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There is significant evidence that in addition to reward-punishment based decision

making, the Basal Ganglia (BG) contributes to risk-based decision making

(Balasubramani et al., 2014). Despite this evidence, little is known about the

computational principles and neural correlates of risk computation in this subcortical

system. We have previously proposed a reinforcement learning (RL)-based model of

the BG that simulates the interactions between dopamine (DA) and serotonin (5HT)

in a diverse set of experimental studies including reward, punishment and risk based

decision making (Balasubramani et al., 2014). Starting with the classical idea that the

activity of mesencephalic DA represents reward prediction error, the model posits that

serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the

BG was an abstract model that did not incorporate anatomical and cellular-level data.

In this work, we expand the earlier model into a detailed network model of the BG and

demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity.

At the core of the proposed network model is the following insight regarding cellular

correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing

medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates

for value computation, we propose that DA D1R and D2R co-expressing MSNs are

capable of computing risk. Though the existence of MSNs that co-express D1R and D2R

are reported by various experimental studies, prior existing computational models did

not include them. Ours is the first model that accounts for the computational possibilities

of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate

activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the

assumption that 5HT modulates all MSNs, our study predicts significant modulatory

effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the

multifarious functions of 5HT in the BG. The experiments simulated in the present study

relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00076
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:schakra@iitm.ac.in
http://dx.doi.org/10.3389/fncom.2015.00076
http://journal.frontiersin.org/article/10.3389/fncom.2015.00076/abstract
http://community.frontiersin.org/people/u/98403
http://community.frontiersin.org/people/u/65767
http://community.frontiersin.org/people/u/15417


Balasubramani et al. DA-5HT in BG network model

is shown to capture reward-punishment and risk based decision making impairment in

Parkinson’s Disease (PD). The model predicts that optimizing 5HT levels along with DA

medications might be essential for improving the patients’ reward-punishment learning

deficits.

Keywords: serotonin, dopamine, basal ganglia network, risk, reward, punishment, medium spiny neurons, D1 and

D2 receptor co-expression

Introduction

Decision making is related to choosing an action from a set
of potential alternatives. The resulting rewarding or punitive
outcomes can shape future decisions. In psychological terms,
rewards and punishments represent opposite ends on the
affective scale. Despite efforts to find dissociable brain systems
that code for processing reward and punishment outcomes (Liu
et al., 2011), a stringent division of brain systems in reward
vs. punishment terms does not seem to be possible, since same
neural regions respond to both reward and punishment (Rogers,
2011). The science of learning about the environment through
outcomes (rewards and punishments) is called reinforcement
learning (RL) (Sutton and Barto, 1998). We focus on a key area
of the brain thought to implement reinforcement learning—the
basal ganglia (Chakravarthy et al., 2010).

The Basal Ganglia (BG) are a set of nuclei situated in
the forebrain known to be involved in a variety of functions,
including action selection, action timing, working memory, and
motor sequencing (Chakravarthy et al., 2010). A prominent
approach that has been gaining consensus over the past decade
seeks to model functions of the BG using the theory of
RL (Joel et al., 2002). RL theory describes how an artificial
agent or an animal learns stimulus-response relationships that
maximize rewards obtained from the environment. According
to this theory, stimulus-response associations with rewarding
outcomes are reinforced, while those that result in punishments
are attenuated. Experimental studies show that the activity
of dopamine (DA) releasing mesencephalic nucleus-substantia
nigra pars compacta (SNc) resembles an RL-related quantity
called Temporal Difference (TD) error. TD error represents
the difference between the total reward that an animal actually
obtains and its expectation of the same, and is a key variable
that controls learning in RL framework. This insight has
inspired extensive modeling work to apply concepts from RL
for describing functions of the BG (Joel et al., 2002). RL theory
has been able to account for many crucial functions of DA in
BG- mediated learning and behavior (Houk et al., 2007; Schultz,
2010a). Classical models of the BG cast their dynamics in a
value function based decision making framework, where value

Abbreviations: 5HT, Serotonin; Ach, Acetylcholine; BG, Basal Ganglia; D1R,
Dopamine D1 receptor; D1R-D2R, Dopamine D1 and D2 receptors; D2R,
Dopamine D2 receptor; DA, Dopamine; DP, Direct Pathway; DRN, Dorsal
Raphe Nucleus; GPe, Globus Pallidus externa; GPi, Globus Pallidus interna;
IP, Indirect Pathway; MSN, Medium Spiny Neuron; NE, Norepinephrine; PD,
Parkinson’s Disease; PD-OFF, Parkinson’s Disease- OFF medication; PD-ON,
Parkinson’s Disease- ON medication; R, Receptor; RL, Reinforcement Learning;
SNc, Substantia Nigra pars compacta; STN, SubThalamic Nucleus; TD, Temporal
Difference.

function is the expectation of observed rewards (Joel et al., 2002;
Frank et al., 2004; Krishnan et al., 2011). We showed in a recent
study (Balasubramani et al., 2014) that BG dynamics can be
better modeled using utility based decision making framework
mediated by the neuromodulators DA and serotonin (5HT). In
that abstract model (Balasubramani et al., 2014), the activity of
5HT controlled the combination of value and risk function for
the computation of utility, where risk is the variance observed in
the outcomes. The model was shown to reconcile three diverse
and representative theories that seek to associate 5HT to (1)
punishment sensitivity; (2) time scale of reward prediction; and
(3) risk-sensitivity. According to the first theory, central 5HT
modulates punishment prediction differentially from reward
prediction (Cools et al., 2008). Artificial reduction of 5HT by
reducing the levels of tryptophan in the body decreased the
tendency to avoid punishment (Cools et al., 2011). A second
theory of 5HT function associates its activity to the time scale
of reward prediction. This theory is based on experiments which
showed that under conditions of low 5HT, subjects exhibited
impulsivity—a tendency to choose short-term rewards over the
long-term ones (Tanaka et al., 2007). The third theory relates
5HT to risk-sensitivity. Low levels of 5HT promote risk seeking
behavior when provided with choices of equal mean and different
variances (risk) associated with the outcomes (Long et al., 2009;
Murphy et al., 2009).

The current study presents a neural network model of the
BG including nuclei such as striatum, subthalamic nucleus
(STN) and globus pallidum (externa and interna -GPe/GPi),
and is controlled by neuromodulators such as DA and 5HT.
The model builds on a novel proposal that the medium spiny
neurons (MSNs) of the striatum can compute either value or
risk depending on the types of DA receptors they express. While
the MSNs that express DA D1-receptor (D1R) compute value as
earlier suggested in modeling studies (O’Doherty et al., 2004),
those that co-express D1R and D2R are now shown to be
capable of computing risk. No earlier computational models of
the BG (Frank et al., 2004; Ashby et al., 2010; Humphries and
Prescott, 2010; Krishnan et al., 2011) have taken these D1R-
D2R co-expressing neurons into consideration, though their
existence in the BG was shown by many experiments (Nadjar
et al., 2006; Bertran-Gonzalez et al., 2010; Hasbi et al., 2010,
2011; Perreault et al., 2010, 2011; Calabresi et al., 2014). The
neuromodulator DA is represented as the TD error mediating
either the update of the cortico-striatal weights or the action
selection dynamics occurring downstream of the striatum. This
is in agreement to various contemporary models of DA in the
BG (Frank et al., 2004; Magdoom et al., 2011; Kalva et al.,
2012; Chakravarthy and Balasubramani, 2014). The specific
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modulation site of 5HT in the striatum is elusive (Ward and
Dorsa, 1996; Eberle-Wang et al., 1997; Barnes and Sharp, 1999;
Nicholson and Brotchie, 2002; Parent et al., 2011). This study
makes a prediction on the types of striatal MSNs that significantly
receive 5HT modulation. It describes the computational roles
of the three pools of striatal MSNs viz., D1R-expressing, D2R-
expressing and D1R-D2R co-expressing MSNs. It also expands
the earlier BG architectures significantly by ascribing a crucial
role to the D1R-D2RMSNs that project to the direct and indirect
pathways of the BG. The presented DA-5HT mediated network
model is then shown to explain their seminal behavioral effects
by simulating experiments analyzing reward, punishment, and
risk learning (Daw et al., 2002; Cools et al., 2008; Long et al.,
2009). The study also extends toward describing a principal
model of the BG dysfunction i.e., Parkinson’s Disease (PD) for
explaining the associated impairment in action selection (Bodi
et al., 2009).

The paper is organized as follows: Section A Model of
Utility-based Decision Making outlines the lumped model of
value and risk computation in the striatum as described in
our earlier study (Balasubramani et al., 2014). Section Cellular
Correlates for the Value and the Risk Computation describes the
neural correlates for both the value and risk computation in the
striatum. Specifically, this section shows that D1R expressing
MSNs are involved in value computation, while the MSNs
that co-express D1R and D2R support risk computation. The
network model is introduced in Section Modeling the BG
Network in Healthy Control Subjects that uses the neural
correlate model of Section Cellular Correlates for the Value and
the Risk Computation for the BG action selection dynamics.
The D1R MSNs project to GPi via the Direct Pathway (DP)
while the D1R-D2R and the D2R MSNs project to GPi via
the Indirect Pathway (IP) consisting of the GPe and STN.
The SNc model component receives input from both D1R
MSNs and D1R-D2R MSNs, and releases DA. The experimental
sections deal with testing the model on risk sensitivity (Section
Modeling the Risk Sensitivity), punishment sensitivity and
behavioral inhibition (Section Modeling Punishment Mediated
Behavioral Inhibition). Themodel is further extended to simulate
PD condition. Section Modeling the Reward-punishment
Sensitivity in PD thereby studies the model behavior on a
probabilistic reward-punishment learning paradigm in control
and PD conditions. The model equations that are adapted to
represent the PD condition are given in the Section Simulating
Parkinson’s Disease (PD). The study results, limitations
and testable predictions are finally discussed in Section
Discussion.

Model

A Model of Utility-based Decision Making
This section quickly summarizes our extended reinforcement
learning model of the BG (Balasubramani et al., 2014), where
the agent (subject) tends to maximize utility. We start with the
value function “Q,” associated with a state, “s,” and an action, “a,”
pair, at time, “t.” This is the expected discounted sum of rewards
obtained starting from time t in state s:

Qπ (s, a) = Eπ (rt+1+γ rt+2+γ2rt+3+ ...|st = s, at = a) (2.1.1)

where, γ , is a discount factor controlling the myopicity of the
rewards. These value functions are updated using the temporal
difference learning rule as follows:

Qt+1(st, at) = Qt(st, at)+ ηQδt (2.1.2)

where, “δt” is the temporal difference (TD) error, given by
Equation (2.1.3) if the experiment runs for multiple time steps,
and by Equation (2.1.4) in the case of single-step experiments.

