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Abstract— We show that network coding allows to realize en-
ergy savings in a wireless ad-hoc network, when each node of the
network is a source that wants to transmit information to all other
nodes. Energy efficiency directly affects battery life and thus is a
critical design parameter for wireless networks. We propose an
implementable method for performing network coding in such
a setting. We analyze theoretical cases in detail, and use the
insights gained to propose a practical, fully distributed method
for realistic wireless ad-hoc scenarios. We address practical issues
such as setting the forwarding factor, managing generations, and
impact of transmission range. We use theoretical analysis and
packet level simulation.

I. I NTRODUCTION

Network coding is an area that has emerged in 2000 [1],
[2], and has since then attracted an increasing interest, as
it promises to have a significant impact in both the theory
and practice of networks. We can broadly define network
coding as allowing intermediate nodes in a network to not
only forward but also process the incoming information flows.
Combining independent information flows allows to better
tailor the information flow to the network environment and
accommodate the demands of specific traffic patterns.

The first paradigm that illustrated the usefulness of network
coding established throughput benefits when multicasting over
error-free links. Today, we have realized that we can get
benefits not only in terms of throughput, but also in terms
of complexity, scalability, and security. These benefits are
possible not only in the case of multicasting, but also for
other network traffic configurations, such as multiple unicast
communications. Moreover, they are not restricted to error-free
communication networks, but can also be applied to sensor
networks, peer-to-peer systems, and optical networks.

In this paper we show that use of network coding allows to
realize energy savings when broadcasting in wireless ad-hoc
networks. By broadcasting we refer to the problem where each
node is a source that wants to transmit information to all other
nodes. Such one-to-all communication is traditionally used
during discovery phases, for example by routing protocols;
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more recently, it has been described as a key mechanism for
application layer communication in intermittently connected
ad-hoc networks [3].

Energy efficiency directly affects battery life and thus is a
critical design parameter for wireless ad-hoc networks. Opti-
mizing broadcasting for energy efficiency has been extensively
studied during the last decade. The problem of minimum
energy broadcasting is NP-complete [4] and a large number
of approximation algorithms exist. Usually, these are either
based on probabilistic algorithms (see for example [5], [6], [7])
where packets are only forwarded with a certain probability,
or some form of topology control (e.g., [8], [9], [10]) to form
connected dominating sets of forwarding nodes.

The new ingredient in this problem is that we can apply
ideas from the area of network coding. Use of network
coding has been examined in the literature in conjunction
with multicasting, when a single source transmits common
information to a subset of the nodes of the network. If we allow
intermediate nodes to code, the problem of minimizing the
energy per bit when multicasting can be formulated as a linear
program and thus accepts a polynomial-time solution [11]. An
alternative formulation is presented in [12], where a distributed
algorithm to select the minimum-energy multicast tree is
proposed. Broadcasting information from a single source to
all nodes in the network is a special case of multicasting and
thus the same results apply. The problem is also related to [13]
and [14] in the special case of wireless ad-hoc networks. In
[15] we quantified the energy savings that network coding has
the potential to offer when broadcasting in ad-hoc wireless
networks. The analysis was over canonical configurations,
and assuming perfect centralized protocols. We also presented
preliminary simulation results over random networks.

In this paper we examine different aspects of the proposed
system in detail, that are related to and motivated by prac-
tical considerations. The emphasis of the paper is both in
understanding the theoretically expected performance, and in
developing algorithms using the insights gained. In particular,
• We theoretically examine benefits in terms of energy effi-
ciency that use of network coding can bring to this problem
without idealized centralized scheduling, that is, when we



restrict our attention to distributed algorithms. Based onthis
analysis, we propose distributed algorithms that are tunedto
random networks.
• We evaluate possible tradeoffs of parameters that arise in a
practical systems such as the effect of the transmission range.
• We also develop distributed algorithms that can be deployed
in real networks; we address fundamental considerations such
as the choice of a forwarding factor, restricted complexityand
memory capabilities, and limited generation sizes.

We evaluate the performance of our algorithms both on
systematic networks (circular network and square grid, where
we can find exact results) and on random, realistic networks
(where we obtain simulation results).

The paper is organized as follows. Section II formally
introduces the problem formulation and reviews previous
theoretical results. In Section III we present our proposed
distributed algorithms. Section IV discusses the effect of
changing the transmission range. Section V develops algo-
rithms for constrained complexity and memory requirements,
and Section VI concludes the paper.

II. BACKGROUND MATERIAL

In this section we first formally introduce the problem
formulation and notation. We then briefly review known results
that are related to our approach, and discuss how our work
is placed in this framework. We also describe the simulation
environment that we will use to evaluate our algorithms.

A. Problem Formulation

Consider a wireless ad hoc network withn nodes, where
each node is a source that wants to transmit information to
all other nodes. We are interested in the minimum amount of
energy required to transmit one unit of information from a
source to all receivers.

We assume that each nodev can successfully broadcast
one unit of information to all neighborsN(v) within a given
transmission range, through physical layer broadcast. We also
assume that the transmission range is the same for all nodes.
Thus, minimizing the energy is equivalent to minimizing
the number of transmissions required to convey a unit of
information from a source to all receivers.

More precisely, letTnc denote the total number of transmis-
sions required to broadcast one information unit to all nodes
when we use network coding. Similarly, letTw denote the
required number of transmissions when we do not use network
coding. We are interested in calculatingTnc

Tw
.

