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ABSTRACT

Detecting edges of objects in their images is a basic problem in com-
putational vision. The scale-space technique introduced by Witkin [11]
provides means of using local and global reasoning in localing edges.
This approach has a major drawback: il is difficult 1o obtain accuralely
the locations of the ‘semantically meaningful’ edges. We have refined
the definition of scale-space, and introduced a class of algorithms for im-
plementing it based on using anisolropic diffusion {9]. The algovithms
involves simple, local operations replicated over the image making par-
allel hardware implementation feasible. In this paper we present the
major ideas behind the use of scale space, and anisotropic diffusion for
edge delection, we show that anisotropic diffusion can enhance edges,
we suggest a nelwork implementalion of anisotropic diffusion, and pro-
vide design criteria for oblaining nelworks performing scale space, and
edge detection. The resulls of a software implcmentation are shown.

1 INTRODUCTION

Detecting edges of objects in their iimages is a basic problem in compu-
tational vision and much effort has been devoled to it so far. Surfaces
in nature usually [7,6] have a hierarchical organization composed of a
small discrete number of levels. At the finest level, a tree is composed
of leaves with an intricate structure of veins. At the next level, each [eafl
is replaced by a single vegion, and at the highest level there is a single
blob corresponding to the treetop. There is a natural range of resolu-
tions (intervals of the scale-space parameter) corresponding to each of
these levels of description. Furthermore at each level of description, the
regions (lcaves, treetops or forests) have well-defined boundaries.

Noise, finer detail, and the structure ol the edges theinselves, makes
local criteria (i.e. decision rules, or operators, based on small fixed-
size neighbourhoods ) insufficient for determining the existence and
location of the edges at dilferent scales of resolution. On the other hand
global criteria prove to be hard to formulate, difficult to implement, and
computationally expensive. The scale-space technique provides means
for taking advantage of both local and global reasoning on images.

The importance of multi-scale descriptions of images has been rec-
ognized from the early days of computer vision e.g. Rosenleld and
Thurston [10]. A clean formalism for this problem is the idea of scale-
space filtering introduced by Witkin {11] and further developed in Koen-
derink [6], Babaud, Duda and Witkin [t], Yuille and Poggio [12], and
Ilummel [4].

The essential idea of this approach is quite simple: embed the original
image in a family of derived images I(x, y,1) obtaiuned by convolving the
original image with lowpass kernels of aperture %

Larger values of ¢, the scale-space parameter, correspond to images
at coarser resolutions. See fig. 1.

Koenderink motivates the choice for a particular lowpass kernel by
stating two criteria :

1. Causality : Any feature at a coarse level of resolution is required
Lo possess a (not necessarily unique) “cause™ at a finer level of res-
olution although the reverse need not be true. In other words, no
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Figure 1: A family of 1D images I(x,t) obtained by convolving the
original one (top) wilh gaussian kernels whose variance increases from
top to bottom. (Adapted from Witkin).

spurious detail should be generated when the resolution is dinin-
ished.

2. Homogencity and Isotropy : The blurring is required to be space
invariant.

It turns out that only the gaussian kernel generates a scale space
satisfying these requirements. As pointed out by Koenderink [6], and
Hummel [4] the one parameter family of derived images may equiv-
alently be viewed as the solution of the heat conduction or diffusion
equation

It = c(lzq + Iyy)
with the initial condition I(x,y,0) = Jo{x,y) , the original image.

Unfortunately, in the scale-space thus derived the true location of
the boundaries at coarse scales is not directly available in the coarse
scale images. The edges at the coarse level {, are shifted from their
true locations due to the interaction of the different brightness “blobs”
during diffusion. The only way to obtain the true position of the edges
that have been detected al a coarse scale is by tracking across the scale
space, to their locations in the original image.

The reason for this spatial distortion is quite obvious-Gaussian blur-
ring does not ‘respect’ the natural boundaries of objects. Suppose we
have the picture of a treetop with the sky as background. The gaussian
blurring process would result in the green of the leaves getting ‘mixed’
with the blue of the sky, long before the treetop emerges as a feature
(after the leaves have been blurred together).

Figure [ shows a sequence of coarser images obtained by gaussian
blurring which illustrates this phenomenon. It may also be noted that
the region boundaries are generally quite difTuse instead of being sharp.

With this as molivation, we have enunciated the criteria which we
believe any candidate paradigm for generating multi-scale ‘semantically
meaningful’ descriptions of images must satisfy.
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1. Causality : As pointed out by Witkin and Koenderink, a scale-
space representation should have the property that no spurious
detail should be generated.

9. Immediate Localization : At each resolution, the region bound-
aries should be sharp and coincide with the semantically meaning-
ful boundaries at that resolution.

3. Piecewise Smoothing: At all scales, intra-region smoothing
should occur preferentially over inter-region smoothing. In the tree
example mentioned earlier, the leaf regions should be collapsed to
a treetop before being merged with the sky background.

