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Abstract

We present a statistical network calculus in a setting where both arrivals and service are specified in
terms of probabilistic bounds. We provide explicit bounds on delay, backlog, and output burstiness in
a node or a network. By formulating well-known effective bandwidth expressions in terms of envelope
functions, we are able to apply our calculus to a wide range of traffic source models, including Fractional
Brownian Motion. We present probabilistic lower bounds on the service for three scheduling algorithms:
Static Priority (SP), Earliest Deadline First (EDF), and Generalized Processor Sharing (GPS).
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1 Introduction

To exploit statistical multiplexing gain of traffic sources in a network, service provisioning requires a frame-
work for the stochastic analysis of network traffic and commonly-used scheduling algorithms. The most
influential such framework is theeffective bandwidth[11, 12, 13, 14] which, from a qualitative point of
view, describes the minimum bandwidth required to provide an expected service for a given amount of
traffic. The effective bandwidth concept was related to the theory of large deviations in [4, 25]. However,
applications of the effective bandwidth approach have generally been limited to large buffer asymptotics and
other asymptotic approximations [16].

In this paper, we take an envelope approach to describe arrivals and services in a network. This approach
is motivated by the deterministic network calculus [8] which provides an elegant framework for worst-case
analysis in a network. Several researchers have extended the network calculus to a probabilistic setting,
including [5, 17, 20, 22, 24, 26, 28, 27, 29]. An advantage of an envelope approach is that it can provide
finite bounds on delay and backlog in a network, as opposed to asymptotic approximations.

We present a network calculus in a fully probabilistic setting, where both arrivals and service are ex-
pressed in terms of probabilistic bounds. The principal tools of the calculus areeffective envelopes[28],
which are probabilistic upper bounds on arrivals andeffective service curves[29], which are probabilistic
lower bounds on service. By relating the concepts of effective envelopes and effective bandwidth, we obtain
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explicit bounds on delay and backlog for all traffic source characterizations for which an effective bandwidth
(in the sense of [4, 15]) has been determined. Specifically, we consider traffic characterizations that relate
to regulated, On-Off, and Fractional Brownian Motion traffic. The effective service curves in this paper,
which are inspired by the ‘statistical service envelopes’ in [20], can express the service for a wide range
of scheduling algorithms. In this way, the effective bandwidth theory can be easily related to scheduling
algorithms used in practice. Thus, a contribution of this paper is to link two principal tools for the analysis
of network traffic, i.e., effective bandwidth and network calculus.

In addition to reconciling effective bandwidth with the envelope approach used in the network calculus,
we improve the state-of-the art of statistical network calculus analysis. We generalize [22] by considering a
stochastic description of service. In comparison to [29], the network calculus presented here considers other
traffic models than regulated traffic.

The paper is structured as follows. In Section 2, we introduce our notation and present definitions of
effective envelopes and effective service curves. In Section 3, we propose a statistical network calculus for
probabilistic arrivals and service guarantees. The calculus requires the availability of a statistical bound on
the busy period bound at a node. Such a bound is derived in Section 4. In Section 5, we explore a duality
of the effective bandwidth and the effective envelope. This enables us to construct effective envelopes for
all traffic models for which effective bandwidth results are available. Specifically, we consider regulated
arrivals, an On-Off traffic model, and a fractional Brownian motion traffic model. In Section 6, we derive
probabilistic lower bounds on the service offered by the scheduling algorithms SP, EDF, and GPS, in terms
of effective service curve. In Section 7, we apply the network calculus in a set of examples, and compare
the multiplexing gain achievable with the traffic models and scheduling algorithms used in this paper. We
present brief conclusions in Section 8.

2 Notation and Definitions

We consider a discrete time model, where time slots are numbered�� �� �� � � � . Traffic arrivals and depar-
tures in the interval��� t� are random processes which are defined over a joint probability space which is
suppressed in our notation. Sample path are given by nonnegative, nondecreasing functionsA�t� for arrivals
andD�t� for departures, withD�t� � A�t�. The backlog at timet is given byB�t� � A�t� �D�t�, and the
delay at timet is given byW �t� � inffd � � j A�t � d� � D�t�g. If A andD are represented as curves,
B�t� andW �t�, respectively, are the vertical and horizontal differences between the curves.

We use subscripts to distinguish arrivals and departures from different flows or different classes of flows,
e.g.,Ai�t� denotes the arrivals from flowi, and

AC �t� �
X
i�C

Ai�t� (1)

denotes the arrivals from a collectionC of flows. We use the same convention for the departures, the backlog,
and the delay. When we are referring to a network with multiple nodes, we use superscripts to distinguish
between different nodes, i.e., we useAhi �t� to denote the arrivals to theh-th node on the route of flowi, and
Anet
i �t� � A�

i �t� to denote the arrivals of flowi to the first node on its route. To simplify notation, we drop
subscripts and superscripts whenever possible

We assume that the network is started at time 0 and that network queues are empty at this time, i.e.,�i,
Ai��� � Di��� � �. Furthermore, we make two fundamental assumptions about the source traffic.
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1. Stationary Bounds: For any� � �, the processesAi satisfy

lim
x��

sup
t��

Pr
�
Ai�t	 � ��Ai�t� � x

�
� � �

2. Independence: Ai andAj are stochastically independent for alli �� j.

The assumptions are made at the network entrance when traffic is arriving to the first node on its route. No
such assumptions are made after traffic has entered the network.

We introduce the operators which are used in the min-plus algebra formulation of the deterministic
network calculus [1, 3, 7]. For given functionsf and g, the convolution operator� and deconvolution
operator� are defined by

f � g�t� � inf
�����t�

ff�t� �� 	 g���g �

f � g�t� � sup
���

ff�t	 ��� g���g �

To characterize the available service to a flow or a collection flows we useeffective service curves, which
were recently proposed in [29] as a probabilistic measure of the available service.

