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A NEUMANN PROBLEM WITH CRITICAL EXPONENT

IN NONCONVEX DOMAINS AND LIN-NI’S CONJECTURE

LIPING WANG, JUNCHENG WEI, AND SHUSEN YAN

Abstract. We consider the following nonlinear Neumann problem:{
−Δu+ μu = u

N+2
N−2 , u > 0 in Ω,

∂u
∂n

= 0 on ∂Ω,

where Ω ⊂ R
N is a smooth and bounded domain, μ > 0 and n denotes the

outward unit normal vector of ∂Ω. Lin and Ni (1986) conjectured that for
μ small, all solutions are constants. We show that this conjecture is false
for all dimensions in some (partially symmetric) nonconvex domains Ω. Fur-
thermore, we prove that for any fixed μ, there are infinitely many positive
solutions, whose energy can be made arbitrarily large. This seems to be a new

phenomenon for elliptic problems in bounded domains.

1. Introduction

In this paper, we consider the nonlinear elliptic Neumann problem

(1.1)

{
−Δu+ μu− uq = 0, u > 0 in Ω,
∂u
∂n = 0 on ∂Ω,

where 1 < q < +∞, μ > 0, n denotes the outward unit normal vector of ∂Ω, and Ω
is a smooth and bounded domain in R

N , N ≥ 3.
Equation (1.1) arises in many branches of applied science. For example, it can be

viewed as a steady-state equation for the shadow system of the Gierer-Meinhardt
system in biology pattern formation [24], [43], or for parabolic equations in chemo-
taxis, e.g. the Keller-Segel model [38].

When q is subcritical, i.e. q < N+2
N−2 , Lin, Ni and Takagi [38] proved that the only

solution, for small μ, is the constant one, whereas nonconstant solutions appear for
large μ [38] which blow up, as μ goes to infinity, at one or several points. The least
energy solution blows up at a boundary point which maximizes the mean curvature
of the boundary [45], [46]. Higher energy solutions exist which blow up at one or
several points, located on the boundary [15], [27], [34], [55], [31], in the interior of
the domain [8], [14], or some of them on the boundary and others in the interior [29].
(A good review can be found in [43].) In the critical case, for large μ, nonconstant
solutions exist [1], [54]. As in the subcritical case the least energy solution blows
up, as μ goes to infinity, at a unique point which maximizes the mean curvature of
the boundary [3], [42]. Higher energy solutions have also been exhibited, blowing
up at one [2], [55], [48], [26] or several separated boundary points [41], [37], [56],
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[57], [62]. For the study of interior blowups, we refer to [17], [20], [49], [53] and [63].
Some a priori estimates for those solutions are given in [26], [32].

As we mentioned above, in the case of small μ, Lin, Ni and Takagi proved in the

subcritical case that problem (1.1) admits only the trivial solution (i.e. u ≡ μ
1

p−1 ).
Based on this, Lin and Ni [37] asked:

Lin-Ni’s conjecture. For μ small and q = N+2
N−2 , problem (1.1) admits only the

constant solution.

The above conjecture was studied by Adimurthi-Yadava [4], [5] and Budd-Knapp-
Peletier [11] in the case Ω = BR(0) and u radial. Namely, they considered the
following problem:

(1.2)

{
Δu− μu+ u

N+2
N−2 = 0 in BR(0), u > 0 in BR(0),

u is radial, ∂u
∂n = 0 on ∂BR(0).

The following results were proved:

Theorem A ([4], [5], [6], [11]). For μ sufficiently small,
(1) if N = 3 or N ≥ 7, problem (1.2) admits only the constant solution;
(2) if N = 4, 5 or 6, problem (1.2) admits a nonconstant solution.

Theorem A reveals that Lin-Ni’s conjecture depends very sensitively on the di-
mension N . A natural question is: what about general dimensions? The proofs of
Theorem A use radial symmetry to reduce the problem to an ODE boundary value
problem. Consequently, they do not carry over to general domains. In the general
three-dimensional domain case, M. Zhu [66] and Wei-Xu [65] proved:

Theorem B ([66], [65]). The conjecture is true if N = 3 (q = 5) and Ω is convex.

In the case of N = 5, q = 7
3 , Rey and Wei [52] proved that for any smooth

bounded domain Ω, problem (1.1) admits a solution, which blows up at K interior
points for any K ∈ N∗, if μ > 0 is small. Therefore, (1.1) has an arbitrary number
of solutions as μ → 0. Thus Lin-Ni’s conjecture is false in dimension five.

When N ≥ 7, Druet, Robert and Wei [19] proved the following result:

Theorem C. Suppose that N ≥ 7 and H(x) �= 0 for all x ∈ ∂Ω. Assume that
there exists C > 0 such that

(1.3)

∫
Ω

u
2N

N−2 ≤ C.

Then for μ small, u ≡ constant.

The purpose of this paper is to give a negative answer to Lin-Ni’s conjecture in
all dimensions for some nonconvex domain Ω. More precisely, we assume that Ω is
a smooth and bounded domain Ω satisfying the following conditions:

Let y = (y′, y′′) ∈ R
2 × R

N−2, r = |y′|. Then

(H1) y ∈ Ω if and only if (y1, y2, y3, . . . ,−yi, . . . , yN ) ∈ Ω, ∀i = 3, . . . , N .
(H2) (r cos θ, r sin θ, y′′) ∈ Ω if (r, 0, y′′) ∈ Ω, ∀ θ ∈ (0, 2π).
(H3) Let T := ∂Ω ∩ {y3 = · · · = yN = 0}. There exists a connected component

Γ of T such that H(x) ≡ γ < 0, ∀x ∈ Γ, where H(x) is the mean curvature
of ∂Ω at x ∈ ∂Ω.
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Note that by the assumption (H2), Γ is a circle in the plane y3 = · · · = yN = 0.
Thus, we may assume that Γ = {y21 + y22 = r20, y3 = · · · = yN = 0}, where r0 > 0

is a constant. Note also that for x ∈ γ, H(x) =
∑N−1

j=1 kj(x)

N−1 , where kj(x) are the

principal curvatures and k1(x) = r0.
For instance, the domains in Figure 1 satisfy (H1), (H2) and (H3). Note that Ω

can be simply connected.

Figure 1

Another example is the annulus: Ω = {a < |x| < b} with 0 < a < b < +∞.
For normalization reasons, we consider throughout the paper the equation

(1.4)

{
−Δu+ μu− αNu

N+2
N−2 = 0, u > 0 in Ω,

∂u
∂n = 0 on ∂Ω,

where αN = N(N−2). The solutions are identical up to the multiplicative constant

(αN )−
N−2

4 .
Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N ≥ 3 and Ω is a smooth and bounded domain satis-
fying (H1), (H2) and (H3). Let μ be any fixed positive number. Then problem (1.4)
has infinitely many positive solutions, whose energy can be made arbitrarily large.

We can make r0 = 1 by a suitable change of variables, where r0 is the radius of
the circle in (H3).

The constant μ in (1.4) is fixed. We obtain infinitely many positive solutions.
This is a new phenomenon. For subcritical problems, by a compactness result of
Gidas-Spruck [21], the energy of positive solutions remains uniformly bounded. So
this kind of phenomenon can only happen for critical exponent problems. On the
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other hand, the existence of infinitely many sign-changing radial solutions for an-
other critical exponent problem with Dirichlet boundary condition has been studied
by Cerami-Solimini-Struwe [13] for N ≥ 7.

