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Abstract— We show that network coding allows to realize en- more recently, it has been described as a key mechanism for

ergy savings in a wireless ad-hoc network, when each node df¢  application layer communication in intermittently contest
network is a source that wants to transmit information to all other ad-hoc networks [3].

nodes. Energy efficiency directly affects battery life andtius is a - . . .
critical design parameter for wireless networks. We propos an Energy efficiency directly affects battery life and thus is a

implementable method for performing network coding in such Critical design parameter for wireless ad-hoc networksti-Op
a setting. We analyze theoretical cases in detail, and useeh mizing broadcasting for energy efficiency has been extefsiv
insights gained to propose a practical, fully distributed nethod  studied during the last decade. The problem of minimum

for realistic vx_/ireless ad-hoc_scenarios. We ad_dress pract;i_il issues energy broadcasting is NP-complete [4] and a large number
such as setting the forwarding factor, managing generatios, and

impact of transmission range. We use theoretical analysisral  f @Pproximation algorithms exist. Usually, these are eith
packet level simulation. based on probabilistic algorithms (see for example [5], [[6)

where packets are only forwarded with a certain probability
. INTRODUCTION or some form of topology control (e.qg., [8], [9], [10]) to for

Network coding is an area that has emerged in 2000 [fonnected dominating sets of forwarding nodes.
[2], and has since then attracted an increasing interest, ad "€ Neéw ingredient in this problem is that we can apply
it promises to have a significant impact in both the theof§f€as from the area of network coding. Use of network
and practice of networks. We can broadly define netwoﬂ?d'”g hgs bgen examlned_ in the literature in_conjunction
coding as allowing intermediate nodes in a network to n&\gth mu_lt|cast|ng, when a single source transmits common
only forward but also process the incoming information flowdformation to a subset of the nodes of the network. If wevallo
Combining independent information flows allows to betidPtermediate nodes to code, the problem of minimizing the
tailor the information flow to the network environment an@n€rgy per bit when multicasting can be formulated as atinea
accommodate the demands of specific traffic patterns. ~ Program and thus accepts a polynomial-time solution [11j. A

The first paradigm that illustrated the usefulness of netwoflternative formulation is presented in [12], where a disted
coding established throughput benefits when multicastireg o &9°rithm to- select the minimum-energy multicast tree is
error-free links. Today, we have realized that we can gBfoPosed. Broadcasting information from a single source to
benefits not only in terms of throughput, but also in ternfdl nodes in the network is a special case of multicasting and
of complexity, scalability, and security. These benefite afhus the same resultg apply. The p.roblem is also relatedBlo [1
possible not only in the case of multicasting, but also f@nd [14] in th_e_ special case of vylreless ad-hoc netwc_)rks. In
other network traffic configurations, such as multiple usicalt°] We quantified the energy savings that network coding has
communications. Moreover, they are not restricted to eneg "€ Potential to offer when broadcasting in ad-hoc wireless
communication networks, but can also be applied to senditworks. The analysis was over canonical configurations,
networks, peer-to-peer systems, and optical networks. and.as.,summ.g perfgct centralized protocols. We also preden

In this paper we show that use of network coding allows t%rellml_nary simulation re_sults over random networks.
realize energy savings when broadcasting in wireless ad-ho In th's_ paper we examine different aspects c_)f the proposed
networks. By broadcasting we refer to the problem where eagYStem in detail, that are related to and motivated by prac-
node is a source that wants to transmit information to aleotht!@l considerations. The emphasis of the paper is both in
nodes. Such one-to-all communication is traditionallydjsémderStand'ng the theoretically expected performanag irmn

during discovery phases, for example by routing protocolgfevelc’ping algorithms us_ing the in;ights gained. In pakiic )
e We theoretically examine benefits in terms of energy effi-

1This work was supported by FNS under award No. 200021-103836 Ci_ency that use of netW_Ork coding Can bring_to this problem
2Part of this work was done while Jérg Widmer was with EPFL. without idealized centralized scheduling, that is, when we



restrict our attention to distributed algorithms. Basedtlis linear combinatiory over 7, that a node transmits or receives,
analysis, we propose distributed algorithms that are tunedcan be described as the product of a vector of coefficients and
random networks. a vector of source symbols

. . . Z1
e We evaluate possible tradeoffs of parameters that arise in a To
practical systems such as the effect of the transmissiageran y=az=[ar...a]
e We also develop distributed algorithms that can be deployed T,

in real networks; we address fundamental consideratiocts su o ) )
as the choice of a forwarding factor, restricted compleaitg " the network coding literature, the-dimensional vector of
memory capabilities, and limited generation sizes. coefficients is referred to as a coding vector. Following the
We evaluate the performance of our algorithms both d¥PProach in [16] we assume that packets (coded symbols) are
systematic networks (circular network and square grid,rehedlways sent together with the corresponding coding vectors
we can find exact results) and on random, realistic networks!n the following it will be convenient to think in terms of
(where we obtain simulation results). vector spaces, and say that a node has received a vector space
The paper is organized as follows. Section Il formallgPanned byn coding vectors, when the node has received the
introduces the problem formulation and reviews previous corresponding linear combinations of the source symbols.
theoretical results. In Section Ill we present our proposdefich nodev stores its source symbol and the information
distributed algorithms. Section IV discusses the effect ¥Ectors it receives, in a decoding matiix,, that contains
changing the transmission range. Section V develops aldbe tuples of the coding vectors and the received informatio

rithms for constrained complexity and memory requiremen@/mbols. The matrix of a source that has not yet received
and Section VI concludes the paper. information from any other node contains only a single row

Il BACKGRO M (eq, ;). A received packet is said to be innovative if its vector
) o A K_ ROUND AT'_ER'AL increases the rank of the matrix.