Definition 1 Given an arrival processA, aneffective service curveis a non-negative real-valued function
S� that satisfies for allt � �,

Pr
n
D�t� � A � S��t�

o
� �� � � (2)

By letting � � �, effective service curves recover the service curves of the deterministic calculus with
probability one [2].

We also use a probabilistic measure for the traffic arrivals, called effective envelopes from [28].

Definition 2 An effective envelopefor an arrival processA is a non-negative functionG� such that for allt
and�

Pr
n
A�t	 � ��A�t� � G����

o
� �� � � (3)

Simply, an effective envelope provides a stationary bound for an arrival process. We emphasize that both
effective service curves and effective envelopes are non-random functions.

3 Statistical Network Calculus

In this section, we state results for a network where arrivals and service are described in terms of probabilistic
bounds.

We first consider a single node. We assume thatG�g is an effective envelope curve for the arrivalsA to
a node, and thatS�s is an effective service curve. For the calculus we make the assumption that there exists
a numberT�b �	 such that for allt � �,

Pr
n

� � T �b 
 D�t� � A�t� � � 	 S�s���

o
� �� ��b 	 �s� � (4)
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T �b is bound on the range of the convolution in Eqn. (2) which holds with violation probability�b. Thus,
Eqn. (4) is a probabilistic bound on the largest relevant time scale that relates arrivals and departures. In a
workconserving scheduler, such a bound can be established in terms of a probabilistic bound of the busy
period, or from a priori backlog or delay bounds. This will be addressed in Section 4.

The following theorem establishes statistical bounds for queueing delay and backlog in terms of min-
plus algebra operations on effective envelopes and effective service curves. Note that we are dealing with
three violation probabilities:�g is the probability that arrivals violate the effective envelope,�s is the proba-
bility that the service violates the effective service curve, and�b is the probability that the bound on the time
scaleT �b is violated.

Theorem 1 Assume thatG�g is an effective envelope for the arrivalsA to a node, thatS�s is an effective
service curve, and thatT�b satisfies Eqn. (4). Define� to be

� � �s 	 �b 	 T �b�g �

Then the following hold:

1. Output Traffic Envelope: The functionGout�� 
� G�g � S�s is an effective envelope for the output
traffic from the node. More precisely,

Pr
n

x � T �b 
 D�t	 � ��D�t� � G�g �� 	 x�� S�s�x�

o
� �� �� (5)

2. Backlog Bound: For any timet � �,

Pr
n
B�t� � G�g � S�s���

o
� �� � � (6)

3. Delay Bound: If d � � satisfiesmax��T �b

n
G�g ���� S�s�d	 ��

o
� �, then for any timet,

Pr
n
W �t� � d

o
� �� � � (7)

By setting�s � �b � �g � �, we recover the corresponding statements of the deterministic network calculus
as presented in [2, 6, 1].

Proof. First, we prove thatG�g � S�s is an effective output traffic envelope. Fixt� � � �.

Pr
n
D�t� � ��D�t� � G�g � S�s���

o
� Pr

n
�x � T �b � D�t� � ��D�t� � G�g �� � x�� S�s�x�

o
(8)

� Pr

�
�x � T �b �

�
A�t� � ��A�t� x� � G�g �� � x�

and D�t� � A�t� x� � S�s�x�

��
(9)

� Pr

�
�x� � T �b � A�t� � � �A�t� x�� � G�g �� � x��

and �x� � T �b � D�t� � A�t� x�� � S�s�x��

�
(10)

� ��
�
�s � �b � T �b�g

�
� (11)

In Eqn. (8), we have expanded the deconvolution operator and reduced the range of the supremum, i.e.,
by assuming that the supremum is achieved for a valuex � T�b . In Eqn. (9), we replacedD�t 	 � � by
A�t 	 � �. Further, by adding the condition thatD�t� � A�t � x� 	 S�s�x� we were able to replaceD�t� by
A�t�x�	S�s�x�. The inequality holds since adding the condition and the replacements restrict the event. In
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Figure 1: Traffic of a flow through a set ofH nodes. LetAh andDh denote the arrival and departures at theh-th node, with
A� � Anet,Ah � Dh�� for h � �� � � � � H andDH � Dnet.

Eqn. (10) we further restricted the event, by demanding that the first condition in Eqn. (9) holds for all values
of x. To obtain Eqn. (11), we applied the assumption in Eqn. (4), and used the definition ofG�g . We added
the violation probabilities of the two events using Boole’s inequality (Pr fA �Bg � ��Pr

�
�A
�
�Pr

�
�B
�

for two eventsA andB). The factorT�b in front of �g appears since we added the violation probabilities
over all values ofx�.

The proof of the backlog bound proceeds along the same lines. We estimate

Pr
n
B�t� � G�g � S�s���

o
	 Pr

n
A�t� � D�t� � G�g � S�s���

o
(12)

� Pr

�
�x � T �b �

�
A�t� � A�t� x� � S�s�x� � G�g � S�s���

andD�t� � A�t� x� � S�s�x�

��
(13)

� Pr

�
�x� � T �b � A�t��A�t� x�� � G�g �x��

and �x� � T �b � D�t� � A�t� x�� � S�s�x��

�
(14)

� ��
�
�s � �b � T �b�g

�
� (15)

In Eqn. (12), we have used the definition of the backlogB�t�. The arguments made in Eqn. (13)-(15) are
analogous to those used in Eqn. (9)-(11).

Finally, we prove the delay bound in Eqn. (7). Again, the steps of the proof are similar as before. In
Eqn. (16), we use the definition of the delayW �t�. The remaining steps apply the same arguments as the
proofs of the output bound and the backlog bound.