Note that the same problem formulation, minimizing the
number of channel uses (transmissions) per information unit,
can be equivalently viewed as maximizing the throughput
when broadcasting. Thus our results can also be interpreted
as bounding the throughput benefits that network coding can
offer, for our particular traffic and network environment.

Let x1, . . . xn denote the source symbols associated with
the n nodes. These symbols1 are over a finite fieldFq. Each

1Equivalently, we can think ofx1, . . . xn as packets of symbols, and apply
to each packet the operations symbol-wise. In the followingwe will talk about
symbols and packets interchangeably.

linear combinationy overFq that a node transmits or receives,
can be described as the product of a vector of coefficients and
a vector of source symbols

y = ax = [a1 . . . an]
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In the network coding literature, then-dimensional vector of
coefficients is referred to as a coding vector. Following the
approach in [16] we assume that packets (coded symbols) are
always sent together with the corresponding coding vectors.

In the following it will be convenient to think in terms of
vector spaces, and say that a node has received a vector space
spanned bym coding vectors, when the node has received the
m corresponding linear combinations of the source symbols.
Each nodev stores its source symbol and the information
vectors it receives, in a decoding matrixGv, that contains
the tuples of the coding vectors and the received information
symbols. The matrix of a sourcesi that has not yet received
information from any other node contains only a single row
(ei, xi). A received packet is said to be innovative if its vector
increases the rank of the matrix.

In the case of network coding, a nodev will in general
transmit a linear combination that lies in the vector space
of its decoding matrixGv. We can think of flooding or
probabilistic routing (i.e., without the use of network coding)
as constraining the coding vectors to belong in the set of the
orthonormal basis elements

e1 = [1 0 0 . . . 0], e2 = [0 1 0 . . . 0], . . . , en = [0 . . . 0 1].

Thus in this caseGv is a submatrix of the identity matrix.
Once a node receivesn linearly independent combinations,

or equivalently, a basis of then-dimensional space, it is able
to decode and retrieve the information of then sources. In the
case of network coding, decoding amounts to solving a system
of linear equations, with complexity bounded asO(n3). In the
case of probabilistic routing no decoding is required.

B. Previous Results

In [15] we evaluated the theoretical energy requirements for
broadcasting with and without network coding, over canonical
networks, and assuming perfect centralized scheduling. More
precisely, we characterized the optimal performance we may
hope to get over these canonical configurations with any trans-
mission scheme, showed that it can be achieved using network
coding, and also evaluated what fraction of this optimal value
we can achieve using forwarding. For completeness we briefly
review these results here.

1. Circular Network: In the circular networkn nodes are
placed at equal distances around a circle as depicted in Fig.1.

Assume that each node can successfully broadcast informa-
tion to its two nearest neighbors. For example, in Fig. 1, node1
can successfully broadcast information to nodes2 and 8. In
[15] it was shown that

1) without network codingTw ≥ (n − 1) (1 + ǫ)
2) with network codingTnc ≥ n−1

2 (1 + ǫ),
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Fig. 1. A circular configuration with8 nodes.

where limn→∞ ǫ → 0. It was also shown that there exist
routing and coding schemes that achieve the lower bound, and
thus

Tnc

Tw
=

1

2
. (1)

2. Square Grid Network: In this case we consider a wireless
ad-hoc network withn = m2 nodes where the nodes are
placed on the vertices of a rectangular grid. To avoid edge
effects, we will also assume that the area of the grid envelopes
the surface of a torus. In [15] it was shown that, if each
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Fig. 2. A rectangular grid configuration. The node numberingexpresses the
fact that the grid envelopes a torus.

node can successfully broadcast information to its four nearest
neighbors then

1) without network codingTw ≥ n2

3 (1 + ǫ)

2) with network codingTnc ≥ n2

4 (1 + ǫ),
wherelimn→∞ ǫ → 0 and that there exist schemes that achieve
the lower bounds forTw andTnc. Thus

Tnc

Tw
=

3

4
. (2)

As is well known, random networks tend asymptotically (in
the number of nodes) to behave like square grid networks.
We underline that the benefits calculated here refer to an
idealized case, where perfect centralized scheduling of all node
transmissions is possible. As we will see in the following sec-
tions, in more realistic environments, network coding allows
to realize significantly larger gains when we constrain both
flooding and coding to operate in a distributed manner.

C. Description of the Simulator

Throughout this paper we will verify our theoretical analysis
through simulation results over random topologies. Unless
explicitly stated otherwise, the simulation environment will
be as described in the following.

Nodes have a nominal transmission range ofρ = 250m and
are placed on a torus to avoid edge effects. Transmissions are

received by all the nodes within transmission range. We use
a custom, time-based network simulator. A packet (symbol)
transmission takes exactly one time unit. We assume that a
node can either send or receive one packet at a time. The
MAC layer is an idealized version of IEEE 802.11 with perfect
collision avoidance. At each time unit, a schedule is created
by randomly picking a node and scheduling its transmission
if all of its neighbors are idle. This is repeated until no more
nodes are eligible to transmit.

To allow an efficient implementation of network coding,
we use operations over the finite fieldF28 , so that each
symbol of the finite field can be stored in a byte. Addition
and multiplication operations over this finite field can be
implemented usingxor and two lookup tables of size 255
bytes [17]. The encoding vectors are transported in the packet
header as suggested in [16]. We use randomized network
coding, i.e., combine the received vectors uniformly at random
to create the vector to transmit.

