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Abstract—The flip-chip package gives the highest chip density
of any packaging method to support the pad-limited application-
specific integrated circuit designs. In this paper, we propose the
first router for the flip-chip package in the literature. The router
can redistribute nets from wire-bonding pads to bump pads and
then route each of them. The router adopts a two-stage technique
of global routing followed by detailed routing. In global routing,
we use the network flow algorithm to solve the assignment problem
from the wire-bonding pads to the bump pads and then create
the global path for each net. The detailed routing consists of
three stages, namely: 1) cross-point assignment; 2) net ordering
determination; and 3) track assignment, to complete the routing.
Experimental results based on seven real designs from the industry
demonstrate that the router can reduce the total wirelength by
10.2%, the critical wirelength by 13.4%, and the signal skews by
13.9%, as compared with a heuristic algorithm currently used in
industry.

Index Terms—Detailed routing, global routing, physical design.

I. INTRODUCTION

A. Flip-Chip Design

DUE TO THE increasing complexity and decreasing fea-

ture size of very large scale integration (VLSI) designs,

the demand of more I/O pads has become a significant problem

of package technologies. A relatively new packaging technol-

ogy, i.e., the flip-chip package, as shown in Fig. 1, is created for

higher integration density and rising power consumption. Flip-

chip bonding was first developed by IBM in the 1960s. It gives

the highest chip density of any packaging method to support the

pad-limited application-specific integrated circuit designs.

Flip-chip is not a specific package, or even a package type,

e.g., pin grid array (PGA) or ball grid array (BGA). Flip-chip

describes the method of electrically connecting the die to the

package carrier. The package carrier, which is either a substrate

or a lead frame, provides the connection from the die to the
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Fig. 1. (a) Flip-chip. (b) Flip-chip package.

outside devices of the package. The die of a PGA/BGA package

is attached to the carrier face up, and later, a wire is bonded first

to the die, then looped and bonded to the carrier. In contrast,

the interconnection between the die and carrier in the flip-chip

package is made through a conductive bump ball that is placed

directly on the die surface. Finally, the bumped die is flipped

over and placed face down, with the bump balls connecting to

the carrier directly. The flip-chip technology is the choice in

high-speed applications because of the following advantages:

reduced signal inductance (high speed), reduced power/ground

inductance (low power), reduced package footprint, smaller die

size, higher signal density, and lower thermal effect. However,

in recent integrated circuit designs, the I/O pads are still placed

along the boundary of the die. This placement does not suit the

flip-chip package. As a result, we use the top metal or an extra

metal layer, which is called a redistribution layer (RDL), as

shown in Fig. 2, to redistribute the wire-bonding pads to the

bump pads without changing the placement of the I/O pads.

Since the RDL is the top metal layer of the die, the routing angle

in an RDL cannot be any angle as in the PGA/BGA packages.

Bump balls are placed on the RDL and use the RDL to connect

to wire-bonding pads by bump pads.

The flip-chip package is generally classified into two types,

namely: 1) the peripheral array, as shown in Fig. 3(a), and

2) the area array, as shown in Fig. 3(b). In the peripheral array,

the bump balls are placed along the boundary of the flip-chip

package. The disadvantage of the peripheral array is that we

only have a limited number of bump balls. In the area array,

0278-0070/$25.00 © 2007 IEEE
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Fig. 2. Cross section of RDL.

Fig. 3. (a) Peripheral array. (b) Area array. (c) RDL routing result.

the bump balls are placed in the whole area of the flip-chip

package. The advantage of the area array is that the number of

bump balls is much more than that of the peripheral array; thus,

it is more suitable for modern VLSI designs. Since the flip-chip

design is for high-speed circuits, the issue of signal skews is

also important. Thus, a special router, i.e., the RDL router [11],

is needed to reroute the peripheral wire-bonding pads to the

bump pads and then connect the bump pads to the bump balls.

Consider that the routing of multipin nets and the minimization

of the total wirelength and the signal skews are also needed for

an RDL router. Fig. 3(c) shows one RDL routing result for an

area-array flip-chip.

B. Previous Work

To the best knowledge of the authors, there is no previous

work in the literature on the routing problem for flip-chip

designs. Similar works are the routing for PGA packages, BGA

packages, and planar graphs, including [1]–[4], [8]–[10], and

[12]–[15]. Yu and Dai [14] used the geometric and symmetric

attributes of the pin positions in the BGA packages to assign

pins of the BGA packages. However, in flip-chip designs, the

positions of wire-bonding pads and bump pads do not always

have these geometric and symmetric attributes. PGA routers are

presented in [3] and [10], whereas a BGA router is provided

in [4]. These three routers are any-angle multilayer routers

without considering the pin assignment problem, single-layer

routing, and total wirelength minimization. Wang et al. [12] and

Yu et al. [15] applied the minimum-cost network flow algorithm

to solve the I/O pin routing problems. All these routers focused

only on routability and did not consider multipin nets and

signal skews. Wang et al. [12] also did not consider the routing

congestion problem. Furthermore, they assumed that wires can

be any angle; thus, their methods are not suitable for the RDL

routing, typically with a 90◦ angle routing. For the previous

works on the planar routing [1], [2], and [5], since the pins

can be placed anywhere in the chip, it is a nameplate-complete

problem, and thus, most likely, there exists no efficient optimal

algorithm for the planar routing. In the flip-chip routing, since

wire-bonding pads and bump pads are placed in arrays, we can

take the advantage of the regular structure to find an efficient

algorithm for the RDL routing. Thus, the flip-chip routing

problem is also different from the planar routing one.