In the next section we will outline a framework for achieving these
objectives.

2 ANISOTROPIC DIFFUSION

Consider the anisotropic dilfusion equation
Iy = div(e(x, 4, 1)VI) = c(a,y,)AI + V- VI

where we indicate with div the divergence operator, and with V, and
A the gradient, and laplacian operators with respect to the space vari-
ables. It reduces to the isotropic heat diffusion equation I, = cAJ if
c(x,y,1) is a constant. Suppose at the time (scale) 1, we knew the lo-
cations of the region boundarics appropriate for that scale. We would
want to encourage smoothing wilhin a region in preference to smoothing
across the boundaries. This could be achieved by setting the conduction
coefficient to be 1 in the interior of each region and 0 at the bound-
aries. The blurring would then take place separately in each region with
1o interaction between regions. The region boundaries would remain
sharp.

Of course, we do not know in advance the region boundaries at each
scale (If we did the problem would already have been solved!). What can
be computed is a current best estimate of the location of the boundaries
(edges) appropriate to that scale. Let E(r,y,1) be a vector valued
function defined on the image with the following ideal properties:

1. E{x,y,t) = 0 in the interior of each region.

2. E(z,y, 1) = Ke(x,y,t) at each edge point, where e is a unit vec-
tor tangent to the edge at the point, and K is the local contrast
(difference in the image intensities on the left and right ) of the
edge.

Note that the word edge as used above has not been formally defined—
we mean here the perceptual subjective notion of an edge as a region
boundary. A completely satisfactory formal definition is likely to be
part of the solution, rather than the problem definition!

Once an estimate of E{x,y,1) is available, c(z,y,1) is chosen to be a
function ¢ = g(]|E||) of the magnitude of E. According to the previously
stated strategy g(-) has to be a nonnegative monotonically decreasing
function with g(0) = 1. This way the diffusion process will mainly
take place in the interior of regions, and it will not affect the region
boundaries where the magnitude of E is large. There are many possible
choices for g(-) the simplest being a binary valued function. We will
also briefly discuss the fact that the function g(-) need not be time
invariant, and actually sometimes it should vary with time.

The way the conduction coeflicient is chosen guarantees that the diffu-
sion process satisfies the third requirement. for generating a scale-space,
namely piecewise smoothing. The analysis peformed in section 3, and
the experimentation ( see fig. 4 and fig. 5), will show that the second
criterion-immediate localization-is also satisfied. It is important to
know which possible choices of the conduction coefficient c(-) , if any,
respect the first criterion, causality.

For studying causality we make use of a classical result of the theory
of partial differential equations : the maximum principle. This the-
orem guarantees that the maxima and minima of the solution of the
anisotropic diffusion equation belong to the initial condition ( the origi-
nal image in our case ), and to the boundaries of the domain of interest

(the boundaries of the picture), provided that the conduction coefficient
¢(2,y,1) is differentiable and non-negalive.

This theorem is relevant to our discussion because if we identify “fea-
tures” in the images with “blobs” of the brightness function I(x,y,t)
for different values of the scale parameter, then the maximum principle
guarantees that no new features are created for increasing t. In fact
the birth of a new “bloh™ would imply the creation of a maximum, or
a minimum, that would have to belong to the interior of the domain of
interest in the scale space.

A more precise statement of this theorem, and a proof that
anisotropic diffusion satisfies it may be found in [9], or may be derived
using techniques in {5].

3 EDGE ENHANCEMENT

A big problem with conventional low-pass fillering and diffusion, is that
the price payed for eliminating the noise, and for performing scale space,
is the blurring of edges. This causes their detection, and localization to
be difficult.

flunmmel [3] has suggested enhancing edges by running backwards the
diffusion equation. This is an ill-posed problem, and gives rise to nu-
merically unstable computational metods, unless proper regularization
is employed.

We will show licre briefly that a proper choice of the conduction
coeflicient makes the anisotropic diffusion enhance edges while running
Jorward in time, and still being numerically stable.

Let our model of an edge be a mollified version of a step , for ex-
ample a step function convolved with a gaussian kernel. A change of
coordinates will align the step with the y axis, thus reducing the 2-D
problem to 1-D. Thus I; = div(c(x,y,1)VI) = :—_,(c -1p).

Take ¢ to be locally determined, just a function of the gradient of I :
c(x,y,t) = g(Ie(2,y,1)). Call (-) the product c- I, : o(I;) = g(I)- I.

We are interested in looking at the slope of the edge while this is
being diffused. Consider then : %(Ir). Since the functions that we are
dealing with are smooth the order of differenciation may be inverted
obtaining :

9

d a a
;77(1:) = 5(1«) = 5.0 I;)) =

a ., a
= a E‘P(II)) =¢" I:ra:2 + ¢ Ipze

Suppose the edge is oriented in such a way that I, > 0 ( if not, reverse
the orientation of the x axis ). At the point of inflection I, = 0, and
I.zz < 0 since the poiut of inflection corresponds, or is very close to,
the point with maximum slope. Then in a neighbourhood of the point
of inflection %(l,) has sign opposite to ¢'(I;). Il ¢'(I;) > 0 the slope
of the edge will decrease; if, on the contrary ¢'(I;) < 0 the slope will
increase.