Pr
n
W �t� � d

o
	 Pr

n
A�t� d� � D�t�

o
(16)

� Pr

�
�x � T �b �

�
A�t� d� � A�t� x� � S�s�x�

andD�t� � A�t� x� � S�s�x�

��
(17)

� Pr

�
�x� � T �b � A�t� d��A�t� x�� � G�g ��x� � d���

and�x� � T �b � D�t� � A�t� x�� � S�s�x��

�
(18)

� ��
�
�s � �b � T �b�g

�
� (19)

�

Next we consider multiple nodes. As in the deterministic calculus, the service given by the network as a
whole can be expressed as a convolution of the service at each node. Suppose the arrivalsA�t� to a flow pass
throughH nodes, labeledh � �� � � � �H, in series, as shown in Figure 1. LetAnet � A� andDnet � DH

denote the arrivals and departures from the network, and letAh � Dh�� for h � �� � � � �H.
At each node, the arrivals are allotted an effective service curve, whereSh��s denotes the effective service

curve at nodeh. Similar to Eqn. (4), we assume that each node satisfies

Pr
n

� � T h��b 
 Dh�t� � Ah�t� � � 	 Sh��s���

o
� �� �h (20)
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for some numbersTh��. For notational convenience, we assume that the violation probabilities�s and�b are
identical at each node. This assumption is easily relaxed.

Theorem 2 Effective Network Service Curve. Assume thatSh��s is an effective service curve for nodeh
that satisfies Eqn. (20) for allt � � andh � �� � � � �H with some numbersTh��b. Then, an effective service
curve for the sequence of nodes is given by

Snet�� � S���s � S���s � � � � � SH��s � (21)

with violation probability bounded above by

� � �s

HX
h��

�
� 	 �h� ��T h��b

�
� (22)

Proof. We start the proof with a deterministic argument for a sample path. Fixt � �, and suppose that, for
a particular sample path, we have�

�� �
PH

k�h�� T
k��b 
xh � T h��b 
 Dh�t� � � � Ah�t� � � xh� 	 Sh��s�xh� � if h � H�


xH � TH��b 
 DH �t� � AH �t� xH � 	 SH��s�xH� � if h � H �
(23)

Since the departures from the�h � ��-th node are the arrivals at theh-th node, that is,Ah � Dh�� for
h � �� � � � �H, we see by repeatedly inserting the first line of Eqn. (23) into the second line of Eqn. (23)
that there exist numbersxh � T h��b such that

DH �t� � Ah�t� �xh 	 � � �	 xH�� 	
HX
k�h

Sk��s�xk� � (24)

Settingh � � in Eqn. (24), and using the definitions ofAnet, Dnet, andSnet��, we obtain


x� � T ���b � � � � �
xH � TH��b 
 Dnet�t� � Anet�t� �x� 	 � � �	 xH�� 	 Snet���x� 	 � � �	 xH� � (25)

Thus, we have shown that Eqn. (23) implies Eqn. (25). This argument will be used below.
To proof the claim of the theorem we will show that

Pr
n

� �

HX
h��

T h��b 
 Dnet�t� � Anet�t� � � 	 Snet�����
o

� � (26)

The proof is as follows:

Pr
n

� �

HX
h��

T h��b 
 Dnet�t� � Anet�t� � � 	 Snet�����
o

� Pr
n

Eqn. (25) holds
o

(27)

� Pr
n

Eqn. (23) holds
o

(28)

� �� �s �

HX
h��

�
� 	

HX
k�h��

T k��b
�
� (29)
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In Eqn. (27), we have set� � x� 	 � � � 	 xH . In the next step, we have used that Eqn. (23) implies
Eqn. (25), as explained above. In Eqn. (29), we have applied Eqn. (20) and added the violation probabilities
of Eqn. (23) over all possible values ofh � �� � � � �H. Lastly, exchanging the order of summation completes
the proof.

�

The presented results assume that boundsT�b are readily available. In the next section, we obtain these
bounds from bounds on the busy period at a workconserving scheduler.
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4 Busy Period Analysis

In the network calculus from the previous section, the time scaleT�b in Eqn. (4) played a central role. For
workconserving schedulers, a bound on this time scale can be obtained by bounding the busy period of the
scheduler, where a busy period for a given timet is the maximal time interval containingt during which the
backlog from the flows inC remains positive. Fort � �, define the last idle time beforet by

t � maxf� � t 
 B��� � �g � (30)

Our assumption thatB��� � � guarantees that� � t � t.
In this section, we bound the time scaleT�b in terms of a bound on the busy period. Alternatively, one

can derive a bound onT�b from bounds on the backlog, e.g., using those derived in [24].

Lemma 1 For an arrival processA and a workconserving scheduler with a constant rateC, assume that

�X
���

sup
t��

Pr fA�t	 � ��A�t� � C�g �	 � (31)

For �  ��� ��, chooseT� such that

�X
��T ���

sup
t��

Pr fA�t	 � ��A�t� � C�g � � � (32)

ThenT � is a probabilistic bound on the busy period, satisfying

Pr
�
t� t � T �

�
� �� � � (33)

The lemma is easily extended to output links that offer a (deterministic)strict service curve, which is
defined for an arrival processA as a nonnegative function such thatB�t� � � for t  �t�� t�� implies that
D�t���D�t�� � S�t�� t�� for each sample path and everyt� � t� � �, such aslatency-rate service curves
[23] with S � K�t��� for a rateK and a delay�.