A similar phenomenon occurs in the prescribed scalar curvature problem [64].
It is interesting to compare the results in this paper and [64] with recent work of
S. Brendle on the noncompactness of the Yamabe problem. Consider the Yamabe
problem on SN , which can be reduced to the following problem in R

N :

(1.5)
4(N − 1)

N − 2
Δgu−Rgu+ cu

N+2
N−2 = 0 in R

N ,

where Δg is the Laplace operator with respect to g, Rg denotes the scalar curvature

of g, and the constant c is the scalar curvature of the new metric u
4

N−2 g. R.
Schoen conjectured that all solutions to (1.5) are compact. This conjecture is
proved to be true in dimensions less than 24. See [18], [33], [35], [36] and [39]. In
[10], S. Brendle constructed a metric g in dimension N ≥ 52, with the following
properties: (i) gij = δij for |x| ≥ 1

2 ; (ii) g is not conformally flat. Then, for this
metric, there exists a sequence of positive smooth solutions un to (1.5) such that
sup|x|≤1 un(x) → +∞, and un develops exactly one singularity. This disproves

Schoen’s conjecture in dimensions N ≥ 52. On the one hand, both problems (1.5)
and (1.4) have no parameters but possess infinitely many positive solutions. The
proofs are similar: a kind of variational reduction method (we call it localized energy
method) is used. On the other hand, the solutions constructed by Brendle have a
single bubble near the origin, and the energy of the solutions remains uniformly
bounded. Here we obtain solutions with arbitrarily many bubbles, and the energy
of the solutions can be arbitrarily large.

We believe that the symmetric condition in Theorem 1.1 is technical. A more
general result, as follows, should be true.

Conjecture. Assume that minx∈∂Ω H(x) < 0 and that the set {x ∈ ∂Ω | H(x) =
minx∈∂Ω H(x)} is a smooth l-dimensional submanifold on ∂Ω, with 1 ≤ l ≤ N − 1.
Then there are infinitely many positive solutions to (1.4).

Recently, we were able to prove that there are convex domains, such that problem
(1.2) has infinitely many solutions if N ≥ 4. Thus, the Lin-Ni conjecture is false
even in a convex domain if N ≥ 4. By the result of [66, 65], the condition N ≥ 4 is
necessary. The energy of these solutions is unbounded as μ → 0, which is consistent
with the result in [19].

2. Outline of proofs

We outline the main idea in the proof of Theorem 1.1.
It is well known that the functions

Uλ,a(y) =

(
λ

1 + λ2|y − a|2

)N−2
2

, λ > 0, a ∈ R
N

are the only solutions to the problem

−Δu = αNu
N+2
N−2 , u > 0, in R

N .

Let us fix a positive integer
k ≥ k0,

where k0 is a large positive integer which is to be determined later.
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Integral estimates (see Appendix A) suggest making the additional a priori as-
sumption that λ behaves as the following:⎧⎪⎨

⎪⎩
λ = 1

Λk
N−2
N−3 if N ≥ 4,

λ = 1
Λe

− D3
D2γ βkk ln k if N = 3,

where δ ≤ Λ ≤ 1
δ , D2, D3 are some positive constants in Proposition A.4, δ is a

small positive constant which is to be determined later, and βk is the quantity in
Proposition A.4 satisfying βk → 1 as k → +∞.

Fix a ∈ Γ ⊂ ∂Ω. We introduce a boundary deformation which strengthens the
boundary near a. After rotation and translation of the coordinate system, we may
assume that a = 0 and that the inward normal to Γ at a is the positive xN -axis.
Denote x′ = (x1, . . . , xN−1) and B(a, δ) = {x ∈ R

N : |x − a| < δ′}. Then, we can
find a constant δ′ > 0 such that Γ ∩ B(a, δ′) can be represented by the graph of a

smooth function ρa(x
′) = 1

2

N−1∑
i=1

kix
2
i +O(|x′|3), and

(2.1) Ω ∩B(a, δ′) = {(x′, xN ) ∈ B(a, δ′) : xN > ρa(x
′)}.

Here ki, i = 1, . . . , N−1 are the principal curvatures at a. Furthermore, the average

of the principal curvatures of Γ at a is the mean curvature H(a) = 1
N−1

∑N−1
i=1 ki ≡

γ because of (H3). To avoid clumsy notation we drop the index a in ρ.
On Γ ∩B(a, δ′), the outward normal vector n(x) is

n(x) =
1√

1 + |∇′ρ|2
(∇′ρ,−1).

Let 2∗ = 2N
N−2 . Using the transformation u(y) → ε−

N−2
2 u

(
y
ε

)
, we find that (1.4)

becomes

(2.2)

{
−Δu+ με2u = αNu2∗−1, u > 0 in Ωε,
∂u
∂n = 0 on ∂Ωε,

where

(2.3)

{
ε = k−

N−2
N−3 if N ≥ 4,

ε = e
D3
D2γ βkk ln k if N = 3

and Ωε = {y | εy ∈ Ω}.
Define

Hs =
{
u : u ∈ H1(Ωε), u is even in yh, h = 2, . . . , N,

u(r cos θ, r sin θ, y′′) = u(r cos(θ +
2πj

k
), r sin(θ +

2πj

k
), y′′), j = 1, . . . , k − 1

}
,

and

xj =
(1
ε
cos

2(j − 1)π

k
,
1

ε
sin

2(j − 1)π

k
, 0
)
, j = 1, . . . , k,

where 0 is the zero vector in R
N−2.

We define WΛ,xj
to be the unique solution of

(2.4)

{
−Δu+ με2u = αNU2∗−1

1
Λ ,xj

in Ωε,
∂u
∂n = 0 on ∂Ωε.
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Let

W (y) =

k∑
j=1

WΛ,xj
.

Theorem 1.1 is a direct consequence of the following result:

Theorem 2.1. Suppose that N ≥ 3 and Ω is a smooth and bounded domain sat-
isfying (H1), (H2) and (H3). Then there is an integer k0 > 0, such that for any
integer k ≥ k0, (2.2) has a solution uk of the form

uk = W (y) + ωk,

where ωk ∈ Hs, and as k → +∞, ‖ωk‖L∞ → 0.

We will use the techniques in the singularly perturbed elliptic problems to prove
Theorem 2.1. In all the singularly perturbed problems, some small parameters are
present either in the operator or in the nonlinearity or in the boundary condition.
Here there is no parameter. Instead, we use k, the number of the bubbles of the
solutions, as the parameter in the construction of bubble solutions for (1.4). This
idea is motivated by the recent paper [64], where infinitely many solutions to a
prescribed scalar curvature problem were constructed. The difference is that now
the location of the bubbles is fixed.

The main difficulty in constructing a solution with k bubbles is that we need to
obtain a better control of the error terms. Since the number of the bubbles is large,
it is very difficult to carry out the reduction procedure by using the standard norm.
Noting that the maximum norm will not be affected by the number of the bubbles,
we will carry out the reduction procedure in a space with weighted maximum norm.
A similar weighted maximum norm has been used in [41], [50]–[52], [64]. But the
estimates in the reduction procedure in this paper are much more complicated than
those in [41], [50]–[52], because the number of the bubbles is large.

3. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction.
Let

(3.1) ‖u‖∗ = sup
y

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)−1

|u(y)|

and

(3.2) ‖f‖∗∗ = sup
y

( k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

)−1

|f(y)|,

where we choose

(3.3) τ =
N − 3

N − 2
.

For this choice of τ , we have

(3.4)
k∑

j=2

1

|xj − x1|τ
≤ C, if N ≥ 4.
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Let

Yi =
∂WΛ,xi

∂Λ
, Zi = −ΔYi + ε2μYi = (2∗ − 1)U2∗−2

1
Λ ,xi

∂U 1
Λ ,xi

∂Λ
.

We consider

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δφk + με2φk −N(N + 2)W 2∗−2φk = h+ c1
k∑

i=1

Zi in Ωε,

∂φk

∂n = 0 on ∂Ωε,

φk ∈ Hs,

〈
k∑

i=1

Zi, φk〉 = 0

for some number c1, where 〈u, v〉 =
∫
Ωε

uv.