In this section we first formally introduce the problem |n the case of network coding, a nodewill in general
formulation and notation. We then briefly review known résul transmit a linear combination that lies in the vector space
that are related to our approach, and discuss how our WK jtg decoding matrixG,. We can think of flooding or
is placed in this framework. We also describe the simulatiqj}obabmstic routing (i.e., without the use of network aug)
environment that we will use to evaluate our algorithms. a5 constraining the coding vectors to belong in the set of the
A. Problem Formulation orthonormal basis elements

Consider a wireless ad hoc network withnodes, where ¢, —[100...0], e, =[010...0],..., e, =1[0...01].
each node is a source that wants to transmit information to
all other nodes. We are interested in the minimum amount dRus in this casér, is a submatrix of the identity matrix.
energy required to transmit one unit of information from a Once a node receiveslinearly independent combinations,
source to all receivers. or equivalently, a basis of the-dimensional space, it is able
We assume that each nodecan successfully broadcastio decode and retrieve the information of theources. In the
one unit of information to all neighbor® (v) within a given case of network coding, decoding amounts to solving a system
transmission range, through physical layer broadcast. lé¢e aof linear equations, with complexity bounded@é»*). In the
assume that the transmission range is the same for all nod@se of probabilistic routing no decoding is required.
Thus, minimizing the energy is equivalent to minimizinq3 Previous Results

the number of transmissions required to convey a unit of ) )
information from a source to all receivers. In [15] we evaluated the theoretical energy requirements fo

More precisely, lef,. denote the total number of transmisProadcasting with and without network coding, over canahic
sions required to broadcast one information unit to all sod8etworks, and assuming perfect centralized schedulingeMo
when we use network coding. Similarly, 18, denote the precisely, we characterized the optimal performance we may
required number of transmissions when we do not use netw®Pe to get over these canonical configurations with anysiran
coding. We are interested in calculatidge. mission scheme, showed that it can be achieved using network

Note that the same problem formulation, minimizing théoding, and also evaluated what fraction of this optimaleal
number of channel uses (transmissions) per informatioty un¥e can achieve using forwarding. For completeness we briefly
can be equivalently viewed as maximizing the throughptgview these results here.
when broadcasting. Thus our results can also be interpreted- Circular Network: In the circular network: nodes are
as bounding the throughput benefits that network coding cBl@ced at equal distances around a circle as depicted irLFig.
offer, for our particular traffic and network environment. Assume that each node can successfully broadcast informa-

Let z1,...z, denote the source symbols associated witfon to its two nearest neighbors. For example, in Fig. 1 eiod
the n nodes. These symbélsre over a finite field7,. Each can successfully broadcast information to nodeand 8. In

) [15] it was shown that

Equivalently, we can think of1, ...z, as packets of symbols, and apply . .
to each packet the operations symbol-wise. In the followiregwill talk about 1) W!thOUt network (?Odlﬂgjl}, > (” - 1) (1 + E)
symbols and packets interchangeably. 2) with network codindl’},. > "T_l(l +¢€),



received by all the nodes within transmission range. We use
a custom, time-based network simulator. A packet (symbol)
transmission takes exactly one time unit. We assume that a
node can either send or receive one packet at a time. The
MAC layer is an idealized version of IEEE 802.11 with perfect
collision avoidance. At each time unit, a schedule is cibate
by randomly picking a node and scheduling its transmission
if all of its neighbors are idle. This is repeated until no mor
Fig. 1. A circular configuration witt8 nodes. nodes are eligible to transmit.

To allow an efficient implementation of network coding,
where lim,, ... ¢ — 0. It was also shown that there exisive use operations over the finite fielfl,s, so that each
routing and coding schemes that achieve the lower bound, asyebol of the finite field can be stored in a byte. Addition
thus T 1 and multiplication operations over this finite field can be

=, (1) implemented usingor and two lookup tables of size 255

L, 2 bytes [17]. The encoding vectors are transported in thegiack

2. S:IuareGrid Network: In this case we ConSideraWireleS&]eader as Suggested in [16] We use randomized network

ad-hoc network withn = m?* nodes where the nodes argoding, i.e., combine the received vectors uniformly atien
placed on the vertices of a rectangular grid. To avoid edgg create the vector to transmit.
effects, we will also assume that the area of the grid eneslop As performance metrics we mainly use Packet Delivery
the surface of a torus. In [15] it was shown that, if eacRatio (PDR) and decoding delay. The PDR is defined as the
number of packets that can liecoded at the destination.
For probabilistic routing, this is equal to the number of
received innovative packets, whereas with network codioty,
all innovative packets can necessarily be decoded. Sigilar
delay is counted as the average time between the transmissio
of a packet by the original source and successful decoding
at a node, where averaging is across receiver nodes. For
some simulations we also investigate total network energy
consumption, which is measured as the sum of transmit power

Fig. 2. A rectangular grid configuration. The node numbegrgresses the x transmission time over the duration of the simulation.
fact that the grid envelopes a torus.

node can successfully broadcast information to its fouresta [1l. DISTRIBUTED ALGORITHMS
neighbors then

. . 2 In this section we develop distributed algorithms that are
1) without network codindl’, > % (1 +¢)

well suited for random topologies. To this goal, we first

. . 2
2) with network codingl’,. > % (1 + ), prove that there exists a simple distributed algorithm trsats
wherelim,, ., ¢ — 0 and that there exist schemes that achievgtwork coding and allows to achieve the optimal perforneanc
the lower bounds fof’, and7;,.. Thus over the square grid network. We then tune this algorithm
T.. 3 to perform well in a random topology, and verify through
T, 4 (@) simulation that we obtain the expected benefits.