δt = rt + γQt (st+1, at+1) − Qt (st, at) (2.1.3)

δt = rt − Qt (st, at) (2.1.4)

We introduced the notion of a risk function, “h,” that tracks
the variance (δ2) (Bell, 1995; D’Acremont et al., 2009) in
instantaneous rewards or the reward prediction error with zero
mean, and is updated as follows:

ht+1(st, at) = ht(st, at)+ ηhξt (2.1.5)

where, ξt is the risk prediction error given by:

ξt = δ2t − ht(st, at). (2.1.6)

Finally, we define the utility “U,” at time, “t,” as a combination of
the value function and the risk function as follows:

Ut(st, at) = Qt(st, at)− α sign(Qt(st, at))
√

ht(st, at) (2.1.7)

where, α controls the risk sensitivity and is proposed to represent
the functioning of 5HT in the BG. The sign() term in Equation
(2.1.7) represents the non-linear risk sensitivity. Studies show
that the subjects are risk averse in the case of gains and
risk seeking during losses (Kahneman and Tversky, 1979). The
subjective gains (losses) are represented by a positive (negative)
value of Q; and therefore the risk component with the sign(Q)
would negatively (positively) affect the Utility, in order to
show risk averse (seeking) behavior. The policy used for utility
maximization is soft-max, with the probability, “P,” of choosing
an action from a state at time, “t,” given by the following Equation
(2.1.8):

Pt(a|s) = exp(βUt(s, a))/
n

∑

i=1

exp(βUt(s, i)) (2.1.8)

“n” is the total number of actions available at state, “s,” and “β” is
the inverse temperature parameter. Values of β tending toward
0 make the actions almost equiprobable whilst values tending
toward∞make the soft-max action selection identical to greedy
action selection.

This utility-based model of the BG described by
Balasubramani et al. (2014) is an abstract, lumped model
in which it is proposed that the utility function is computed in
the striatum. However, in order to expand the lumped model to
a network version, we first identify cellular correlates of value
and risk computations in the next section.
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Cellular Correlates for the Value and the Risk
Computation
Most approaches to modeling cellular level mechanisms for value
computation in the striatum consist of three conditions:

(1) Occurrence of TD error information in the form of DA
signals in at the striatum (Schultz et al., 1997),

(2) Availability of information related to the cortical sensory
state in the striatum (Divac et al., 1977; Mcgeorge and Faull,
1989), and

(3) DA-dependent plasticity in cortico-striatal connections
(Reynolds and Wickens, 2002).

A typical formulation of DA-dependent learning (Reynolds and
Wickens, 2002) may be expressed as the change in cortico-striatal
connection strength, w (1w),

1w = ηδx (2.2.1)

Where “x” in Equation (2.2.1) represents the cortical sensory
input and is used in this section as a logical variable for neural
encoding of the underlying state “x,” x = 1 (if x = st) else
x=0; “δ” is the TD error [Equations (2.1.3, 2.1.4): representing
DA activity]; and “η” is the learning rate. Similar formulations
have been proposed from purely RL-theory considerations (See
Chapter 9 of Abbott, 2001). A slight variation of the above
equation would be as follows.

1w = ηλStr(δ)x (2.2.2)

where “λStr” is a function of δ, that represents the effect of DA on
the striatal neural firing rate (Reynolds andWickens, 2002). Thus,
the learning rule of Equation (2.2.2) has a Hebb-like form, where
the neuro-modulation is modeled in terms of the effect of the
neuromodulator on the firing rate of the post-synaptic neuron.
The form of the function λStr varies depending on the type of
DA family receptors (R) expressed in Medium Spiny Neurons
(MSNs) as explained below. In neurons with D1R expression,
higher DA level increases the probability of MSN excitation by
a given cortical input (Moyer et al., 2007; Surmeier et al., 2007).
Hence, in models that represent MSNs, λStr is described as an
increasing sigmoid function of DA for neurons that express D1R.
In cells with D2R, the activation is higher under conditions of
low DA levels (Hernandez-Echeagaray et al., 2004) and therefore
the λStr function is modeled as a decreasing function of DA
(Frank, 2005; Frank et al., 2007a). These sigmoid λStr functions
are expressed as:

λ
Str

D1(δ) =
2c1

1+ exp(c2(δ + c3))
− c1

λ
Str

D2(δ) =
2c1

1+ exp(c2(δ + c3))
− c1

λ
Str

h−D1(δ) =
c1

1+ exp(c2(δ + c3))

λ
Str

h−D2(δ) =
c1

1+ exp(c2(δ + c3))

(2.2.3)

where c1, c2, c3 are constants subject to the receptor type, and
represent the nature of the receptors; The gain functions of D1R

MSNs, D2RMSNs are given by λ
Str

D1,λ
Str

D2, and that of the D1R and

the D2R component of co-expressing MSNs are given by λ
Str

h−D1,

λ
Str

h−D2, respectively.
Examples for such sigmoid λ functions with parameters

(Table 1) for the D1R, D2R, and the D1R-D2R MSNs are shown
in (Figure 1B).

The activity of MSNs with D1R expression (yD1) are
appropriately suited for value computation (Krishnan et al., 2011;
Kalva et al., 2012). They express λD1(δ) as an increasing function
of δ. The D1R MSN’s activity can be thought as a network
equivalent of the Equation (2.1.2) in abstract model.

The D1R MSNs receive cortico-striatal connections whose
weight is denoted by “wD1.” The value “Q” computed from such
an MSN’s activity (yD1) is given by Equation (2.2.4).

yD1 = wD1x and Q = yD1 (2.2.4)

And change in weight for such a neuron is given by Equation
(2.2.5).

1wD1 = ηD1 λStrD1(δ) x (2.2.5)

where ηD1 is the learning rate.
A similar neuron model in which D1R and D2R are co-

expressed can simulate risk computations. In case of a neuron
that would compute risk, the λStr function is represented

as “λ
Str

D1D2.”It was reported that the behavior of D1R-D2R
co-expressing neurons may be described as the sum of the
antagonistic actions of D1 and the D2 expressing neurons (refer
to the discussion section for more details). Therefore, activation
of D1R-D2R MSNs (yD1D2) could be modeled simply as an
addition of the effects of independent activations of D1R and
D2R MSNs, respectively (Surmeier et al., 2007; Allen et al., 2011;
Hasbi et al., 2011). When their activation function is computed
as a simple summation (superposition) of D1R and D2R MSNs,
they capture the variance associated with the rewards and thereby

form the risk function (Figure 1). The function “λ
Str

D1D2” of D1R-

D2R MSNs is an even function of “δ,” with λ
Str

D1D2 (δ) increasing
with increasing magnitude of δ, thereby increases with δ2. The

λ
Str

D1D2 Equation (2.2.6) can be expressed as the summation of

functions corresponding to a D1R component (λ
Str

h−D1) and aD2R

component (λ
Str

h−D2) as follows:

λ
Str

D1D2 = λ
Str

h−D1 + λ
Str

h−D2 (2.2.6)

Note that the characteristics of λ
Str

h−D1 and λ
Str

h−D2 as a function of
δ depend on the constants c1,c2,c3 of Equation (2.2.3). Response
(yD1D2) of such a neuron is given as,

TABLE 1 | Parameters used in Equation (2.2.3) for Figure 1.

λ
Str

D1
λ
Str

h−D1
λ
Str

h−D2

c1 1 0.1 0.1

c2 −5 −25 25

c3 0 −0.5 0.5
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FIGURE 1 | (A) Schematic of the cellular correlate model for the value and the

risk computation in the striatum, (B) The D1, D2, and D1D2 gain functions, (C)

The output activity of D1R MSN (yD1), D1R-D2R co-expressing MSN (yD1D2),

variance tracked through Equation (2.1.5) containing δ2, and normalized

variance computed analytically (var) = p*(1-p); Here p is the probability

associated with rewards, i.e., with probability p, reward = 1, else reward = 0.

The resemblance of var to yD1D2 shows the ability of D1R-D2R co-expressing

MSN to perform risk computation.

yD1D2 = wD1D2x and h = yD1D2 (2.2.7)

and the change in corresponding weight, 1wh, is given as,

1wD1D2 = ηD1D2 λ
Str

D1D2(δ) x (2.2.8)

where ηD1D2 is the learning rate. The (D1R-expressing)
striatal MSNs with δ-dependent λStr functions that are of
increasing sigmoidal shape are capable of computing value.
Similarly (D1R-D2R co-expressing) striatal neurons with δ-
dependent λStr functions that are “U” shaped, can compute
risk (Figure 1). The gain expression for risk coding MSNs

(λ
Str

h−D1, λ
Str

h−D2) uses a logarithmic-sigmoid function that is
unipolar, while the gain expression of other D1R-, D2R- MSNs

(λ
Str

D1,λ
Str

D2) uses a tangent-sigmoid function that is bipolar
Equation (2.2.3).

Just as D1R expressing MSNs can be regarded as cellular level
substrates for value computation in the striatum, D1R-D2R co-
expressingMSNs are suitable to be cellular level substrates for risk
computation [Figures 1, 2 (inset)]. The D1R-D1R co-expressing
MSN’s activity can be thought as a network equivalent of the
Equation (2.1.5) in abstract model. Particularly, the even property
of their activation as a function of δ is essential to capture the
variance associated with rewards (Figure 1C).

We now introduce the above cellular substrates for value and
risk computation in a network model of the BG and show that
the network is capable of reward-punishment-risk based decision
making.

Modeling the BG Network in Healthy Control
Subjects
The cellular level substrates for value and risk computation in the
BG, described above, are now incorporated into a network model
of the BG. This model captures the anatomical details of the
BG and represents the following nuclei (described in the Section
Cellular Correlates for the Value and the Risk Computation)—the
striatum, STN, GPe and GPi. The training of the cortico-striatal
connections by nigro-striatal DA correlate (δ) also occurs as
described in the earlier Section Cellular Correlates for the Value
and the Risk Computation. It models, in an elementary form, the
action of DA in switching between DP and IP, via the differential
action of DA on the D1, D2, and D1-D2 co-expressing receptors
(R) of striatal MSNs. The model also claims different DA signals
for the updating of cortico-striatal weights and the switching in
GPi (Chakravarthy and Balasubramani, 2014). Some of the key
properties of the STN-GPe system such as their bi-directional
connectivity facilitating oscillations and “Exploratory” behavior
are also captured.