C. Our Contributions

To our best knowledge, this paper is the first work in the

literature to propose an RDL router to handle the routing

problem of flip-chip designs with real industry applications. We

present a unified network flow formulation to simultaneously

consider the concurrent assignment of the wire-bonding pads to

the bump pads and the routing between them. Our algorithm

consists of two phases. The first phase is the global routing

that assigns each wire-bonding pad to a unique bump pad.

By formulating the assignment as a maximum-flow problem

and applying the minimum-cost maximum-flow (MCMF) al-

gorithm, we can guarantee 100% detailed routing completion

after the assignment. The second phase is the detailed routing

that efficiently distributes the routing points between two adja-

cent wire-bonding (bump) pads and assigns wires into tracks.

In addition to the traditional single-layer routing with only

routability optimization, our RDL router also tries to optimize

the total wirelength and the signal skews between a pair of

signal nets under the 100% routing completion constraint. Ex-

perimental results based on seven real designs from the industry

demonstrate that the router can reduce the total wirelength by

10.2%, the critical wirelength by 13.4%, and the signal skews

by 13.9%, as compared with a heuristic algorithm currently

used in industry.

The rest of this paper is organized as follows: Section II

gives the formulation of the RDL routing problem. Section III

details our global and detailed routing algorithms. Section IV

shows the experimental results. Finally, conclusions are given

in Section V.

II. PROBLEM FORMULATION

We introduce the notations used in this paper and formally

define the routing problem for flip-chip packages. Fig. 4 shows

the modeling of the routing structure of the flip-chip package.

Let P be the set of wire-bonding pads, and let B be the set

of bump pads. For practical applications, the number of bump

pads is larger than or equal to the number of wire-bonding

pads, i.e., |B| ≥ |P |, and each bump pad can be assigned to

more than one wire-bonding pad. Let Rb = {rb
1, r

b
2, . . . , r

b
m}

be a set of m bump pad rings in the center of the package,

and let Rp = {rp
1 , r

p
2 , . . . , r

p
k} be a set of k wire-bonding

pad rings at the boundary of the package. Each bump pad

ring rb
i consists of a set of q bump pads {bi

1, b
i
2, . . . , b

i
q}, and

each wire-bonding pad ring rp
j consists of l wire-bonding

pads {pj
1, p

j
2, . . . , p

j
l }. Let N be the set of nets (could be

two-pin or multipin nets) for routing. Each multipin net n
in N is defined by a set of wire-bonding pads and a set of

bump pads that should be connected. Each two-pin net can
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Fig. 4. Four sectors in a flip-chip package.

be assigned to a bump pad not included in the sets of bump

pads for the multipin nets. Since the RDL routing for current

technology is typically on a single layer, it does not allow

wire crossings, for which two wires intersect each other in the

routing layer. As shown in Fig. 4, based on the two diagonals of

the flip-chip package, we partition the whole package into four

sectors, namely: 1) North = {PN , BN , RN
p , RN

b }; 2) East =

{PE , BE , RE
p , RE

b }; 3) South = {PS , BS , R
S
p , R

S
b }; and

4) West = {PW , BW , RW
p , RW

b }, where Pi(Bi) and Ri
p(R

i
b),

i ∈ {N,E, S,W} are the set of the wire-bonding (bump) pads

and the set of the wire-bonding (bump) pad rings in the i sector,

respectively. For practical applications, the wire-bonding pads

in one sector only connect to the bump pads in the same sector.

We define an interval to be the segment between two adjacent

bump pads in the same ring rb
i or the segment between two

adjacent wire-bonding pads in the same ring rp
j . Given a flip-

chip routing instance, there are two types of routing, namely:

1) the monotonic routing and 2) the nonmonotonic routing. A

monotonic routing can be formally defined as follows.

Definition 1: A monotonic routing is a routing such that for

each net n connecting from a wire-bonding pad p to a bump

pad b, n intersects exactly one interval in each ring rb
i and

exactly one interval in each ring rp
j .

As shown in Fig. 5(a), the nets n2 and n4 are monotonic

routes. If we exchange the positions of two bump pads b2 and

b4, the routings of n2 and n4 are nonmonotonic, as shown

in Fig. 5(b). The wirelengths of the nets n2 and net n4 are

increased. This shows a drawback of the nonmonotonic rout-

ing. Since the nonmonotonic routing occupies more routing

resource, it causes significant problems for the single-layer

routing. Thus, a good flip-chip package routing should be a

monotonic routing without detours, as shown in Fig. 6, because

the monotonic routing results in smaller total wirelength and

higher routing completion, as compared to the nonmonotonic

Fig. 5. (a) Monotonic routing. (b) Nonmonotonic routing.

