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ABSTRACT 

Deterling edges of ol>jecfs in their images is a ba.<ic ]>roblc»> in com­

puta.lional vision. The scale-space technique inii'Oduced by Witkin [I 1} 

provides means of using local and global r·m.<cmi»g i» lora.ling edges. 

This approach has a major drawback: il is diflicu/1 to obtain accumtely 

the /ocati011S of /he 'semantically meaningful' edges. We have refined 

the deflnilion of scale-space,'""' inlroduced a class of algorithms for im­

plementing it based ou using anisotropic dij]u.<iou {.9}. The algorithms 

iul'Oh•es .<implc, local operations replicated o1•er /he image makiug par­

allel ha.rdwar·e implementation feasible. In /his J>aJ>er· we present /he 

major ideas behind the use of scale space, and anisolmpic diffusion for· 

edge deleclion, we show thai anisotropic dilfusion can enhance edges, 

we suggest a networ·k implementation of anisofr·o]>ic dilfusion, and pro­

vide design criteria for obtaining networks performing scale space, and 

edge detection. The resulls of a software implcmeutatiou are shown. 

1 INTRODUCTION 

Detecting edges of objects in their i1w1ges is a hm;ir problem in compu­

tational vision and much effort. has been devoted to it. so far. Surfaces 

in nature usually [7,G] have a hierarchical organization composed of a 

small discrete number of levels. At t.he finest level, a tree is composed 

of leaves with an intricate structure of veins. At the next level, each leaf 

is replaced by a single region, and at the highest. level there is a single 

blob corresponding to the tret'(.op. There is a n:1tnral range of resolu­

tions (intervals of the scale-space parameter) corresponding t.o each of 

these levels of description. Furthermore at earl1 level of description, the 

regions (leaves, treetops or forests) have well-defined boundaries. 

Noise, finer detail, and the structure of the edges the1nselves, makes 

local criteria (i.e. decision rules, or operators, based 011 small fixed­

size 11eighbourhoods ) insufficient for det.enniuing the exist.e11ce a11d 

location of the edges at different scales of resolnt.ion. On the other hand 

global criteria prove to be hard to formulate, difficult to implement, and 

cmnputat.ionolly expensive. The scale-space technique provid('s nwa.us 

for taki11g advantage of bot.h local and global reasoning on images. 

The impot·tallce of multi-scale descriptions of inwges has bee11 rec­

ognized from the early days of comput.er vision e.g. Rosenfeld and 

Thurston [10]. A clean formalism for tl1is problem is the idea of scale­

space filtering i11troduced by Witkin [11] and furt.her developed in 1\oen­

derillk [6], Uabaud, Duda a11d Witkin [1], Yuille and Poggio [12], a11d 

Hummel [4]. 

The essential idea of t.his approach is quite simple: embed tl1e origi11al 

image i11 a family of derived images J(.r, y, I) obt.aiued by coBvolviBg the 

origi11al image with lowpass kernels of 11perture t· 
Larger values oft, the scale-space parameter, correspo11d to images 

at coarser resolutions. See fig. 1. 

1\oeBderiBk motivates the choice for a particular lowpass kernel by 

stating two criteria : 

1. Causality : A11y feature at. a coarse level of resolntio11 is required 

t.o possess a (not necessarily unique) ~'cause~~ at. a fillf>r level of res­

olution although the reverse 11eed 11ot be true. In other words, 110 
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Figure 1: A family of I 0 images l(x,t.) obtai11ed by convolvi11g the 

original one (top) with gaussian kemds whose variance increases from 

top to bottom. (Adapted from Witkin). 

spurious detail should be generated wht•n the resolution is dimin­

ished. 

2. Homogeneity and lsolro]>y : The blurring is required to be space 

irtvarinttt. 

It turns out that only I he gaussian kernel generates a scale space 

satisfying these requirements. As pointed out by l\oenderi11k [6], and 

llummel [4] t.he one parameter family of derived in1ages may equiv­

alent-ly be viewed a.s the solution of the heat conduction or diffusion 

equation 

I,= c(/xx + lyy) 

with the initial condition l(.>',y,O) = J0 (J·,y), the original image. 

Unfortunately, in the scale-space thus derived the true location of 

the boundaries at coarse scales is not directly available in the coarse 

srale images. The edges at the coarse level 11 are shifted from their 

true locations due to the intrraction of the different brightness "blobs" 

during diffusion. The only way to obtain the true position of the edges 

that have been detected at a coarse srale is by tracking across the scale 

spare, to their locations in the original image. 