As is well known, random networks tend asymptotically (in {A‘S discussed in sectlon Il, in [15] we proved2 that there
the number of nodes) to behave like square grid networlISts & network coding scheme that achieligs= “-(1+¢),
We underline that the benefits calculated here refer to afi- the minimum possible number of transmissions. Howeve
idealized case, where perfect centralized scheduling abale  the @ssociated scheduling algorithm tends to be involved,a
transmissions is possible. As we will see in the following-se thuS might be challenging to implement in a practical system
tions, in more realistic environments, network codingwio N the following we describe a much simpler scheduling
to realize significantly larger gains when we constrain bothat still allows us to achieve the optimal benefits in terms
flooding and coding to operate in a distributed manner. ?f”energy efficiency. The algorithm operates in iteratioss a
C. Description of the Smulator chgc())\:\ilfﬁm 1:
Throughout this paper we will verify our theoretical anadys e Iteration 1: Each node broadcasts the information symbol
through simulation results over random topologies. Unlesisproduces to its four closest neighbors.
explicitly stated otherwise, the simulation environmerii w e Iteration k: Each node transmits a linear combination of
be as described in the following. the source symbols that belongs in the span of the coding
Nodes have a nominal transmission range ef 250m and vectors that the node has received in previous iterations.
are placed on a torus to avoid edge effects. Transmissi@ns ar



A. Theoretical Analysis For example, if

. . - ) B
Let m,, denote the number of linear independent combina A, = P p(1 ; P) } andA, = [ 1 p } ’

tions that node has received at the end of iteratibpand let | p(1—p) P 1 1

V}; be the vector space spanned by the corresponding codiRgp, forp = 1, det(Ay) # 0 over Fy, for p = 0, det(As) # 0
vectors. That isp, = [V)(|. Moreover, if A is a set of nodes, gyer 7,, and forp = 2, both det(A;) # 0 anddet(As) # 0
denote byV;* the union of the vector spaces that the nodeger 7.
in A'span, i.e. Vi ={U,V}, j € A}. Proof of Theorem 1

To show that Algorithm 1 allows to achieve the optimajye will prove this theorem using induction.
performance when broadcasting, we need to show that thgregr 1. = (), 1, = 1, since every node has one source symbol.
exists a coding scheme (linear combinations that nodes G@agor i — 1, m; = 5. Indeed, at the end of the first iteration
transmit) such that each broadcast transmission bring&&n each node has received the information symbols from its four
tive information to four receivers. This implies that Algbm  earest neighbors. Selecting adynodes, we will have the
1 operates ink = 1...[%] iterations as follows. At iteration jnformation from the4 nodes themselves, and moreover from
k, each node all their closest neighbors, which, from Lemma 1, will ambun

1) Transmits a vector from the vector space spanned by tieea union vector space of size at least+ |A| —1 = |A| +4.

coding vectors the node received at iterations. s —1. e Assume that the condition holds fbr= [ —1. It is sufficient
2) Receives four vectors, from his four closest neighbong show that it holds fok = I.
and increases the size of its vector space by four. Consider a setd. We want to show thathA| > mg_1 +

Before the iterations begin, each node has its own sourke- |A| — 1 = my + |A| — 1. From induction we know that
symbol, and thusn, = 1. Thus equivalently, it is sufficient V21| > my—1 + |A| — 1. If [VA | > mpq +4+ 4] — 1
to show that for each nodeat the end of iteratior we are done. The only interesting cases are whéh, | =
me—1 +i+|A —1,i=0...3. We will prove here the case
where|VA || = my_1 + |A| — 1. For the other three cases the
To prove that there exists a coding scheme such that Eq. ggguments are very similar.
holds, it is sufficient to prove that the following theorenidm L€t B be the set that includes! and all the nearest

Theorem 1: There exists a coding scheme to be used witkeighbors ofA. From Lemma 1 we know thaB contains at

mp =mg—1 +4=4k+ 1. 3)

Algorithm 1 on the square grid such that at iteratian least four nodes that do not belong i) say {b1, bz, bs, bs}.
N We want to show that when the nodes {@i,bs,bs, b4}
\Vi'| =2 min{my + [A] — 1,n} (4)  transmit during iteratiork, they increase the rank of the sét

by four. (And in fact, of every other set they are neighbors.)

for any set A of nodes, wheren, = 4k + 1, =1. ) i .
y r + b mo But this holds by the following argument. From assumption,

Eqg. (4) for A = {i} gives that{V}’| > my, = 4k + 1. But node

i at iterationk has received onlytk broadcast t_ransmi_ssio_ns, |Vk{_Ala.7'}| > mu_1 + |A|, for j € {b1,bs, b3, bs}

i.e., [Vi| < my = 4k + 1. Thus the theorem directly implies (A0} )

that [V}| = my = 4k + 1. For the proof of this theorem, we |VeZ1"" | = mk—1 +[A] + 1, for j, [ € {b1, bz, bs, ba}

will use two results, that we describe in Lemmas 1 and 2. |Vk{j‘1=j*l=Z}| > my_1+ |A| +2, for j, 1,z € {b1,b2, b3, b4}
Lemma 1: Any setA of nodes in the grid,witl + | A| < n, Ab1ba.bs,b

has at least four distinct neighbors. . |Vk{*1 o 4}| =z mi-1+ A +3.