Let us remark that in general we should also include the translational derivatives
of W on the right hand side of (3.5). However due to the symmetry assumption
φ ∈ Hs, this part of the kernel automatically disappears. This is the main reason
for imposing the symmetries.

We recall the following result, whose proof is given in [52].

Lemma 3.1. Let f satisfy ‖f‖∗∗ < ∞ and let u be the solution of

−Δu+ με2u = f in Ωε,
∂u

∂n
= 0 on ∂Ωε.

Then we have

|u(x)| ≤ C

∫
Ωε

|f(y)|
|x− y|N−2

dy.

Next, we need the following lemma to carry out the reduction.

Lemma 3.2. Assume that φk solves (3.5) for h = hk. If ‖hk‖∗∗ goes to zero as k
goes to infinity, so does ‖φk‖∗.

Proof. We argue by contradiction. Suppose that there are k → +∞, h = hk,
Λk ∈ [δ, δ−1], and φk solving (3.5) for h = hk, Λ = Λk, with ‖hk‖∗∗ → 0, and
‖φk‖∗ ≥ c′ > 0. We may assume that ‖φk‖∗ = 1. For simplicity, we drop the
subscript k.

According to Lemma 3.1, we have

|φ(y)| ≤ C

∫
Ωε

1

|z − y|N−2
W 2∗−2|φ(z)| dz

+ C

∫
Ωε

1

|z − y|N−2

(
|h(z)|+ |c1

k∑
i=1

Zi(z)|
)
dz.

(3.6)

Using Lemma B.4, there is a strictly positive number θ such that∣∣∣∫
Ωε

1

|z − y|N−2
W 2∗−2φ(z) dz

∣∣∣
≤ C‖φ‖∗

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ+θ
+ o(1)

k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)
.

(3.7)
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It follows from Lemma B.3 that∣∣∣∫
Ωε

1

|z − y|N−2
h(z) dz

∣∣∣
≤ C‖h‖∗∗

∫
RN

1

|z − y|N−2

k∑
j=1

1

(1 + |z − xj |)
N+2

2 +τ
dz

≤ C‖h‖∗∗
k∑

j=1

1

(1 + |y − xj |)
N−2

2 +τ

(3.8)

and

∣∣∣∫
Ωε

1

|z − y|N−2

k∑
i=1

Zi(z) dz
∣∣∣

≤ C

k∑
i=1

∫
RN

1

|z − y|N−2

1

(1 + |z − xi|)N+2
dz

≤ C
k∑

i=1

1

(1 + |y − xi|)
N−2

2 +τ
.

(3.9)

Next, we estimate c1. Multiplying (3.5) by Y1 and integrating, we see that c1
satisfies

(3.10)
〈 k∑
i=1

Zi, Y1

〉
c1 =

〈
−Δφ+ με2φ−N(N + 2)W 2∗−2φ, Y1

〉
−
〈
h, Y1

〉
.

It follows from Lemma B.2 that

∣∣〈h, Y1

〉∣∣ ≤ C‖h‖∗∗
∫
RN

1

(1 + |z − x1|)N−2

k∑
j=1

1

(1 + |z − xj |)
N+2

2 +τ
dz

≤ C‖h‖∗∗.

On the other hand,〈
−Δφ+ με2φ−N(N + 2)W 2∗−2φ, Y1

〉
=

〈
−ΔY1 + με2Y1 −N(N + 2)W 2∗−2Y1, φ

〉
= N(N + 2)

〈
U2∗−2

1
Λ ,x1

∂ΛU 1
Λ ,xj

−W 2∗−2Y1, φ
〉
.

(3.11)

By Lemma B.1,

|φ(y)| ≤ C‖φ‖∗.

On the other hand, it follows from Lemma A.1 that

|ϕΛ,xi
(y)| ≤ Cε| ln ε|

(1 + |y − xi|)N−3
≤ Cεσ| ln ε|

(1 + |y − xi|)N−2−σ
,

since ε ≤ C
1+|y−xi| .
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We consider the cases N ≥ 6 first. Note that 4
N−2 ≤ 1 for N ≥ 6. Using

Lemmas B.2, A.1 and A.2, we obtain∣∣∣∣〈U2∗−2
1
Λ ,x1

∂ΛU 1
Λ ,xj

−W 2∗−2Y1, φ
〉∣∣∣∣

≤ C‖φ‖∗
∫
Ωε

1

(1 + |z − x1|)(N−2)(1−β)

k∑
i=2

1

(1 + |z − xi|)4(1−β)
dz

+ ‖φ‖∗
∫
Ωε

(
U2∗−2

1
Λ ,x1

|∂ΛϕΛ,x1
|+ |Y1||ϕΛ,xj

|2∗−2
)

≤ C‖φ‖∗
k∑

j=2

1

|x1 − xj |1+σ
+ o(1)‖φ‖∗ = o(1)‖φ‖∗.

(3.12)

For N = 3, 4, 5, we have 4
N−2 > 1. By Lemmas B.1, B.2, A.1 and A.2,

∣∣∣∣〈U2∗−2
1
Λ ,x1

∂ΛU 1
Λ ,xj

−W 2∗−2Y1, φ
〉∣∣∣∣

≤ C

∫
Ωε

U2∗−3
1
Λ ,x1

k∑
j=2

U 1
Λ ,xj

|Y1φ|+ C

∫
Ωε

( k∑
j=2

U 1
Λ ,xj

) 4
N−2 |Y1φ|

+

∫
Ωε

(
U2∗−2

1
Λ ,x1

|∂ΛϕΛ,x1
|+ U2∗−3

1
Λ ,x1

|ϕΛ,x1
||Y1|+ |ϕΛ,x1

|2∗−2|Y1|
)
|φ|

≤ C‖φ‖∗
∫
Ωε

1

(1 + |z − x1|)4(1−β)

k∑
j=2

1

(1 + |z − xj |)N−2

+ C

∫
Ωε

( k∑
j=2

U 1
Λ ,xj

) 4
N−2 |Y1φ|+ o(1)‖φ‖∗

≤ C‖φ‖∗
∫
Ωε

1

(1 + |z − x1|)(N−2)(1−β)

( k∑
j=2

U 1
Λ ,xj

) 4
N−2

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ

+ o(1)‖φ‖∗.

(3.13)

Let

Ωj =
{
y = (y′, y′′) ∈ Ωε :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.

If y ∈ Ω1, then

k∑
j=2

U 1
Λ ,xj

≤ 1

(1 + |y − x1|)N−2−τ−θ

k∑
j=2

1

|xj − x1|τ+θ

= o(1)
1

(1 + |y − x1|)N−2−τ−θ

and
k∑

i=1

1

(1 + |y − xi|)
N−2

2 +τ
≤ C

(1 + |y − x1|)
N−2

2

.
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So, we obtain∫
Ω1

1

(1 + |z − x1|)(N−2)(1−β)

( k∑
j=2

U 1
Λ ,xj

) 4
N−2

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ
= o(1).

If y ∈ Ωl, l ≥ 2, then

k∑
j=2

U 1
Λ ,xj

≤ C

(1 + |y − xl|)N−2−τ

and
k∑

i=1

1

(1 + |y − xi|)
N−2

2 +τ
≤ C

(1 + |y − xl|)
N−2

2

.

As a result,∫
Ωl

1

(1 + |z − x1|)(N−2)(1−β)

( k∑
j=2

U 1
Λ ,xj

) 4
N−2

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ

≤ C

∫
Ωl

1

(1 + |z − x1|)(N−2)(1−β)

1

(1 + |y − xl|)4−
4τ

N−2+
N−2

2

≤ C

|xl − x1|
N+2

2 − 4τ
N−2−θ

,

where θ > 0 is a fixed small constant.
Note that for θ > 0 small, N+2

2 − 4τ
N−2 − θ > τ . Thus∫

Ωε

1

(1 + |z − x1|)(N−2)(1−β)

( k∑
j=2

U 1
Λ ,xj

) 4
N−2

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ

≤ o(1) + C
k∑

l=2

1

|xl − x1|
N+2

2 − 4τ
N−2−θ

= o(1).