Fig. 6. Monotonic routing with and without detours.

routing. Furthermore, the signal skew, i.e., the difference of

wirelength between the longest net and the shortest one, should

also be considered for routing on the flip-chip package.

Based on the aforementioned definition, the routing problem

can be formally defined as follows.

Problem 1: The single-layer flip-chip routing problem is to

connect a set of p ∈ P and a set of b ∈ B so that no wire crosses

each other, the routing is monotonic, and the total wirelength

and the signal skew are minimized.

III. ROUTING ALGORITHM

In this section, we present our routing algorithm. First, we

give the overview of our algorithm. Then, we detail the methods

used in each phase.

A. Algorithm Overview

According to the routing flow shown in Fig. 7, our algorithm

consists of two phases, namely: 1) global routing based on the

MCMF algorithm [5] and 2) detailed routing based on the cross-

point assignment, the net ordering determination, and the track

assignment.

In the first phase, we construct four flow networks, namely:

1) GN ; 2) GE ; 3) GS ; and 4) GW , one for each sector, to solve

the assignment of the wire-bonding pads to the bump pads.

Since we have only one layer for routing, the assignment should

not create any wire crossings. We avoid the wire crossings

by restricting the edges in the networks not to intersect each

other. We first consider two-pin nets and then multipin nets. The

reason is that multipin nets allow more than one wire-bonding

pad to connect to one bump pad. Thus, the multipin nets may

block the two-pin nets. Under this condition, a wire-bonding

pad may not find a global path. Thus, the two-pin nets need to

be considered first. We will detail the reason in Section III-B4.

After applying MCMF, we obtain the flows representing the

routes from wire-bonding pads to bump pads for the nets. Those

flows give the global paths for the nets.

In the second phase, we use the cross-point assignment,

the net ordering determination, and the track assignment to

determine detailed routes. A cross point is the point for a net

to pass through an interval. First, we find the cross points for
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Fig. 7. RDL routing flow.

Fig. 8. Overview of the RDL routing algorithm.

all nets passing through the same interval. For all nets that

pass through the same interval, we evenly distribute these cross

points. Second, we use the net ordering determination technique

presented in [7] to create the routing sequence between two

adjacent rings so that we can guarantee to route all nets.

Finally, we assign at least one track to each net based on the

routing sequence obtained from the net ordering determination

algorithm. Fig. 8 summarizes our routing algorithm.

B. Global Routing

In this section, we first show the basic flow network formula-

tion. Then, we detail the capacity of each edge, the intermediate

nodes, the tile nodes, and the cost of each edge. Finally, we

discuss how to handle the multipin nets.

1) Basic Network Formulation: We describe how to con-

struct the flow network GS to perform the concurrent as-

signment for the South sector. The other three sectors can be

processed similarly. As shown in Fig. 9(a), we define DS =
{dS

1 , d
S
2 , . . . , d

S
h} to be a set of h intermediate nodes. Each

intermediate node represents an interval (pj
y, p

j
y+1)((b

i
x, b

i
x+1))

in a wire-bonding (bump) pad ring. TS = {tS1 , t
S
2 , . . . , t

S
u}

is a set of u tile nodes. Each tile node represents a tile

(pj
y, p

j
y+1, p

j+1

y′ , pj+1

y′+1
)((bi

x, b
i
x+1, b

i+1

x′ , bi+1

x′+1
)) between two

adjacent wire-bonding (bump) pad rings. We construct a graph

GS = (PS ∪DS ∪BS ∪ TS , E) and add a source node s and

a sink node t to GS . Each intermediate node d has a capacity

of Kd, where Kd represents the maximum number of nets that

are allowed to pass through an interval d. Each tile node t has

a capacity of Lt, where Lt represents the maximum number of

nets that are allowed to pass through a tile t. We will detail how

to handle the capacity of the intermediate nodes and the tile

nodes so that MCMF can be applied in Section III-B2. There

are 11 types of edges:

1) edges from a wire-bonding pad to a bump pad;

2) edges from a wire-bonding pad to an intermediate node;

3) edges from a wire-bonding pad to a tile node;

4) edges from an intermediate node to a bump pad;

5) edges from an intermediate node to another intermediate

node;

6) edges from an intermediate node to a tile node;

7) edges from a tile node to a bump pad;

8) edges from a tile node to an intermediate node;

9) edges from a tile node to another tile node;

10) edges from the source node to a wire-bonding pad;

11) edges from a bump pad to the sink node.

Each edge is associated with a (cost, capacity) tuple to be

described in the following sections. Recall that we do not allow

wire crossings for all wires. Since E represents the possible

global paths for all nets, we can guarantee that no wire crossings

will occur if there are no crossings in edges. Thus, we construct

all the edges and avoid crossings of all edges at the same time.