As performance metrics we mainly use Packet Delivery
Ratio (PDR) and decoding delay. The PDR is defined as the
number of packets that can bedecoded at the destination.
For probabilistic routing, this is equal to the number of
received innovative packets, whereas with network coding,not
all innovative packets can necessarily be decoded. Similarly,
delay is counted as the average time between the transmission
of a packet by the original source and successful decoding
at a node, where averaging is across receiver nodes. For
some simulations we also investigate total network energy
consumption, which is measured as the sum of transmit power
× transmission time over the duration of the simulation.

III. D ISTRIBUTED ALGORITHMS

In this section we develop distributed algorithms that are
well suited for random topologies. To this goal, we first
prove that there exists a simple distributed algorithm thatuses
network coding and allows to achieve the optimal performance
over the square grid network. We then tune this algorithm
to perform well in a random topology, and verify through
simulation that we obtain the expected benefits.

As discussed in Section II, in [15] we proved that there
exists a network coding scheme that achievesTnc = n2

4 (1+ǫ),
i.e., the minimum possible number of transmissions. However,
the associated scheduling algorithm tends to be involved,and
thus might be challenging to implement in a practical system.

In the following we describe a much simpler scheduling
that still allows us to achieve the optimal benefits in terms
of energy efficiency. The algorithm operates in iterations as
follows.
Algorithm 1:
• Iteration 1: Each node broadcasts the information symbol
it produces to its four closest neighbors.
• Iteration k: Each node transmits a linear combination of
the source symbols that belongs in the span of the coding
vectors that the node has received in previous iterations.
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A. Theoretical Analysis

Let mk denote the number of linear independent combina-
tions that nodei has received at the end of iterationk, and let
V i

k be the vector space spanned by the corresponding coding
vectors. That is,mk = |V i

k |. Moreover, ifA is a set of nodes,
denote byV A

k the union of the vector spaces that the nodes
in A span, i.e.,V A

k = {⋃j V j
k , j ∈ A}.

To show that Algorithm 1 allows to achieve the optimal
performance when broadcasting, we need to show that there
exists a coding scheme (linear combinations that nodes can
transmit) such that each broadcast transmission brings innova-
tive information to four receivers. This implies that Algorithm
1 operates ink = 1 . . . ⌈n

4 ⌉ iterations as follows. At iteration
k, each nodei

1) Transmits a vector from the vector space spanned by the
coding vectors the node received at iterations1 . . . k−1.

2) Receives four vectors, from his four closest neighbors,
and increases the size of its vector space by four.

Before the iterations begin, each node has its own source
symbol, and thusm0 = 1. Thus equivalently, it is sufficient
to show that for each nodei at the end of iterationk

mk = mk−1 + 4 = 4k + 1. (3)

To prove that there exists a coding scheme such that Eq. (3)
holds, it is sufficient to prove that the following theorem holds.

Theorem 1: There exists a coding scheme to be used with
Algorithm 1 on the square grid such that at iterationk,

|V A
k | ≥ min{mk + |A| − 1, n} (4)

for any setA of nodes, wheremk = 4k + 1, m0 = 1.
Eq. (4) forA = {i} gives that|V i

k | ≥ mk = 4k +1. But node
i at iterationk has received only4k broadcast transmissions,
i.e., |V i

k | ≤ mk = 4k + 1. Thus the theorem directly implies
that |V i

k | = mk = 4k + 1. For the proof of this theorem, we
will use two results, that we describe in Lemmas 1 and 2.

Lemma 1: Any setA of nodes in the grid,with4+ |A| ≤ n,
has at least four distinct neighbors.

Proof: The proof uses the fact that the vertex min-cut
between any two nodes in a square grid is four. LetB be the
set of nodes in the grid that are not inA. From assumptionB
contains at least four nodes. If all the nodes inB are neighbors
of nodes inA we are done. Assume that there exist a nodeb
in B that is not a neighbor of any node inA. Let a be any
node inA. Connecta andb through four vertex disjoint paths.
On each such path there exists a distinct neighbor ofA.

The second result we will need, was originally used in the
framework of network coding in [18]. Here we write this result
in a form that is convenient for the proof of our theorem.

Lemma 2: Consider a family of n × n matrices
A1, A2, . . ., Am that are parameterized by coefficients
p1, p2, . . ., pl. Assume that, for each matrixAi, there
exist valuesp1, p2, . . ., pl over a field Fqi

such that the
determinant ofAi over Fqi

is non zero, i.e.,det(Ai) 6= 0.
Then, there exists a finite fieldFq, and there exist values inFq

for p1, p2, . . ., pl such thatdet(A1) 6= 0, . . . , det(Am) 6= 0.

For example, if

A1 =

[

p2 p(1 − p)
p(1 − p) p2

]

, andA2 =

[

1 p
1 1

]

,

then forp = 1, det(A1) 6= 0 overF2, for p = 0, det(A2) 6= 0
overF2, and forp = 2, both det(A1) 6= 0 anddet(A2) 6= 0
overF3.
Proof of Theorem 1
We will prove this theorem using induction.
• Fork = 0, m0 = 1, since every node has one source symbol.
• For k = 1, m1 = 5. Indeed, at the end of the first iteration
each node has received the information symbols from its four
nearest neighbors. Selecting anyA nodes, we will have the
information from theA nodes themselves, and moreover from
all their closest neighbors, which, from Lemma 1, will amount
to a union vector space of size at leastm1 + |A|−1 = |A|+4.
• Assume that the condition holds fork = l−1. It is sufficient
to show that it holds fork = l.