So, we have proved∣∣∣∣〈U2∗−2
1
Λ ,x1

∂ΛU 1
Λ ,xj

−W 2∗−2Y1, φ
〉∣∣∣∣ = o(1)‖φ‖∗.

But there is a constant c̄ > 0 such that

〈 k∑
i=1

Zi, Y1

〉
= c̄+ o(1).

Thus we obtain that
c1 = o(‖φ‖∗) + O(‖h‖∗∗).

So,

(3.14) ‖φ‖∗ ≤
(
o(1) + ‖hk‖∗∗ +

k∑
j=1

1

(1+|y−xj |)
N−2

2
+τ+θ

k∑
j=1

1

(1+|y−xj |)
N−2

2
+τ

)
.

Since ‖φ‖∗ = 1, we obtain from (3.14) that there is R > 0 such that

(3.15) ‖φ(y)‖BR(xi) ≥ c0 > 0,
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for some i. But φ̄(y) = φ(y− xi) converges uniformly in any compact set of RN
+ to

a solution u of

(3.16) Δu+N(N + 2)U2∗−2
1
Λ ,0

u = 0

for some Λ ∈ [δ, δ−1], and u is perpendicular to the kernel of (3.16). So, u = 0.
This is a contradiction to (3.15). �

From Lemma 3.2, using the same argument as in the proof of Proposition 4.1 in
[41] and Proposition 3.1 in [52], we can prove the following result:

Proposition 3.3. There exists k0 > 0 and a constant C > 0, independent of k,
such that for all k ≥ k0 and all h ∈ L∞(Ωε), problem (3.5) has a unique solution
φ ≡ Lk(h). Besides,

(3.17) ‖Lk(h)‖∗ ≤ C‖h‖∗∗, |c1| ≤ C‖h‖∗∗.
Moreover, the map Lk(h) is C1 with respect to Λ.

Now, we consider

(3.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δ
(
W + φ

)
+ με2(W + φ) = αN

(
W + φ

)2∗−1
+ c1

k∑
i=1

Zi in Ωε,

∂φ
∂n = 0 on ∂Ωε,

φ ∈ Hs,

〈
k∑

i=1

Zi, φ〉 = 0.

We have

Proposition 3.4. There is an integer k0 > 0, such that for each k ≥ k0, δ ≤ Λ ≤
δ−1, where δ is a fixed small constant, (3.18) has a unique solution φ, satisfying

‖φ‖∗ ≤ Cε
1
2+σ,

where σ > 0 is a fixed small constant. Moreover, Λ → φ(Λ) is C1.

Rewrite (3.18) as

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−Δφ+ με2φ−N(N + 2)W 2∗−2φ = N(φ) + lk + c1
k∑

i=1

Zi in Ωε,

∂φ
∂n = 0 on ∂Ωε,

φ ∈ Hs,

〈
k∑

i=1

Zi, φ〉 = 0,

where

N(φ) = αN

((
W + φ

)2∗−1 −W 2∗−1 − (2∗ − 1)W 2∗−2φ
)

and

lk = αN

(
W 2∗−1 −

k∑
j=1

U2∗−1
1
Λ ,xj

)
.

In order to use the contraction mapping theorem to prove that (3.19) is uniquely
solvable in the set where ‖φ‖∗ is small, we need to estimate N(φ) and lk.

In the following, we always assume that ‖φ‖∗ ≤ ε| ln ε|.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4592 LIPING WANG, JUNCHENG WEI, AND SHUSEN YAN

Lemma 3.5. We have

‖N(φ)‖∗∗ ≤ C‖φ‖min(2∗−1,2)
∗ .

Proof. We have

|N(φ)| ≤
{
C|φ|2∗−1, N ≥ 6;

C
(
W

6−N
N−2φ2 + |φ|2∗−1

)
, N = 3, 4, 5.

First, we consider N ≥ 6. We have

|N(φ)| ≤ C‖φ‖2∗−1
∗

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗−1

≤ C‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

( k∑
j=1

1

(1 + |y − xj |)τ

) 4
N−2

(3.20)

where we use the inequality

k∑
j=1

ajbj ≤
( k∑

j=1

apj

) 1
p
( k∑

j=1

bqj

) 1
q

,
1

p
+

1

q
= 1, aj , bj ≥ 0, j = 1, . . . , k.

By Lemma B.1 and (3.3), we find

k∑
j=1

1

(1 + |y − xj |)τ
≤ C +

k∑
j=2

C

|x1 − xj |τ
≤ C.

Thus,

|N(φ)| ≤ C‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ
.

For N = 4, 5, similarly to the case N ≥ 6, we have

|N(φ)|

≤ C‖φ‖2∗
( k∑

j=1

1

(1 + |y − xj |)(N−2)(1−β)

) 6−N
N−2

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2

+ C‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

≤ C‖φ‖2∗
( k∑

j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗−1

+ C‖φ‖2∗−1
∗

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

≤ C‖φ‖2∗
k∑

j=1

1

(1 + |y − xj |)
N+2

2 +τ
.

(3.21)

Now, we discuss the case N = 3. Without loss of generality, we assume y ∈ Ω1,
where

y ∈ Ωj =
{
y = (y′, y′′) ∈ R

2 × R
N−2 :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.
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Then for any small α > β > 0,

k∑
j=2

1

(1 + |y − xj |)1−β
≤ C

(1 + |y − x1|)1−α

k∑
j=2

1

(1 + |y − xj |)α−β

≤
k∑

j=2

C

|x1 − xj |α−β

(
1

(1 + |y − xj |)1−α
+

1

(1 + |y − x1|)1−α

)

≤ C

(1 + |y − x1|)1−α

since ε = e
D3
D2γ βkk ln k.

Similarly,
k∑

j=2

1

(1 + |y − xj |)
1−β
2

≤ C

(1 + |y − x1|)
1
2−α

.

Thus

|N(φ)| ≤ ‖φ‖2∗
C

(1 + |y − x1|)3+1−5α
+ ‖φ‖5∗

C

(1 + |y − x1|)
5
2−5α

≤ ‖φ‖2∗
C

(1 + |y − x1|)
5
2

, y ∈ Ω1

since α > β can be made as small as desired, and

‖φ‖3∗ ≤ Cε
3
2 | ln ε|3 ≤ C

(1 + |y − x1|)5α
.

Thus

‖N(φ)‖∗∗ ≤ C‖φ‖min(2∗−1,2)
∗ .

�

Next, we estimate lk.

Lemma 3.6. We have

‖lk‖∗∗ ≤ Cε
1
2+σ,

where σ > 0 is a fixed small constant.

Proof. Recall

Ωj =
{
y = (y′, y′′) ∈ R

2 × R
N−2 :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.

By the symmetry, we can assume that y ∈ Ω1. Then,

|y − xj | ≥ |y − x1|, ∀ y ∈ Ω1.

Thus, for y ∈ Ω1,

|lk| ≤ C
1

(1 + |y − x1|)4(1−β)

k∑
j=2

1

(1 + |y − xj |)(N−2)(1−β)

+ C
( k∑
j=2

1

(1 + |y − xj |)(N−2)(1−β)

)2∗−1

+ C
k∑

j=1

1

(1 + |y − xj |)4
|ϕΛ,xj

|.

(3.22)
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Let us estimate the first term of (3.22). Using Lemma B.2, we obtain

1

(1 + |y − x1|)4(1−β)

1

(1 + |y − xj |)(N−2)(1−β)

≤ C
( 1

(1 + |y − x1|)
N+2

2 +τ
+

1

(1 + |y − xj |)
N+2

2 +τ

) 1

|xj − x1|
N+2

2 −τ−(N+2)β

≤ C
1

(1 + |y − x1|)
N+2

2 +τ

1

|xj − x1|
N+2

2 −τ−(N+2)β
, j > 1.