Fig. 9(b) shows an example flow network GS for the South

sector. The last two types of edges are not shown here. Further-

more, we do not construct edges between the two tile nodes in

the center of the two wire-bonding pad rings because the place-

ment of these tile nodes is symmetric. We can solve MCMF

in time O(|V |2
√

|E|) based on the network flow algorithm

presented in [5], where V is the vertex set in the flow network.

Theorem 1: Given a flow network with the vertex set V
and edge set E, the global routing problem can be solved in

O(|V |2
√

|E|) time.

Proof: Immediate from the aforementioned discussions.

�

2) Capacity Assignment and Node Construction: Now, we

introduce the capacity of each edge, the intermediate nodes,

and the tile nodes. Fig. 10 shows the capacity and cost for all

11 types of edges in the complete flow network. For an edge e,

if e is from a wire-bonding pad to a bump pad, an intermediate

node, or a tile node, the capacity of e is set to one. If e is from

an intermediate node or a tile node to a bump pad b, then the

capacity of e is set to Mb, where Mb is the maximum number
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Fig. 9. (a) Intermediate nodes and tile nodes. (b) Flow network for the South sector.

Fig. 10. Capacity and cost on edges.

of nets that are allowed to connect to the bump pad b. Recall

that an intermediate node d has a capacity of Kd, where Kd is

the maximum number of nets that are allowed to pass through

this intermediate node d. This means that the capacity of each

incoming edge of an intermediate node d is equal to Kd. If e
is an incoming edge of a tile node t, then the capacity of e is

set to Lt, where Lt is the maximum number of nets that are

allowed to pass through the tile node t. As shown in Fig. 11, in

order to model this situation, we decompose each intermediate

node d into two intermediate nodes d′ and d′′, and an edge is

connected from d′′ to d′, with a capacity of Kd. All outgoing

Fig. 11. (a) Capacity and cost on intermediate nodes. (b) Capacity and cost
on tile nodes.

edges of d are now connected from d′, with a capacity of K̄d,

and all incoming edges of d are now connected to d′′, with a

capacity of Kd. Each tile node t is also decomposed into two

tile nodes t′ and t′′, and the capacity of a tile node t is set to

Lt, where Lt is the maximum number of nets that are allowed

to pass through this tile node t. The capacity of the edges from

the source node to the wire-bonding pads is set to one, and the

capacity of the edges from each bump pad b to the sink node is

set to Mb. There are three worst cases of congestion in a tile,

as shown in Fig. 12. The four nodes in the three figures are

all bump pads. In Fig. 12(a) and (c), the maximum number of

nets passing through the tile is 2K. In Fig. 12(b), the maximum

number of nets passing through the tile is 3K. If we do not use

the tile node t, the maximum number of nets in Fig. 12(a)–(c)
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Fig. 12. Three kinds of congestion in a tile.

Fig. 13. Adjustment of α values on edges in the South sector.

could exceed the capacity of a tile (2K > Lt or 3K > Lt).

Since the capacity of each tile node is well modeled in our flow

network, we can totally avoid this congestion problem.

3) Cost of Edges: The cost function of each edge is defined

by the following equation:

Cost = α×WL (1)

where WL denotes the Manhattan distance between two ter-

minals of an edge, and α is an adaptive parameter to adjust

the cost of different types of edges. By adjusting the value of

α, we can control the wirelength of each net to avoid large

signal skews among different nets. As an example shown in

Fig. 13(a), we assign the smallest α to the dashed (red) edge

that connects an intermediate node to a bump pad to assign the

intermediate node to the bump pad first. By doing so, the rout-

ing for a net starting from a preceding ring can be completed

earlier to reduce its routing length (and, thus, signal skew).

As an example shown in Fig. 13(b), the dashed (red) edge that

connects one tile node to another tile node is also assigned the

smallest α to assure that fewer bump pad rings are used. Since

the wirelength between the tile node t and the bump pad 1 is the

same as that between t and the bump pad 2, we have to assign

the smallest α to the dashed (red) edge to make t connect the

bump pad 2 first. Thus, we can reduce the number of long nets

to reduce the signal skew by using fewer bump pad rings. If a

wire-bonding pad is assigned to a bump pad directly, it might

generate a very short net. Hence, we assign the largest α to the

dotted (blue) edge that connects a wire-bonding pad to a bump

pad to avoid too short connections between the two types of

pads to reduce the signal skew. Finally, the solid (black) edge

that connects two intermediate nodes, a tile node to a bump pad,

or an intermediate node to a tile node is assigned a medium α.

Since the solid (black) edge does not influence the signal skew,

the medium α is set to one. The costs of the edges from the

source node to the wire-bonding pads and the costs of the edges

from the bump pads to the sink node are both set to zero.

4) Multipin Net Handling: For practical flip-chip routing,

if a bump pad can be assigned to any two or even more wire-

bonding pads, we can just increase the capacity of the bump

pad to connect more wire-bonding pads. Since we construct the

edges for the two-pin nets and the multipin nets simultaneously,

the global routing result is optimal. However, for other practical

flip-chip routing, a net may connect multiple wire-bonding

pads (which are assigned the same signal such as power or

ground pads) to a bump pad. This bump pad cannot be assigned

to other nets. As stated before, we first assign two-pin nets

and then multipin nets. We only construct the edges associated

with the two-pin nets and apply MCMF for the assignment.

