Finally, the PPI network and the co-expression weighted network are merged into the

weighted gene-gene interaction network. We obtain two weighted gene-gene interaction networks under two phenotype datasets (tumor and

normal)

vance scores ER(i, j) above a threshold value θ (see Fig. 3).

In the paper, we set Lmax to 50 by default.

Identification of significant pathways

For a given pathway i, the pathway was expanded in two

weighted gene-gene interaction networks (Tumor_Net

and Normal_Net )for two phenotypic datasets sepa-

rately. The union genes of two expanded pathway play

a role in performing a similar function in normal or

tumor tissues.Moreover, genes in expanded pathway from

tumor and normal tissues are almost different. The union

genes construct sub-networks in two weighted networks.

These sub-networks weights’ differences can describe

the change of pathways between different phenotypes.

Accordingly, we calculate the difference between the two

pathway-based sub-networks reflects the change of the

given pathway for the two phenotypic datasets through

the union of the two sub-networks.

Let Union_Pathway[ i] denote the union of two sub-

networks (T_Ex_Pathway[ i] and N_Ex_Pathway[ i]) that

are the expansion of pathway i in two weighted gene-

gene interaction networks (Tumor_Net andNormal_Net).

Then, we mapped Union_Pathway[ i] into the two

weighted gene-gene interaction networks (T_subnet[ i]

and N_subnet[ i]) and obtained two edge weight vectors

T_w[ i] and N_w[ i]. Pearson’s correlation coefficient was

calculated as:

Corri(T_w[ i] ,N_w[ i] ) =

∑n
k=1(T_w[ i]k −T_w[ i])(N_w[ i]k −N_w[ i])

√

∑n
k=1(T_w[ i]k −T_w[ i])2

∑n
k=1(N_w[ i]k −N_w[ i])2

(10)

where n is the dimension of the vector and T_w[ i] =
1
n

∑n
k=1 T_w[ i] k , N_w[ i] = 1

n

∑n
k=1N_w[ i] k . Finally,

we calculated Score[ i], which depicts the difference in

pathway i for two phenotypic datasets as follow:

Score[ i]= 1 − |Corri(T_w[ i] ,N_w[ i] )| (11)

Here, Score[ i] is a measure depicting the relevance

degree between pathway i and the corresponding disease

(for the pseudo-code see Algorithm 1).

Results and discussion

Data

The breast invasive carcinoma (BRCA) dataset was

downloaded from the TCGA (The Cancer Genome

Atlas) website (http://cancergenome.nih.gov/). The BRCA

dataset consists of 590 samples obtained from com-

paring 529 breast cancer samples with 61 normal

samples using the Agilent platform. The second dataset

http://cancergenome.nih.gov/
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Fig. 3 An example of a pathway-based extension. Blue nodes denote a gene set of a pathway and red nodes denote the expanded genes that are

most associated with the corresponding pathway

was available via the Gene Expression Omnibus (ID=

GSE25066). This dataset compared 99 pathologic com-

plete response (PCR) samples and 389 residual dis-

ease (RD) samples [29] (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE25066). PPI network (version

2.9) was obtained from the Interologous Interaction

Database (I2D) website [26] (http://ophid.utoronto.ca/

ophidv2.204/downloads.jsp). PPI was mapped into the

gene-gene interaction (GGI) data through the UniProt

website (www.uniprot.org/). Finally, 234,524 unique gene

pairs were selected for BRCA, and 204,772 unique gene

pairs were selected for GSE25066 by data pretreatment.

The KEGG pathways were downloaded from the Con-

sensusPathDB website (http://consensuspathdb.org/). We

selected 280 pathways related to humans by screening;

only genes of pathways belonging to the BRCA gene set

were used in the downstream analysis. The breast cancer

gene set was downloaded fromwebsite(http://mlg.hit.edu.

cn/SIDD/).