Consider a setA. We want to show that|V A
k | ≥ mk−1 +

4 + |A| − 1 = mk + |A| − 1. From induction we know that
|V A

k−1| ≥ mk−1 + |A| − 1. If |V A
k−1| ≥ mk−1 + 4 + |A| − 1

we are done. The only interesting cases are when|V A
k−1| =

mk−1 + i + |A| − 1, i = 0 . . . 3. We will prove here the case
where|V A

k−1| = mk−1 + |A|− 1. For the other three cases the
arguments are very similar.

Let B be the set that includesA and all the nearest
neighbors ofA. From Lemma 1 we know thatB contains at
least four nodes that do not belong inA, say{b1, b2, b3, b4}.
We want to show that when the nodes in{b1, b2, b3, b4}
transmit during iterationk, they increase the rank of the setA
by four. (And in fact, of every other set they are neighbors.)
But this holds by the following argument. From assumption,

|V {A,j}
k−1 | ≥ mk−1 + |A|, for j ∈ {b1, b2, b3, b4}

|V {A,j,l}
k−1 | ≥ mk−1 + |A| + 1, for j, l ∈ {b1, b2, b3, b4}

|V {A,j,l,z}
k−1 | ≥ mk−1 + |A| + 2, for j, l, z ∈ {b1, b2, b3, b4}

|V {A,b1,b2,b3,b4}
k−1 | ≥ mk−1 + |A| + 3.

Thus, nodesb1, b2, b3 and b4 have vectorsv1 v2, v3 and
v4 respectively such thatvj /∈ V A

k−1, j = 1 . . . 4, and
the vector space spanned by them has dimension four, i.e.,
| < v1, v2, v3, v4 > | = 4. Then, from Lemma 2, there exist
linear combinations that nodesbi can transmit at iteration
k such that the vector space ofA (and in fact any setA
neighboring them) increases in size by four.

To conclude, we have proved that there exists a coding
scheme such that the simple distributed scheduling of Al-
gorithm 1 achieves the optimal theoretically performance.In
practice we will use randomized coding over a large enough
field [19], to approximate this optimal performance.

B. Application to Random Networks

In this section we extend Algorithm 1 to work over random
topologies, where the number of neighborsN(v) of a nodev is
not constant. Moreover, the network is not perfectly symmetric
and we cannot assume perfect synchronization among nodes.
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To account for these factors, the authors in [15] proposed
a network coding protocol in analogy to probabilistic routing
algorithms that forwards packets with a certain probability,
according to a forwarding factord > 0 [6], [7]. The forward-
ing factor should intuitively be inversely proportional tothe
density of a node’s neighborhood. In [15] the forwarding factor
reflected the average node density of the network. Figure 3
shows which forwarding factor is required to achieve a 90%
PDR with probabilistic routing and with network coding. We
observe that the overhead of probabilistic routing is higher by
a factor of 2-3, except for the case where the node density
is so low that a number of nodes have only one or very few
neighbors. In this case, network coding as well as probabilistic
routing need to used = 1.

In this paper we extend this work by proposing to use a
dynamic forwarding factor, that is different for each node of
the network, and adapts to possible changes of the network
topology. The algorithm can be described as follows.
Algorithm 2:
• Associate with each nodev a “forwarding factor”dv.
• Nodev transmits its source symbolmax{1, ⌊dv⌋} times, and
an additional time with probabilityp = dv − max{1, ⌊dv⌋} if
p > 0.
• When a node receives an innovative symbol, it broadcasts a
linear combination over the span of the received coding vectors
⌊dv⌋ times, and an additional time with probabilityp = dv −
⌊dv⌋ if p > 0.

The optimum value ofdv depends on the number of disjoint
paths from the information sources to all other nodes and can
only be calculated with perfect knowledge of the network
topology. Since we are interested in simple algorithms, we
assume that a node can acquire knowledge about the direct
neighborhood as well as the two-hop neighborhood, while
further information is too costly to gather. We will therefore
investigate the performance of two heuristics to adjustdv.

Let N(v) be the set of direct neighbors of nodev and letk
be a forwarding factor to be used when a node only has one
single neighbor. We scaledv as follows.
• Algorithm 2A: Set v’s forwarding factor inversely propor-

tional to the number of 1-hop neighbors

dv =
k

|N(v)| .

• Algorithm 2B: Set the forwarding factor inversely propor-
tional to the minimum of the number of 1-hop neighbors of
v’s 1-hop neighbors

dv =
k

minv′∈N(v) |N(v′)| .

We expect the second scheme to outperform the first.
Intuitively, if a nodev has multiple neighbors but one of the
neighborsv′ has only nodev as a neighbor,v needs to forward
all available information tov′, no matter how many neighbors
v itself has.

The performance of Algorithm 2B depends on the value
of k. In essence,k is a cumulative forwarding factor shared
between all nodes within a given radio range. It correspondsto
the number of packets that are transmittedwithin this coverage
area as a response to the reception of an innovative packet,
independent of the node density.

To determinek, we need to compute the probability that a
transmitted packet is innovative. In [5], the authors analyze the
probability that the broadcast of a given message is innovative
for at least one neighbor when this message has already been
overheard a certain number of times, for the case of flooding.
This probability quickly drops to0 for more than ca.6 − 8
overheard broadcasts of the same message. Therefore,k should
be set such that the number of broadcasts in an area is close
to this value and independent of the network density.