After the assignment, we delete all edges from the source node

s and all edges to the sink node t. (However, the flows of the

edge e, the intermediate node d, and the tile node t for each

assigned two-pin net will be kept in the flow network.) The

global paths of the assigned two-pin nets are not deleted and

considered as blockages F during the construction of the edges

for the multipin nets. Recall that if there are no edge crossings

in the flow network, then there are no wire crossings in the final

routing solution. When we construct the edges for the multipin

nets, an edge e exists only if e does not intersect any blockages

or never crosses the assigned two-pin nets. Then, we add the

edges from the source node to the wire-bonding pads associated

with the multipin nets and the edges from the bump pads

associated with the multipin nets to the sink node. Fig. 14(a)

illustrates an example. We assume that a multipin net n consists

of ((p2, p4, p5), (b3, b9)), which means that three wire-bonding

pads 2, 4, and 5 are only free to be assigned to one of the two

bump pads 3 and 9. No other wire-bonding pads can be assigned

to these two bump pads. Redundant edges are deleted by the

blockage fi. For example, the edge from p2 to the intermediate

node between b8 and b9 is deleted because it intersects the

blockage (p3, b8). By using MCMF, the wire-bonding pads

and bump pads are grouped into two sets: {p2, b3} and

{p4, p5, b9}. Fig. 14(b) illustrates why we handle two-pin nets

first. In this example, we assume that only the bump pad 1 for

two-pin nets and the bump pad 2 for multipin nets can be

assigned to wire-bonding pads. If we handle the multipin net 2

first, then the two-pin net 1 cannot be assigned to the bump

pad 1 to find a global path. The reason is that the multipin net 2

divides the region into two subregions and blocks the wire-

bonding pad 1. In order to avoid this situation, we shall handle

two-pin nets first. The similar idea is applied in the planar

routing. As shown in Fig. 15(a), in a planar routing, if a net

such as net 1 or net 2 is routed to divide the region into two

subregions, it should be routed later. Otherwise, as shown in

Fig. 15(b), other nets such as net 3 or net 4 may cross the net.

Based on the global routing algorithm, we have the following

theorem.

Theorem 2: Given a set of wire-bonding pads, a set of

bump pads, and a set of nets, if there exists a feasible solution

computed by the MCMF algorithm, we can guarantee 100%

detailed routing completion.

Proof: In our global routing model, MCMF is optimal

for two-pin nets and suboptimal for multipin nets. Since we
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Fig. 14. (a) Assign multipin nets. (b) Handle multipin nets first.

Fig. 15. (a) Routing sequence: {5, 3, 4, 1, 2}. (b) Routing sequence:
{1, 2, 3, 4, 5}.

consider the routing resource in the global routing stage and

will never assign nets to exceed the capacity of an interval or a

tile, we will never violate the design rules. Also, because we do

not allow edge crossings during the flow network construction,

the final routing solution will not generate wire crossings. Thus,

after the assignment, all global paths are routable in the detailed

routing stage. �

C. Detailed Routing

In this section, we explain the three methods used in our

detailed routing. As shown in Fig. 16, after the global routing,

each global path contains only wire-bonding pads, intermediate

nodes, and bump pads. The two global paths 〈dk, t, dl〉 and

〈dy, t, bx〉, which pass through the tile node t, are remodeled

as 〈dk, dl〉 and 〈dy, bx〉. Tile nodes are not needed for the final

representations of the global paths because a tile node is just

used to avoid the congestion overflow.

1) Cross-Point Assignment: Based on the global routing re-

sult (discussed in Section III-B), we use the cross-point assign-

ment algorithm to evenly distribute nets that pass through the

same interval (see Fig. 17 for an example). As shown in Fig. 17,

the two nets from wire-bonding pads p2 and p3 pass through

the same intermediate node. Thus, we split the intermediate

Fig. 16. Redefined global paths.

Fig. 17. Cross-point assignment.

node into two cross points. Since the maximum number of

intermediate nodes is ((|B| − |Rb|) + (|P | − |Rp|)), we have

the following theorem.

Theorem 3: The cross-point assignment problem can be

solved in O(|B| + |P |) time.

Proof: If there are qi bump pads in the bump pad ring rb
i in

the South sector, there will be (qi − 1) intervals of the bump pad

ring rb
i . Hence, there will be (qi − 1) intermediate nodes. Since

the number of bump pad rings is |RS
b |, the maximum number

of intermediate nodes is
∑|RS

b
|

i=0
(qi − 1) = |BS | − |RS

b |. As for

the wire-bonding pads, the condition is the same as that of the

bump pads, and the conditions of the remaining three sectors are

the same as those of the South sector. Thus, the maximum num-

ber of intermediate nodes is ((|B| − |Rb|) + (|P | − |Rp|)),
and the time complexity is O(|B| + |P |) (the upper bound of
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Fig. 18. (a) Net segments between two adjacent rings. (b) Stack for net ordering determination.