The renson for this spill-ial distortion is quite obvious-Gaussian blur­

riug docs not 'respect' the natural boundaries of oliject.s. Suppose we 

have the picture of a treetop with the sky as background. The gaussian 

blurring process would result in the green of the leaves getting 'mixed' 

with the blue of I he sky, long before the treetop emerges as a feature 

(aft.er the leaves have been blurred toget.lwl"). 

Figure 1 shows a sequence of coa.rser images obtained by gaussian 

blurring which illustrates this phenomenon. It may also be noted that 

the regim1 boundaries are generally quite diffuse instead of being sharp. 

v\'ith this as mot-ivation, we have enunciated the criteria which we 

believe any candidate paradigm for generating multi-scale 'semantically 

meaningful' descriptions of images must satisfy. 
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1. Causality : As pointed out. by Witkin and Koenderink, a scale­

space representat.ion should have the property t.hat. no spurious 

detail should be generated. 

2. Immediate Localization: At. ellch resolution, the region bound­

llries should be sharp and coincide with the semantically meaning­

ful boundaries at that. resolut.ion. 

3. Piecewise Smoothing: At. all scales, int.ra~region smoothing 

should occur prefrrent.ially over int.er~region smoot.hing. In the tree 

example mentioned earlier, t.he lellf regions should be collapsed t.o 

a treet.op before being merged with the sky background. 

In (.he next section we will outline a framework for achieving these 

objectives. 

2 ANISOTROPIC DIFFUSION 

Consider the anisotropic diffusion equa.t.ion 

I,= rliv(c(J:,y,t)'\71) = c(a·,y,t)6I + VC· vi 

where we indicate with div the divergence opera.t.or, and with '\7, and 

6 the gra!lient., and laplacian operators with respect to the space vari­

ables. It reduces t.o the isotropic heat. diffusion equat.ion 11 = c6I if 

c(.r:,y,t) is a constant. Suppose at t.he time (scale) I, we knew t.lte lo­

cations of the region boundaries appropriate for that. scale. We would 

want. t.o encourage smoothing within a region in preference to smoothing 

acmss the boundaries. This could be achieved by setting the conduct. ion 

coefficient. to be 1 in the interior of each region and 0 at (.he bound­

aries. The blurring would then take place separately in each region with 

no interaction between regions. The region boundaries would remain 

sharp. 
or course, we do not know in advance the region boundaries a.t each 

scale (If we did the problem would already have been solved!). What can 

be computed is a. current best estimate of the loca.t.ion of the boundaries 

(edges) appropriate t.o t.ha.t scale. Let. E(x, y, t) be a. vect.or valued 

funct.ion defined on the image with the following ideal properties: 

1. E( a:, y, t) = 0 in the interior of each region. 

2. E(.l!,y,l) = 1\e(x,y,t) a.t each edge point, where e is a. unit. vec­

tor tangent. to the edge a.t the point, and 1\ is the local contrast 

(difference in the image intensities on the left. and right ) of the 

edge. 

Note that (.he word edge as used above has not been formally defined~ 

we mean here the perceptual subject.ive notion of a.n edge as a region 

boundary. A completely satisfactory formal definition is likely to be 

part of the solution, rather than the problem definition! 

Once a.n estimate of E(x,y,t) is available, c(x,y,t) is chosen to be a 

funct.ion c = g(\IE\1) of the magnitude of E. According to the previously 

stated st.rat.egy g(·) has to be a. nonnegative monotonically decreasing 

funct.ion wit.h g(O) = 1. This way the diffusion process will mainly 

take place in t.he interior of regions, and it will not affect. the region 

boundaries where the magnitude of E is large. There are many possible 

choices for g(·) the simplest being a binary valued funct.ion. We will 

also briefly discuss the fact that the funct.ion g( ·) need not be time 

invariant, and actually sometimes it should vary with time. 

The way the conduction coefficient is chosen guarantees that. the diffu­

sion process sa.t.isfies the third requirement. for generating a. scale-space, 

namely piecewise smoothing. The analysis peformed in sed.ion 3, and 

the experiment.a.tion ( see fig. 4 and fig. 5), will show that t.he second 

criterion-immediate localization~is also satisfied. It is important to 

know which possible choices of t.he conduction coefficient c(·) , if any, 

respect the first criterion, causality. 