The equations for the individual modules of the proposed
network model of the BG (Figure 2) are as follows:

Striatum
The Striatum is proposed to have three types of MSNs:
D1R expressing, D2R expressing, and D1R-D2R co-expressing
MSNs, all of which follow the model described in Section
Cellular Correlates for the Value and the Risk Computation.
The cortico-striatal weight update equations for different
types of neurons (with subscripts—D1, D2, and D1D2: for
the D1R expressing, D2R expressing, and D1R-D2R co-

expressing MSNs, respectively) with the gain function (λ
Str

D1,

λ
Str

D2, λ
Str

D1D2, respectively) as given by Equation (2.2.3), would
then be:
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FIGURE 2 | The schematic flow of the signal in the network model.

Here x denotes the presence of a state; a denotes the action; with the

subscript denoting the index i; Since most of the experiments in the study

simulate two possible actions for any state, we depict the same in the

above figure for a state si ; The D1, D2, D1D2 represent the D1R-, D2R-,

D1R-D2R MSNs, respectively, and w denotes subscript- corresponding

cortico-striatal weights. The schematic also have the representation of DA

forms: (1) The δ affecting the cortico-striatal connection weights (Schultz

et al., 1997; Houk et al., 2007), (2) The δU affecting the action selection at

the GPi (Chakravarthy and Balasubramani, 2014), (3) The Q affecting the

D1/D2 MSNs (Schultz, 2010b); and 5HT forms represented by αD1, αD2,

and αD1D2 modulating the D1R, D2R, and the D1R-D2R co-expressing

neurons, respectively. The inset details the notations used in model

section for representing cortico-striatal weights (w) and responses (y) of

various kinds of MSNs (D1R expressing, D2R expressing, and D1R-D2R

co-expressing) in the striatum, with a sample cortical state size of 4, and

maximum number of action choices available for performing selection in

every state as 2.
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1wD1(st, at) = ηD1λ
Str

D1(δ(t))x

1wD2(st, at) = ηD2λ
Str

D2(δ(t)) x

1wD1D2(st, at) = ηD1D2λ
Str

D1D2(δ(t)) x

(2.3.1)

Each state-action (s-a) pair is associated with a cortico-striatal
weight Equation (2.3.1). The weight corresponding to the
encountered s and a, at a time t, is then updated using Equation
(2.3.1). The λStr gain function for the D1R, D2R, D1R-D2RMSNs
are the same as in Equation (2.2.3). The δ in the weight update
equations is given by Equation (2.3.2) to capture the immediate
reward conditions:

δ(t) = r − Qt(st, at) (2.3.2)

ηD1, ηD2,ηD1D2 are the learning rates for the D1R, D2R and the
D1R-D2R MSN cortico-striatal weights, respectively. The “Q”
function as calculated in the previous section would be computed
by the output of D1R MSNs as in Equation (2.3.3).

Qt(st, at) = yD1(st, at)

where yD1(st, at) = wD1(st, at) x (2.3.3)

The risk function (ht) associated with choosing each action, at is
then calculated by Equation (2.3.4)

ht(st, at) = yD1D2(st, at)

where yD1D2(st, at) = wD1D2(st, at) x (2.3.4)

For a conservative development of a network model from the
earlier mentioned abstract level model of Section A Model of
Utility-based Decision Making, the utility function for a state-
action pair can be written as Equation (2.3.5).

Ut(st, at) = Qt(st, at)− αD1D2 sign(Qt(st, at))
√

ht(st, at)
(2.3.5)

The change in utility is calculated using Equation (2.3.6).

δU(t) = Ut(st, at)− Ut−1(st, at−1) (2.3.6)

Here αD1D2 in Equation (2.3.5) denotes the modulation
of 5HT particularly on the D1R-D2R co-expressing
MSNs which computes the risk value “h.” More details
on modeling 5HT modulation are described later in this
section.

STN-GPe System
In the STN-GPe model, STN and GPe layers have equal number
of neurons, with each neuron in STN uniquely connected bi-
directionally to a neuron in GPe. Both STN and GPe layers are
further assumed to have weak lateral connections within the
layer. A more detailed description of this model can be obtained
from Chakravarthy and Balasubramani (2014). The number of
neurons in the STN (or GPe) (Figure 2) is taken to be equal to
the number of possible actions for any given state (Amemori

et al., 2011; Sarvestani et al., 2011). The dynamics of the STN-GPe
network is given below

τs
dxSTNi

dt
= −xSTNi +

n
∑

j=m1

WSTN
ij ySTNi − xGPei

ySTNi = tanh(λSTNxSTNi )

τg
dxGPei

dt
= −xGPei +

n
∑

j= 1

WGPe
ij xGPei + ySTNi − xIPi (2.3.7)

xGPei - internal state (same as the output) representation of ith
neuron in GPe;
xSTNi - internal state representation of ith neuron in STN, with the

output represented by ySTNi ;
WGPe- lateral connections within GPe, equated to a small
negative number ǫg for both the self (i = j) and non-self (i 6= j)
connections for every GPe neuron.
WSTN- lateral connections within STN, equated to a small
positive number ǫs for all non-self (i 6= j) lateral connections,
while the weight of self-connection (i = j) is equal to 1 + ǫs, for
each STN neuron i.

We assume that both STN and GPe have complete internal
connectivity, where every neuron in the layer is connected to
every other neuron in the same layer, with the same connection
strength. That common lateral connection strength is ǫs for STN,
and ǫg for GPe. Likewise, STN and GPe neurons are connected
in a one-to-one fashion—the I’th neuron in STN is connected
to the i’th neuron in GPe and vice-versa. For all simulations
presented below, the parameters: ǫg = −ǫs = 0.1; the step-sizes:

1/τ S = 0.1; 1/τ g = 0.033; and the slope: λSTN = 3;

Striatal Output Toward the Direct (DP) and the

Indirect Pathway (IP)
Assuming that the striatal D1R MSNs project via the DP to GPi
(Albin et al., 1989; Frank, 2005; Chakravarthy et al., 2010), the
contribution of the DP to GPi is given by:

xDPi = αD1 λGPiD1 (δU(t)) yD1(st, at) (2.3.8)

The GPe is modeled to receive inputs from both the D2R and
D1R-D2R MSNs of the striatum (Hasbi et al., 2011; Perreault
et al., 2011; Wallman et al., 2011; Balasubramani et al., 2014) in
the indirect pathway. The input to the GPe is therefore given by:

xIPi = αD2 λGPiD2 (δU(t)) yD2(st, at) + αD1D2 sign(yD1(st, at))

λGPiD1D2(δU(t))
√

yD1D2(st, at) (2.3.9)

where the response functions of various kinds of MSNs are
denoted by variable “y”:

yD1(st, at) = wD1(st, at) x
yD2(st, at) = wD2(st, at) x
yD1D2(st, at) = wD1D2(st, at) x
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and

λ
GPi

D1 (δU) =
2c1

1 + exp(c2(δU + c3))
− c1

λ
GPi

D2 (δU) =
2c1

1 + exp(c2(δU + c3))
− c1

λ
GPi

h−D1(δU) =
c1

1 + exp(c2(δU + c3))

λ
GPi

h−D2(δU) =
c1

1 + exp(c2(δU + c3))

It should also be noted that λStrs used as gain factors for the
striatal neural outputs of Equations (2.3.8, 2.3.9) are different
from that used in Equation (2.3.1). The λs used in weight
dynamics of Equation (2.3.1) are dependent on the TD error of
Equation (2.3.2) in immediate reward condition. Whereas, DA
used in the λGPi of Equations (2.3.8, 2.3.9) is different—it is
the temporal gradient of U [δU: Equation (2.3.6)] which has a
direct role in switching between DP and IP (Kliem et al., 2007).
The temporal difference in utility function between time t and t-
1 is modeled to control exploitation and exploration dynamics
of action selection (Balasubramani et al., 2015) in the BG as
follows. In the case of δU being high, then according to Equation
(2.3.6), the action at time, t, has a higher utility compared to
that at time, t-1. This case facilitates DP Equation (2.3.8) that is
popularly dubbed as Go pathway which exploits by selecting the
same action at . In contrary, if δU is low, then the NoGo pathway
(IP) is selected Equation (2.3.9) for facilitating the action taken
at time, t-1. This is because the action at time, t-1, has a higher
utility compared to that at time, t Equation (2.3.6). In the third
case of δU between high and low levels, a random selection of
choice from the action repertoire is made, by the Explore pathway
(IP) (Chakravarthy and Balasubramani, 2014). Further, DAergic
neural activity in monkeys is recently found to be well correlating
to the computed utility-difference at a time, t, while performing a
decision making task (Stauffer et al., 2014).

In the lumped model of Section A Model of Utility-based
Decision Making (Balasubramani et al., 2014), the parameter
α represents 5HT activity Equation (2.1.7). The following
can be realized on carrying over the concept to a network
version. Since α controls risk term only in Equation (2.1.7),
and it is shown in Section Cellular Correlates for the Value
and the Risk Computation that D1R-D2R co-expression MSNs
compute risk, it is natural to formulate the network model such
that α modulates only the D1R-D2R MSNs in the striatum.
However, experimental evidence to support such specificity in
5HT modulation of striatal neurons is unavailable (Refer to the
Discussion section for details). Concerning the unspecific nature
of 5HT action in the striatum, we introduce three α’s in this
section, to differentially module D1R, D2R and D1R-D2R MSNs,
respectively. Precisely, 5HT α in Equation (2.1.7) is modeled as
the parameters αD1 Equation (2.3.8), αD2, and αD1D2 Equation
(2.3.9), for representing its differential modulation on D1R, D2R
and theD1R-D2RMSNs, respectively (Figure 2,Table 2). The α’s
are optimized for each experimental condition separately.

TABLE 2 | The model correlates for DA and 5HT.