Proof. Fix t � �. SinceB��� � � for t � � � t, we have by definition of the workconserving scheduler,
thatD�t� � D�t� � C�t � t�. SinceD�t� � A�t�, andD�t� � A�t� by definition of t, this implies
A�t��A�t� � C�t� t� with equality only whenB�t� � �, in which caset � t. It follows that

Pr
�
t� t � T �

�
� Pr

�

� � T � 
 A�t��A�t� � � � C�

�
(34)

�

�X
��T ���

Pr
�
A�t��A�t� � � � C�

�
(35)

� � � (36)

where we have used the definition ofT� in the third line. �

Lemma 1 enables us to bound the tail distribution of a server’s busy periods from bounds on the distri-
bution function of the arrival process. This bound can be used in Theorem 1. In the next Section we use
Lemma 1 to determine busy period bounds for Regulated traffic, On-Off traffic, and Fractional Brownian
Motion traffic.
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5 Effective Envelopes and Effective Bandwidth

In this section, we reconcile two methods for probabilistic traffic characterization,effective envelopesand
effective bandwidth, and explore the relationship between them. The notion of aneffective envelope, which
was introduced in [28], is motivated by the traffic envelopes used in the deterministic calculus. Theeffective
bandwidth, which has been extensively studied, is motivated by the rate functions that appear in the theory
of large deviations. Effective bandwidth expressions have been derived for numerous source traffic models
with applications in computer networks. We refer to [7, 15, 16] for a detailed discussion. By providing a link
between effective bandwidth and effective envelopes, the results in this section make effective bandwidth
results applicable to the network calculus.

The following definition was first provided in [4].

Definition 3 Theeffective bandwidthof an arrival processA that satisfies a stationary bound is given by

��s� �� � sup
t��

�
�

s�
logE�es�A�t�� ��A�t�	�

�
� s� �  ���	� � (37)

The parameter� is called the time parameter and indicates the length of a time interval. The parameters is
called the space parameter and contains information about the distribution of the arrivals.

In the following lemma, we establish an approximate duality between effective envelopes and effective
bandwidth.

Lemma 2 Given an arrival processA with effective bandwidth��s� ��, an effective envelope is given by

G���� � inf
s��

�
���s� ���

log �

s

�
� (38)

Conversely, if, for each�  ��� ��, the functionG� is an effective envelope for the arrival process, then its
effective bandwidth is bounded by

��s� �� �
�

s�
log

�Z �

�
esG

���	d�

	
� (39)

Proof. To prove the first statement, fixt� � � �. By the Chernoff bound [19], we have for anyx and any
s � �

Pr
n
A�t	 � ��A�t� � x

o
� e�sxE

h
es�A�t�� ��A�t�	

i
(40)

� es��x����s��		 � (41)

Setting the right hand side equal to� and solving forx, we see that, for any choice ofs � �, the function

x��s��� � ���s� �� �
log �

s
(42)

is an effective envelope forA, with violation probability bounded by�. Minimizing overs proves the claim.
For the second statement, fixt� � � �, and let

F t�� �x� � Pr
�
A�t	 � ��A�t� � x

�
(43)
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be the distribution function ofA�t	 � ��A�t�. For anys � �, we can write the moment-generating function
of A�t	 � ��A�t� in the form

E
h
es�A�t�� ��A�t�	

i
�

Z �

�
esxdF t�� �x� � (44)

By using a suitable approximation, we may assume without loss of generality thatFt�� is continuous and
strictly increasing forx � �. LetGt�� be the inverse function of�� Ft�� . Since

Pr
�
A�t	 � ��A�t� � Gt� ���

�
� � � (45)

we must haveGt�� ��� � G���� by the definition of the effective envelope. Performing the change of
variables�� F t�� �x� � �, i.e.,x � Gt�� ��� in the integral, we obtain

E



es
�
A�t�� ��A�t�

�
�

Z �

�
esG

t�� ��	d� �

Z �

�
esG

���	d� � (46)

It follows that

��s� �� �
�

s�

Z �

�
esG

���	d� � (47)

as claimed. �

With this lemma we can construct an effective envelope for a traffic class if its effective bandwidth
is known. Since many effective bandwidth formulas have been provided in the literature (e.g., [7, 15]),
Lemma 2 provides a useful tool to apply the presented network calculus to a wide range network traffic.

We emphasize that the effective envelope is a more general concept than effective bandwdith. Even when
the effective bandwidth��s� �� is infinite for some values ofs and� , and the corresponding construction in
Lemma 2 is not applicable, it may be feasible to specify an effective envelopeG���� according to Definition 2
which is finite for all values of� and� .

Next we derive effective envelopes and busy period estimates for three arrival models, by applying
Lemmas 1 and 2.

5.1 Regulated Arrivals

LetA� be a nondecreasing, nonnegative, subadditive function. We say that an arrival processA is regulated
byA� if

�t� � � � 
 A�t	 � ��A�t� � A���� (48)

holds for every sample path. UsingP and�, respectively, to denote the peak rate and the long-time average
rate of regulated traffic, Eqn. (48) implies thatP and� are bounded by

P � A���� � � � lim
t��

A��t�

t
� (49)

The regulated arrival model is a suitable description when the amount of traffic that enters the network is
limited at the network edge, e.g., by a leaky bucket, and has been studied extensively [9, 10, 21].

Consider a collectionC of flows which are regulated by subadditive functionsA�i , and letPi and�i be
the peak rate and average rate constraints implied byA�i . Clearly, the aggregate of the flowsAC is bounded
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by A�C �
P

i�C A
�
i , with peak and longtime average rates bounded byPC �

P
i�C Pi and�C �

P
i�C �i.