Proof: The proof uses the fact that the vertex min-curhus, nodes,, by, b3 and b, have vectorsv; vs, vs and

between any two nodes in a square grid is four. Bebe the v, respectively such thav; ¢ V;*,, j = 1...4, and

set of nodes in the grid that are notih From assumptio3 the vector space spanned by them has dimension four, i.e.,

contains at least four nodes. If all the nodedirare neighbors | < vy, vs,v3,v4 > | = 4. Then, from Lemma 2, there exist

of nodes inA we are done. Assume that there exist a nbdelinear combinations that nodds can transmit at iteration

in B that is not a neighbor of any node ii. Let ¢ be any % such that the vector space of (and in fact any setd

node inA. Connectz andb through four vertex disjoint paths. neighboring them) increases in size by four.

On each such path there exists a distinct neighbot.of B To conclude, we have proved that there exists a coding
The second result we will need, was originally used in thecheme such that the simple distributed scheduling of Al-

framework of network coding in [18]. Here we write this reisulgorithm 1 achieves the optimal theoretically performarioe.

in a form that is convenient for the proof of our theorem. practice we will use randomized coding over a large enough
Lemma 2: Consider a family of n x n matrices field [19], to approximate this optimal performance.

Ay, Ag, ..., A, that are parameterized by coefficients o
D1, P2y .- p1. Assume that, for each matrixd;, there B- Application to Random Networks
exist valuespy, po, ..., p; over a field 7, such that the In this section we extend Algorithm 1 to work over random

determinant of4; over F,, is non zero, i.e.det(A4;) # 0. topologies, where the number of neighbdfév) of a nodev is
Then, there exists a finite fiell;, and there exist values ii, not constant. Moreover, the network is not perfectly synrimet
for p1, po, ..., pr such thatdet(A;) £0, ..., det(A,,) # 0. and we cannot assume perfect synchronization among nodes.



= 1 ProbaBilisic Routing tional to the number of 1-hop neighbors
b Network Coding - k
S o8t ] dy = ——.
gL N @)
_g 0.6 5 ] e Algorithm 2B: Set the forwarding factor inversely propor-
g tional to the minimum of the number of 1-hop neighbors of
g % % ] v's 1-hop neighbors
3 e &
g—— o2 T X 1 d, = — .
& famu SV L My e N (v) |N(U/)|
0 : : - " -
6 13 25 50 100 We expect the second scheme to outperform the first.
Avg. Number of Neighbors Intuitively, if a nodev has multiple neighbors but one of the
. , .
Fig. 3. Forwarding factor required to achieve a 99% PDR féfedint node nelghb.orsv has Only .nOde} /as a nelghbom needs to fqrward
densities (in a network of 2000m 2000m) all available information ta’, no matter how many neighbors
v itself has.

The performance of Algorithm 2B depends on the value

To account for these factors, the authors in [15] proposefl k. In essencek is a cumulative forwarding factor shared
a network coding protocol in analogy to probabilistic rogti between all nodes within a given radio range. It correspémds
algorithms that forwards packets with a certain probahilitthe number of packets that are transmitiethin this coverage
according to a forwarding factat > 0 [6], [7]. The forward- area as a response to the reception of an innovative packet,
ing factor should intuitively be inversely proportional the independent of the node density.
density of a node’s neighborhood. In [15] the forwardingdac ~ To determinek, we need to compute the probability that a
reflected the average node density of the network. Figuretransmitted packet is innovative. In [5], the authors arafthe
shows which forwarding factor is required to achieve a 90@robability that the broadcast of a given message is innavat
PDR with probabilistic routing and with network coding. Weor at least one neighbor when this message has already been
observe that the overhead of probabilistic routing is hidhye overheard a certain number of times, for the case of flooding.
a factor of 2-3, except for the case where the node densithis probability quickly drops td) for more than ca6 — 8
is so low that a number of nodes have only one or very feaverheard broadcasts of the same message. Therefamepnld
neighbors. In this case, network coding as well as proksiigili be set such that the number of broadcasts in an area is close
routing need to usd = 1. to this value and independent of the network density.
A similar analysis is possible for network coding. As a

In this paper we extend this work by proposing to use r%ugh approximation, let us assume that a nedand all

dynamic forwarding factor, that is Qifferent for each node ofb t one of its neighbors have ajl information vectors, and

the network, and a_dapts to possible _changes of the netwgr:#e neighbor’ has no information. We are interested in the

'tA(\)Ipol(_)tgr;]y. ;he algorithm can be described as follows. probability that after overhearingg transmissions, a packet
g\on mt ' ith h node a “f dina factor’d from v will be innovative forv’. In other wordsyp’ must have