Neuromodulator Model

correlate

Description

DA δ Updating cortico-striatal

weights (Schultz et al., 1997;

Houk et al., 2007)

Equation (2.3.2)

δU Switching between DP and

IP–action selection dynamics

(Stauffer et al., 2014)

Equation (2.3.6)

sign(Q) Controlling the risk sensitivity

of utility based decision

making (Schultz, 2010a,b)

Equation (2.3.9)

5HT αD1 Controlling differential

modulation of 5HT on D1R,

D2R and the D1R-D2R MSNs

(Ward and Dorsa, 1996;

Eberle-Wang et al., 1997; Di

Matteo et al., 2008b)

Equation (2.3.8)

αD2 Equation (2.3.9)

αD1D2 Equation (2.3.9)

The outputs of D1R and D2R MSNs to GPi flow via the
DP and IP, respectively (O’Doherty et al., 2004; Amemori et al.,
2011; Chakravarthy and Balasubramani, 2014). We propose
that D1R-D2R MSNs also project to GPi via the IP (Perreault
et al., 2010, 2011). The first term on the RHS of Equation
(2.3.9) denotes projections from D2R expressing MSNs to GPe,
whereas the second term represents projections from D1R-D2R
co-expressing MSNs to the same target. The second term is
analogous to the risk term in the utility function of Equation
(2.1.7) (Balasubramani et al., 2014). This term contributes to
the non-linear risk sensitivity, i.e., being risk-aversive in the
case of gains as outcomes, and being risk-seeking during losses
(Kahneman and Tversky, 1979).

The different forms of DA signals used in this study along
with references to their biological plausibility are summarized as
follows (Figure 2, Table 2):

(1) Representing the TD error used in updating the cortico-
striatal weights of the MSNs Equation (2.3.2), as reported
by many experimental studies (Schultz et al., 1997; Reynolds
and Wickens, 2002; Houk et al., 2007).

(2) Representing the temporal gradient of the utility
function [:=δU Equation (2.3.6)], used for switching
between DP and IP (Chakravarthy and Balasubramani,
2014). For such a DA signal (:=δU) from the SNc, those
neurons might be using the information of the value
component received due to the D1R MSN projections from
striatum to SNc (Schultz et al., 1997; Doya, 2002; Houk
et al., 2007), and the risk component from the projections
of D1R-D2R MSNs to SNc (Surmeier et al., 1996; Perreault
et al., 2010, 2011). Further, there are evidences for D1R
MSNs and the co-expressing D1R-D2R MSNs forming
the striosomal component that could assist in computing
the utility prediction error from SNc (Jakab et al., 1996;
Surmeier et al., 1996; Nadjar et al., 2006; Amemori et al.,
2011; Calabresi et al., 2014). This form of DA signal is
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reported by a recent study on utility based decision making
in monkeys by Schultz and colleagues (Stauffer et al.,
2014).

(3) The neurobiological interpretation of the sign(Q) used in
the second term of the Equation (2.3.9) could be also
linked to the SNc functioning. The “value function” coding
DA neurons (represented by the projections marked by
“Q” in the Figure 2) as reported in studies by Schultz
and colleagues (Schultz, 2010b) might be preferentially
targeting the D1R-D2R co-expressing neurons in the
striatum. This modulation is roughly captured in our
model through the sign(Q) term in Equations (2.3.5,
2.3.9).

Combining DP and IP in GPi
Each action neuron in GPi is modeled to combine the
contributions of DP and IP (Kliem et al., 2007) as given in
Equation (2.3.10),

x
GPi
i = −xDPi + w

STN−Gpi
i ySTNi (2.3.10)

where xDP is from Equation (2.3.8), and ySTN that denotes output
of STN, is from Equation (2.3.7). The relative weightage of STN
projections to GPi, compared to that of the DP projections,
is represented by wSTN−GPi. For the simulations in this study,
wSTN−GPi is set to 1 for all the GPi neurons.

Action Selection at Thalamus
The direct and indirect pathway is combined downstream either
in GPi, or further along in the thalamic nuclei, which receive
afferents from GPi (Humphries and Gurney, 2002; Chakravarthy
et al., 2010). GPi neurons project to thalamus over inhibitory
connections. Hence the thalamic afferents for a neuron i, may be
expressed simply as,

x
Thalamusi
i = xDPi − w

STN−Gpi
i ySTNi (2.3.11)

These afferents activate thalamic neurons as follows,

dyThalamus
i

dt
= −yThalamus

i + xThalamus
i (2.3.12)

where yThalamus
i is the state of the ith thalamic neuron. Action

selected is simply the “i” (i = 1,2,..,n) whose yThalamus
i is maximum

on integration. In our simulations, the integration process is
carried over for 25 time steps.

Simulating Parkinson’s Disease (PD)
A model of PD may incorporate the following features in terms
of DA and 5HT levels:

(1) DA levels are lower in PD than in controls: This feature is
simulated by clamping “δ,” and upper bounding δ to δLim.
Since there is a reduced number of DA cells, Substantia Nigra
pars compacta (SNc) is thought to be capable of producing a
weak signal reliably, but the highest firing levels in PD are
smaller compared to controls (Kish et al., 1988).

(2) PD medication (L-dopa, DA agonists) facilitates DA activity.
This is simulated by simply adding a fixed constant to the
preexisting clamped δ (Dauer and Przedborski, 2003; Foley
et al., 2004).

Hence, to represent the PD condition, the Equation (2.3.2)
describing DA activity is first clamped to δLim, as in Equation
(2.4.1):

if δ > δLim; δ = δLim (2.4.1)

Equation (2.4.1) represents the never-medicated case (PD-OFF).
In the recently-medicated case (PD-ON), in addition to the
clamping step (to δLim) just described, there is a transient increase
in DA (to model the medication factor δMed) to the clamped δ,
which is implemented as:

δ: = δ+ δMed (2.4.2)

This altered δ, that represents any medication condition, is then
used for the corresponding simulations in the Section Modeling
the BG Network in Healthy Control Subjects. The ON and the
OFF medication status is brought out by Equation (2.4.3).

δ(t) =







[a, b] for controls
[a, δLim] for PD OFF
[a, δLim + δMed] for PD ON

(2.4.3)

where δLim and δLim + δMed are lesser than b.
Serotonin levels are also found to be lower in the PD patients

(Fahn et al., 1971; Halliday et al., 1990; Bedard et al., 2011).
The same is verified by the model parameters αD1, αD2, and
αD1D2 in various medication cases of PD (Section Modeling the
Reward-punishment Sensitivity in PD).

Experiments and Results

In this section, we apply the model of 5HT and DA in
the BG (Section Modeling the BG Network in Healthy
Control Subjects) to explain several reward/punishment/risk-
based decision making phenomena pertaining to the BG
function.

(1) Simulating risk sensitivity (Long et al., 2009).
(2) Simulating reward-punishment sensitivity (Cools et al.,

2008).
(3) Simulating reward-punishment sensitivity in Parkinson’s

Disease (Bodi et al., 2009).

In the simulation studies described in Sections Modeling the
Risk Sensitivity to Modeling the Reward-Punishment Sensitivity
in PD, the BG model parameters [λGPi—Equations (2.3.8,
2.3.9)] are set as shown in Table 3. The other parameters:
gain functions (λStr) of the D1R-, D2R-, D1R-D2R MSNs
in the striatum equations (2.3.1, 2.2.3, 2.2.6); the model
neuromodulator correlates for 5HT viz., αD1, αD2, αD1D2 that
affect D1R, D2R, and the D1R-D2R MSNs, respectively; and DA
parameters that condition PD (δLim, δMed), are optimized for
each experiment. The parameter values are initially selected using
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TABLE 3 | Parameters used in simulation studies of Sections Modeling the

Risk Sensitivity to Modeling the Reward-Punishment Sensitivity in PD

Equations [2.3.8, 2.3.9].

λ
GPi

D1
λ
GPi

D2
λ
GPi

h−D1
λ
GPi

h−D2

c1 1 1 0.05 0.05

c2 −50 50 −0.01 0.01

c3 0.01 0.01 −0.05 0.05

TABLE 4 | The sample reward schedule adapted from Long et al. (2009).

States, “s” Safe target (ms) Risky targets (ms)—each with

probability 0.5

(rj )

1 150 125,175

2 150 100,200

3 150 50,250

4 140 40,240

5 200 40,240

6 210 40,240

grid search and are eventually optimized using genetic algorithm
(GA) (Goldberg, 1989) (Details of the GA option set are given in
Supplementary Material A).

On studying the significance of 5HT modulation on different
pools of MSNs, 5HT is found to significantly affect the D2R
and the D1R-D2R co-expressing MSNs for explaining the
experiments that deal with risk and punishment-based decision
making (Cools et al., 2008; Bodi et al., 2009; Long et al., 2009)
(Supplementary Material B). αD1 did not show much sensitivity
to these experimental results. The results presented in the next
section therefore equateαD1 = 1, and optimizeαD1D2 andαD2 for
every experimental condition (Refer to discussion section also).

Modeling the Risk Sensitivity
Overview
In the study of Long et al. (2009), monkeys were presented with
two choices of juice rewards, differing in the variances associated
with the availability of the rewards (Long et al., 2009). One choice
was associated with a risky reward and the other with that of a
deterministic/safe one; these choices were of equal expected value
(EEV) or unequal expected value (UEV) types. In EEV case both
the safe and the risky choices to possess the same mean reward,
while in UEV case mean rewards are unequal (Table 4). The
monkey’s risk sensitivity in the variable tryptophan conditions,
viz., baseline (balanced) and Rapid tryptophan depleted (RTD),
were recorded by analyzing their safe vs. risky reward selection
ratio, under EEV and UEV cases.

A non-linear risk sensitivity toward juice rewards was
displayed by the monkeys: they exhibited risk-seeking behavior
for small juice rewards and risk-aversive behavior for larger ones
(Long et al., 2009). Furthermore, the experiment showed that
when 5HT levels were reduced, the monkeys made more risky
choices over the safer alternatives (Long et al., 2009), linking
5HT functioning to risk-based decision making. Therefore, this

TABLE 5 | Section Modeling the Risk Sensitivity: the parameters for

Equations (2.3.1, 2.2.3, 2.2.6).

λ
Str

D1
λ
Str

D2
λ
Str

h−D1
λ
Str

h−D2

c1 10 0.01 0.05 0.05

c2 −0.1 0.05 −5 0.5

c3 0 0 −100.1 100.1

section analyses the property of risk sensitivity of the network
model.