To identify the significance of the given pathway, first,

we dealt with the PPI data. The PPI network was mapped

into the gene-gene interaction (GGI) network in which the

weight of each pair of genes was calculated using high-

throughput gene expression profiling data. Finally, we

obtained two weighted gene-gene interaction networks

for the two phenotypic datasets. The weighted gene-gene

interaction network has 15,129 vertices and 234,524 edges

for BRCA.

Based on the above algorithm, we expanded a gene set

of the given pathway based on the k-walks algorithm into

two sub-networks in two weighted networks (tumor and

normal). Then, we compared the number of the genes

in the original pathway and the expanded pathway (see

Fig. 4). Finally, the union of the two sub-networks served

as the ultimate expansion of the given pathway.

Next, we ran the proposed approach using the BRCA

dataset.

To provide a more comprehensive understanding of

the proposed method, we discuss the method from the

following aspects separately.

The pathway score

Based on the background mentioned above, each pathway

score depicts the degree of relevance between the given

pathway and the corresponding disease. All scores were
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Fig. 4 The number of the genes in the original pathway and the

expanded pathway. Through the diagram, we found that every

pathway was validly expanded except pathway hsa00472 because it

only contained one gene from the original pathway
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Algorithm 1: Compute Score

Input : Pathways,Tumor_Net,Normal_Net

Output: Score

for i = 1 to The total number of pathways do
1.Pathway[i] maps into Tumor_Net;

2.T_Ex_Pathway[i]= Expand Pathway[i] based on

Limited K-walks algorithm in Tumor_Net;

3.Pathway[i] maps into Normal_Net;

4.N_Ex_Pathway[i]=Expand Pathway[i] based on

Limited K-walks algorithm in Normal_Net;

5.Union_Pathway[i]=T_Ex_Pathway[i] ∪

N_Ex_Pathway[i] ;

6.T_subnet[i]=Union_Pathway[i] maps into

Tumor_Net;

7.T_w[i]= The weight of the T_subnet[i] in

Tumor_Net;

8.N_subnet[i]= Union_Pathway[i] maps into

Normal_Net;

9.N_w[i]= The weight of the N_subnet[i] in

Normal_Net;

10.Corri= The correlation coefficient of T_w[i]

and N_w[i];

11.Score[i]=1 − |Corri|;
end

calculated using Algorithm 1 (Additional file 1: Table S1).

The top 15 pathways were tabulated based on their scores

(see Table 1).

Top pathways identified by the proposedmethod should

be significantly associated with the breast cancer risk. To

test the idea, we compared the intersections of the breast

cancer gene set and pathway gene sets before and after

expansion (see Fig. 5). The breast cancer gene set comes

from SIDD which integrates 22 disease gene knowledge

sources. We found that more genes associated with breast

cancer were expanded to the original pathway gene set

through pathway expansion. This result demonstrates that

the proposed method can expand genes associated with

the corresponding disease.

Analysis of the top 15 BRCA pathways

In order to prove that the pathways identified by the pro-

posed method are associated with the breast cancer risk,

we need to look for the supports of biological knowledge

and other methods. Table 1 shows that top 15 pathways

identified from BRCA by the proposed method are signif-

icantly associated with the breast cancer risk through ref-

erence. Here we give the supports of biological knowledge

and other methods for the top 15 BRCA pathways.

The number 1 ranked significant pathway identified

by our method was vitamin B6 metabolism (hsa00750).

Growing evidence suggests that the lack of several trace

elements, such as vitamin B6 and folate, can induce DNA

damage (e.g., single or double-stranded breaks or fusion),

eventually leading to tumors, cancers and a variety of

degenerative diseases [30]. There is a significant nega-

tive correlation between the plasma B6 level and different

types of cancer. Vitamin B6 can reduce the homocys-

teine and pyridoxal phosphate levels, which have potential

biological effects on tumors. Vitamin B6 deficiency leads

to lower serine hydroxymethyltransferase activity, lower

generation of 5,10-methylenetetrahydrofolate and the

Table 1 Top 15 pathways identified from BRCA

Rank Entry Name Score SPIA GSEA Proof

1 hsa00750 Vitamin B6 metabolism 0.997735 No No [30–33]