A similar analysis is possible for network coding. As a
rough approximation, let us assume that a nodev and all
but one of its neighbors have allg information vectors, and
one neighborv′ has no information. We are interested in the
probability that after overhearingkg transmissions, a packet
from v will be innovative forv′. In other words,v′ must have
received fewer thang innovative packets from the other nodes
and is not yet able to decode.2

We compute this probability as follows. LetD0 be a disk
of radius1 (we can take all transmission ranges equal to 1
since the probability we are interested in is independent ofthe
distance unit chosen). Letj = kg, andD1, ..., Dj be j disks,
also of radius1, with centers inD0, drawn independently and
uniformly in D0. DefineQg

j as the probability that a random
point M in D0 is covered by fewer thang of the j disks. Our
upper bound is the probabilityQg

kg. We show in appendix how
to compute this in closed form. The results are illustrated in
Table III-B. For fixedg and largek, we have the approximation

Qg
kg ≈ 1.72029√

gk
e−0.321021gk. (5)

2In real scenarios, it is extremely unlikely thatv′ overhears none of the
packets that its neighbors received previously to obtain their information.
Furthermore,v′ may obtain the missing information through a neighbor that
is not withinv’s transmission range. Also this case is not part of the analysis.
Therefore, the analysis below is a worst case estimate that gives an upper
bound on the probability ofv′ not being able to decode afterkg transmissions.
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TABLE I

NUMERICAL VALUES OF Q
g

kg
(PROBABILITY OF BEING COVERED BY

FEWER THANg OUT OFkg DISKS).

g = 1 2 4 g → ∞

k = 1 0.413 0.636 0.835 1
k = 2 0.191 0.232 0.261 0.347
k = 3 0.094 0.0838 0.0635 0
k = 4 0.0480 0.0304 0.0136 0
k = 5 0.0252 0.0111 0.00270 0
k = 6 0.0135 0.00407 0.000505 0
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Fig. 4. Probability that a node is not able to decode afterkg transmissions
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The probability of nodev’s transmission being innovative is
depicted in Figure 4 for the case of probabilistic routing (g =
1) and network coding (g > 1). With probabilistic routing,
this probability decreases exponentially with the number of
transmissions, while it drops to0 much more rapidly with
network coding. The slope of the curve depends on the
number of information vectorsg. In the network scenarios
we are interested in,g is on the order of tens to hundreds of
information vectors. To achieve probability of not being able
to decode below 1%, we have to setk ≈ 3 for network coding
andk > 6 for flooding. (Note that this is the probability thatv′

is not able to decode only using transmissions from nodes in
N(v). It might still receive packets via some other neighbors,
resulting in a higher overall PDR.) Interestingly, fork ≥ 3,
the probability of not being able to decode tends to 0 in the
limit for large g, while it is strictly positive for smallerk.

The performance of Algorithms 2A and 2B in random net-
works coincides well with the above analysis. As expected, the
actual forwarding factors that are necessary are slightly lower
than indicated by the worst case analysis. In Figure 5, network
coding achieves a PDR close to 100% fork ≥ 2 (except for
very low node densities where the network is only partially
connected). Probabilistic forwarding requiresk ≥ 6 for a
similar performance and thus incurs a per packet overhead
that is larger by a factor of 3. The performance for lowk
increases dramatically with Algorithm 2B, where the 2-hop
neighborhood is taken into account (Figure 6). For network
coding, the PDR withk = 1 increases roughly tenfold, and
for k slightly smaller than 1 (e.g. 1.2, not shown in the graph),
network coding achieves a PDR 100%. Probabilistic routing
benefits as well, however not to the same degree as network

coding. For PDRs close to 100%, it still requiresk ≥ 6.
In all of the graphs we can observe a slight decrease in

PDR for higher node densities. This is due to the fact that
we simply distribute the cumulative forwarding factor overall
nodes within range by dividing by the number of neighbors.
However, not all nodes necessarily have information to con-
tribute. The higher the number of neighbors and therefore the
more aggressive the scaling down of the forwarding factor, the
more this effect comes into play.

IV. I MPACT OF TRANSMISSION RANGE

In the canonical configurations we have examined up to
now we have assumed that each node broadcasts information
to its closest neighbors, i.e., to two neighbors in the case
of the circular network, and four neighbors in the case of
the square grid network. Similarly, in the case of random
networks, we assumed that the transmission range is relatively
small compared to the size of the network. In this section
we investigate how this assumption affects our results. In
particular, we assume that all nodes transmit at an identical
rangeρ (using omni-directional antennas) but thatρ might
allow to reach more than the closest neighbors.

In a wireless environment, the transmitted powerPT decays
with distance asPT

ργ due to path loss, where typical values are
γ ≥ 2. Thus, if a receiver at a distanceρ can successfully
receive a signal that has power above a thresholdP0, then the
transmitted powerPT must increase proportionally toP0ρ

γ .
Increasing the range of transmission increasesPT . On the
other hand, increasing the transmission range allows to reach
more receivers during each transmission. In the following,we
quantify this tradeoff.

A. Circular Network

In a circular network, to reach the two closest neighbors,
a node needs to transmit at a radius of2 sin(2π

n ) = 2 sin(θ).
Generally to reach the2k nearest neighbors,1 ≤ k ≤ n

2 , a
node needs to transmit at a radius of2 sin(2πk

n ) = 2 sin(kθ).
In the case of network coding, if each broadcast transmission
reaches

• the two closest neighbors, we will need total power

P2 =
n − 1

2

P0

sinγ(θ)
,

• the 2k closest neighbors, we will need total power

P2k =
n − 1

2k

P0

sinγ(kθ)
.

Thus,

P2

P2k
= k(

sin(θ)

sin(kθ)
)γ =

k

kγ

1 − θ2

3! + θ4

5! − . . .