((|B| − |Rb|) + (|P | − |Rp|))) to assign cross points to each

intermediate node. �

2) Net Ordering Determination: After the assignment of

cross points, each net has its path to cross each interval. For

two adjacent rings, we can treat the routing between the two

rings as a channel routing. Thus, we can use the net ordering

determination algorithm presented in [7] to generate a routing

sequence S = 〈(ns
1, n

d
1), (n

s
2, n

d
2), . . . , (n

s
k, n

d
k)〉, with k net

segments. Each net segment ni(j, j
′) is represented by a

source–destination pair/tuple (ns
i , n

d
i ). We first determine

the source and destination for each net based on the

counterclockwise traversing distance along the leftmost

and rightmost boundaries. If the counterclockwise traversing

distance along the leftmost boundary is shorter than the

counterclockwise traversing distance along the rightmost

boundary, the terminal j is a source, and the terminal j′ is a

destination. Otherwise, the terminal j is a destination, and the

terminal j′ is a source. For example, given the net 1 shown in

Fig. 18(a), since the counterclockwise traversing distance along

the leftmost boundary is shorter than the counterclockwise

traversing distance along the rightmost boundary, we make the

terminal 1 a source and the terminal 1′ a destination. For the

net 10, however, since the counterclockwise traversing distance

along the leftmost boundary is longer than the counterclockwise

traversing distance along the rightmost boundary, we make the

terminal 10′ a source and the terminal 10 a destination. Starting

from an arbitrary terminal, we then generate a circular list

for all terminals ordered counterclockwise according to their

positions on the boundaries. A stack is used to check if there

exist crossovers among the net segments. For each terminal

of net segment ni, if it is a source, then we push it into the

stack. If this terminal is a destination and the top element of

the stack belongs to the same net segment, then net segment

ni is matched, and the top element is popped. Otherwise, if

the stack is empty, or this terminal is a destination and the

top element of the stack does not belong to the same net

segment, then we search the circular list for the next terminal.

We keep searching the circular list until all nets are matched.

As shown in Fig. 18(b), we start with the terminal 1. Since

the terminal 1 is a source, we push it into the stack. Then,

we search each terminal on the boundary counterclockwise.

The terminal 1′ is searched, and it is a destination; thus, we

compare it with the top element of the stack. Because these

two terminals belong to the same net segment, we pop the top

element and determine the routing sequence of the net segment

n1. Keeping on searching, since the terminals 2′, 3′, and 4′ are

all destinations, we do not push them into the stack. Since the

terminals 5′, 6′, 7′, 8′, 9′, and 10′ are all sources, we push them

into the stack. Then, we process the terminal 10, which is a

destination and matches the top element in the stack. Thus, we

pop the net segment n10 and add it into the routing sequence.

Repeating this step, we can get the resulting routing sequence.

With this sequence S, we can guarantee that each net segment

between two adjacent rings can be routed without intersecting

each other. For example, given an instance shown in Fig. 18(a),

according to the above-described net ordering determination

algorithm, we can obtain the sequence S=〈(n1, n
′
1), (n

′
10,

n10), (n′
9, n9), (n′

8, n8), (n
′
7, n7), (n

′
6, n6), (n

′
5, n5), (n2, n

′
2),

(n3, n
′
3), (n4, n

′
4)〉. According to the net ordering determina-

tion algorithm, we have the following theorem.

Theorem 4: Given a set N of nets, the net ordering determi-

nation problem can be solved in O(|N |2) time.

Proof: According to the net ordering determination algo-

rithm, the worst case happens when only one net is matched

during each searching cycle. In this case, the total number of

terminal searches is
∑|N |−1

i=0
2(|N | − i) = |N |2 + |N |. Hence,

the time complexity is O(|N |2). �

3) Track Assignment: With the net ordering, we can use
maze routing to route all nets for any two adjacent rings.
However, maze routing is quite slow and generates too many
bends. (For example, for a small circuit with 513 nets, we need
25 min on a 1.2-GHz SUN Blade 2000 workstation with 8-GB
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Fig. 19. (a) Example for track assignment. (b) Blocking point.

memory to complete the detailed routing.) Thus, we propose a
track assignment algorithm to assign tracks to each net segment
of any two adjacent rings. For each net segment ni in S,
according to the relative locations of ns

i and nd
i , we search a

track to be assigned to ni from the top to the bottom or from
the bottom to the top. We search the tracks from the top to
the bottom if ns

