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ABSTRACT 

We propose a parallel network of simple processors to find 

color boundaries irrespective of spatial changes in illumi­

nation, and to spread uniform colors within marked re-. 
glOns. 

INTRODUCTION 

To rely on color as a cue in recognizing objects, a visual system must have at least 

approximate color constancy. Otherwise it might ascribe different characteristics to 

the same object under different lights. But the first step in using color for recog­

nition, segmenting the scene into regions of different colors, does not require color 

constancy. In this crucial step color serves simply as a means of distinguishing 

one object from another in a given scene. Color differences, which mark material 

boundaries, are essential, while absolute color values are not. The goal of segmen­

tation algorithms is to achieve this first step toward object recognition by finding 

discontinuities in the image irradiance that mark material boundaries. 

The problems that segmentation algorithms must solve is how to choose color la­

bels, how to distinguish material boundaries from other changes in the image that 

give rise to color edges, and how to fill in uniform regions with the appropriate 

color labels. (Ideally, the color labels should remain constant under changes in the 

illumination or scene composition and color edges should occur only at material 

boundaries.) Rubin and Richards (1984 ) show that algorithms can solve the sec­

ond problem under some conditions by comparing the image irradiance signal in 

distinct spectral channels on either side of an edge. 

The goal of the segmentation algorithms we discuss here is to find boundaries be­

tween regions of different surface spectral reflectances and to spread uniform colors 

within them, without explicitly requiring the colors to be constant under changes 

in illumination. The color labels we use are analogous to the CIE chromaticity 

coordinates x and y. Under the single source assumption, they change across space 
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only when the surface spectral reflectance changes, except when strong speculari­

ties are present. (The algorithms therefore require help at a later stage to identify 

between color label changes due to specularities, which we have not yet explicitly 

incorporated.) The color edges themselves are localised with the help of luminance 

edges, by analogy with psychophysics of segmentation and filling-in. The Koftka 

Ring illusion, for example, indicates that color is attributed to surfaces by an inter­

action between an edge-finding operator and a filling-in operator.1 The interaction 

is justified by the fact that in the real world changes in surface spectral reflectance 

are almost always accompanied by changes in brightness. 

Color Labels 

We assume that surfaces reflect light according to the neutral-interface-reflection 

model. In this model (Lee, 1986 , Shaefer, 1984 [3]) the image irradiance I(X,y,A) 
is the sum of two components, the surface reflection and the body reflection: 

I(x, y, A) = L(r(x, y), A)[a(r, A)g(6(r)) + bh(6(r))], 

where A labels wavelength and r( x, y) is the point on the 3D surface to which 

the image coordinates (x, y) correspond. L(r(x, y), A) is the illumination on the 

surface. a(r, A) is the spectral reflectance factor of the body reflection component 

and g(6(r)) its magnitude, which depends on the viewing geometry parameters 

lumped together in 6(r). The spectral reflectance factor of the specular, or surface 

reflection, component b is assumed to be constant with respect to A, as is true 

for inhomogeneous materials such as paints and plastics. For most materials, the 

magnitude of the specular component h depends strongly on the viewing geometry. 

Using the single source assumption, we may factor the illumination L into separate 

spatial and spectral components (L(r, A) L(r)c(A)). Multiplying I by the 

spectral sensitivities of the color sensors i = 1,2,3 and integrating over wavelength 

yields the triplet of color values (R, G, B), where 

and so forth and where the a i and bi are the reflectance factors in the spectral 

channels defined by the sensor spectral sensitivities. 

We define the hues u and v as 

R 
u= --__ --

R+G+B 

and 

1 Note that Land's original retinex algorithm, which thresholds and swns the differences in image 

irradiance between adjacent points along many paths, accounts for the contribution of edges to 

color, without introducing a separate luminance edge detector. 
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G 
v=-----

R+G+B 

at each pixel. 

In Lambertian reflection, the specular reflectance factor b is zero. In this case, u and 

v are piecewise constant: they change in the image only when the ai(x,y) change. 

Thus u or v mark discontinuities in the surface spectral reflectance function, e.g 

they mark material boundaries. Conversely, image regions of constant u correspond 

to regions of constant surface color. Synthetic images generated with standard 

computer graphics algorithms (using, for example, the Phong reflectance model) 

behave in this way: u is constant across the visible surface of a shaded sphere. 

Across specularities, u in general changes but often not much. Thus one approach 

to the segmentation problem is to find regions of "constant" u and their boundaries . 

The difficulty with this approach is that real u data are noisy and unreliable: u is 

the quotient of numbers that are not only noisy themselves but also, at least for 

biological photosensor spectral sensitivities, very close to one another. The goals of 

segmentation algorithms are therefore to enhance discontinuities in u and, within 

the regions marked by the discontinuities, to smoothe over the noise and fill in the 

data where they are unreliable. We have explored several methods of meeting these 

goals. 

Segmentation Algorithms 

One method is to regularize - to eliminate the noise and fill in the data, while 

preserving the discontinuities. Using an algorithm based on Markov Random Field 

techniques, we have obtained encouraging results on real images (see Poggio et 

al., 1988) . The MRF technique exploits the constraint that u should be piecewise 

constant within the discontinuity contours and uses image brightness edges as guides 

in finding the contours. 