2 hsa00072 Synthesis and degradation of ketone bodies 0.940425 No Yes [34–37]

3 hsa04122 Sulphur relay system 0.855753 No No [38, 39]

4 hsa00400 Phenylalanine,tyrosine and tryptophan biosynthesis 0.850563 No No [40]

5 hsa00533 Glycosaminoglycan biosynthesis 0.836469 No No [41–43]

6 hsa04964 Proximal tubule bicarbonate reclamation 0.803311 No Yes [46]

7 hsa01040 Biosynthesis of unsaturated fatty acids 0.799334 No No [47]

8 hsa00630 Glyoxylate and dicarboxylate metabolism 0.785954 No Yes [48]

9 hsa05217 Basal cell carcinoma 0.779876 No No [49, 50]

10 hsa00910 Nitrogen metabolism 0.77962 No Yes [51, 52]

11 hsa05218 Melanoma 0.758975 Yes Yes [53]

12 hsa04972 Pancreatic secretion 0.754263 No Yes [54, 55]

13 hsa00670 One carbon pool by folate 0.7452 No No [56]

14 hsa00900 Terpenoid backbone biosynthesis 0.736641 No No [57, 58]

15 hsa00920 Sulphur metabolism 0.733627 No No [59]

Note: Yes if the pathway was also ranked in the SPIA or GSEA top 15; No if otherwise
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Fig. 5 Comparison between the gene number of intersections of the

breast gene set and pathway gene sets before and after expansion

generation of a dUMP instead of a dTMP mismatch to

DNA, which is more likely to lead to a chromosome chain

break and /or impair DNA excision repair. The reduced

generation of 5,10-methylenetetrahydrofolate may lead to

DNA hypomethylation. Abnormal methylation of DNA

has been found in different tumor types [31, 32]. Vitamin

B6 deficiency can increase the sensitivity of the steroid

hormone,which may lead to breast cancer or colon cancer

[33]. These findings demonstrate that the proper intake of

vitamin B6 can reduce the risk of breast cancer; therefore,

this pathway is significantly associated with the breast

cancer risk.

The number 2 ranked significant pathway identified by

the proposed method was Synthesis and degradation of

ketone bodies (hsa00072). Ketone bodies (i.e., 3-hydroxy-

butyrate and/or butanediol) are sufficient to drive mito-

chondrial biogenesis in human breast cancer cells [34, 35].

Carcinoma-associated fibroblasts (CAF) produce “mito-

chondrial fuels”, including lactic acid, ketones, fatty acids,

and glutamine, that provide a "eutrophication" microen-

vironment for tumor cells and promote tumor cell pro-

liferation when metabolized; these fuels are the major

cellular components of the breast cancer stroma [36]. It

was reported that CAF reduced the apoptosis of human

breast cancer MCF7 cells induced by tamoxifen and ful-

vestrant by 4.4-fold and 2.5-fold, respectively [37]. Lactic

acid and ketones are sufficient to induce tamoxifen resis-

tance in breast cancer MCF7 cells. Metformin and arsenic

trioxide can overcome CAF-induced drug resistance in

MCF7 cells. These findings indicate that this pathway is

also significantly associated with the breast cancer risk.

The proposed method ranked the Sulphur relay system

(hsa04122) in 3rd place. Sulphur enables the transport

of oxygen across cell membranes. Oxygen is necessary

for healthy cellular regeneration in mammals. Therefore,

sulphur deficiencies may promote sickness and disease.

Sulphur is commonly used as an herbal medicine to treat

inflammation and cancer and organic sulphur has been

studied in several types of cancers and found to have

remarkable anti-cancer benefits. Methylsulfonylmethane

(MSM) is an organic sulphur-containing natural com-

pound without any toxicity. It was found that MSM sub-

stantially decreased the viability of human breast cancer

cells in a dose-dependent manner and recommended the

use of MSM as a trial drug for the treatment of all types

of breast cancers [38]. Leimkühler et al. pointed out that

sulphur not only prevented but also helped reverse can-

cer [39]. Hence, the sulphur relay system is significantly

associated with the breast cancer risk to some extent.