¢ Associate with each nodea “forwarding factor: d. . received fewer thag innovative packets from the other nodes

e Nodew transmits its source symbolax{1, |d, |} times, and and is not yet able to decode

an additional time with probability = d,, —max{1, [d ]} i We compute this probability as follows. Lé2, be a disk

p \7\/2 d ) . i bol. it broad tOf radius1 (we can take all transmission ranges equal to 1
° €N a node receives an inhovative symnol, it broadcastyg;g.q e probability we are interested in is independeth®f

Iinear.combination ovethe span of th.e received_<.:oding(1|'ectOlistance unit chosen). Lgt= kg, and D, ..., D; be j disks,
[do] times, and an additional time with probability= d., — also of radiusl, with centers inDy, drawn independently and
[dv] i p > 0. uniformly in Dy. DefineQ? as the probability that a random
The optimum value off,, depends on the number of disjointpoint A/ in Dy is covered by fewer thap of the j disks. Our
paths from the information sources to all other nodes and capper bound is the probabilityzg. We show in appendix how
only be calculated with perfect knowledge of the networto compute this in closed form. The results are illustrated i
topology. Since we are interested in simple algorithms, wiable I1I-B. For fixedg and largek, we have the approximation

assume that a node can acquire knowledge about the direct 1.72029
. h . 9~ 670.321021gk. (5)
neighborhood as well as the two-hop neighborhood, while kg ok

further information is too costly to gather. We will therego

investigate the performance of two heuristics to adjlist
2In real scenarios, it is extremely unlikely that overhears none of the
Let N(v) be the set of direct neighbors of nodand letk  packets that its neighbors received previously to obtagir tmformation.
be a forwarding factor to be used when a node only has Olﬁgthermore,v’ may obtain the missing information through a neighbor that
. . is not withinv's transmission range. Also this case is not part of the aimly
smgle nelghbor. We scale, as follows. Therefore, the analysis below is a worst case estimate ikias gn upper
e Algorithm 2A: Setwv’'s forwarding factor inversely propor- bound on the probability af’ not being able to decode aftey transmissions.



TABLE |
NUMERICAL VALUES OF Q7 | (PROBABILITY OF BEING COVERED BY
FEWER THANg OUT OF kg DISKS).

coding. For PDRs close to 100%, it still requirkes> 6.

In all of the graphs we can observe a slight decrease in
PDR for higher node densities. This is due to the fact that
we simply distribute the cumulative forwarding factor owdr

g= 1 2 4 g — oo

k=1 | 0413 0636 0.835 1 nodes within range by dividing by the number of neighbors.
k= 0191  0.232 0.261 0.347 However, not all nodes necessarily have information to con-
k=31 0094 0088 00635 0 tribute. The higher the number of neighbors and therefage th
k=4 ]0.0480 0.0304 0.0136 0 _ . :

L =% | 00252 00111  0.00270 0 more aggressive the scaling down of the forwarding facher, t
k=6 | 0.0135 0.00407 0.000505 0 more this effect comes into play.

IV. I MPACT OF TRANSMISSION RANGE

Probabilistic Routing (g=1) ——
X Network Coding, g=2 - .

Network Coding, g=8 -
Network Coding, g=64 -

In the canonical configurations we have examined up to
now we have assumed that each node broadcasts information

0.1t
to its closest neighbors, i.e., to two neighbors in the case
of the circular network, and four neighbors in the case of
0.01 + the square grid network. Similarly, in the case of random

networks, we assumed that the transmission range is r@hativ
L small compared to the size of the network. In this section
0.001 } we investigate how this assumption affects our results. In
— i particular, we assume that all nodes transmit at an iddntica
range p (using omni-directional antennas) but thatmight

, » _ o allow to reach more than the closest neighbors.
Fig. 4. Probability that a node is not able to decode afftgtransmissions | irel . t the t itted d
for different numbers of information vectors (i.e., sizes of the decoding n a_W|re €ss environment, the transmitte pQ\H’Qr ecays
matrices). with distance a§Z—$ due to path loss, where typical values are

. , . . .. v > 2. Thus, if a receiver at a distangecan successfully
The probability of node’s transmission being innovative is o ceiye a signal that has power above a threstldhen the
depicted in Figure 4 for the case of probabilistic routigg=(

. ' > : transmitted powerPr must increase proportionally t6yp”.
1)_and netvy(_)rk codingy( > 1). Wlth_proba_b|l|st|c routing, Increasing the range of transmission increagks On the
this probability decreases exponentially with the number gy, hand, increasing the transmission range allows tchrea

transmissions, while it drops t0 much more rapidly with 1,56 receivers during each transmission. In the following,
network coding. The slope of the curve depends on t%antify this tradeoff

number of information vectorg. In the network scenarios
we are interested iry is on the order of tens to hundreds ofa. Circular Network
information vectors. To achieve probability of not beindeab
to decode below 1%, we have to get: 3 for network coding

andk > 6 for flooding. (Note that this is the probability tha(t

is not able to decode only using transmissions from nodes
N (v). It might still receive packets via some other neighbor
resulting in a higher overall PDR.) Interestingly, for> 3,

P(v' not able to decode)

0 2 4 6 8 10
Number of transmissions per innovative packet (k)

In a circular network, to reach the two closest neighbors,
a node needs to transmit at a radius2efn(2*) = 2sin(6).