We assume that each flowi  C satisfies the stationary bound

E
�
Ai�t	 � ��Ai�t�

�
� �i� � (50)

and that the arrivals from different flows are independent. The effective bandwidth for such a collection of
flowsAC satisfies [15]

�C�s� t� �
�

st

X
i�C

log

�
� 	

�it

A�i �t�
�esA

�
i �t	 � ��

	
� (51)

By Lemma 2, the corresponding effective envelope is given by

G�C�t� � inf
s��

nX
i�C

�

s
log
�
� 	

�it

A�i �t�

�
esA

�

i �t	 � �
��

�
log �

s

o
� (52)

This effective envelope satisfies

�Ct � G�C�t� � A�C�t� (53)

for all t � �.
We next construct a probabilistic bound for the busy period of a collection of regulated flows at a

workconserving link with a fixed-rate capacityC, by verifying the assumptions of Lemma 1. We con-
sider only the situation where�C � C � PC , since otherwise the expected backlog is either infinite or
zero. Under these conditions, a deterministic bound on the busy period is given byt � t � T�, where
T � � inf ft � � 
 A�C�t� � Ctg. Sincet � t � T � for all t, the sum in Eqn. (31) contains only finitely
many nonzero terms, and the first condition of Lemma 1 is satisfied. By Lemma 1, a probabilistic bound on
the busy period is given by any numberT� satisfying

T �X
��T ���

sup
t��

Pr
�
AC �t	 � ��AC �� � � C�

�
� � � (54)

In order to estimate the left hand side of Eqn. (54), we use the Chernoff bound

Pr
�
AC �t	 � ��AC �t� � C�

�
� inf

s��
es���C�s��	�C	 (55)

� inf
s��

n
e�Cs�

Y
i�C

�
� 	

�i�

A�i ���
�esA

�
i ��	 � ��

�o
� (56)

In general, the infimum on the right hand side of Eqn. (56) cannot be expressed analytically. However,
since the objective function is strictly convex ins, the minimum in Eqn. (56) can be found numerically by
standard methods.

Ideally, we would like to findT� as small as possible. In order to obtain a rough quantitative estimate
for T � and its dependence on the link rateC and the parameters of the flows, we use the peak rate constraint
A�i ��� � Pi� and replace the variables by s	� in Eqn. (56), which results in the simpler, looser bound

Pr
�
AC �t	 � ��AC �t� � C�

�
� inf

s��

n
e�Cs

Y
i�C

�
� 	

�i
Pi

�esPi � ��
�o

�
 
 � (57)

Inserting Eqn. (57) into Eqn. (54) and solving forT� yields

T � � T � �

�
�




�
� (58)
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Figure 2: On-Off Transition Model.

5.2 On-Off traffic

On-Off traffic models are frequently used to model the behavior of (unregulated) compressed voice sources.
We consider a variant of On-Off traffic with independent increments. As illustrated in Figure 2, we describe
an On-Off traffic source as a two-state memoryless process. In the ‘On’ state, traffic is produced at the
peak rateP , and in the ‘Off’ state, no traffic is produced, with an overall average traffic rate� � P . For a
collectionC of independent flows with peak ratesPi and average rates�i (i  C), the effective bandwidth
for the aggregate traffic of the flows inC is given by [7]

�C�s� t� �
�

s

X
i�C

log

�
� 	

�i
Pi

�
ePis � �

�	
� (59)

Lemma 2 gives the corresponding effective envelope as

G�C�t� � inf
s��

n t
s

X
i�C

log
�
� 	

�i
Pi

�
ePis � �

��
�

log �

s

o
� (60)

To obtain a busy period estimate at a link with a constant rateC with �C � C � PC , we use again Lemma 1.
By the Chernoff bound, we have for anyt� � � �

Pr
�
AC �t	 � ��AC �t� � C�

�
� inf

s��
es���C�s��	�C	 (61)

� inf
s��

n
e�Cs

Y
i�C

�
� 	

�i
Pi

�
ePis � �

��o�
�
 
� � (62)

ForC with �C � C � PC the objective function in Eqn. (62) has a unique minimum, with
 � �. It follows
that, for anyT � �,

�X
��T��

sup
t��

Pr
�
AC �t	 � ��AC �t� � C�

�
�


T��

�� 

�	 � (63)

verifying Eqn. (31) of Lemma 1. Setting the right hand side equal to� and solving forT shows that

T � �

�
log ���� 
���

log 


�
� � (64)

satisfies Eqn. (32).

5.3 Fractional Brownian Motion traffic

As pointed out in [18], the time autocorrelations of measured traffic data can sometimes be modeled by
processes of the form

A�t� � �t	 �Zt � (65)
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whereZt is a normalized fractional Brownian motion with Hurst parameterH � �
� , � � � is the mean traffic

rate, and�� is the variance ofA���. By definition,fZtgt�R is a Gaussian process with stationary increments
which is characterized by its starting pointZ� � �, expected valuesEZt � �, and variancesEZ�

t � jtj�H

for all t.
Following [18], we will refer to Eqn. (65) as theFractional Brownian Motion (FBM)traffic model.

Note that the sum of the arrivals from a collectionC of independent fractional Brownian traffic sources with
common Hurst parameter is again fractional Brownian traffic, where the mean traffic rate and the variance
parameter�� are given by

�C �
X
i�C

�i � ��C �
X
i�C

��i � (66)

We remark that the fractional Brownian traffic model is an idealization that fails to capture certain
basic properties of actual traffic. Most notably, even though the average rate is positive, increments can be
negative, and there is positive probability that a sample path fails to be nondecreasing, or even nonnegative.
Furthermore, fractional Brownian traffic is defined for continuous time, while we consider here discrete-
time arrival processes. We note that the estimates below hold for all (discrete-time) arrival processes that
have nonnegative increments, and whose moment generating function is bounded by the moment generating
function of fractional Brownian traffic.