An alternative to the MRF approach is a cooperative network that fills in data 

and filters out noise while enforcing the constraint of piecewise constancy. The 

network, a type of Hopfield net, is similar to the cooperative stereo network of 

Marr and Poggio (1976). Another approach consists of a one-pass winner-take-all 

scheme. Both algorithms involve loading the initial hue values into discrete bins, an 

undesirable and biologically unlikely feature . Although they produce good results 

on noisy synthetic images and can be improved by modification (see Hurlbert, 1989), 

another class of algorithms which we now describe are simple and effective, especially 

on parallel computers such as the Connection Machine. 

Averaging Network 

One way to avoid small step changes in hue across a uniform surface resulting 

from initial loading into discrete bins is to relax the local requirement for piecewise 
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Figure 1: (a) Image of a Mondrian-textured sphere - the red channel. (b) Vertical 

slice through the specularity in a 75 x 75 pixel region of the three-channel image 

(R + G + B) of the same sphere. 

constancy and instead require only that hue be smooth within regions delineated by 

the edge input. We will see that this local smoothness requirement actually yields 

an iterative algorithm that provides asymptotically piecewise constant hue regions. 

To implement the local smoothness criterion we use an averaging scheme that simply 

replaces the value of each pixel in the hue image with the average of its local 

surround, iterating many times over the whole image. 

The algorithm takes as input the hue image (either the u-image or the v-image) 

and one or two edge images, either luminance edges alone, or luminance edges plus 

u or v edges, or u edges plus v edges. The edge images are obtained by performing 

Canny edge detection or by using a thresholded directional first derivative. On each 

iteration, the value at each pixel in the hue image is replaced by the average of its 

value and those in its contributing neighborhood. A neighboring pixel is allowed 

to contribute if (i) it is one of the four pixels sharing a full border with the central 

pixel (ii) it shares the same edge label with the central pixel in all input edge images 

(iii) its value is non-zero and (iv) its value is within a fixed range of the central pixel 

value. The last requirement simply reinforces the edge label requirement when a 

hue image serves as an input edge image - the edge label requirement allows only 

those pixels that lie on the same side of an edge to be averaged, while the other 

insures that only those pixels with similar hues are averaged. 

More formally 
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where Cn(hf,j) is the set of N(Cn) pixels among the next neighbors of i,j that 

differ from h~. less than a specified amount and are not crossed by an edge in the 

edge map(s) (on the assumption that the pixel (i,j) does not belong to an edge). 

The iteration of this operator is similar to nonlinear diffusion and to discontinuous 

regularization of the type discussed by Blake and Zisserman (1987), Geman and 

Geman (1984) and Marroquin (9]. The iterative scheme of the above equation can 

be derived from minimization via gradient descent of the energy function 

E = L:Ei,j 

with 

where V(x, y) = V(x - y) is a quadratic potential around 0 and constant for Ix - yl 
above a certain value. 

The local averaging smoothes noise in the hue values and spreads uniform hues 

across regions marked by the edge inputs. On images with shading but without 

strong specularities the algorithm performs a clean segmentation into regions of 

different hues. 

Conclusions 

The averaging scheme finds constant hue regions under the assumptions of a single 

source and no strong specularities. A strong highlight may originate an edge that 

could then "break" the averaging operation. In our limited experience most spec­

ularities seem to average out and disappear from the smoothed hue map, largely 

because even strong specularities in the image are much reduced in the initial hue 

image. The iterative averaging scheme completely eliminates the remaining gradi­

ents in hue. It is possible that more powerful discrimination of specularities will 

require specialized routines and higher-level knowledge (Hurlbert, 1989). 

Yet this simple network alone is sufficient to reproduce some psychophysical phe­

nomena. In particular, the interaction between brightness and color edges enables 

the network to mimic such visual "illusions" as the Koftka Ring. We replicate the 

illusion in the following way. A black-and-white Koft'ka Ring (a uniform grey annu­

lus against a rectangular bipartite background, one side black and the other white) 

(Hurlbert and Poggio, 1988b) is filtered through the lightness filter estimated in 
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Figure 2: (a) A 75x75 pixel region of the u image, including the specularity. (b) The 

image obtained after 500 iterations of the averaging network on (a), using as edge 

input the Canny edges of the luminance image. A threshold on differences in the v 

image allows only similar v values to be averaged. (c) Vertical slice through center 

of (a). (d) Vertical slice at same coordinates through (b) (note different scales of 

(c) and (d». 
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the way described elsewhere (Hurlbert and Poggio, 1988a). (For black-and-white 

images this step replaces the operation of obtaining u and v: in both cases the goal 

is to eliminate spatial gradients of in the effective illumination.) The filtered Koffka 

Ring is then fed to the averaging network together with the brightness edges. When 

in the input image the boundary between the two parts of the background continues 

across the annulus, in the output image (after 2000 iterations of the averaging net­

work) the annulus splits into two semi-annuli of different colors in the output image, 

dark grey against the white half, light grey against the black half (Hurlbert, 1989). 

When the boundary does not continue across the annulus, the annulus remains a 

uniform grey. These results agree with human perception. 
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