%enerally to reach thek nearest neighbord, < k < %,
pode needs to transmit at a radius2ofin(22E) = 2sin(k0).

In the case of network coding, if each broadcast transnmissio

the probability of not being able to decode tends to O in tHSaCheS

limit for large g, while it is strictly positive for smallef. « the two closest neighbors, we will need total power
The performance of Algorithms 2A and 2B in random net- n—1 P,

works coincides well with the above analysis. As expectesl, t Py = 2 S (0)’

actual forwarding factors that are necessary are slighthet
than indicated by the worst case analysis. In Figure 5, nétwo e the 2k closest neighbors, we will need total power
coding achieves a PDR close to 100% for 2 (except for 1 P

.. . . n 0
very low node densities where the network is only partially Py = oF s (RO)
connected). Probabilistic forwarding requirés> 6 for a
similar performance and thus incurs a per packet overheBlus,
that is larger by a factor of 3. The performance for léw . 02 ot
increases dramatically with Algorithm 2B, where the 2-hop P —k sin(0) ) = & s tE -
neighborhood is taken into account (Figure 6). For network  Par sin (k) Ry GOR GO
coding, the PDR withk = 1 increases roughly tenfold, and ' '
for k slightly smaller than 1 (e.g. 1.2, not shown in the graph“’}‘,nd for largen (small ) we get that
network coding achieves a PDR 100%. Probabilistic routing P

: kY
benefits as well, however not to the same degree as network Py CE 6)
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In the case of forwarding, if each broadcast transmissidalues of this ratio are included in Table II.
reache2k neighbors, we need in total power

TABLE I
pf — (1+ n—1-2k P CONVERGENCE OF RATIOZ2®
2k k sin? (kO)
. . . % 1 2 10 50
We conclude.that |n.both cases we Iqse in terms of transmllt Tor T 07500 T 06667 | 060131 06089
power when increasing the transmission range, but the ratio Ty
s .
% remains equal t(%, at least fork much smaller tham.
B. Sguare Grid In the case of network coding, if each broadcast transmis-

sion reaches

The square grid can be thoughtasgimensional latticeZ> ) )
o the four closest neighbors, we will need total power

(enveloping the surface of a torus) that contains all tha@fgoi
of the formv = xe; + yes, Wherex andy are integers and; n—1

are the vectors of the orthonormal basis = [1 0], ez = [0 1]. o= 4 Fo.
If we draw a circle inR? with radiusk around the point it « the k closest neighbors, we will need total power
will contain all points(z,y) satisfying P
n—1F
(x —v1)* + (y — v2)? < k2 by = N. k7
Thus, if we broadcast at a constant radjus= k£ € Z,the Thus,
number of neighbors we can reach equals P N
P, 4k7 ®
y=k k
Ne= > @VEZ-y]+1)-1. () 1f v > 2 and using Eq. (7) we can see thgt < 1.
y=—Fk We conclude that fory = 2 increasing the transmission
If we compare the number of transmissions that we need witinge does not affect the energy efficiency. Ror> 2 the
and without network coding, we get that optimal strategy in terms of power efficiency is to transmit
y=k—1 . SR R Y to the closest neighbor. Moreover, as the transmissionerang
Tnc — 1_2920 (2lmin{\/k* —y VR - (k2 increase, the benefits network coding offers also increase
Tw ZZjik@b/k? -y +1)-1 and converge to approX.609. This number corresponds to



the area of the intersection of two circles with the sameusdicontain a subset of packets, of a size that is determined
and centers at distance equal to the radius. by the memory and processing capabilities of the network
nodes. In [20] the authors investigated and compared tiroug
C. Random Networks simulation results several generation management methods

In Figure 7 we show simulation results for a random neBur contribution in this paper is that we propose and evaluat
work with 144 nodes and a fixed area of 1500m1500m. For distributed schemes to manage generations.