Simulation
The D1R, D2R and the D1R-D2R neuron weights are computed
using Equation (2.3.1) and are updated using δ Equation (2.3.2).
Learning rates are chosen as: ηD1 = 0.3; ηD2 = 0.1; ηD1D2 = 0.1.
The corticostriatal weights of D1R (wD1), D2R (wD2) and the
D1R-D2R (wD1D2) MSNs are initialized randomly between 0 and
1; the value, risk and the utility functions are calculated using
Equations (2.3.3–2.3.5). The parameters for the λStr in Equation
(2.3.1) are provided in (Table 5).

This is done for all states “s” (tabulated in Table 4), and
action sets consisting of “a” reaching the safe target and the
risky target. The non-linearity in risk attitudes observed by the
agent is accounted for by considering a reward base (rb) that
is subtracted from the juice reward (rj) obtained. The resultant
subjective reward (r) is treated as the actual immediate reward
received by the agent Equation (3.1.1). Subtracting rb from rj,
associates any rj < rb with an effect similar to losses, and any rj >
rb with gains.

r = rj − rb (3.1.1)

The reward base (rb) optimized for the experiment is 159.83.

Results
When the RTD condition is simulated by setting [αD1, αD2,
αD1D2] = [1, 1, 0.0012], and the baseline by [αD1, αD2,
αD1D2] =[1, 1, 1.32], a decrease in the selection of the safe choices
is observed in the simulation as demonstrated in the experiment.
The model has shown increased risk seeking behavior for low
α condition particularly in the D1R-D2R co-expressing MSNs.
Hence, modulating the αD1D2 best captures the baseline (high
αD1D2) and RTD (low αD1D2) conditions for explaining risk
sensitivity. The performance of the network model shown in this
section is consistent with that of the lumped model described
earlier (Balasubramani et al., 2014) in depicting the role of 5HT
in risk-based action selection (Figure 3). More analysis on the
effect of αD1, αD2, αD1D2 in showing risk sensitivity are provided
in Supplementary Material B.

Modeling Punishment Mediated Behavioral
Inhibition
Overview
This section models an experiment showing differential variation
in reward and punishment-based sensitivity in response to
changing 5HT levels. In that experiment, the subjects underwent
a reversal learning paradigm associated with deterministic
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FIGURE 3 | Comparison between the experimental and simulated

results for the (A) overall choice (B) Unequal EV (C) Equal EV, under

Rapid Tryptophan Depletion (RTD) and Baseline (balanced) condition.

Error bars represent the Standard Error (SE) with size “N” = 100 (N = number

of simulation instances). The experiment (Expt) and the simulation (Sims)

results of any condition are not found to be significantly different. Here the

experimental results are adapted from Long et al. (2009).

rewards (Cools et al., 2008; Robinson et al., 2012). They were
presented with two types of stimuli associated with reward
and punishment, respectively. On each trial, the subject had
to predict whether the stimulus presented to them would
yield a reward or a punishment response, in a balanced
or tryptophan depleted condition (Cools et al., 2008). The
trials were grouped into blocks. Each subject performed 4
experimental blocks, that were preceded by a practice block in
order to familiarize the subject with the task. Each experimental
block consisted of an acquisition stage followed by a variable
number of reversal stages. One of two possible experimental
conditions was applied to each block: unexpected reward
(punishment) condition where a stimulus previously associated
with punishment (reward) becomes rewarding (punishing). Since
there are 4 blocks of trials, there were two blocks for each
condition. Performance of the subjects in the non-reversal
trials was evaluated as a function of—(a) drink and condition
(conditions: unexpected reward, unexpected punishment), and
(b) drink and outcome (outcomes: reward, punishment) trial
type. Results showed that performance did not vary significantly
with condition in both balanced and tryptophan depleted
cases. Errors were lesser for tryptophan depleted cases than
balanced cases in both conditions. Specifically, errors decreased
significantly for punishment-prediction trials compared to
reward-prediction trials in tryptophan-depleted cases. Thus, the
results suggest that tryptophan-depletion selectively enhances
punishment-prediction relative to reward-prediction; and that
5HT maintains the behavioral inhibition (for active avoidance of
the punishment). For a detailed explanation of the experimental
setup refer to Cools et al. (2008).

Simulation
The two stimuli “s” (s ∈ {s1, s2}) are modeled as states, “s,” and
the action, “a” (action a ∈

{

a1 = reward, a2 = punishment
}

)

TABLE 6 | Section Modeling Punishment Mediated Behavioral Inhibition:

parameters for λ used in Equations (2.3.1, 2.2.3, 2.2.6).

λ
Str

D1
λ
Str

D2
λ
Str

h−D1
λ
Str

h−D2

c1 0.06 0.115 0.939 0.939

c2 −0.155 0.488 −0.188 0.188

c3 −0.574 0.317 −1.723 1.723

associating the presented stimulus to a reward or punishment
response. At any particular trial “t,” the rewarding association
is coded by rt = +1, and the punitive association is coded
by rt = −1. i.e., the outcome was stimulus-dependent and
not response-dependent. The feedback of performance is given
indirectly as followed in the experiment: erroneous trials are
followed by the same stimulus until it is predicted by the agent
correctly. The D1R, D2R, and the D1R-D2R neuron weights are
trained using Equation (2.3.1) where δ is from Equation (2.3.2).
The learning rates are: ηD1 = ηD2 = ηD1D2 = 0.01. The weights
of the D1R, D2R, and the D1R-D2R neurons are initialized
randomly between 0 and 1; the value, risk and the utility functions
are calculated using Equations (2.3.3–2.3.5). The parameters used
for λStr in Equation (2.3.1) are as in (Table 6).

Similar, to the experiment, three types of trials are simulated as
follows: non-reversal trials in which the association of a stimulus–
response pair is learnt; reversal trials in which the change of
the learnt association is triggered; and the switch trials where
the reversed associations are tested. The maximum number of
reversal stages per experimental block is 16, with each stage to
continue till the correct responses fall in the range of (5–9). The
block terminates automatically after 120 trials. There are two
blocks in each condition, and hence a total of 480 trials (4 blocks)
conducted per agent. The design of the experiment has an inbuilt
complementarity in the association of the actions to a particular
stimulus (i.e., increasing the action value of a1 for a stimulus, s,
decreases the same for a2 to s), and the stimuli to a particular
action (i.e., increasing the action value of a to s1 decreases the
same for a to s2). Hence in the simulations, the action values
associated with the two actions (Q(s, a1) and Q(s, a2)) for any
particular state “s” are simulated to be complimentary Equation
(3.2.1) at any trial “t.”

wD1(s, a1) = −wD1(s, a2) (3.2.1)

The action values of the two stimuli “s” (Q(s1,a) and Q(s2,a))
mapped to the same action, “a” are also complimentary Equation
(3.2.2) at any trial “t.”

wD1(s1, a) = −wD1(s2, a) (3.2.2)

Hence, only one out of the four value functions (Q(s1,a1),
Q(s1,a2), Q(s2,a1), Q(s2,a2)) or their corresponding weights
is learnt by training, while the other 3 are set by the
complementarity rules to capture the experimental design. We
assume that, in the experiment, such a complementarity could be
learnt during the initial practice block that promoted familiarity.
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Results
On analyzing the results in terms of experimental condition
(viz., unexpected reward and unexpected punishment valences),
the overall error decreased on the reduction of 5HT (α)
level [αD1, αD2, αD1D2] = [1,2.25,1] (tryptophan-depleted
condition) from [αD1, αD2, αD1D2] = [1,5,1] (balanced
condition) (Figure 4C). Particularly 5HT modulation on the
D2R MSN is predicted to control the increased punishment
prediction observed during the depleted tryptophan conditions.
The punishment prediction error decreased significantly more
than the reward prediction error (Figure 4B) on the reduced
αD2 condition. Hence αD2 in our model best represents
5HT’s role in selectively modulating punishment sensitivity
(Figure 4).

Increased 5HT levels in balanced condition are seen
promoting the inhibition of responses to punishing outcomes
(Figure 4A) as proposed by Cools et al. (2008) (Figure 4B).
Reducing 5HT via tryptophan depletion then removes this
inhibition. The sign() term in the Equation (2.3.5) is essential
in showing the non-linear reward-punishment sensitivity, as
observed in our earlier study (Balasubramani et al., 2014). The
errors as a function of conditions i.e., in unexpectedly rewarding
and punitive trials, are obtained to be the same in both the
balanced and tryptophan depleted cases (Figure 4C: sims values)

again matching with the experiment (Figure 4C: expt values
adapted from Cools et al., 2008).

Modeling the Reward-punishment Sensitivity in
PD
Overview
The simulation studies presented so far are performed under
controlled conditions. This section simulates a study related to
reward-punishment learning that involved PD patients. Bodi
et al. (2009) used a probabilistic classification task for assessing
reward-punishment learning under the different medication
conditions of PD patients. The medications used in the study
were a mix of DA agonists (Pramipexole and Ropinirole) and L-
Dopa. The task was as follows: one of four random fractal images
(I1–I4) were presented. In response to each image, the subject
had to press on one of two buttons—A or B–on a keypad. Stimuli
I1 and I2 was always associated with reward (+25 points), while
I3, I4 was associated with loss/punishment (−25 points). The
probability of reward or punishment outcome depended on the
button (A or B) that the subject pressed in response to viewing
an image. The reward/punishment probabilities associated with
two responses, for each of the four stimuli, are summarized
in Table 7. There are 160 trials administered in 4 blocks.
Experiments were performed on controls, never-medicated (PD-
OFF) and recently-medicated PD (PD-ON) patients. The study

FIGURE 4 | The mean number of errors in non-switch trials (A) as a

function of “α” and outcome trial type; Error bars represent standard

errors of the difference as a function of “α” in simulation for size “N”

= 100 (N = number of simulation instances) (Sims). (B) Experimental

error percentages adapted from Cools et al. (2008). Error bars represent

standard errors as a function of drink in experiment (Expt). The results in (B)

were reported after the exclusion of the trials from the acquisition stage of

each block. (C) The mean number of errors in non-switch trials as a function

of condition with experimental (Expt) results adapted from Cools et al. (2008).

Error bars represent standard errors either as a function of drink in

experiment (or α) in simulation for size “N” = 100, with bal and Trp-

representing balanced and tryptophan depleted conditions, respectively. The

experiment (Expt) and the simulation (Sims) results of any condition or

outcome trial type are not found to be significantly different.
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TABLE 7 | The four types of images (I1–I4) associated with response type

A and B with the following probability are presented to the agent, and the

optimality in sensing the reward (right associations) and the punishment

(incorrect associations) are tested in control and PD condition.