i is on the top-right side of nd
i or ns

i is on the
bottom-right side of nd

i . Otherwise, we search the tracks from
the bottom to the top. If we find a track h and it does not create
any overlap with other wires, then we assign h to ni. As shown
in Fig. 19(a), we assign net segment n1 first. Since the terminal
1 is a source and the net ordering determination algorithm
makes each net routed counterclockwise from the source to the
destination along the boundary, we search from track 1 to track
6. Thus, n1 is assigned to track 1 first. Since the terminal 5′ is a
source, we search from track 6 to track 1. Thus, n5 is assigned
to track 6 first. Also, we record the blocking points Q for ni. A
blocking segment is a wire on track h + 1 (if we search from the
top to the bottom) or h− 1 (if we search from the bottom to the
top) to stop ni from being assigned to h + 1 or h− 1 without
creating any overlap with it. A blocking point qi is a terminal of
the blocking segment whose projection on h overlaps with ni.
As shown in Fig. 19(b), the point q3 on track h2 is the blocking
point for net n3. If we cannot find such h, we rip up and reroute
all net segments n1 to ni−1. For each net segment nk to be
rerouted, we use the concept of the dogleg in the channel rout-
ing to break a segment into two segments based on the blocking
point qk, such as q3 in Fig. 19(b). Then, we assign the segment
that will not overlap with qk on the lowest possible track (if we
search from the top to the botto m) or on the highest possible
track (if we search from the bottom to the top). After assigning
tracks, we record the new blocking points for nk. Note that

Fig. 20. Algorithm for track assignment.

since, now, each net segment may be assigned with more than
one track, we may have more than one blocking point for
each net. Fig. 20 summarizes the track assignment algorithm.
According to this algorithm, we have the following theorem.
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Theorem 5: Given a set N of nets and the number of

tracks H , the track assignment problem can be solved in

O(|N |2H(|Rb| + |Rp|)) time.

Proof: The worst case of the track assignment algorithm

is that we have to rip up and reroute every time while assigning

the next net. Thus, the total number of times to assign nets to

tracks is
∑|N |

i=1
i = |N |2 + |N |/2. When assigning a net, the

maximum number of track searches is H , and the number of

channels is (|Rp| + |Rb| − 1). Hence, the time complexity is

O(|N |2H(|Rb| + |Rp|)). �

D. Complexity Analysis

If there are |B| bump pads, |P | wire-bonding pads, |D|
intermediate nodes, |T | tile nodes, |Rb| bump pad rings, and

|Rp| wire-bonding pad rings, we can construct a flow network

composed of |V | vertices and |E| edges for the global routing,

where |V | = |B| + |P | + |D| + |T | and |E| = edges among

these vertices. In the detailed routing, there are |N | global

paths, and each channel is divided into H tracks. Hence, the

time complexity is as follows: O(|V |2
√

|E|) (global routing)+
O(|B|+|P |) (cross-point assignment)+ O(|N |2)(net ordering

determination) + O(|N |2H(|Rb| + |Rp|)) (track assignment)

= O(|V |2(
√

|E| + H(|Rb| + |Rp|))). The space complexity is

O(|E|) since we have O(|B| + |P | + |D| + |T |) nodes and

O(|E|) edges. Thus, we can solve the RDL routing problem

in polynomial time.

Theorem 6: Given a set P of wire-bonding pads, a set B of

bump pads, and a set N of nets, if there exists a feasible solution

computed by the RDL routing algorithm, the RDL routing

problem can be solved in O(|V |2(
√

|E| + H(|Rb| + |Rp|)))
time and O(|E|) space.

Proof: The time complexity analysis is immediate from

Theorems 1, 3, 4, and 5. First, since |V |= |B|+|P |+|D|+|T |,
the time complexity of the global routing O(|V |2

√

|E|) domi-

nates that of the cross-point assignment O(|B| + |P |). Second,

the time complexity of the track assignment O(|N |2H(|Rb| +
|Rp|)) dominates that of the net ordering determination

O(|N |2). Finally, since |N | = |P |, the time complexity

O(|V |2) dominates O(|N |2). Thus, the time complexity of the

RDL routing algorithm is given by O(|V |2(
√

|E| + H(|Rb| +
|Rp|))). The space complexity of pads O(|B| + |P |) dominates

that of nodes O(|D| + |T |). Since there is an edge from the

source node s to every wire-bonding pad of P , and there

is an edge from every bump pad of B to the sink node t,
the space complexity of edges O(|E|) dominates that of pads

O(|B| + |P |). Thus, we can reduce the space complexity from

O(|B| + |P | + |D| + |T | + |E|) to O(|E|). �

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in the C++ programming

language on a 1.2-GHz SUN Blade 2000 workstation with

8-GB memory. The benchmark circuits, which are listed in

Table I, are real industry designs. In Table I, “Circuits” denotes

the names of circuits; “#Nets” denotes the number of nets;

“#Rp” denotes the number of wire-bonding pad rings; “#p”

denotes the number of wire-bonding pads; “#Rb” denotes the

number of bump pad rings; and “#b” denotes the number of

bump pads. In each of fs900, fs2116, and fs4096, the number of

wire-bonding pads equals the number of bump pads. Thus, each

wire-bonding pad needs to be assigned to exactly one bump

pad. Hence, these three cases are more difficult for routing than

the other four cases.