each transmission range, we choose the smallest cumulative _
forwarding factork for Algorithm 2B that results in an overall Generation Sze Threshold
PDR of more than 99%. As can be seen from the left graph,Without central control in the network, nodes have to man-
with network coding higher transmission ranges even allosge generations based only on the information they already
to decrease the total energy expenditure (assuming a pathmave. A node is responsible for choosing the right generatio
loss exponent ofy = 2). Recall that Algorithm 2B is only a for each packet that originates at this node. To this end,
heuristic and requirelsto be somewhat larger than the optimathe node checks which generations it knows of, have a size
value. The intuition behind this result is that, the largee t that does not exceed a certain threshald=rom these, it
transmit range, the more “regular” the network becomes randomly picks one generation and inserts the packet into
terms of number of neighbors, and the closetan be set to the corresponding matrix. If no such generation exists, the
the optimal value. Note that nodes can trade off the numberrdde creates a new generation with a random generation ID
transmissions for transmit power, which in turn might allovand inserts the pack&tThe space of generation IDs has to
for simpler MAC layer schedules. be large enough so that the probability of having generation
In contrast, for flooding the overall energy consumptiowith the same ID created by different nodes is relativelylsma
increases with the transmit range, since flooding does rdlote that does not prevent decoding of the two generations
allow to reduce the number of transmissions as aggressivblyt merely “merges” them, leading to a larger generatioa. iz
as network coding for an increased number of neighbors.  The actual size of generations merely depends on the
The transmission range might also have an effect on del#tyresholdt but is not limited by it. Several distant nodes may
In the right graph of Figure 7 we see that there is a sligdecide to insert packets into the same generation at the same
decrease in average (decoding) delay for flooding as wethe. Therefore needs to be adapted based on the average
as for network coding, when the transmit range increasaize of the matrices at a given node (and can be different
This is the result of two factors: increasing the transmoissi for each node). Equivalently, can be adapted based on the
range implies that more nodes can be reached by a singlailable memory at a node. The higher the probability of
transmission. On the other hand, scheduling becomes maceles inserting many new packets at the same time and the
challenging, as the number of non-overlapping circles ¢hat lower the node memory, the lowémeeds to be.
be simultaneously packed (i.e., transmissions duringdnees  To analyze this effect, we perform simulations on an area
timeslot) is reduced. of 2000m x 2000m and with different numbers of nodes to
obtain the different node densities. We use Algorithm 2Bwit
k = 3. The left graph of Figure 8 shows the actual average size
A. Generation Management of generations at the nodes for different generation thoieish
Up to now we have assumed that each node is a soute€articularly for small generations, the actual size edsee
that has a single symbol to transmit, and that nodes are abjea factor of2 — 3. The ratio betweer and the actual size
to decode as soon as they receivelinearly independent of the generations is relatively independent of the network
combinations. Thus, all sources are decoded together at @ssity. Only when the generation size is close to the number
end of the transmission. of nodes and the network is very dense, many generations
In practice, the node memory and processing capabilitig®y be created at the same time, which then contain fewer
might be limited and therefore it might not be possible tformation vectors. This explains the drop in generatiae s
combine all existing information symbais in a single matrix. for larger node densities.
Moreover, in a random environment, there are perhaps bene{iécal Generations
in combining symbols not only across space, but @lswss
time, as is usually done in the network coding literature. With local generations, nodes that may insert packets into a
Following the terminology in [16], it was shown in [15] thatgeneration are limited to the-hop neighborhood of the node
Algorithm 2 can be easily extended to operate over genekddere the generation originated. Thus, we avoid having many
tions. We define a generation as a collection of packets tiides in different parts of the network insert packets into a
we allow to be linearly combined. For example, we can thineneration at the same time.
of our results up to now in the paper, as having generationA generation is created by a certain nadéThe distance to
that contains a single symbol from each source. In the otHBfs node determines generation membership. A hop count

extreme, a generation might contain packets originatiognr 3To avoid creating too many generations when many packeginate at

a_smgle source over tlme_, i.e., we do not allow paCket§ fro&ﬂferent nodes at the same time, one can additionally imposandom delay
different sources to combine. In general, each generatithn va node has to wait before being allowed to create a new géerat

V. PRACTICAL CONSIDERATIONS
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is associated with the local decoding matrix for this getiena 1 ‘ ‘ ;
and is initialized to zero. Vectors created from this maltdxe 0.9 | X @XEE ORI ¥ B 0]
a hop count of., +1. The hop count of the matrix at any node 0.8 r X 1
v’ # v is the minimum of the vectors’ hop counts received for 071 x ]
this generation, which corresponds to the minimum number of x 087 ]
hops to reach the originator. The hop count can be transporte g o3 ]
. . . 04 1
in the packet header together with the encoding vector. 03 | |
0.2 + 1
As before, a node determines if it is possible to include its 01t Ge#§§%|0%$h$L§L0013 X
information vector in an existing generation before stayta 0 0 5 1‘0 1‘5 20

new generation. For this, it checks if it has a matrix with a
hop counth, < X and with a current size smaller than the o o
thresholdt. If no such matrix exists. the node starts a ne\ﬁg. 9. PDR vs. average generation size with a generatientsieshold and
. o with local generations

generation. Nodes that are at a distance greater thhaps

might still form linear combination (network coded) packet
from that generation but will not insert new packets into th
generation. The impact of local generations on the avera

generation size is shown in the right graph of Figure 8. As discussed in Section Il, to decode a “generation” of size
g, i.e., g linearly independent equations, we need complexity
In addition to the stricter limit on generation size, locaf(g*), as we need to perform Gaussian elimination over the
generations also provide a slight improvement in PDR foy vep x g matrix of the received coding vectors. If at each interme-
small generation size as shown in Figure 9. Local genemstigfiate node we perform uniform at random combinations over
become more important when packet loss and communicatidp, then the resulting matrix will be a random matrix with
patterns make communication with far away nodes in tie@ch element chosen uniformly at random afgr
network difficult or unlikely. In [21] it was observed that instead of choosing coding

Average Matrix Size

.eReduci ng Decoding Complexity



vectors uniformly overF,, in many cases we get comparable
performance by performing sparse linear combinationsy ove
a small field. This work was motivated by the observation
[22] that a sparse random matrix of sizex g(1 + €)

with limgﬂoog = 0, has with high probability full rank. In
particular, this is true if we choose each element of the imatr
independently to be one with probability = % and
zero otherwise. Moreover, such a matrix requitég?log(g))
operations to be decoded. If each node in the graph performs
“sparse” linear combinations, we can express the resulting
matrix that a receiver needs to decode as a product of sparse
matrices which we can solve sequentially. Here we examine
the effect of reducing the alphabet size and of forming “sear
linear combinations through simulation results.