(3.23)

Since N+2
2 − τ > 1, we find that for β > 0 small,

1

(1 + |y − x1|)4(1−β)

k∑
j=2

1

(1 + |y − xj |)(N−2)(1−β)

≤ C
1

(1 + |y − x1|)
N+2

2 +τ

(
kε

)N+2
2 −τ−(N+2)β

= Cε
1
2+σ 1

(1 + |y − x1|)
N+2

2 +τ
.

(3.24)

Now, we estimate the second term of (3.22).
Suppose that N ≥ 5. Then N−2

2 − N−2
N+2 τ > 1. Using Lemma B.2 again, we find

for y ∈ Ω1,

1

(1 + |y − xj |)(N−2)(1−β)
≤ 1

(1 + |y − x1|)
N−2

2 (1−β)

1

(1 + |y − xj |)
N−2

2 (1−β)

≤ C

|xj−x1|
N−2

2 −N−2
N+2 τ−(N−2)β

( 1

(1+|y − x1|)
N−2

2 +N−2
N+2 τ

+
1

(1+|y − xj |)
N−2

2 +N−2
N+2 τ

)

≤ C

|xj − x1|
N−2

2 −N−2
N+2 τ−(N−2)β

1

(1 + |y − x1|)
N−2

2 +N−2
N+2 τ

≤ C
(
kε

)N−2
2 −N−2

N+2 τ−(N−2)β 1

(1 + |y − x1|)
N−2

2 +N−2
N+2 τ

,

which gives for y ∈ Ω1,

( k∑
j=2

1

(1 + |y − xj |)N−2

)2∗−1

≤ C
(
kε

)N+2
2 −τ−(N+2)β 1

(1 + |y − x1|)
N+2

2 +τ
= Cε

1
2+σ 1

(1 + |y − x1|)
N+2

2 +τ
.

If N = 4, by the same computation we get

k∑
j=2

1

(1 + |y − xj |)2(1−β)
≤

k∑
j=2

C

|x1 − xj |1−
1
3 τ−2β

1

(1 + |y − x1|)1+
1
3 τ

≤ Ckε1−
1
3 τ−2β

(1 + |y − x1|)1+
1
3 τ

=
Cε

1
2−

1
3 τ−2β

(1 + |y − x1|)1+
1
3 τ

, y ∈ Ω1.

Hence ( k∑
j=2

1

(1 + |y − xj |)2(1−β)

)3

≤
k∑

i=1

Cε
3
2−τ−6β

(1 + |y − xi|)3+τ
.
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For N = 3, noting ε = e
D3
D2γ βkk ln k, by a similar computation we can get that for

y ∈ Ω1,

k∑
j=2

1

(1 + |y − xj |)1−β
≤ C

(1 + |y − x1|)
1
2

k∑
j=2

1

|xj − x1|
1
2−β

≤ Cε
1
2−2β

(1 + |y − x1|)
1
2

,

and thus ( k∑
j=2

1

1 + |y − xj |
)5

≤ Cε
1
2+σ

(1 + |y − x1|)
5
2

.

Finally, we estimate the last term of (3.22). From Lemma A.1, we can check
that

k∑
j=1

1

(1 + |y − xj |)4
|ϕΛ,xj

| ≤ Cε
1
2+σ

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ
.

Combining all the above estimates, we obtain the result. �

Now, we are ready to prove Proposition 3.4.

Proof of Proposition 3.4. Let us recall that

ε = k−
N−2
N−3 , if N ≥ 4; ε = e

D3
D2γ βkk ln k, if N = 3.

Let

EN =
{
u : u ∈ C(Ωε), ‖u‖∗ ≤ ε

1
2 ,

∫
Ωε

k∑
i=1

Ziφ = 0
}

if N ≥ 4, and

E3 =
{
u : u ∈ C(Ωλ), ‖u‖∗ ≤ ε

1
2 ln

1

ε
,

∫
Ωε

k∑
i=1

Ziφ = 0
}
.

Then, (3.19) is equivalent to

φ = A(φ) =: L(N(φ)) + L(lk).

Now we prove that A is a contraction map from EN to EN . Using Lemma 3.5,
we have

‖Aφ‖∗ ≤ C‖N(φ)‖∗∗ + C‖lk‖∗∗ ≤ C‖φ‖min(2∗−1,2)
∗ + C‖lk‖∗∗

≤ Cε
1
2 min(2∗−1,2) + C‖lk‖∗∗

≤ Cε
1
2+σ + C‖lk‖∗∗.

(3.25)

Thus, by Lemma 3.6, we find that A maps EN to EN .
Next, we show that A is a contraction map:

‖A(φ1)−A(φ2)‖∗ = ‖L(N(φ1))− L(N(φ2))‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗.
If N ≥ 6, then

|N ′(t)| ≤ C|t|2∗−2.

As a result, we have

|N(φ1)−N(φ2)| ≤ C
(
|φ1|2

∗−2 + |φ2|2
∗−2

)
|φ1 − φ2|

≤ C
(
‖φ1‖2

∗−2
∗ + ‖φ2‖2

∗−2
∗

)
‖φ1 − φ2‖∗

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗−1

.
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As in the proof of Lemma 3.5, we have( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗−1

≤ C
k∑

j=1

1

(1 + |y − xj |)
N+2

2 +τ
.

So,

‖A(φ1)−A(φ2)‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗

≤ C
(
‖φ1‖2

∗−2
∗ + ‖φ2‖2

∗−2
∗

)
‖φ1 − φ2‖∗ ≤ 1

2
‖φ1 − φ2‖∗.

Thus, A is a contraction map if N ≥ 6.
If N = 3, 4, 5, then

|N ′(φ)| ≤ C
(
W

6−N
N−2 |φ|+ |φ|2∗−2

)
.

Hence, similar to the proof of Lemma 3.5, we have

|N(φ1)−N(φ2)|

≤ C
(
W

6−N
N−2

(
|φ1|+ |φ2|

)
+ |φ1|2

∗−2 + |φ2|2
∗−2

)
|φ1 − φ2|

≤ C
(
‖φ1‖∗ + ‖φ2‖∗

)
‖φ1 − φ2‖∗W

6−N
N−2

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2

+ C
(
‖φ1‖2

∗−2
∗ + ‖φ2‖2

∗−2
∗

)
‖φ1 − φ2‖∗

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗−1

≤ C
(
‖φ1‖∗ + ‖φ2‖∗

)
‖φ1 − φ2‖∗

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ
.

So,

‖A(φ1)−A(φ2)‖∗ ≤ C‖N(φ1)−N(φ2)‖∗∗

≤ C
(
‖φ1‖∗ + ‖φ2‖∗

)
‖φ1 − φ2‖∗ ≤ 1

2
‖φ1 − φ2‖∗.

Thus, we have proved that A is a contraction map.
It follows from the contraction mapping theorem that there is a unique φ ∈ EN

such that
φ = A(φ).

Moreover, it follows from (3.25) that

‖φ‖∗ ≤ Cε
1
2+σ + C‖lk‖∗∗.

So, the estimate for ‖φ‖∗ follows from Lemma 3.6. �

4. Proof of Theorem 2.1

Let
F (Λ) = I

(
W + φ

)
,

where φ is the function obtained in Proposition 3.4, and let

I(u) =
1

2

∫
Ωε

(|Du|2 + με2u2)− (N − 2)2

2

∫
Ωε

|u|2∗ .

Using the symmetry, we can check that if Λ is a critical point of F (Λ), then
W + φ is a solution of (1.4).
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Proposition 4.1. For N ≥ 4, we have

F (Λ) = k
(
A0 −A1γΛε−A2Λ

N−2ε+ o(ε)
)
,

where the constant Ai > 0, i = 0, 1, 2 are positive constants, which are given in
Proposition A.3.