Phenylalanine, tyrosine and tryptophan biosynthesis

(hsa00400) was ranked 4th in the list of proposed meth-

ods. ENO1 in phenylalanine tyrosine and tryptophan

biosynthesis was significantly overexpressed in HER-

2/neu positive breast tumors [40]. This finding indicates

that this pathway is associated with breast cancer to some

extent; however, the clear relationship between this path-

way and breast cancer re-quires further verification.

The 5th ranked pathway was Glycosaminoglycan

biosynthesis (hsa00533). Abnormal glycosaminoglycan

(GAG) concentrations have been reported for various

types of tumors, suggesting that they may play a role

in neoplasia. Recently, cell biology studies revealed that

glycosaminoglycans were among the key macromolecules

that affected cell properties and functions by acting

directly on cell receptors or via interactions with growth

factors. The interactions of GAGs with growth fac-

tors, cytokines and growth factor receptors have been

implicated in cancer growth and progression. GAGs are

involved in signalling cascades that regulate the angiogen-

esis, invasion and metastasis of malignant cells. Investi-

gations of the fine structures and specific biological roles

of GAGs has led to novel therapeutic approaches [41–43].

The above references denote that glycosaminoglycan

biosynthesis and breast cancer have a certain degree of

correlation.

The top 6–15 pathways are also associated with human

breast cancer (see Table 1). Based on the Table 1, one can

argue that the proposed method is very efficient in iden-

tifying significant pathways of the corresponding complex

disease.

Classification performance using the original genes and

expanded genes of the pathway

To estimate the classification performance of the top 15

expanded pathways, we firstly prepared our data set con-

sisted of 60 normal and 60 tumor samples randomly

derived from the BRCA dataset. The original genes and

expanded genes of the pathway were selected classifica-

tion features and SVM is employed to classify the selected

samples. Next, a 10-fold cross validation was used to train

and test SVM. The above experiment was repeated 100

times and the average accuracy of SVM is shown in Fig. 6.



The Author(s) BMC Bioinformatics 2016, 17(Suppl 17):536 Page 238 of 303

0.5

0.6

0.7

0.8

0.9

1

Cross Validation Accuracy

Fig. 6 Cross validation accuracy using 10-fold cross validation

In results, the lowest accuracy was 0.9333 and the high-

est accuracy was 0.9917. The experimental results sug-

gested that the union of the original genes and expanded

genes of the pathway had a good classification ability

and that the top 15 pathways were significantly different

between the two phenotypic data sets.

Analysis using alternative methods

To assess the validity of the proposed approach, we anal-

ysed the same data using GSEA and SPIA. The GSEA

approach searches for gene sets that are enriched at the

top or bottom of the ranked list of all genes. This method

is a typical representative of the gene set enrichment

analysis methods. The SPIA method scores a gene prod-

uct as highly impactful if it points to other impactful

gene products in the network diagram. This method is

a representative of the network-based pathway analysis

approaches. Therefore, we compared our method with

GSEA and SPIA. It was interesting to examine pathways

ranked at the top by our method but not by GSEA and

SPIA, which reflected the validity of our method.

In GSEA, the analysis performed 1000 permutations

with an FDR cutoff of 25%. Then, 115 pathways were iden-

tified (Additional file 2: Table S2) of which 6 were found

among the top 15 pathways identified using the proposed

method (see Table 1).

In SPIA, a significant threshold of 5% was used on

the FDR corrected P-values to infer pathway signifi-

cance. Then, 3 pathways were identified (Additional file 3:

Table S3) of which one was identified by the proposed

method (see Table 1). The SPIA did not identify any of the

top 5 pathways identified using the proposed method.