Learning Reward Punishment

Image presented I1 I2 I3 I4

Optimal type A B A B

Probability(points) 0.8(+25) 0.8(+25) 0.8(0) 0.8 (0)

for optimal type 0.2(0) 0.2(0) 0.2(−25) 0.2 (−25)

Non-optimal type B A B A

Probability(points) 0.2(+25) 0.2(+25) 0.2(0) 0.2(0)

for non-optimal type 0.8(0) 0.8(0) 0.8 (−25) 0.8(−25)

(Bodi et al., 2009) showed that the never-medicated patients
were more sensitive to punishment than the recently-medicated
patients and controls. On the other hand, the recently-medicated
patients outperformed the never-medicated patients and controls
on reward learning tasks (Figure 5). The optimal decision (as
shown in the Figure 5) is the selection of A for I1 and I3, and
B for I2 and I4.

Simulation
The immediate reward condition of the experiment is expressed
by Equation (2.3.2), with which the weights of value (D1R)
update and the risk (D1R-D2R) update Equation (2.3.1) are made
for every (state-action) pair. The states here are the 4 images
and the action, a, is categorizing them as A or B. The utility
for a particular (state-action) pair is constructed using Equation
(2.3.5). On presentation of an image, the change the utility
associated with it Equation (2.3.6) is used for the action selection
which is defined by dynamics described in Sections Modeling the
BG Network in Healthy Control Subjects. It must be noted that
the +25 reward is parameterized as reward “r = 1” and the -25
punishment as “r = −1.” The weights for the D1R, D2R, and
the D1R-D2R neurons are initialized randomly between 0 and
1. The parameters used for the λStr in Equation (2.3.1) are as in
(Table 8). The modeling of the PD-ON (on dopamine agonists
medication), and PD OFF (OFF dopamine agonists medication)
are as Equation (2.4.3); and step sizes set are ηD1 = 0.01; ηD2 =
0.1; ηD1D2 = 0.1;

Results
In the experiment, the controls show almost equal sensitivity
to rewards and punishments. The PD ON patients show an
increased sensitivity to reward compared to that of punishment,
whereas the PD OFF patients show the opposite trend. The
parameters of the model that best represent the experiment are:
[αD1, αD2, αD1D2] = [1, 1, 0.2] for the healthy controls; [δLim,
αD1, αD2, αD1D2] =[0.001, 1, 0.99, 0.001] for PD-OFF; and
[δLim, δMed, αD1, αD2, αD1D2] = [0.001, 0.021, 1, 0.2, 0.001] for
PD-ON.

The depleted DA levels limit the update [through the Equation
(2.3.2)] of the cortico-striatal connections. The resulting
erroneous value and the risk components would interfere
with the reward-punishment sensitivity of the PD patients.
Particularly, the exact nature of the impairment is shown to be
different under cases of ON and OFF DA medications. In PD-
ON, DA-agonist medication tends to increase the tonic levels of
DA (Frank et al., 2007b). This leads to faulty updates of the states
associated with punishment, which must be ideally associated
with a low “value.” This also increases the risk component
associated with those states to eventually decrease their selection
optimality. The opposite trend occurs in PD-OFF condition
which decreases the optimality in selection associated with the
states scoring rewards. Moreover, the results substantiate both
the differential modulation of 5HT in theMSNs and their changes
marking PD (Figure 5). Modulating 5HT along with DA is
essential for representing PDOFF andONmedication conditions
(Supplementary Material B) as identified in experimental studies
(Fahn et al., 1971; Halliday et al., 1990; Tan et al., 1996; Bedard
et al., 2011). Specifically, a lowered αD1D2 is seen in both OFF and
ON medication cases, while a lowered αD2 is seen in the PD-ON
case.

Supplementary Material C is added to demonstrate the
relative influence of sign() term on the reward, punishment
sensitivity under various conditions (controls, PD-ON, PD-
OFF). Supplementary Materials B,C also predicts the significance
of treating PD patients with 5HT (αD1, αD2, αD1D2) +

DA medication (δLim, δMed) for improving their reward and
punishment learning. The non-linearity in the utility formulation
due to the sign() term is also found to be essential for capturing
the increased punishment sensitivity in PD-OFF case, and an
increased reward sensitivity in PD-ON case (Supplementary
Material C).

Discussion

The DA-5HT Based BG Network Model for Utility
Based Decision Making
The model presented in Section Cellular Correlates for the
Value and the Risk Computation is an abstract mathematical
model (and not a network model). It aims to explain the
results from behavioral experiments that embody the diversity of
existing theories of serotonin in the BG. In classical Actor-Critic
approaches to modeling the BG function, value computation
is thought to occur in the striatum (Joel et al., 2002). There
is evidence from functional imaging that supports this theory
(O’Doherty et al., 2006). In the present study, we seek to replace
the value function with the more general utility function, so as
to include the neuromodulatory actions of 5HT in addition to
DA. Ideally, a convincing model of value computation in the
striatum must go beyond an abstract lumped representation and
demonstrate how value may be computed by neural substrates
of the striatum. There is strong evidence for the existence of
dopamine-modulated plasticity in corticostriatal connections, an
effect that is necessary to account for value computation in the
MSNs of the striatum (See review by Kötter and Wickens, 1998).
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FIGURE 5 | The reward punishment sensitivity obtained by

simulated (Sims)- PD and controls model to explain the experiment

(Expt) of Bodi et al. (2009). Error bars represent the standard error (SE)

with N = 100 (N = number of simulation instances). The Sims matches

the Expt value distribution closely, and are not found to be significantly

different.

TABLE 8 | Section Modeling the Reward-punishment Sensitivity in PD:

Parameters used for the λ in Equations (2.3.1, 2.2.3, 2.2.6).

λ
Str

D1
λ
Str

D2
λ
Str

h−D1
λ
Str

h−D2

c1 1 1 0.05 0.05

c2 −50 50 −0.01 0.01

c3 0 −1 −0.05 0.05

The idea that MSNs are probably cellular substrates for value
computation has found its place in recent modeling literature
(Morita et al., 2012). Starting from the fact that the effect of
dopamine on the D1R—expressing MSNs of the striatum is to
increase the firing rate, it has been shown in a computational
model of the BG that the D1R-expressing MSNs are capable of
computing value (Krishnan et al., 2011). We then extend this
idea and show that a model of D1R-D2R co-expressing MSNs in
the striatum is capable of computing the risk function in Section
Cellular Correlates for the Value and the Risk Computation.

The present study presented a model of co-expressing D1R-
D2R MSNs’ gain function as an addition of the gain functions
of D1R and the D2R MSNs. As a result the D1D2R MSNs
acquire a “U”-shaped gain function. A few experiments provide
support for such a representation, for instance the study by
Allen et al. (2011) on neurons coexpressing D1-like and D2-
like receptors in C. elegans (Allen et al., 2011). Here the D1R
and D2R of a co-expressing neuron have antagonistic effects
on neurotransmittor (acetylcholine) release. In conclusion, they
propose that the D1R-D2R coexpressing neurons could simply be
a combination of D1R and D2R neurons. Even studies on rodents
and in-vitro striatal cultures have shown the antagonistic nature
of the D1 and the D2 receptor components of a co-expressing
neuron (Hasbi et al., 2011). They report that these co-expressing
neurons activate the CAMKII and BDNF machinery, each of
which is known to play opposing roles in synaptic plasticity—
long term potentiation and long term depression, which are
generally agreed to be dependent on the D1R and the D2R,
respectively (Surmeier et al., 2007). We follow such a perspective
of simple addition of the antagonistic D1 and the D2 neuronal

gain functions to model the D1R-D2R MSN in our modeling
study.

Few studies in the BG show the ventral striatal neurons to
be specially involved in risk processing (Stopper and Floresco,
2011). In this regard, we further hypothesize that D1R-D2R
MSNs in those nuclei (Stopper and Floresco, 2011) would
specifically contribute to risk computation observed in Stopper
and Floresco (2011). We also predict that selective loss of these
co-expressing neurons would make the subject less sensitive to
risk, and therefore show risk-seeking behavior. The next part of
themodel (SectionModeling the BGNetwork in Healthy Control
Subjects) deals with realizing action selection through network
dynamics of the BG. The underlying stochasticity in the soft-
max rule used in our early study (Balasubramani et al., 2014)
is achieved indirectly by the chaotic dynamics of the STN-GPe
loop (Kalva et al., 2012). A schematic of the network model is
presented in Figure 2.

Improvements Over the Abstract Model
This study involves a systematic expansion of the lumped model
proposed earlier (Balasubramani et al., 2014) to a complete
network model of the BG that describes the interactions between
DA and 5HT in action selection dynamics. Though it has a
shortcoming that it does not include the detailed elaboration of
DA-5HT interactions in the various kinds of receptors in the
BG, it reconciles the principal network theories with the cellular
machinery in the BG for modeling the behavioral results listed in
the experiments of Section Experiments and Results.

Furthermore, the previous abstract model is primarily a model
of the striatum. It focuses on the utility function, which is
thought to be computed in the striatum, and its role in decision
making. The actual decision making is done using softmax
function applied to the utility function (Section A Model of
Utility-based Decision Making). But the present study attempts
to model the entire basal ganglia. It includes downstream
structures like GPe, STN, and GPi. Decision making occurs in
GPi and thalamus. Thus, softmax-like stochastic decisionmaking
is implemented in the present model by the chaotic activity of
STN-GPe oscillations and the competitive action selection in the
GPi and thalamic modules (Section Modeling the BG Network
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in Healthy Control Subjects). The δU plays a role in determining
the competition/cooperation between the direct and indirect
pathways, a mechanism that could not have been accommodated
in the previous abstract model.

There exists a model of risk based on an “asymmetric learning
rule” that works by multiplying a risk sensitivity factor with
the temporal difference function, without explicitly representing
the “risk” component (Mihatsch and Neuneier, 2002). This
study follows the idea of utility computation with explicit
risk coding, as reported in various studies (Preuschoff et al.,
2006; Brown and Braver, 2007; Christopoulos et al., 2009;
D’Acremont et al., 2009), for modeling the utility computation in
the BG.