The effective bandwidth for fractional Brownian traffic is given by [15]

�C�s� t� � �C 	
�

�
��Cst

�H�� � (67)

By Lemma 2, this results in an effective envelope of

G�C�t� � �Ct	
p
�� log � �Ct

H � (68)

Turning to the construction of busy period bounds, to verify the assumptions of Lemma 1, we use the
Chernoff bound to obtain

Pr
�
AC �t	 � ��AC �t� � C�

�
� inf

s��
es���C�s��	�C	 � e

� �

�

�
C��C
�C

�
�

����H

� (69)

SinceH � �, the right hand side is a nonincreasing integrable function of� . It follows that for anyT � �,
�X
��T

sup
t��

Pr
�
AC �t	 � ��AC �� � � C�

�
�

Z �

T
e
� �

�

�
C��C
�C

�
�

����H

d� �	 � (70)

which implies Eqn. (31). To estimateT�, we need a quantitative bound for the integral on the right hand
side of Eqn. (70). Set

b �
�

�

�
C � �C
�C

	�

� � � �� �H � (71)

and compute, forH  ��� � ��,Z �

T
e�b�

�

d� �

Z �

T �

e�bxx����� dx (72)

� inf
��s��

n��	� � �

ebs

������ Z �

T �

e����s	bx dx
o

(73)

� inf
��s��

n��	� � �

ebs

������ �

��� s�b
e�b���s	T

�
o
� (74)
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In Eqn. (72), we have changed variables tox � ��. In Eqn. (73), we have used that

e�sbxx����� �

�
�	� � �

ebs

	�����

(75)

for anyx � �, s � �, and in Eqn. (74) we have performed the remaining integration. Setting the right hand
side of Eqn. (74) equal to� and solving forT yields the desired bound

T � � inf
��s��

n �

��� s�b

h
� log

�
��� s�b�

�
	 ��	� � �� log

��	� � �

ebs

�io���
� (76)

6 Effective Service Curves for Scheduling Algorithms

We next present probabilistic lower bounds on the service guaranteed to a class of flows, in terms of effective
service curves. We derive effective service curves at a node for a set of well-known scheduling algorithms.
With the busy period bounds from the previous section, the service curves can be used to verify probabilistic
delay guarantees.

From here on, we assume that each flow belongs to one ofQ classes. We denote the arrivals from all
flows in classq byAq, and the arrivals to the collectionC of all flows in all classesq � �� � � � � Q byAC . We
make similar conventions for departures and backlogs. We useG

�g
q to denote an effective envelope for the

arrivals from classq. We consider a workconserving link with link rateC, and three scheduling disciplines:
Static Priorities (SP), Earliest Deadline First (EDF), and Generalized Processor Sharing (GPS). We begin
with a brief description of the three schedulers.

1. In an SP scheduler, every class is assigned a priority index, where a lower priority index indicates a
higher priority. An SP scheduler selects for transmission the earliest arrival from the highest priority
class with a nonzero backlog.

2. In an EDF scheduler, every classq is associated with a delay indexdq. A class-q packet arriving att is
assigned deadlinet	 dq, and the EDF scheduler always selects the packet with the smallest deadline
for service. We allow that packets miss their assigned deadline. A delay index is a parameter of the
scheduling algorithm, which determines the order of transmission. The delay index by itself does not
provide an upper bound on delays.

3. In a GPS scheduler, every classq is assigned a weight indexq and is guaranteed to receive at least
a share 	qP

p 	p
of the available capacity. If any class uses less than its share, the extra bandwidth is

proportionally shared by all other classes.

For these schedulers, we now present effective service curves for each traffic classq. The effective
service curves consider the ‘leftover’ bandwidth which is not used by other traffic classesp �� q. A similar
construction was used in the ‘statistical service envelopes’ from [20]. A major difference between statistical
service envelopes and our effective service curves is that the latter are non-random functions. This makes
the analysis of effective service curves more tractable.

Lemma 3 Consider the arrivals fromQ classes to a workconserving server with capacityC. Assume the
arrivals have non-negative increments. LetT�b be a busy period bound for the aggregateAC which satisfies
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Eqn. (33). Assume the scheduling algorithm employed at the server is either SP, EDF, or GPS. In the case
of GPS, assume additionally that the functionsG

�p
p are concave. Let� � � and the functionS�q be given as

follows:

1. SP: S�q �t� �
h
Ct�

X
p�q

G
�g
p �t�

i
�
� � � �b 	 �q � ��T �b�g � (77)

2. EDF: S�q �t� �
h
Ct�

X
p��q

G
�g
p �t� �dp � dq���

i
�
� � � �b 	 �Q� ��T �b�g � (78)

3. GPS: S�q �t� � �q

�
Ct	

X
p ��q

h
�pCt� G

�g
p �t�

i
�

�
� � � �b 	 �Q� ��T �b�g � (79)

where�p � p	
P

r is the guaranteed share of classp.

ThenS�q is an effective service curve for classq, satisfying

Pr
n

� � T �b 
 Dq�t� � A�t� � � 	 S�q ���

o
� �� � � (80)

By setting all violation probabilities�b� �g � � in Lemma 1, we can recover a deterministic (worst-case)
statement on the lower bound of the service seen by a service class. Such worst-case bounds, however, are
generally too pessimistic to be of practical relevance.