In Table II, we show how to calculate the values of Mb,

Kd, Hi, and Lt. As defined in the previous sections, Mb is

the maximum number of nets allowed to connect to a bump

pad b, Kd is the maximum number of nets allowed to pass

through an intermediate node d, Hi is the maximum number

of tracks between two adjacent pad rings i and i + 1, and Lt

is the maximum number of nets allowed to pass through a tile

node t. All these variables can be expressed by the equations

shown in the table. We calculate the values of these variables

during the RDL routing process. The parameters used to cal-

culate the Mb, Kd, Hi, and Lt variables are listed in Table III.

They are all structure and design-rule related parameters.

Since there are no flip-chip routing algorithms in the litera-

ture, we compared our algorithm with the following heuristic

currently used in industry. This heuristic is called the nearest

node connection (NNC) algorithm. In NNC, the wires are

routed sequentially. If a wire-bonding pad p can find a free

bump pad b in a restricted area of the nearest bump pad ring

rb
m, then it connects p to b. If there are no free bump pads in rb

m,

then we search for a free bump pad in the next bump pad ring

rb
m+1. This process is repeated until we find a free bump pad.

The experimental results are shown in Table IV. We report

the total wirelength, the critical wirelength (the wirelength of

the longest net), the maximum signal skews, and the central

processing unit times. Since the routability is guaranteed to be

100%, we do not report it. As compared with NNC, the ex-

perimental results show that our network-flow-based algorithm

reduces the total wirelength by 10.2%, the critical wirelength

by 13.4%, and the signal skews by 13.9%, in reasonably longer

running time. Note that for fs2116 and fs4096, NNC fails to find

a routing solution. In Fig. 21, the running time of our algorithm

is plotted as a function of the number of nets. Empirically,

the running time of our RDL routing algorithm approaches

quadratic (about N2.17) to the number of nets N , with the least

square analysis for the log–log plot of the function. In Table V,

we report the memory usage (in kilobytes) for each circuit for

the RDL routing. In Fig. 22, the memory requirement of our

algorithm is plotted as a function of the number of nets. The em-

pirical memory complexity of our RDL routing algorithm is be-

tween linear and quadratic (about N1.47) to the number of nets

N , again with the least square analysis for the log–log plot of

the function. The experimental results show that our network-

flow-based RDL algorithm is effective and efficient for flip-

chip designs. Fig. 23 shows the RDL routing result of fs900.

We also explore the effects of different α on wirelength and

skew. In Table II, we give the equations for the computation of

the upper bound of the smallest α and the lower bound of the

largest α. The two bounds come from the geometric relation of

the pad placement. Nets that are composed of the wire-bonding

pads of the inner wire-bonding pad ring and the bump pads of

the outer bump pad ring are often short. Thus, by modeling dPB

and dBB into the equation of the lower bound of the largest α,



FANG et al.: NETWORK-FLOW-BASED RDL ROUTING ALGORITHM FOR FLIP-CHIP DESIGN 1427

TABLE I
BENCHMARK CIRCUITS FOR RDL ROUTING

TABLE II
EXPERIMENTAL VARIABLES

TABLE III
STRUCTURE AND DESIGN-RULE RELATED PARAMETERS

we can avoid short nets. Furthermore, we want to make the

nets of the outer wire-bonding pad rings be assigned to the

outer bump pad rings; thus, we model dPP and dPB into

the equation of the upper bound of the smallest α. In order to

minimize the signal skew, the largest α has to be larger than

the lower bound, and the smallest α has to be smaller than

the upper bound. Furthermore, we also observe that when the

largest (smallest) α is scaled up (down), the critical wirelength
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TABLE IV
RDL ROUTING RESULTS (N/A: NOT AVAILABLE)

Fig. 21. Running time for the RDL routing.

TABLE V
MEMORY USAGE FOR EACH CIRCUIT

Fig. 22. Memory usage for the RDL routing.

and the signal skew may be further improved at the cost of

larger total wirelength. Thus, we use this property to minimize

the critical wirelength and the signal skew without increasing

the total wirelength too much. We conducted an experiment

to explore the effects of different α, and the results are listed

Fig. 23. RDL routing result for fs900.

in Table VI. In this experiment, we tested three pairs of the

smallest α and the largest α values on fs90b740. We first set

the largest (smallest) α to 1 and then scaled it up (down) to

see the effects of different α to the total wirelength, the critical

wirelength, and the signal skew. The percentages listed in the

parentheses give the normalized ratios to that with the smallest

and the largest α being set to 1. From the experimental results

in Table VI, as the largest (smallest) α scales up (down), the

total wirelength increases while the critical wirelength and the

signal skew decrease.

V. CONCLUSION

In this paper, we have developed an RDL router for the flip-

chip package. The RDL router consists of the two stages of

global routing followed by detailed routing. The global routing

applies the network flow algorithm to solve the assignment

problem from the wire-bonding pads to the bump pads and

then creates the global path for each net. The detailed routing

applies the three-stage technique of cross-point assignment, net

ordering determination, and track assignment to complete the

routing. Experimental results demonstrate that our router can
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TABLE VI
EFFECTS OF DIFFERENT α ON WIRELENGTH AND SKEW

achieve much better results in routability, wirelength, critical

wirelength, and signal skews, as compared with a heuristic

algorithm currently used in industry.
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