For studying causality we make use of a. classical result of the theory 

of partial differential equations : the maximum principle. This the­

orem guarantees t.ha.t the maxima and minima of the solution of the 

anisotropic diffusion equa.t.ion belong to t.he initial condition ( the origi­

nal image in our case ), and to the boundaries of the domain of interest 

(the boundaries of the pi ct. nrc), provided that. the conduction coefficient 

c(x, y, t) is differentiable and non-nega.t.ive. 

This theorem is relevant. to our discussion because if we identify "fea­

t.ltres~ in the ima.gt'S with "blobs~ of the brightness function I(x,y, I) 

for different values of the scale parameter, t.ltt'n the maximum pt·inciple 

guarantees that. no new features are creat.ed for incrt'asing t. In fact 

the birth of a new "blob., would imply the creation of a. ma.xin~um, or 

a. minimum, (.hat would have to belong to the interior of the domain of 

interest. in the scale space. 

A more precise st.at.rment. of this theorem, and a proof t.ha.t. 

anisotropic diffusion satisfies it. may be found in [9], or ma.y be derived 

using techniques in [5]. 

3 EDGE ENHANCEMENT 

A big problt'lll with ronvent.iona.llow-pass filt.t>ring and diffusion, is that 

the price pa.yed for eliminating t.he noise, and for performing scale space, 

is the blurring of edges. This causes their detection, and localization to 

be difficult .. 

Hummel [3] has suggested enhancing edges by running backwards the 

diffusion equa.t.ion. This is a.n ill-posed problem, and gives rise to nu­

merically unstable computational metods, unless proper regularization 

is employed. 

We will show here briefly that a. proper choice of the conduct.ion 

coefficient makes the anisotropic diffusion enhance edges while running 

forward in time, and still being numerically stable. 

Let our model of an edge be a. mollified version of a step , for ex­

ample a. step function convolved with a. gaussian kemel. A change of 

coordinates will align t.he step wit.lt the y axis, thus reducing t.lte 2-D 

prohlem t.o 1-D. Thus / 1 = div(c(x,y,t)'\71) = f,:(c· I:c)· 

Take c to be locally determined, just a. funct.ion of the gradient of I : 

c(x,y,t) = g(I .... (:t:,y,t)). Call <p(·) the product c·lx: cp(Ix) = g(I .... )·lx. 

We are int.erest.ed in looking at. t.he slope of the edge while this is 

being diffused. Consider t.hen : f,(I .... ). Since the functions that we are 

dealing wit.h are smooth the order of differencia.tion may be inverted 

obtaining: 
a a a a 
Dt(Ix)= Dx(I,)= Dx(Dx(c·Ix))= 

a (a ( , 2 , 
=Ox ox'Plx))='P ·lxx +'P ·lux 

Suppose the edge is oriented in such a. wa.y t.ha.t. I, > 0 ( if not, reverse 

the orientation of the x axis ). At the point of inflect.ion lxx = 0, and 

I,xx < 0 since the point. of inflection conesponds, or is very close to, 

t.he point with maximum slope. Then in a. neigh hour hood of the point 

of iuflect.ion f,U:c) has sign opposit.e t.o <p'(I.r ). If <p'(I.r) > 0 the slope 

of the edge will decrea.~e; if, on the contrary cp'(Ix) < 0 t.lte slope will 

increase. 

Notice that. this increase in slope cannot. be caused by a scaling of 

the edge, beca.nse t.his would violate the maximum principle. The edge 

becomes sharper. 

Observe t.hat. such a funct.ion <p( ·)is easy to obtain: take, for example, 

c(x,y,t) = g(Jx) = l+(~)'h with a> 0. Then there exists a certain 

threshold value related to l\ and o, below which cp(·) is monot.onically 

increasing, and beyond which <p(·) is monotonically decreasing, giving 

the desirable result of blurring small discontinuities, and sharpening 

edges. 

Therefore with passive diffusion, and local reMoning we may obtain 

edge enhancement if we choose t.lte conduct.ivity funct.ion g(·) appro­

priatt'ly. Increasing progressively the value of the constant. J( we may 

obtain scale- space, the more a.nd more edges disappearing from the 

picture. 
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4 NETWORK IMPLEMENTATION 

In section 2 we have introduced a class of diffusion e<Juat.ions t.lta.t gener­

at.e families of images satisfying the 3 scale-space criteria. that we have 

enunciated in section 1. Section 2 also hints on ways to choose g(·), 

and E and bounds are put on the possible choices of c. In this section 



Figure 2: The st.mct.ure of a network implementing anisotropic diffu­

sion. 

we will indicate t.he st.ruct.ure of a simple network that. implements !.he 

anisotropic diffusion equation, and provide design crii.Nia for obtaining 

scale space, and edge detection. 