1 − (kθ)2

3! + (kθ)4

5! − . . .
,

and for largen (small θ) we get that

P2

P2k
≈ k1−γ . (6)
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Fig. 5. PDR for different node densities with network coding(left) and probabilistic routing (right) for different forwarding factors (k) withAlgorithm 2A
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Fig. 6. PDR for different node densities with network coding(left) and probabilistic routing (right) for different forwarding factors (k) withAlgorithm 2B

In the case of forwarding, if each broadcast transmission
reaches2k neighbors, we need in total power

P f
2k = (1 +

n − 1 − 2k

k
)

P0

sinγ(kθ)
.

We conclude that in both cases we lose in terms of transmit
power when increasing the transmission range, but the ratio
P f

2k

P2k
remains equal to12 , at least fork much smaller thann.

B. Square Grid

The square grid can be thought as2 dimensional latticeZ2

(enveloping the surface of a torus) that contains all the points
of the formv = xe1 + ye2, wherex andy are integers andei

are the vectors of the orthonormal basis,e1 = [1 0], e2 = [0 1].
If we draw a circle inR2 with radiusk around the pointv it
will contain all points(x, y) satisfying

(x − v1)
2 + (y − v2)

2 ≤ k2.

Thus, if we broadcast at a constant radiusρ = k ∈ Z,the
number of neighbors we can reach equals

Nk =

y=k
∑

y=−k

(2⌊
√

k2 − y2⌋ + 1) − 1. (7)

If we compare the number of transmissions that we need with
and without network coding, we get that

Tnc

Tw
= 1−

∑y=k−1
y=0 (2⌊min{

√

k2 − y2,
√

k2 − (y − k)2}⌋+ 1
∑y=k

y=−k(2⌊
√

k2 − y2⌋ + 1) − 1

Values of this ratio are included in Table II.

TABLE II

CONVERGENCE OF RATIO
Tnc

Tw
.

k 1 2 10 50
Tnc
Tw

0.7500 0.6667 0.6013 0.6089

In the case of network coding, if each broadcast transmis-
sion reaches

• the four closest neighbors, we will need total power

P1 =
n − 1

4
P0.

• the k closest neighbors, we will need total power

Pk =
n − 1

Nk

P0

kγ
.

Thus,
P1

Pk
=

Nk

4kγ
. (8)

If γ ≥ 2 and using Eq. (7) we can see thatP1

Pk
≤ 1.

We conclude that forγ = 2 increasing the transmission
range does not affect the energy efficiency. Forγ > 2 the
optimal strategy in terms of power efficiency is to transmit
to the closest neighbor. Moreover, as the transmission range
increasesρ, the benefits network coding offers also increase
and converge to approx.0.609. This number corresponds to
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the area of the intersection of two circles with the same radius
and centers at distance equal to the radius.

C. Random Networks

In Figure 7 we show simulation results for a random net-
work with 144 nodes and a fixed area of 1500m× 1500m. For
each transmission range, we choose the smallest cumulative
forwarding factork for Algorithm 2B that results in an overall
PDR of more than 99%. As can be seen from the left graph,
with network coding higher transmission ranges even allow
to decrease the total energy expenditure (assuming a path
loss exponent ofγ = 2). Recall that Algorithm 2B is only a
heuristic and requiresk to be somewhat larger than the optimal
value. The intuition behind this result is that, the larger the
transmit range, the more “regular” the network becomes in
terms of number of neighbors, and the closerk can be set to
the optimal value. Note that nodes can trade off the number of
transmissions for transmit power, which in turn might allow
for simpler MAC layer schedules.

In contrast, for flooding the overall energy consumption
increases with the transmit range, since flooding does not
allow to reduce the number of transmissions as aggressively
as network coding for an increased number of neighbors.

The transmission range might also have an effect on delay.
In the right graph of Figure 7 we see that there is a slight
decrease in average (decoding) delay for flooding as well
as for network coding, when the transmit range increases.
This is the result of two factors: increasing the transmission
range implies that more nodes can be reached by a single
transmission. On the other hand, scheduling becomes more
challenging, as the number of non-overlapping circles thatcan
be simultaneously packed (i.e., transmissions during the same
timeslot) is reduced.

V. PRACTICAL CONSIDERATIONS

A. Generation Management

Up to now we have assumed that each node is a source
that has a single symbol to transmit, and that nodes are able
to decode as soon as they receiven linearly independent
combinations. Thus, all sources are decoded together at the
end of the transmission.

In practice, the node memory and processing capabilities
might be limited and therefore it might not be possible to
combine all existing information symbolsxi in a single matrix.
Moreover, in a random environment, there are perhaps benefits
in combining symbols not only across space, but alsoacross
time, as is usually done in the network coding literature.
Following the terminology in [16], it was shown in [15] that
Algorithm 2 can be easily extended to operate over genera-
tions. We define a generation as a collection of packets that
we allow to be linearly combined. For example, we can think
of our results up to now in the paper, as having generation
that contains a single symbol from each source. In the other
extreme, a generation might contain packets originating from
a single source over time, i.e., we do not allow packets from
different sources to combine. In general, each generation will

contain a subset of packets, of a size that is determined
by the memory and processing capabilities of the network
nodes. In [20] the authors investigated and compared through
simulation results several generation management methods.
Our contribution in this paper is that we propose and evaluate
distributed schemes to manage generations.