Validation of the alternative data set

To test the effectiveness of the proposed method, we

ran the proposed approach on GSE25066. The data were

obtained from response and survival following Taxane-

Anthracycline chemotherapy for newly diagnosed inva-

sive breast cancer. Anthracyclines and taxanes are the

two most active classes of cytotoxic agents for early and

advanced stage breast cancer and thus are commonly

used as a component of either adjuvant or neoadjuvant

therapy and/or in patients with metastatic breast can-

cer (MBC) [44]. Finally, we also obtained two weighted

gene-gene interaction networks for the two phenotypic

datasets. The weighted gene-gene interaction network has

10,856 vertices and 204,772 edges for GSE25066. Our

intention was to identify significant pathways for breast

cancer patients before and after Taxane-Anthracycline

use and to evaluate the pharmacological mechanism

of Taxane-Anthracycline. Among the top 15 pathways

identified using the proposed method, which were sig-

nificant pathways for Taxane-Anthracycline except for

collecting duct acid secretion pathway (hsa04966), the

GSEA and SPIA did not identify any. The relation-

ship between collecting duct acid secretion pathway and

Taxane-Anthracycline and/or breast cancer requires fur-

ther verification. The results (Additional file 4: Table S4)

showed that our approach discovered significant pathways

for Taxane-Anthracycline. The top 15 pathways are shown

in Table 2.

The significantly impacted pathways identified by the

proposed method in the corresponding conditions were

mostly consistent with the known biological processes.

Accordingly, the novel proposed method is of method-

ological and biological significance for future research.

Conclusions

Pathway analysis not only reduces data involving thou-

sands of altered genes and proteins to a smaller and more

interpretable set of altered processes but can also com-

bine multiple types of high-throughput data. The analysis

results play an important role in elucidating the mecha-

nisms of complex diseases, improving clinical treatment,

and discovering drug targets and biomarkers. Therefore,

pathway-based analysis of complex diseases has become

a research hotspot. To date, these methods have entered

the third stage [45]: 1) Pathway-based gene set enrich-

ment analysis; 2) Pathway-based functional class clus-

tering and scoring approaches; and 3) Network-based

pathway approaches.

Unlike existing pathway analysis approaches that do

not take into account the interaction between internal

and external genes of the pathway and between path-

ways, we propose a novel approach that addresses the

above-mentioned limitations by expanding a pathway

based on the k-walk algorithm to two small networks

in two weighted networks (tumor and normal). Finally,

our approach effectively identified significant pathways

that corresponded to a complex disease through a series

of verification steps. It is undeniable that the pathways

identified by GSEA and SPIA but not by our method

are mostly significantly associated with the breast cancer
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Table 2 Top 15 pathways identified from GSE25066

Rank Entry Name Score SPIA GSEA Proof

1 hsa05033 Nicotine addiction 0.430656 No No [60]

2 hsa05217 Basal cell carcinoma 0.402534 No No [49, 50]

3 hsa04740 Olfactory transduction 0.398952 No No [61, 62]

4 hsa04742 Taste transduction 0.393069 No No [63, 64]

5 hsa04340 Hedgehog signaling pathway 0.376035 No No [65, 66]

6 hsa04727 GABAergic synapse 0.362031 No No [67]

7 hsa04713 Circadian entrainment 0.356687 No No [68, 69]

8 hsa00053 Ascorbate and aldarate metabolism 0.35363 No No [70]

9 hsa04723 Retrograde endocannabinoid signaling 0.343314 No No [71–73]

10 hsa04978 Mineral absorption 0.342461 No No [74]

11 hsa04961 Endocrine and other factor-regulated calcium reabsorption 0.341614 No No [75–77]

12 hsa00140 Steroid hormone biosynthesis 0.337664 No No [78, 79]

13 hsa04966 Collecting duct acid secretion 0.336179 No No Not Found

14 hsa04330 Notch signaling pathway 0.333964 No No [80, 81]

15 hsa04614 Renin-angiotensin system 0.332994 No No [82, 83]

Note: Yes if the pathway was also ranked in SPIA or GSEA top 15; No if otherwise

risk. Based on the above analysis, our method combined

with GSEA may produce better results. Hence, we will

combine our method with GSEA in future studies. This

study provides a new research direction for the pathway-

based analysis of complex diseases. We will employ more

datasets to assess the validity of our approach in future

research.
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