Notice that this increase in slope cannot be caused by a scaling of
the edge, because this would violate the maximum principle. The edge
becomes sharper.

Observe that such a function ¢(-) is easy to obtain : take, for example,

oz, y,t) = g(lz) = ﬁ_— with a > 0. Then there exists a certain
K

threshold value related to /" and a, below which ¢(-) is monotonically
increasing, and beyond which ¢(+) is monotonically decreasing, giving
the desirable result of blurring small discontinuities, and sharpening
edges.

Therelore with passive diffusion, and local reasoning we may obtain
edge enhancement il we choose the conductivity function g() appro-
priately. Increasing progressively the value of the constant K we may
obtain scale- space, the more and more edges disappearing from the
picture.

4 NETWORK IMPLEMENTATION

In section 2 we have introduced a class of diffusion equations that gener-
ate families of images satisfying the 3 scale-space criteria that we have
enunciated in section 1. Section 2 also hints on ways to choose g(-),
and E and bounds are put on the possible choices of ¢. In this section
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Figure 2: The structure of a network implementing anisotropic diffu-
sion.

we will indicate the structure of a simple network that implements the
anisotropic diffusion equation, and provide design criteria for obtaining
scale space, and edge detection.

Consider the following simple discretization of the second term of the
anisotropic diffusion equation :

1 Ar Az
L:(2,y) = EU(‘L‘ +5 -1 - T'y))

A
()~ =0y G = 1= 50)
div{c(x,y,)VI) =
~ el 50 U+ B~ 1=
efx = 55,0) - (U(e,w) - T(a = Bz, y)+
+fyztc(w + %) (g +Ay) = 1(3,9)=

ez,y =51 (@,0) ~ Tz,0= A9)

Introducing the notation:
en(z,y) = c(@,y+5E) - 57
i
ce(x,y) = (‘(1 + %vy) ' Az

Vnl(z,y) = I(z,y+ Ay) - I(2,y)

Vsl(z,y) = I(z,y — Ay) - I(z,y)

Az i

es(@y) =clz,y— 5L) 5
ew(,y) =c(z - S5, y) - ﬁ

etc. we obtain :
L=cn-VnI+cs-Vsl+cg Vel +ew-Vwl

This corresponds to diffusion of a quantity I associated to the nodes
of a lattice with arcs of conductivity ¢ . An electrical network with the
topology of a square lattice, charges with initial value equal to the itage
brightuness I associated to the nodes, and resistors with conductance c
associated to the arcs does the job.

We may perform the same analysis as in the previous seclion using
the discretized equations obtaining the same qualitative result: a lattice

= ) ;

K AV

Tigure 3: The qualitative hehavior of a nonlinear resistor needed to
realize scale space ( solid line ) compared with the linear resistor (
dotted line ).

network whose nodes are only nearest-neighbour connected, and whose
arc elements have only tle couple of associated nodes as imputs can
perform scale-space and edge detection, including the edge enhancement
ellect, il the arc elements are chosen to have a nonlinear conductance
as indicated in section 4. See also fig. 3.

5 EXPERIMENTAL RESULTS

We have simulated in software the anisotropic diffusion scale space and
edge detection network that we propose.

The computational setup had a lattice structure, with brightness val-
ues associated to the vertices, and conduction coelficients to the arcs.
A constant value of 1 for the conductivity led to gaussian blurring.

In a first set of experiments we used the absolute value of the gradient
as the estimate for ||E|| . Different functions were used for g(-) giving
perceptually similar results. The image in fig. 4 [2] was obtained using

C
g(VI) = —=—
L+ ()7

Notice that the smoothed image has a Mondrian-like appearance.
This is the effect of the piecewise smoothing, and makes edge detection
extremely simple: it is sufficient to threshold the magnitude of the
gradient of the brightness. Notice the behaviour of the edge detector
on the water, the pavement, and the architectural details.

There is an additional remark to be made: if the function g(-) ap-
proaches zero very quickly for increasing contrast values the edges may
be too impermeable i.e. the image is transformed to a piecewise-
constant Mondrian, and the diffusion is very slow in getting rid of the
fine detail. This may be corrected by letting the value of g(-) increase in
time so that the weaker edges become unstable and are diffused. If this
is done slowly compared with the speed of the diffusion process, the cri-
teria that we have enunciated, namely ‘localization of boundaries’, and
‘piecewise smoothing’ are respected, while the computation becomes
more efficient. There are other reasons for allowing the function g(-)
vary with time. One of these is the presence of high levels of noise in
the image. In this case the conduction coeflicient has to start off with a
high value in order to let the diffusion average the noise, and decrease
in the course of the diffusion process. We discuss this in detail in [8).
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