For N = 3, we have

F (Λ) = k
(
D1 −D2γεΛ ln

1

Λε
−D3εΛk ln k +O(ε)

)
,

where the constants Di, i = 1, 2, 3 are strictly positive numbers, which are given in
Proposition A.4.

Proof. There is t ∈ (0, 1) such that

F (Λ) = I(W ) +
〈
I ′
(
W

)
, φ

〉
+

1

2
D2I

(
W + tφ

)
(φ, φ)

= I(W )−
∫
Ωε

lkφ+

∫
Ωε

(
|Dφ|2 + ε2μφ2 −N(N + 2)

(
W + tφ

)2∗−2
φ2

)
= I(W )−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2 +

∫
Ωε

N(φ)φ

= I(W )−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2 + O

(∫
Ωε

|N(φ)||φ|
)
.

But ∫
Ωε

|N(φ)||φ|

≤ C‖N(φ)‖∗∗‖φ‖∗
∫
Ωε

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ
.

Using Lemma B.2, we find that if N ≥ 4,

k∑
j=1

1

(1 + |y − xj |)
N+2

2 +τ

k∑
i=1

1

(1 + |y − xi|)
N−2

2 +τ

=

k∑
j=1

1

(1 + |y − xj |)N+2τ
+

k∑
j=1

∑
i �=j

1

(1 + |y − xj |)
N+2

2 +τ

1

(1 + |y − xi|)
N−2

2 +τ

≤
k∑

j=1

1

(1 + |y − xj |)N+2τ
+ C

k∑
j=1

1

(1 + |y − xj |)N+ 1
2 τ

k∑
i=2

1

|xi − x1|
3
2 τ

≤ C
k∑

j=1

1

(1 + |y − xj |)N+ 1
2 τ

.

Thus, we obtain that for N ≥ 4,∫
Ωε

|N(φ)||φ| ≤ Ck‖N(φ)‖∗∗‖φ‖∗ ≤ Ck‖φ‖2∗ ≤ Ckε1+σ.
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Now we consider the case N = 3. In this case, τ = 0. Let η > 0 be a small
constant. Then it follows that

k∑
j=1

1

(1 + |y − xj |)
5
2

k∑
i=1

1

(1 + |y − xi|)
1
2

=
k∑

j=1

1

(1 + |y − xj |)3
+

k∑
j=1

∑
i �=j

1

(1 + |y − xj |)
5
2

1

(1 + |y − xi|)
1
2

≤
k∑

j=1

1

(1 + |y − xj |)3
+ Cεηk

k∑
j=1

1

(1 + |y − xj |)3−η
.

Thus, ∫
Ωε

|N(φ)||φ| ≤ C
(
k ln

1

ε
+ k2

)
‖N(φ)‖∗∗‖φ‖∗

≤ C
(
k ln

1

ε
+ k2

)
‖φ‖3∗ ≤ Ckε1+σ.

Thus, we obtain

F (Λ) = I(W )−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2 +O

(
ε1+σ

)
.

Now

(
W + tφ

)2∗−2 −W 2∗−2 =

{
O
(
|φ|2∗−2

)
, N ≥ 6;

O
(
W

6−N
N−2 |φ|+ |φ|2∗−2

)
, N = 3, 4, 5.

Thus, we have ∣∣∣−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2

∣∣∣
≤ C‖φ‖2∗∗

∫
Ωε

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗

,

if N ≥ 6. If N = 3, 4, 5, noting that N − 2 ≥ N−2
2 + τ , we obtain∣∣∣−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2

∣∣∣
≤ C

∫
Ωε

W
6−N
N−2 |φ|3 + C

∫
Ωε

|φ|2∗ ≤ ‖φ‖3∗
∫
Ωε

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗

.

Suppose that N ≥ 4. Let η̄ > 0 be small. Using Lemma B.2, if y ∈ Ω1, then

k∑
j=2

1

(1 + |y − xj |)
N−2

2 +τ

≤
k∑

j=2

1

(1 + |y − x1|)
N−2

4 + 1
2 τ

1

(1 + |y − xj |)
N−2

4 + 1
2 τ

≤ C
1

(1 + |y − x1|)
N−2

2 + 1
2 η̄

k∑
j=2

1

|xj − x1|τ−
1
2 η̄

≤ Cε−η̄ 1

(1 + |y − x1|)
N−2

2 + 1
2 η̄

.
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As a result,

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗

≤ Cε−2∗η̄ 1

(1 + |y − x1|)N+2∗ 1
2 η̄

, y ∈ Ω1.

Thus ∫
Ωε

( k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ

)2∗

≤ Ckε−2∗η̄.

So, we have proved that for N ≥ 4,∣∣∣−N(N + 2)

∫
Ωε

((
W + tφ

)2∗−2 −W 2∗−2
)
φ2

∣∣∣
≤ Ckε−2∗η̄‖φ‖min(3,2∗)

∗ ≤ Ckε1+σ.

For N = 3, we have

∣∣∣−15

∫
Ωε

((
W + tφ

)4 −W 4
)
φ2

∣∣∣ ≤ C‖φ‖3∗
∫
Ωε

( k∑
j=1

1

(1 + |y − xj |)
1
2

)6

≤ C

k∑
j=1

‖φ‖3∗
∫
Ωj

( k

(1 + |y − xj |)
1
2

)6

≤ Ck7 ln
1

ε
‖φ‖3∗ ≤ Ckε1+σ.

So, we have proved

F (Λ) = I(W ) +O
(
kε1+σ

)
.

�

Proof of Theorem 2.1. We just need to prove that F (Λ) has a critical point.
For N ≥ 4 , since γ < 0, the function

−A1γΛ−A2Λ
N−2

has a maximum point at Λ0 =

(
−A1γ

A2(N−2)

) 1
N−3

. Thus, F (Λ) attains its maximum

in the interior of [δ, δ−1] if δ > 0 is small. As a result, F (Λ) has a critical point in
[δ, δ−1].

Suppose N = 3. Then

F̄ (Λ) := −D2γεΛ ln
1

Λε
−D3εΛβkk ln k +O

(
εΛ

)
= ε

(
−D2γΛ ln

1

Λ
+O(Λ)

)
.

Since

−D2γΛ ln
1

Λ
+O(Λ) → −∞, as Λ → +∞

and

−D2γΛ ln
1

Λ
+O(Λ) ≥ Λ, as Λ → +0,

we see that F̄ (Λ) has a maximum point in (δ, δ−1), if δ > 0 is small. As a result,
F (Λ) has a critical point in [δ, δ−1]. �
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Appendix A. Energy expansion

In all of the appendices, we always assume that

xj =
(1
ε
cos

2(j − 1)π

k
,
1

ε
sin

2(j − 1)π

k
, 0
)
, j = 1, . . . , k,

where 0 is the zero vector in RN−2 and

ε = k−
N−2
N−3 , if N ≥ 4, ε = e

D3
D2γ βkk ln k, if N = 3.

In this section, we will estimate the energy of W . Recall that

I(u) =
1

2

∫
Ωε

(|Du|2 + με2|u|2)− αN

2∗

∫
Ωε

|u|2∗ ,

U 1
Λ ,xj

(y) =
( 1
Λ )

N−2
2

(1 + 1
Λ2 |y − xj |2)

N−2
2

,

and

W (y) =

k∑
j=1

WΛ,xj
(y),

where WΛ,xj
is the solution of (2.4).

Let

(A.1) ϕΛ,xj
(y) = U 1

Λ ,xj
(y)−WΛ,xj

(y).

Then, ϕΛ,xj
satisfies

(A.2)

{
−ΔϕΛ,xj

+ με2ϕΛ,xj
= με2U 1

Λ ,xj
(y) in Ωε,

∂ϕΛ,xj

∂n = ∂
∂nU 1

Λ ,xj
on ∂Ωε.