Reducing the Alphabet Sze: From simulations with 100
nodes, a generation size of 100, and on average 12 neightfbrsource to all receivers for canonical configurations, and
per node, we see that a relatively small alphabet size dgveloped distributed algorithms that allow to approach th
sufficient to achieve good network coding performance. Onjptimal performance in practice. The emphasis of the paper
the field of size two, which is much smaller than the averadeéas in tradeoffs and design choices that arise in practical
number of neighbors, provides an insufficient number &ystems, such distributed generation management, anct effe
linearly independent combinations per neighborhood.alge ©Of transmission range. Our work indicates that there is a
an alphabet size df?> comes close to the performance of afotential for significant benefits, when deploying network
alphabet size of® which is what we used in all of the previouscoding over a practical wireless ad hoc network environment

PDR
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1

Fig. 11. Impact of reducing the matrix density on PDR
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Fig. 10. Impact of reducing the alphabet size on PDR [7]

(8]
Reducing the Matrix Density: We use the following al-

gorithm to generate vectors with a limited number of non-,
zero entries. As long as the number of non-zero coefﬁcien{s
is lower than a threshold, a row is randomly picked from
the decoding matrix, multiplied by a random coefficient, and®
added to the vector to be sent out. We use a simulatign;
setting similar to that of the previous paragraph. Settirg 1
corresponds to sending out the information of a single row B.fZ]
the decoding matrix which is non-innovative for neighbgrin
nodes with a high probability (in fact, performance degsade
to that of probabilistic routing). As soon gs~ log(g), there [13]
is little difference in performance compared to an unretd [14]

generation of vectorsy(= 100).
[15]
VI. CONCLUSIONS

In this paper we characterized the minimum amount ?lfe]
energy required to transmit one unit of information from
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APPENDIX: COMPUTATION OF COVERAGE PROBABILITY @) = 4004307/3—1363360w—210600y/3r"+30400x° +2400/3n"
518407
Let Do be a diskof radiud. Letj = kg, and Dy, ..., Dj be e can also compute limits for largeor largek. We have

J disks, also of radiug, with centers inDy, drawn indepen- () 7 = 2f0 (kg,g,1 — p1(p))pdp Where B(j, g,p) is the

dently and uniformly inD,. DefineQ¥ as the probability that (b|n0m|al) probability that a random experiment with sigxe
a random pointM in D, is covered by less thag of the j proability p succeeds less thay times in j experiments.

disks. We are interested @Z(] We have: For |arge k or g, wWe can approximat@(kg’g’p) by a

normal distribution, which givesf(x) is the probability that

Q7 = Zq;'_ (9 2a standard normal random variable is larger than
J
' 1 —k(1—pi(p)
with ¢¢ equal to the probability that a random point iy, is Qg ~ 2/ 1-Q(vy - pdp
J ) . : 0 \/ (1 =p1(p)p1(p)
covered by exactly of the j disks. Further:
1
. 1
qi = / PP (m is covered by exactly of the j disks dm ~ 2/ Q| Vgky|—= —1|pdp (16)
Do T 0 P1 (p)
(10)

By independence obs,..., D *% dsdp a7

i J . d_m P1 (p)
4= /DO ( i ) (1—P(m ¢ D))’ ( (m ¢ D ) T By inversion of the order of integration, one obtains

(12) oo 2
We now computeP(m ¢ D;). By circular symmetry, it Ql, ~ 2/ e T (1 — ¢(s)%)ds (18)
depends only on the distanpe= ||m|| from 0 to m. Letp;(p) Vaky
be the value oP(m ¢ D;) when||m/| = p. To computep;(p) Whereg(s) is implicitly defined byp; (¢(s)) = ——— and

we first computep(p, ), defined as the probability that ¢ - , C VIEstek

D, given that the distance from the centerlf to the origin 7 = /s — 1 = 0-642042. This function increases from

is ». This is obtained by considering a random experimeffor s = so = v/gkv) to 1 for s — oo; we approximate it
where we select the center, of D; uniformly on the circle with the piecewise linear function given by the derivatite a
centered ab with radiusr. Let 6 be the principal measure of sp and the asymptote which correspondsga) close tol.
the angle fromOw; to Om. Let fiqx be the maximum value One obtains the approximatidn— ¢(s)* = (s — so) & for

of 6 such thatn € D;. We have s0<s< @ + 50 With
2 2
if » + p > 1 then 0, = arccos TE’J 2
rp 12 2m
{ else Opax = 7 ( ) (\/§+3) \/ ( 1+3\[+2)
a= ~ 2.15607
and g
p(p,r) =1~ 20max —1_ Omax (13) and otherwisel — ¢(s)? ~ 1. The resulting integral can be
21 T computed and one finds
Thus (taking into account thatis a polar coordinate): g 20 bk _ 1_72029670321021% (19)
ke ™ rgk ok
p1(p) 2]0 rdr 9 9
—2f! (1 — L arccos %) dr (14 With a similar analysis, for largg, we have the following
pﬁﬂmsi’;ﬁ v limits, when’ is fixed:
=y o Fork=1:limy_ QJ =1
and o Fork=2,lim, .. Q3, =1— pi =~ 0.347224 wherep,

is the root in(0, 1) of the equatiorp; (p1) = 1/2.

G=2( 1) [ 0-n) m) oo @S« Fork>3ilim, o Qf =0
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