Generation Size Threshold

Without central control in the network, nodes have to man-
age generations based only on the information they already
have. A node is responsible for choosing the right generation
for each packet that originates at this node. To this end,
the node checks which generations it knows of, have a size
that does not exceed a certain thresholdt. From these, it
randomly picks one generation and inserts the packet into
the corresponding matrix. If no such generation exists, the
node creates a new generation with a random generation ID
and inserts the packet.3 The space of generation IDs has to
be large enough so that the probability of having generations
with the same ID created by different nodes is relatively small.
(Note that does not prevent decoding of the two generations
but merely “merges” them, leading to a larger generation size.)

The actual size of generations merely depends on the
thresholdt but is not limited by it. Several distant nodes may
decide to insert packets into the same generation at the same
time. Therefore,t needs to be adapted based on the average
size of the matrices at a given node (and can be different
for each node). Equivalently,t can be adapted based on the
available memory at a node. The higher the probability of
nodes inserting many new packets at the same time and the
lower the node memory, the lowert needs to be.

To analyze this effect, we perform simulations on an area
of 2000m× 2000m and with different numbers of nodes to
obtain the different node densities. We use Algorithm 2B with
k = 3. The left graph of Figure 8 shows the actual average size
of generations at the nodes for different generation thresholds
t. Particularly for small generations, the actual size exceeds t
by a factor of2 − 3. The ratio betweent and the actual size
of the generations is relatively independent of the network
density. Only when the generation size is close to the number
of nodes and the network is very dense, many generations
may be created at the same time, which then contain fewer
information vectors. This explains the drop in generation size
for larger node densities.

Local Generations

With local generations, nodes that may insert packets into a
generation are limited to theλ-hop neighborhood of the node
where the generation originated. Thus, we avoid having many
nodes in different parts of the network insert packets into a
generation at the same time.

A generation is created by a certain nodev. The distance to
this node determines generation membership. A hop counthv

3To avoid creating too many generations when many packets originate at
different nodes at the same time, one can additionally impose a random delay
a node has to wait before being allowed to create a new generation.
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is associated with the local decoding matrix for this generation
and is initialized to zero. Vectors created from this matrixhave
a hop count ofhv +1. The hop count of the matrix at any node
v′ 6= v is the minimum of the vectors’ hop counts received for
this generation, which corresponds to the minimum number of
hops to reach the originator. The hop count can be transported
in the packet header together with the encoding vector.

As before, a node determines if it is possible to include its
information vector in an existing generation before starting a
new generation. For this, it checks if it has a matrix with a
hop counthv ≤ λ and with a current size smaller than the
thresholdt. If no such matrix exists, the node starts a new
generation. Nodes that are at a distance greater thanλ hops
might still form linear combination (network coded) packets
from that generation but will not insert new packets into the
generation. The impact of local generations on the average
generation size is shown in the right graph of Figure 8.

In addition to the stricter limit on generation size, local
generations also provide a slight improvement in PDR for very
small generation size as shown in Figure 9. Local generations
become more important when packet loss and communication
patterns make communication with far away nodes in the
network difficult or unlikely.
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B. Reducing Decoding Complexity

As discussed in Section II, to decode a “generation” of size
g, i.e., g linearly independent equations, we need complexity
O(g3), as we need to perform Gaussian elimination over the
g×g matrix of the received coding vectors. If at each interme-
diate node we perform uniform at random combinations over
Fq, then the resulting matrix will be a random matrix with
each element chosen uniformly at random overFq,

In [21] it was observed that instead of choosing coding
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vectors uniformly overFq, in many cases we get comparable
performance by performing sparse linear combinations, over
a small field. This work was motivated by the observation
[22] that a sparse random matrix of sizeg × g(1 + ǫ)
with limg→∞

ǫ
g = 0, has with high probability full rank. In

particular, this is true if we choose each element of the matrix
independently to be one with probabilityp = log(g)

g , and
zero otherwise. Moreover, such a matrix requiresO(g2log(g))
operations to be decoded. If each node in the graph performs
“sparse” linear combinations, we can express the resulting
matrix that a receiver needs to decode as a product of sparse
matrices which we can solve sequentially. Here we examine
the effect of reducing the alphabet size and of forming “sparse”
linear combinations through simulation results.

Reducing the Alphabet Size: From simulations with 100
nodes, a generation size of 100, and on average 12 neighbors
per node, we see that a relatively small alphabet size is
sufficient to achieve good network coding performance. Only
the field of size two, which is much smaller than the average
number of neighbors, provides an insufficient number of
linearly independent combinations per neighborhood. Already
an alphabet size of22 comes close to the performance of an
alphabet size of28 which is what we used in all of the previous
simulations.
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Fig. 10. Impact of reducing the alphabet size on PDR

Reducing the Matrix Density: We use the following al-
gorithm to generate vectors with a limited number of non-
zero entries. As long as the number of non-zero coefficients
is lower than a thresholdq, a row is randomly picked from
the decoding matrix, multiplied by a random coefficient, and
added to the vector to be sent out. We use a simulation
setting similar to that of the previous paragraph. Settingq = 1
corresponds to sending out the information of a single row of
the decoding matrix which is non-innovative for neighboring
nodes with a high probability (in fact, performance degrades
to that of probabilistic routing). As soon asq ≈ log(g), there
is little difference in performance compared to an unrestricted
generation of vectors (q = 100).