We need to estimate ϕΛ,xj
. Write ϕΛ,xj

= ϕ1 + ϕ2, where ϕ1 is the solution of

(A.3)

{
−Δϕ1 + με2ϕ1 = με2U 1

Λ ,xj
(y) in Ωε,

∂ϕΛ,xj

∂n = 0 on ∂Ωε,

and ϕ2 is the solution of

(A.4)

{
−Δϕ2 + με2ϕ2 = 0 in Ωε,
∂ϕ2

∂n = ∂
∂nU 1

Λ ,xj
on ∂Ωε.

Using Lemma 3.1, we find that

|ϕ1(y)| ≤ Cε2
∫
Ωε

U 1
Λ ,xj

(z)

|y − z|N−2
dz

≤ Cε2
∫
Ωε

1

(1 + |z − xj |)N−2|y − z|N−2
dz

≤

⎧⎪⎨
⎪⎩

Cε2

(1+|y−xj |)N−4 , N ≥ 5;

Cε2 ln 1
ε , N = 4;

Cε, N = 3.

(A.5)
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Next, we estimate ϕ2. Let λ = 1
εΛ , x̃j = εxj , and ϕ̃2(y) = ε−

N−2
2 ϕ2

(
1
εy

)
. Then

(A.6)

{
−Δϕ̃2 + μϕ̃2 = 0 in Ω,
∂ϕ2

∂n =
∂Uλ,x̃j

∂n on ∂Ω.

Let G(z, y) be the Green function of −Δ + μI in Ω with the Neumann boundary
condition. We have

ϕ̃2(y) =

∫
∂Ω

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz

=

∫
∂Ω∩B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz +

∫
∂Ω\B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz

=

∫
∂Ω∩B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz +O

(
ε

N−2
2

)
.

(A.7)

If y /∈ Bδ(x̃j), then |G(z, y)| ≤ C for all z ∈ B δ
2
(x̃j), which, together with (A.7),

gives
(A.8)

ϕ̃2(y) = O
(
ε

N−2
2

∫
∂Ω∩B δ

2
(x̃j)

1

|z − x̃j |N−2
+ ε

N−2
2

)
= O

(
ε

N−2
2

)
, y /∈ Bδ(x̃j).

Thus, it remains to estimate ϕ̃2(y) for y ∈ Bδ(x̃j).
Let K(|z − y|) and H(z, y) be the singular part and the regular part of G(z, y),

respectively. For y ∈ Bδ(x̃j), we have

H(z, y) = −K(|z − ȳ|)
(
1 + O(d)

)
,

where ȳ is the reflection point of y with respect to ∂Ω, and d = d(y, ∂Ω). It is easy
to see that

d(y, ∂Ω) ≤ C|y − x̃j | if y ∈ Bδ(x̃j).

Noting that

∂Uλ,x̃j
(z)

∂n
= − (N − 2)λ

N−2
2 λ2〈z − x̃j , n〉

(1 + λ2|z − x̃j |2)
N
2

,

we find ∫
∂Ω∩B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz

=− ε
N
2

1

Λ
N+2

2

∫
∂Ωε∩B δ

2ε
(xj)

G(εz, y)
(N − 2)ε−1〈z − xj , n〉
(1 + 1

Λ2 |z − xj |2)
N
2

dz.

(A.9)

If N ≥ 4, noting that

d ≤ C|y − x̃j | = Cε|ε−1y − xj |,
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we can check (see also [51]) that

∫
∂Ω∩B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz

=− (Λε)−
N−4

2

∫
RN−1

( 1

|z − ε−1y−xj

Λ |N−2
+

1

|z − ε−1y−xj

Λ |N−2

)N − 2

2

∑N−1
i=1 kiz

2
i

(1 + |z|2)N
2

dz

+ (Λε)−
N−4

2 O
(
(d+ ε)

∫
RN−1

( 1

|z − ε−1y−xj

Λ |N−2

+
1

|z − ε−1y−xj

Λ |N−2

) 1

(1 + |z|)N−2
dz

)

= (Λε)−
N−4

2

(
ϕ0(

ε−1y − xj

Λ
) +O

( ε

(1 + |ε−1y − xj |)N−4

))
,

(A.10)

where z̄ is the reflection point of z with respect to zN = 0, and ϕ0 solves the
following linear problem:

(A.11)

⎧⎪⎨
⎪⎩

−Δϕ0 = 0 in R
N
+ = {(x′, xN ), xN > 0},

∂ϕ0

∂n = −N−2
2

∑N−1
i=1 kix

2
i

(1+|x′|2)
N
2

on ∂RN
+ ,

ϕ0(x) → 0 as |x| → +∞.

So, we obtain from (A.7), (A.8) and (A.10) that

(A.12) ϕ2(y) = ε
N−2

2 ϕ̃2(εy) = εΛ
4−N

2 ϕ0(
y − xj

Λ
)+O

( ε2

(1 + |y − xj |)N−4
+ εN−2

)
.

Combining (A.5) and (A.12), we obtain

(A.13) ϕΛ,xj
(y) = εΛ

4−N
2 ϕ0(

y − xj

Λ
) +O

( ε2| ln ε|m
(1 + |y − xj |)N−4

+ εN−2
)
, N ≥ 4,

with m = 1 for N = 4,m = 0 for N ≥ 5.
Now we study the case N = 3. In this case, (A.10) becomes

∫
∂Ω∩B δ

2
(x̃j)

G(z, y)
∂Uλ,x̃j

(z)

∂n
dz

=− (Λε)
1
2

(∫
R2∩B δ

2ε
(0)

( 1

|z − ε−1y−xj

Λ |
+

1 +O(|y − x̃j |)

|z − ε−1y−xj

Λ |

)1
2

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz

+O(ε| ln ε|)
)
.

(A.14)

So, we obtain

ϕ2(y) = ε
1
2 ϕ̃2(εy)

=− εΛ
1
2

∫
R2∩B δ

2ε
(0)

( 1

|z − y−xj

Λ |
+

1 + εO(|y − xj |)
|z − y−xj

Λ |

)1
2

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz +O(ε2| ln ε|).

(A.15)
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Denote y∗ =
y−xj

Λ and d∗ = 1
L |y∗|, for some large L > 0. Then∫

Bd∗ (0)

( 1

|z − y| +
1

|z − ȳ∗|
)1
2

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz

≤ C

d∗

∫
Bd∗ (0)

1

|z| dz ≤ C

and ∫
Bd∗ (y∗)

( 1

|z − y∗| +
1

|z − ȳ∗|
)1
2

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz ≤ C.

Suppose that z ∈ B δ
2ε
(0) \ (Bd∗(0) ∪Bd∗(y∗)). Then,

1

|z − y∗| =
1

|z|
(
1 +O

( |y∗|
|z|

))
and

1

|z − ȳ∗| =
1

|z|
(
1 +O

( |ȳ∗|
|z|

))
.

But

(|y∗|+ |ȳ∗|)
∫
B δ

2ε
(0)\(Bd∗ (0)∪Bd∗ (y∗))

1

(1 + |z|)3 ≤ (|y∗|+ |ȳ∗|) C

1 + d∗
≤ C.

So, we find that∫
B δ

2ε
(0)\(Bd∗ (0)∪Bd∗ (y∗))

( 1

|z − y| +
1 + εO(|y∗|)

|z − ȳ∗|
)1
2

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz

=

∫
B δ

2ε
(0)\(Bd∗ (0)∪Bd∗ (y∗))

1 + εO(|y∗|)
|z|

∑2
i=1 kiz

2
i

(1 + |z|2) 3
2

dz +O(1)

=Aγ ln
1

ε|y∗| +O
(
1 + ε|y∗| ln 1

ε|y∗|
)
= Aγ ln

1

ε|y∗| +O(1),

where A > 0 is a constant. Here we have used ε|y∗| ≤ C. Thus, we have proved
that

(A.16) ϕΛ,xj
(y) = ϕ2(y) +O(ε) = −εΛ

1
2Aγ ln

1

ε
|y−xj |

Λ

+O(ε), N = 3.