Proof.
SP scheduling: Denote the arrivals from flows of priority at leastq byA�q, and the arrivals from flows of
priority higher thanq byA�q, and correspondingly for departures and backlogs. Fixt � �, and let

t�q � max
�
x � t 
 B�q�x� � �

�
(81)

be the beginning of the busy period containingt from the perspective of classq. If Bq�t� � �, whereBq is
the class-q backlog, then we have by the properties of the SP scheduler that

Dq�t� � Dq�t�q� 	
�
D�q�t��D�q�t�q�

�
�
�
D�q�t��D�q�t�q�

�
(82)

� Aq�t�q� 	
h
C�t� t�q��

�
A�q�t��A�q�t�q�

�i
�
� (83)

In Eqn. (83), we have used thatDp�t�q� � Ap�t�q� for all p � q, thatD�t��D�t�q� � C�t� t�q� by the
properties of the workconserving server, and thatDp�t� � Ap�t� for all p. It follows that

Pr
n
�� � T �b � Dq �t� � Aq �t� � � �

h
C��� �

X
p�q

G�gp ���
i
�

o

� Pr
n
t� t�q � T �b andDq�t� � Aq �t�q� �

h
C�t� t�q��

X
p�q

G�gp �t� t�q�
i
�

o
(84)

� Pr
n
t� t�q � T �g andA�q �t��A�q �t�q � �

X
p�q

G�gp �t� t�q�
o

(85)

� Pr
n
t� t � T �g and�p � q� �� � T �b � Ap�t��Ap�t� � � � G�gp ���

o
(86)

� ��
�
�b � �q � ��T �b�g

�
� (87)

wheret is the beginning of the busy period of the server. The above proves the claim for SP. In Eqn. (84),
we have set� � t � t�q, and in Eqn. (85), we have used Eqn. (83). In Eqn. (86), we have restricted the
event and used thatt � t�q, and in the last line, we have used the definitions ofT�b andG�gp .
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EDF scheduling: Fix t � �, and lett be the beginning of the busy period containing timet. If Bq�t� � �,
then according to the EDF scheduling algorithm, class-p packets which arrive aftert	 dq � dp will not be
served by timet. Since the server is workconserving, this implies

Dq�t� � Dq�t� 	
�
DC �t��DC �t�

�
�
X
p ��q

�
Dp�t��Dp�t�

�
(88)

� Aq�t� 	
h
C�t� t��

X
p��q

�
Ap�t� �dp � dq����Ap�t�

�i
�
� (89)

We argue as in Eqs. (84)-(87) that

Pr
n
�� � T �b � Dq�t� � Aq �t� � � �

h
C��� �

X
p��q

G�gp �� � �dp � dq���
i
�

andBq�t� �� 	 �
o

� Pr
n
t� t � T �b and�p �	 q� �� � T �b � Ap�t��Ap�t� � � � G�gp ���

o
(90)

� ��
�
�b � �Q� ��T �b�g

�
� (91)

GPS scheduling: For t � �, let

tp � max
�
x � t 
 Bp�x� � �

�
(92)

be the beginning of the busy period oft with respect to classp. Clearly,

Bp�t� � Ap�t��Dp�t� � Ap�t��Ap�tp�� �pC�t� tp� (93)

by the properties of the GPS scheduler. Fort � � andp �� q, let

tqp � max
�
x � tq 
 Bp�x� � �

�
� (94)

then Eqn. (93) witht replaced bytq implies that

Dp�t��Dp�tq� � Ap�t��Ap�tq� 	Bp�tq� (95)

� Ap�t��Ap�tqp�� �pC�tq � tqp� � (96)

It follows that

Dq�t��Dq�tq� � �q

�
C�t� tq� 	

X
p��q

�
�pC�t� tq��Dp�t� 	Dp�tq�

�
�

�
(97)

� �q

�
C�t� tq� 	

X
p��q

�
�pC�t� tqp��Ap�t� 	Ap�tqp�

�
�

�
� (98)

Fix t � �, and assume for the moment that

t� t � T �b and�p �� q��� � T �b 
 Ap�t��Ap�t� � � � G
�g
p ��� � (99)

Sincet � tqp � tq, it follows with by Eqn. (98) that

Dq�t� � Dq�tq� 	 �q

�
C�t� tq� 	

X
p ��q

�
�pC�t� tqp��Ap�t� 	Ap�tqp�

�
�

�
(100)

� Aq�tq� 	 �q

�
C�t� tq� 	

X
p ��q

�
�pC�t� tqp�� G

�g
p �t� tpq�

�
�

�
� (101)
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REGULATED TRAFFIC ON-OFF TRAFFIC FBM TRAFFIC

Type P � � P � � � H

(Mbps) (Mbps) � (bits) (Mbps) (Mbps) (Mbps) (Mbs)
1 1.5 0.15 95400 1.5 0.15 0.15 4.5 0.78

2 6.0 0.15 10345 6.0 0.15 0.15 0.94 0.78

Table 1:Source Traffic Parameters.

SinceG�gp is concave, the function
�
�Ct�G

�g
p �t�

�
�

is nondecreasing int. Replacingt� tpq with the smaller
valuet� tq in Eqn. (101) and using the definition ofS�q yields

Dq�t� � Aq�tq� 	 S�q �t� tq� � (102)

Finally, we estimate

Pr
n

� � T �b 
 Dq�t� � Aq�t� � � 	 S�q ���

o
� Pr

n
t� tq � T �b and Eqn. (102) holds

o
(103)

� Pr
n

Eqn. (99) holds
o

(104)

� ��
�
�b 	 �Q� ��T �b�g

�
� (105)

This completes the proof. �

We note that the formulas in Eqs. (77)–(79) do not fully characterize the service available to classq

for the three schedulers. Rather, they represent lower bounds on the leftover capacity that is left by other
classes. Among the three scheduling algorithms, Eqn. (77) describes the performance of an SP scheduler
rather closely. Eqn. (79) for the GPS scheduler is not the best possible description, but improves on the
minimal guaranteed rate�qC. On the other hand, Eqn. (78) does not entirely reflect the properties of the
EDF scheduler. For example, in the limit wheredp � dq for all classesp �� q, Eqn. (78) approaches
the service guarantees of an SP scheduler for the lowest priority class, while the actual EDF scheduler
approaches FIFO.