The Co-Expressing D1R-D2R MSNs
There have been varied reports of the proportion of co-expressing
D1R-D2R MSNs in the striatum. These neurons were not
modeled in any of the earlier studies (Frank et al., 2004; Ashby
et al., 2010; Humphries and Prescott, 2010; Krishnan et al.,
2011). Such unacknowledged nature of the D1R-D2R MSNs
in the striatum might be due to the following: The existence
of co-expressing D1R-D2R MSNs has been debated for years.
Many studies supported distinct populations of the striatal MSNs
projecting in striatonigral and striatopallidal pathways including
neurochemical and genetic ontology analysis in mice (Araki
et al., 2007), transgenic mice engineered using Bacterial artificial
chromosome with enhanced green fluorescent protein (Bertler
and Rosengren, 1966; Shuen et al., 2008; Matamales et al., 2009;
Valjent et al., 2009), biochemical and imaging assays including
in situ hybridization (ISH) combined with retrograde axonal
tracing (Gerfen et al., 1990; Le Moine et al., 1991; Le Moine and
Bloch, 1995), fluorescence-activated cell sorting (FACS) of MSNs
or translating ribosome affinity purification approach (TRAP)
(Lobo et al., 2006; Heiman et al., 2008). These studies report
that D1Rs are present in striatonigral MSNs and are Substance P
positive, whereas the D2R are enriched with enkephalin and are
striatopallidal in nature (Classical models of the BG: Albin et al.,
1989; Delong, 1990). However, some of these highly sensitive
studies are under debate due to the following reasons (Bertran-
Gonzalez et al., 2010; Calabresi et al., 2014). The developmental
regulation of D1R and D2R mRNAs as analyzed in the genetic
ontology studies with mice (Araki et al., 2007) would result from
intrinsic genetic programs that control the receptors’ expression,
whereas the actual dopaminergic neuron’s innervations in a
projection area (here, the striatum) is studied to control the
D1R andD2R expression (Jung and Bennett, 1996). Furthermore,
the genetically engineered BAC mice show differences from
wild-type mice in terms of behavioral, electrophysiological
and molecular characterization. Experimental support for the
segregation of the pathways offered by even highly advanced
optogenetics and other imaging techniques is questioned for
their ability to monitor subcortical activity accurately in the
behaving animals (See the reviews by Bertran-Gonzalez et al.,
2010; Calabresi et al., 2014).

Meanwhile, there are many other findings questioning the
strict segregation of the direct and the indirect pathways. See
review by Bertran-Gonzalez et al. (2010), Calabresi et al. (2014)

for more details. These studies report various modes of cross-
talk existing between the “classical” dichotomous projections
from the striatum. Studies also report co-expression of the D1R
and the D2R in a MSN to be a medium for cross-talk. They
even propose the receptors’ heteromerization to such an extent
that these co-expressing MSNs would have their downstream
effects completely different from that of the neurons solely
expressing the D1R or the D2R. The studies reporting co-
expression of D1R-D2R in theMSNs analyze components such as
calcium and BDNF (Brain-derived neurotrophic factor) (Rashid
et al., 2007; Hasbi et al., 2009), using techniques such as RT-
PCR (Reverse transcription polymerase chain reaction) that is
reviewed in Surmeier and Kitai (1993), Surmeier et al. (1996), co-
immunoprecipitation (Lee et al., 2004), or FRET (Fluorescence
resonance energy transfer) using fluorophore-labeled antibodies
(Hasbi et al., 2009). Some quantitative measures regarding
the proportion of D1R-D2R MSNs in the striatum include
nearly 17% in the nucleus accumbens- shell, and 6% in the
caudate-putamen, when estimated using BAC transgenic mice
(Bertran-Gonzalez et al., 2008). Though there have been doubts
regarding the accurate neuronal labeling in BAC transgenic mice,
the proportions have been confirmed by the later studies too
(Matamales et al., 2009). A recent study employing confocal
FRET analysis also confirmed the colocalised D1R-D2R in the
striatum (Hasbi et al., 2009; Perreault et al., 2010). Hence these
studies favor the presence of D1R-D2RMSNs in significant levels
in the striatum.

A few studies report the projection of D1R-D2R co-expressing
neurons to GPi also (Perreault et al., 2010, 2011). Though
our present study accounts for their projection to GPe alone,
out of this study comes a strong suggestion that the D1R-
D2R co-expressing neurons targeting the pallidum would mainly
contribute to risk computation as in Equation (2.3.9). Those
D1R-D2R MSNs that project to SNc may be utilized for
generating temporal difference in utility computation Equation
(2.3.6). These projections of the D1R-D2R co-expressing neurons
toward both the indirect pathway and the direct pathway, support
the study that DA D1R containing neurons may not solely
project onto the direct pathway. This is because some of the
D1R containing MSNs are known to also project to the indirect
pathway (Calabresi et al., 2014). Those D1R neurons could be co-
expressing D2R, since D1R-D2R co-expressingMSNs are capable
of invading both the direct and the indirect pathways (Nadjar
et al., 2006; Bertran-Gonzalez et al., 2010; Hasbi et al., 2010, 2011;
Perreault et al., 2010; Calabresi et al., 2014). Similarly the D2R
MSN need not just solely project to the indirect pathway. The
study of Calabresi et al. (2014) shows that D1R-D2R MSNs are
one of the means by which the direct and the indirect pathways
interact. Such a notion is preserved in our modeling study too,
and hence these D1R-D2R co-expressing MSNs might play a
major role in the cross-talk between the direct and the indirect
pathways.

Moreover, DA D1R and D2R are also shown to form
heteromeric complexes with unique functional properties and
phenotype (Hasbi et al., 2011; Perreault et al., 2012). These
heteromers are found to have increased sensitivity following
repeated increases in DA transmission. The up-regulated state of
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these heteromers persisted after DA agonist removal, identifying
these heteromeric complexes as therapeutic targets in DA-related
disorders, such as schizophrenia and drug addiction. These
heteromers are also predicted to significantly influence cognition,
learning, and memory (Perreault et al., 2011, 2012). We would
expect that there might be differences between the co-expressing
neurons and the heteromers, but in the absence of more data, this
study has used the simple model of addition of D1R and D2R
MSN’s gain functions to represent the D1R-D2R co-expressing
neurons.

Striatal DA and 5HT
The DA signals used in our model are a function of reward/value,
and temporal difference in value/utility (Figure 2, Table 2). The
existence of different forms could be possible because:

(1) Distinct sets of dopamine neurons are known to project to
striatum. For instance structures such as the striosome and
matrisome are proposed to receive different DA modulatory
signals (See the Section “Modularity of dopamine signals”
in Amemori et al., 2011). Some studies found that though
all the SNc DA neurons innervate both the striosomes and
matrisomes, there is a bias at the level of individual neurons
(Matsuda et al., 2009).

(2) Similarly dopaminergic neurons from different regions
dorsal/ventral of SNc/VTA might represent different
computational quantities (See Section “Modularity of
dopamine signals” in Amemori et al., 2011).

(3) Moreover certain DAergic signals are known to specifically
modulate between trials, while some other are proposed to
act like a teaching signal within a trial (Tai et al., 2012;
Stauffer et al., 2014).
A review by Schultz (2013) along with other studies (Lak
et al., 2014; Stauffer et al., 2014) state that the dopamine
neurons are known to reflect various reward attributes such
as the magnitude, probability and delay. In fact the above-
mentioned attributes also get reflected when dopamine
neurons can inform the first derivative of value or the utility
function, as a common neuronal implementation (Stauffer
et al., 2014).

(4) Our model proposes that the δ and sign(Q) (Figure 2,
Table 2) affect the computation of utility function by the
MSNs. It must be noted that δ affects all the three kinds of
MSNs (D1R, D2R, and the D1R-D2RMSNs) pre-synaptically
as investigated through many experimental studies (Refer,
Kötter and Wickens, 1998; Reynolds and Wickens, 2002).
But the sign(Q) correlate of DA is proposed to affect the
responses of D1R-D2R MSNs.

Whereas, the neuromodulator 5HT is predicted to significantly
modulate the D2R and the D1R-D2R co-expressing neurons
(refer Supplementary Material B for the simulations). The
receptors 5HT 1, 2A, 2C and 6 (Ward and Dorsa, 1996; DiMatteo
et al., 2008b) are most abundantly expressed in the striatum.
None of these receptors show preferential co-localisation to any
striatal proteins, such as substance P, dynorphin (neurons that
contribute to the striato-nigral direct pathway) or enkephalin
(contributing to the indirect pathway). But a differential

expression indeed exists—5HT2C is highly expressed in the
patches, and 5HT2A in the matrix (Eberle-Wang et al., 1997).
These 5HT receptors are more likely to be co-expressed even
along with the D1R-D2RMSNs which form a substantial portion
of the striatum according to certain experimental studies (Nadjar
et al., 2006; Bertran-Gonzalez et al., 2010; Hasbi et al., 2010, 2011;
Perreault et al., 2010; Calabresi et al., 2014). It is true that 5HT’s
specificity in expression along with a particular type of MSN is
still not clear.

In order to investigate the possibility that 5HT modulation
of MSNs may not be limited only to D1R-D2R MSNs,
but could have a differential action on the three pools
of MSNs (D1R, D2R, and D1R-D2R), we have conducted
additional simulations and obtained quite revealing results
(Supplementary Material B). On varying different subsets
of {αD1

(

eqn. 2.3.8
)

αD2, and αD1D2
(

eqn. 2.3.9
)

}, the following
inferences are made:

(1) The modulation of αD1 alone [αD2 = 1, αD1D2 = 1] is not
able to consistently model the behavior of a balanced (high
αD1) or the reduced tryptophan (low αD1) conditions in any
experiment. Similar is the case of modulating αD2 [αD1 = 1,
αD1D2 = 1] alone.

(2) The joint modulation of αD1 and αD2 [αD1D2 = 1] was not
able to explain any of the experiments satisfactorily.

(3) αD1D2 is found to be able to explain the results of the
experiment by Cools et al. (2008) better only when optimized
along with αD2. The joint modulation of αD2 and αD1D2

[αD1 = 1] achieves best fit for all the experiments.
(4) αD1 is not found to be as sensitive as αD1D2 and αD2 in all the

experiments, though a non-zero αD1 is preferred.
(5) In summary, αD1 representation of 5HT can be fixed at 1,

while the others αD1D2 and αD2 can be varied and optimized
to explain different 5HT based experimental results.

The optimization of fixed 5HT values might also be related to
the tonic modulation exerted by DRN during reward processing
(Jiang et al., 1990; Alex and Pehek, 2007; Nakamura, 2013).