VI. CONCLUSIONS

In this paper we characterized the minimum amount of
energy required to transmit one unit of information from
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Fig. 11. Impact of reducing the matrix density on PDR

a source to all receivers for canonical configurations, and
developed distributed algorithms that allow to approach the
optimal performance in practice. The emphasis of the paper
was in tradeoffs and design choices that arise in practical
systems, such distributed generation management, and effect
of transmission range. Our work indicates that there is a
potential for significant benefits, when deploying network
coding over a practical wireless ad hoc network environment.
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APPENDIX: COMPUTATION OF COVERAGE PROBABILITY

Let D0 be a diskof radius1. Let j = kg, andD1, ..., Dj be
j disks, also of radius1, with centers inD0, drawn indepen-
dently and uniformly inD0. DefineQg

j as the probability that
a random pointM in D0 is covered by less thang of the j
disks. We are interested inQg

kg. We have:

Qg
j =

g−1
∑

i=0

qi
j (9)

with qi
j equal to the probability that a random point inD0 is

covered by exactlyi of the j disks. Further:

qi
j =

∫

D0

P (m is covered by exactlyi of the j disks)
dm

π
(10)

By independence ofD1,..., Dj :

qi
j =

∫

D0

(

j
i

)

(1 − P(m /∈ D1))
i
(P(m /∈ D1))

j−i dm

π
(11)

We now computeP(m /∈ D1). By circular symmetry, it
depends only on the distanceρ = ‖m‖ from 0 to m. Let p1(ρ)
be the value ofP(m /∈ D1) when‖m‖ = ρ. To computep1(ρ)
we first computep(ρ, r), defined as the probability thatm /∈
D1 given that the distance from the center ofD1 to the origin
is r. This is obtained by considering a random experiment
where we select the centerω1 of D1 uniformly on the circle
centered at0 with radiusr. Let θ be the principal measure of
the angle from ~Oω1 to ~Om. Let θmax be the maximum value
of θ such thatm ∈ D1. We have

{

if r + ρ > 1 then θmax = arccos r2+ρ2−1
2rρ

else θmax = π
(12)

and
p(ρ, r) = 1 − 2θmax

2π
= 1 − θmax

π
(13)

Thus (taking into account thatr is a polar coordinate):

p1(ρ) = 2
∫ 1

0
p(ρ, r)rdr

= 2
∫ 1

1−ρ
r
(

1 − 1
π arccos r2+ρ2−1

2rρ

)

dr

=
ρ
√

4−ρ2+4 arcsin ρ
2

2π

(14)

and

qi
j = 2

(

j
i

)
∫ 1

0

(1 − p1(ρ))i (p1(ρ))j−i ρdρ (15)

The integral in Equation (15) can be computed in closed form
for every fixed value ofi and j. Note thatQ1

j = q0
j is the

probability of no coverage byj disks, which was computed
exactly for j = 1 and by simulation for largerj in [5]. In
contrast, we obtain exact closed forms for all values ofi and
j. For example the first values ofQ1

j = q0
j are:

q0
1 = 3

√
3

4π

q0
2 = −5+3

√
3π

6π2

q0
3 = −351

√
3+152π+24

√
3π2

96π3

q0
4 = 21343−7020

√
3π+1520π2+160

√
3π3

1440π4

q0
5 = 4004397

√
3−1363380π−210600

√
3π2+30400π3+2400

√
3π4

51840π5

We can also compute limits for largeg or largek. We have
Qg

j = 2
∫ 1

0 B(kg, g, 1 − p1(ρ))ρdρ where B(j, g, p) is the
(binomial) probability that a random experiment with success
proability p succeeds less thang times in j experiments.
For large k or g, we can approximateB(kg, g, p) by a
normal distribution, which gives (Q(x) is the probability that
a standard normal random variable is larger thanx)

Qg
kg ≈ 2

∫ 1

0

(1 − Q

(

√
g

1 − k(1 − p1(ρ)
√

k(1 − p1(ρ))p1(ρ)

)

ρdρ

≈ 2

∫ 1

0

Q

(

√

gk

√

1

p1(ρ)
− 1

)

ρdρ (16)

=
2√
2π

∫ 1

0

∫ ∞

√
gk

q

1
p1(ρ)

−1

e−
s2

2 dsdρ (17)

By inversion of the order of integration, one obtains

Qg
kg ≈ 2

∫ ∞

√
gkγ

e−
s2

2 (1 − φ(s)2)ds (18)

whereφ(s) is implicitly defined byp1(φ(s)) = 1√
1+s2/gk

and

γ =
√

1
p1(1) − 1 ≈ 0.642042. This function increases from0

(for s = s0 =
√

gkγ) to 1 for s → ∞; we approximate it
with the piecewise linear function given by the derivative at
s0 and the asymptote which corresponds toφ(s) close to1.
One obtains the approximation1 − φ(s)2 ≈ (s − s0)

α√
gk

for

s0 ≤ s ≤
√

gk
α + s0 with

α =

(√
3 + 2π

3

)2
√

1
3

(

−1 + 6π
3
√

3+2π

)

π
≈ 2.15607

and otherwise1 − φ(s)2 ≈ 1. The resulting integral can be
computed and one finds

Qg
kg ≈ 2α√

2πgk
e−

1
2 gkγ =

1.72029√
gk

e−0.321021gk (19)

With a similar analysis, for largeg, we have the following
limits, whenk is fixed:

• For k = 1: limg→∞ Qg
g = 1

• For k = 2, limg→∞ Qg
2g = 1 − ρ2

1 ≈ 0.347224 whereρ1

is the root in(0, 1) of the equationp1(ρ1) = 1/2.
• For k ≥ 3: limg→∞ Qg

g = 0
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