7 Numerical Examples

In this section, we present numerical examples for a single network node, to illustrate the multiplexing gain
for the different traffic models (Regulated, On-Off, Fractional Brownian Motion) and scheduling algorithms
(SP, EDF, GPS) considered in this paper.

For each of the three traffic models, we consider two types of flows. The parameters are given in Table 1.
The unit of time is 1ms. For regulated traffic, we select a peak-rate constrained leaky bucket with arrival
envelopeA��t� � min �Pt � � 	 �t�, with parameters as in [28]. The parameters of the other traffic sources
are selected to match the average rate (� � ��� Mbps) and to have the same variance att � � ms.
The Hurst parameter is set toH � ���� as in [18]. In the examples, we consider violation probabilities
� � ���
� ����, and����.

7.1 Example 1: Comparison of Effective Envelopes

In the first example, we evaluate the effective envelopes for Regulated traffic, On-Off traffic, and FBM
traffic. We evaluate the effective envelope normalized by the number of flows, asG�N �t�	N , whereG�N �t�
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Figure 3:Effective envelopes for Type-1 flows (� � ����).
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Figure 4:Effective envelopes for Type-2 flows (� � ����).

is the effective envelope forN homogeneous flows. Figures 3 and 4 show the per flow effective envelopes
with � � ���� for Type-1 and Type-2 flows, respectively. For comparison, we also include the average rate
of the sources. For regulated traffic and On-Off traffic, respectively, we include the deterministic envelopes
min �Pt � � 	 �t� andPt. Note that a deterministic envelope does not exist for FBM traffic.

We make the following observations. First, the effective envelopes are able to capture a significant
amount of statistical multiplexing gain for each of the considered traffic types. The multiplexing increases
sharply with the number of flowsN . Second, as expected, FBM traffic exhibits less multiplexing gain than
the other source models.

7.2 Example 2: Probabilistic Busy Period Bounds.
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Figure 5:Example 2: Probabilistic Busy Period Bounds for� � ���� (solid line),� � ���� (dashed line), and� � ���� (dotted
line). The thick dotted-dashed line is a deterministic busy period bound for regulated traffic.
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Next we investigate the probabilistic bound for the busy periods. We assume a link with capacity of
C � ��� Mbps. We observe how the busy period grows as the number of flows increases. In this example,
we assume a traffic mix of an equal number of Type-1 and Type-2 flows. We calculate the probabilistic busy
period bounds for violation probabilities� � ���
� ����� ���� using the bounds from Section 4. Figure 5
depicts the bounds for the three different traffic models, where the number of flows is varied from 60 to
600, corresponding to a utilization of 9% to 90%. As a reference point, we also plot the exact value for the
worst-case busy period of the regulated traffic (plotted as thick solid line). While regulated traffic permits
to determine the worst-case busy period, such deterministic bounds are not available for On-Off and FBM
traffic. Note that the busy period bounds for FBM traffic are significantly larger than those for Regulated or
On-Off traffic.

7.3 Example 3: Number of Admissible Flows

In this example, we consider three scheduling disciplines (SP, EDF, and GPS) and multiplex Type-1 and
Type-2 flows on a link with 100Mbps capacity. The evaluation focuses on the service given to flows from
Type 1. We assume that Type-1 flows must satisfy a probabilistic delay bound of 100ms. Given a certain
number of Type-2 flows on the 100Mbps link, we determine the maximum number of Type-1 flows that
can be added to the link without violating their probabilistic delay bounds. This maximum number can be
used for admission control of Type-1 flows. Note that such an admission control decision is greedy, in the
sense that it entirely ignores delay requirements of other flow types. For example, the delay requirements of
Type-2 flows are ignored in this example.

The admission control algorithms takes into consideration the scheduling algorithm and its parameters,
as well as the the source traffic parameters of all flow types. The parameters of the scheduling algorithms
are the priority indices for SP, the delay indices for EDF, and the weights for GPS. For SP, Type-1 flows have
a higher priority index, and, therefore, a lower precedence, than Type-2 flows. For EDF, the delay index of
Type-1 flows isd� � ��� ms and that of Type-2 flows isd� � �� ms. For GPS, we set the weights to
� � ��� and� � ���. As in the previous examples, we consider three traffic models: regulated traffic,
On-Off traffic, and FBM traffic. The source traffic parameters are as shown in Table 1. For comparison, we
also include the number of flows that can be accommodated on the link with an average rate allocation and
a peak rate allocation.

Figure 6 depicts the number of Type-1 that can be admitted without violating the probabilistic delay
bounds, as a function of the number of Type-2 flows already in the system. We observe that the choice of
the traffic model has a significant impact on the number of admitted Type-1 flows. The number of Type-1
flows that can be admitted with FBM traffic is much smaller than with the other traffic models. This can be
explained by the higher burstiness permitted by FBM traffic. We also observe in the figure, that the selection
of the scheduling algorithm has only a limited impact. Given a traffic model, the number of admitted Type-1
flows is similar for all scheduling algorithm, with one notable exception. For GPS, the minimum number of
Type-1 flows admitted is independent of the number of Type-2 flows. This is the result of the rate guarantee
provided by GPS.
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Figure 6: Admissible Regions (C = 100 Mbps) for different schedulers and traffic models with� � ����, d� � ��� ms,
�� � ����, �� � ����.

8 Conclusions

We have presented a statistical network calculus for statistical QoS provisioning where both arrivals and
service are described in terms of probabilistic bounds. We have shown that it is feasible to integrate the
concept of effective bandwidth into the envelope-based approach of the statistical network calculus. We
have derived backlog and delay bounds for several traffic models (regulated, On-Off, FBM), and scheduling
algorithms (SP, EDF, GPS), and presented bounds on the queueing behavior in terms of the min-plus algebra.
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