Such a framework is shown to effectively relate to the lumped
model of the BG (Balasubramani et al., 2014) by explaining the
experiments analyzing risk, reward, and punishment sensitivity.
Especially the roles of DA-5HT in risk sensitivity, time scale
of reward prediction and punishment sensitivity/behavioral
inhibition are reconciled using a value and risk based decision
making framework. Thereby the test beds include experiments
to analyse the behavioral parameters such as DA and 5HT
for risk (Long et al., 2009), punishment sensitivity and
behavioral inhibition (Cools et al., 2008) and probabilistic
reward-punishment sensitivity (Bodi et al., 2009).

One other property of 5HT is coding for the time scale
of reward prediction. This was verified in our earlier study
(Balasubramani et al., 2014) by correlating 5HT parameter
αD1D2 that is modulating the D1R-D2R MSNs to the time
discount factor γ as in Equation (2.1.3). Risk sensitivity has
also been correlated to the reward delays by various other
experimental studies (Hayden and Platt, 2007; Kalenscher,
2007). These studies predict that primates make risky choices
when rewarded probabilistically with shorter delays, and they
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become risk aversive on increasing the waiting period for
observing the probabilistic rewards, again substantiating our
earlier lumped model relating αD1D2 to γ . Since this paper
focuses on realizing our earlier empirical study at the network
level, we focus only on the experiments affecting the network
attributes such as risk coding D1R-D2R MSNs (in Section
Modeling the Reward-punishment Sensitivity in PD), and the
non-linear risk sensitivity (in Section Modeling Punishment
Mediated Behavioral Inhibition).

Note that the proposed model brings the analysis of the
reward-punishment sensitivity into a risk-based decision making
framework, but there exist some tasks that deterministically
test for the reward-punishment sensitivity. The D2 MSNs are
known to mediate the No-Go effect that predominates in a
reflexive behavioral inhibition in the face of expected punishment
(loss function) alone, that is, free of risk (Frank et al., 2004;
Nambu, 2004, 2008; Chakravarthy et al., 2010). This study
also shows the importance of 5HT in modulating the D2
MSNs, for explaining the property of behavioral inhibition (ref:
Supplementary Material B) in Cools et al. (2008) in the face of
expected punishment.

In summary, the proposed networkmodel of the BG associates
the three pools of striatal MSNs—with D1R, D2R, and co-
expressing D1R-D2R to three different sensitivities—reward,
punishment and risk, controlling decision-making activity,
respectively.

The DA-5HT Interactions
Serotonin does not monopolize in controlling risk and
punishment sensitivity. Besides having a role in reward
prediction, DA in the midbrain is proposed to represent the
risk component of the environment (Schultz, 2010a), and DA
levels in the frontal cortex are known to rise in response to
inescapable punitive stimuli, establishing a collaborative effect
with 5HT. The collaborative and the opposing effects of DA
and 5HT at the behavioral level are also seen at the cellular and
receptor level (Di Matteo et al., 2008a,b). Increased meso-striatal
DA levels on the blockade of the central 5HT2C receptors, is an
instance of the opposing effect; while collaborative responses like
an increased antipsychotic effect by combining the blocking of
5HT2A and D2 receptors, moreover an antidepressant effect is
seen on boosting either 5HT or DA; whereas cases of neither
collaborative or opposing effects are observed on responding to
inescapable punishment conditions and aversive learning (Cools
et al., 2010; Boureau and Dayan, 2011). Complex interactions
exist between DA and 5HT making it difficult to tease apart
precisely the relative roles of the two molecules in reward
evaluation. Even at the neuromodulator releasing sites, some
subtypes of 5HT receptors facilitate DA release, while others
(like 5HT2C) inhibit them (Alex and Pehek, 2007). In summary,
it is clear that the relationship between DA and 5HT is not
one of simple complementarity—both synergistic and opposing
interactions exist between these two neuromodulators in the
brain (Boureau and Dayan, 2011).

Though this study does not specifically model DA and 5HT
interactions at any particular BG region, the sign(Q) term in
the utility formulation Equation (2.3.9) may be regarded as

a reflection of complex interactions between DA and 5HT in
modeling terms. This is because the sign(Q) term gets multiplied
with the αD1D2 (5HT) term and the D1R-D2R co-expressing
MSN output to eventually represent the “risk component.” A
more detailed network model of the BG, in which the striatum is
divided into striosomes and matrisomes (Amemori et al., 2011),
is currently being developed by our group. The striosomes are
modeled to constitute the D1R and the D1R-D2R co-expressing
MSNs that target DA releasing SNc. The SNc neurons, which
receive the information about the value and the risk function
from the D1R and the D1R-D2R co-expressing MSNs, release
their DA to the striatal matrisomes (Jakab et al., 1996; Surmeier
et al., 1996; Nadjar et al., 2006; Amemori et al., 2011; Calabresi
et al., 2014). Hence DA could be a potential source of interaction
among the striosomes and matrisomes, which is also roughly
captured by a DA form [:=sign(Q) term in the Equations (2.1.7,
2.3.5, 2.3.9), and Figure 2]. Such a value function like response
of DA neurons have been reported earlier by experimental
studies (Schultz, 2010b). The matrisomes contain the D1RMSNs
projecting over the DP, and the other MSNs (D2, D1R-D2R)
projecting over the IP. The selection of a striosome appropriately
activates the corresponding matrisomes for action selection
dynamics.

Study Outcomes on Reinforcer-sensitivity in Controls

and Parkinson’s Disease
The key study outcomes include the following:

• The action of DA in the BG is proposed to be of different forms
[δ in Equation (2.3.2), δU in Equation (2.3.6), and sign(Q) in
Equations (2.3.5, 2.3.9)] as summarized in Figure 2.

• The DA-5HT joint action on D1R MSNs and the D1R-D2R
coexpressing MSNs makes them suitable as cellular substrates
for value and risk function computations, respectively.

• The modulation of 5HT (αD1) on D1R MSN is not found to
be particularly sensitive for explaining the experimental tasks
described in Section Experiments and Results (Supplementary
Material B).

Risk sensitivity in controls:
• The modulation of 5HT (αD1D2) on D1R-D2R co-expressing

MSN is found to be significant (Section Modeling the Risk
Sensitivity, Supplementary Material B) for explaining risk-
sensitivity (Long et al., 2009).

• The simulation results with decreased model 5HT levels are
shown to effectively explain the increased risk seeking behavior
shown in Long et al. (2009) experimental study.

Punishment sensitivity in controls:
• The modulation of 5HT (αD2) on the D2R MSN is

found to be important (Section Modeling Punishment
Mediated Behavioral Inhibition, Supplementary Material B)
for explaining the behavioral inhibition and punishment-
sensitivity (Cools et al., 2008).

• Balanced condition of the model with high 5HT levels is
shown to be facilitating behavioral inhibition in comparison
to Tryptophan depleted condition (reduced 5HT levels) as
proposed by Cools et al. (2008) experimental study.
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Reinforcer sensitivity in Parkinson’s Disease:
• A model (Section Modeling the Reward-punishment

Sensitivity in PD) of limited DA availability simulates the
PD-OFF, while an added medication factor to the limited DA
marks the PD-ON. Differential modulation of 5HT in the
D1R-D2R MSNs with αD1D2 = 0.2 (in controls) and αD1D2 <

0.2 (in PD) explain the increased reward optimality in PD-ON
and increased punishment optimality in PD-OFF condition
reported in experimental studies (Bodi et al., 2009).

• The activity of 5HT in the D2R MSNs is significantly lowered
specifically in the PD-ON condition (PD-ON αD2 = 0.2
compared to αD2 > 0.2 in PD-OFF and controls). Many
neurobiological experimental studies have observed lowered
5HT levels in PD compared to the controls (Fahn et al., 1971;
Halliday et al., 1990; Bedard et al., 2011). This is captured
in our modeling study (Section Modeling the Reward-
punishment Sensitivity in PD) with a smaller α value observed
to modulate both the D2R and the D1R-D2R MSNs.

• The PD-ON condition is reported to have lowered 5HT levels
than the OFF medicated PD condition. This is shown by
reduced 5HT release, and increased DA release from the
serotonergic neurons in the presence of L-Dopa (Tan et al.,
1996; Reed et al., 2012). This is specifically reflected by a
significant decrease in the level of αD2 affecting the D2R
MSNs of our modeling study (Section Modeling the Reward-
punishment Sensitivity in PD).

Predictions and Future Work
The 5HT correlate of the model is a parameter denoting the tonic
serotonergic activity. Many experimental recordings show tonic
activity as the prevalent form of serotonergic action (Aghajanian
et al., 1978; Vandermaelen and Aghajanian, 1983). Though there
are some computational models on phasic serotonergic activity
(Daw et al., 2002), its biological existence and relevance is still
dubious (Boureau and Dayan, 2011; Cools et al., 2011; Dayan
and Huys, 2015). We look forward to study more about the

tonic and phasic forms of serotonergic activity in the future.
Further, investigation should examine more detailed DA-5HT
interactions based on the specific receptor type distribution in
the BG. This study only deals with the theoretical principles
behind DA-5HT interactions in the BG, which can be then
expanded to understand the detailed influence of the same
interactions in the cortex, SNc, and Raphe nucleus. Apart from
analyzing the details of the interactions in various regions of
the brain, attempts to include other major neuromodulators like
acetylcholine (Ach) and norepinephrine (NE) are also desired.
This could be realized by including a self-organized map (SOM)
model of the striatum which captures its topologically ordered
arrangement of the striosomes and matrisomes (Stringer et al.,
2002) and is controlled by the Ach mediated tonically active
inter-neurons. The model would help to analyse Ach influence
in the selection of striosome–matrisome pairs and the plasticity
of cortico-striatal connections (Spehlmann and Stahl, 1976; Ding
et al., 2011). Specific investigation of how the neuromodulator
NE affects the STN-GPe system and the BG dynamics is also
of special interest. Neuromodulator NE has been compared to
the inverse temperature parameter of Equation (2.1.8) and is
thought to specifically affect the exploration dynamics of the
BG action selection machinery (Doya, 2002; Aston-Jones and
Cohen, 2005). In our earlier study, we have showed that the
STN lateral connections can also influence the BG exploration
dynamics significantly (Chakravarthy and Balasubramani, 2014).
The impact of DA and NE activity on STN functioning should be
tested in future, paving way to a comprehensive computational
understanding of the roles of all the four major neuromodulators
(DA, 5HT, NE, Ach) in the BG dynamics.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2015.00076/abstract
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