ConsidN the following simple discret.izat.ion of the second term of t.he 

anisotropic diffusion equation : 

1 tl.x tl.x 
lx(x, y);:;; tl.x (I(x + 2 , y)- l(x- 2' y)) 

1 tl.y tl.y 
Iy(>:,y);:;; -(I(x,y+ -'-)- I(x,y- -)) 

tl.y 2 2 

div(c(x,y,t)"VI);:;; 

1 tl.x 
;:;; tl.x

2 
(c(x + 

2
, y) · (I(x + tl.x, y)- I(x, y))-

tl.x 
c(x- 2' y) · (I(x, y))- l(x- tl.x, y)))+ 

1 tl.y " 
+ tl.y

2 
(c(J:, y + 

2
) · (l(x, y + tl.y)- l(J:, y))-

tl.y 
c(x, y-

2
) · (I(x, y))- I(x, y- tl.y))) 

Introducing t.he notation: 

cN(x,y) = c(x, y + ~) · b 
cE(J:, y) = c(x + ¥· y) · .o,~> 

c5 (:c,y) = c(J:,y- ~) · b 
cw(x,y) = c(x- ¥,y) · .o,~> 

'\lNl(x,y):: l(x,y+ tl.y)- l(x,y) 

'\7 sl(x, y) = I(x, y- tl.y)- I(x, y) 

etc. we obtain : 

This corresponds to diffusion of a quantity I associated to the nodes 

of a lattice with arcs of conductivity c . An elect.rical network with the 

topology of a square lattice, charges wit.h initial value equal to the image 

bright.ness I associated to the nodes, and resistors with conductance c 

associated to the arcs does the job. 

'Ne may perform the same analysis as in the previous sect.ion using 

the discretized equations obtaining the same qualitative result: a lattice 

I =+(AV) 

AV 

Figure 3: The qualit.a.t.ive behavior of a nonlint>ar resistor needed to 

rt>alize scale space ( solid line ) compared with the linear resistor ( 

dotted line ). 

network whost> nodes are only neart>s!.-neighbour connect.ed, and whose 

arc elements have only th(' couple of assoriat.ed nodes as imputs can 

perform scale-spare and edge det.cct.ion, including th(' edge ('nha.ncement 

effect., if the arc dements are rhosen to have a nonlinear conduct.ance 

as indicated in section 4. See also fig. 3. 

5 EXPERlMENTAL RESULTS 

We have simulated in soft. ware I. he anisotropic difl'usion scale space and 

edge detection network that we propose. 

The computational setup had 11 lat.t.ice st.ruct.ure, with brightness val­

ues associated t.o the vert.ices, aud conduction coelficit>nts to t.he arrs. 

A constant value of 1 for the conduct.ivit.y led t.o gaussian blurring. 

In a first set of experiments we used t.he absolute value of t.he gradit>nt 

as the est.imate for II Ell . Different. functions were used for g( ·) giving 

perceptually similar result.s. The image in fig. 4 [2) was obtained using 

(vi)- c 
g -1+(-jf-)2 

Notkt> that. the smoot.hed image has a l\1ondrian-like appearanee. 

This is the effect of the piecewise smoothing, and mak('s edge detection 

extremely simple: it is sulficient. to t.hr('shold t.lte magnitude of t.he 

gradient of the brightness. Not.ic~ the bt'haviour of t.lte edge detect.or 

on t.he water, t.he pavement, and the archit.ect.ural details. 

There is an addit.ional remark to be made: if the function g( ·) ap­

proaches Z('I"O very quickly for incrt>asing contrast. values the edges may 

be too impermeable i.e. t.he image is transformed to a piecewise­

constant Mondrian, and the diffusion is very slow in getting rid of the 

fine detail. This may he correct.ed by let.t.ing the value of g( ·) increase in 

time so that t.he weaker edges become unst.ablt' and are diffused. If this 

is done slowly compared wit.h the spet'd of t.he diffusion process, t.he cri­

t.eria that we have enunciated, namely 'localization of boundaries', and 

'piecewise smoothing' are respected, while the comput.ation becomes 

more efficient. There are other reasons for allowing t.he function g(·) 

vary with time. One of these is the presence of high levels of noise in 

the image. In this case the cotHluct.ion coelficient has t.o start off wit.h a 

high value in order to let t.he diffusion average .the noise, and decrt'ase 

in the course of the diffusion process. We discuss this in detail in [8). 
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