Combining (A.13) and (A.16), we obtain

Lemma A.1. We have

ϕΛ,xj
(y) = εΛ

4−N
2 ϕ0(

y − xj

Λ
) +O

( ε2| ln ε|m
(1 + |y − xj |)N−4

+ εN−2
)
, N ≥ 4,

with m = 1 for N = 4,m = 0 for N ≥ 5, where ϕ0 is the solution of (A.11), while

ϕΛ,xj
(y) = ϕ2(y) +O(ε) = −εΛ

1
2Aγ ln

1

ε
|y−xj |

Λ

+O(ε), N = 3,

for some constant A > 0.
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As a direct consequence of Lemma A.1, we have

Lemma A.2. There is a constant C > 0 such that

(A.17) |∂ΛϕΛ,xj
| ≤

{
Cε| ln ε|

(1+|y−xj |)N−3 , N ≥ 4;

Cε| ln ε|, N = 3.

Moreover, for any fixed small β > 0, there is a constant C ′ > 0, depending on β,
such that

|Wλ,xj
| ≤ C ′U1−β

1
Λ ,xj

, |∂ΛWλ,xj
| ≤ C ′U1−β

1
Λ ,xj

.

Proof. Differentiating (A.2) with respect to Λ, we can repeat the same estimates
as in Lemma A.1 to obtain (A.17).

On the other hand, noting that ε ≤ C
1+|y−xj | , the other two estimates follow

from Lemma A.1. �

The following estimate is well known, whose calculations are quite standard (see
[51]):

(A.18) αN

∫
Ωε

U2∗
1
Λ ,xj

= Ā0 − Ā1γΛε+O(ε1+σ),

where Ā0 and Ā1 are some positive constants, and σ > 0 is a small constant.
Using Lemma A.1, we find that

αN

∫
Ωε

U2∗−1
1
Λ ,xj

ϕΛ,xj
= −αN

∫
Ωε

U2∗−1
1
Λ ,xj

εΛ
1
2Aγ ln

1

ε
|y−xj |

Λ

+O(ε)

=− Ā3γΛε ln
1

ε
+O(ε), N = 3,

(A.19)

for some Ā3 > 0. As a result,

∫
Ωε

(
|DWΛ,xj

|2 + ε2μW 2
Λ,xj

)

= αN

∫
Ωε

U2∗
1
Λ ,xj

− αN

∫
Ωε

U2∗−1
1
Λ ,xj

ϕΛ,xj
= Ā0 + Ā3γΛε ln

1

ε
+O(ε), N = 3,

(A.20)

and

1

2∗
αN

∫
Ωε

W 2∗

Λ,xj

=
1

2∗
αN

∫
Ωε

U2∗
1
Λ ,xj

− αN

∫
Ωε

U2∗−1
1
Λ ,xj

ϕΛ,xj
+O

(∫
Ωε

U2∗−2
1
Λ ,xj

ϕ2
Λ,xj

)

=
1

2∗
Ā0 + Ā3γΛε ln

1

ε
+O(ε), N = 3.

(A.21)

Similarly, we can prove by using Lemma A.1 that

(A.22) αN

∫
Ωε

U2∗−1
1
Λ ,xj

ϕΛ,xj
= −Ā3γΛε+O(ε1+σ), N ≥ 4,

for some Ā3 > 0,

(A.23)

∫
Ωε

(
|DWΛ,xj

|2 + ε2μW 2
Λ,xj

)
= Ā0 +

(
Ā3 − Ā1

)
γΛε+O(ε1+σ), N ≥ 4,
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and

(A.24)
1

2∗
αN

∫
Ωε

W 2∗

Λ,xj
=

1

2∗
Ā0 +

(
Ā3 −

1

2∗
Ā1

)
γΛε+O(ε1+σ), N ≥ 4.

The readers can refer to [51] for details for the cases N ≥ 4.
Next, we discuss the interaction between bubbles.
Define λ = 1

εΛ and x̄j = εxj , j = 1, . . . , k. Then, we have for i �= j,

(A.25) αN

∫
Ωε

U2∗−1
1
Λ ,xi

U 1
Λ ,xj

=
B1Λ

N−2

|xi − xj |N−2
+O

( 1

|xi − xj |N−2+σ

)
,

where B1 > 0 is a constant, and σ > 0 is a fixed small constant.
On the other hand, using Lemma A.1,

(A.26)

αN

∫
Ωε

U2∗−1
1
Λ ,xi

ϕ 1
Λ ,xj

= O
(
ε ln

1

|x̄i − x̄j |
)
= O

( ε

|x̄i − x̄j |
1
2

)
, N = 3, i �= j.

As a result, ∫
Ωε

(
DWΛ,xi

DWΛ,xj
+ ε2μWΛ,xi

WΛ,xj

)

= αN

∫
Ωε

U2∗−1
1
Λ ,xi

U 1
Λ ,xj

− αN

∫
Ωε

U2∗−1
1
Λ ,xi

ϕ 1
Λ ,xj

=
B1Λ

|xi − xj |
+O

( 1

|xi − xj |1+σ
+

ε
1
2

|xi − xj |
1
2

)
, N = 3.

(A.27)

For N ≥ 4, using

|ϕ0(y)| ≤
C

(1 + |y|)N−3
,

we also have

(A.28) αN

∫
Ωε

U2∗−1
1
Λ ,xi

ϕ 1
Λ ,xj

= O
( ε

|xi − xj |N−3

)
, N ≥ 4, i �= j,

and ∫
Ωε

(
DWΛ,xi

DWΛ,xj
+ ε2μWΛ,xi

WΛ,xj

)

=
B1Λ

|xi − xj |N−2
+O

( 1

|xi − xj |N−2+σ
+

ε

|xi − xj |N−3

)
, N ≥ 4.

(A.29)

We are now ready to compute the energy I(W ).

Proposition A.3. For N ≥ 4, we have

I(W ) = k

(
A0 −A1Λγε−A2Λ

N−2ε+ o(ε)

)
,

where Ai, i = 0, 1, 2, is some positive constant, and γ is the mean curvature of ∂Ω
along Γ.
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Proof. By using the symmetry, (A.23) and (A.29), we have

1

2

∫
Ωε

(
|DW |2 + με2W 2

)

= k
(1
2

∫
Ωε

(
|DWΛ,x1

|2+με2W 2
Λ,x1

)
+

k∑
j=2

∫
Ωε

(
DWΛ,x1

DWΛ,xj
+με2WΛ,x1

WΛ,xj

))

= k
1

2

(
Ā0 + (Ā3 − Ā1)γΛε+ o(ε)

+

k∑
j=2

( B1Λ
N−2

|x1 − xj |N−2
+O

( ε

|x1 − xj |N−3
+

1

|x1 − xj |N−2+σ

)))
.

(A.30)

Let

Ωj =
{
y = (y′, y′′) ∈ Ωε :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.

We have

αN

2∗

∫
Ωε

W 2∗ =
αNk

2∗

∫
Ω1

W 2∗

=
αNk

2∗

(∫
Ω1

W 2∗

Λ,x1
+ 2∗

∫
Ω1

k∑
i=2

W 2∗−1
Λ,x1

WΛ,xi
+O

(∫
Ω1

W 2∗−2
Λ,x1

(
k∑

i=2

WΛ,xi
)2
))

.

It is easy to check that

1

2∗
αN

∫
Ω1

W 2∗

Λ,x1
=

1

2∗
αN

∫
Ωε

W 2∗

Λ,x1
+O

(
εNkN ln

1

ε

)
=

1

2∗
Ā0 +

(
Ā3 −

1

2∗
Ā1

)
γΛε+O(ε1+σ)

and

αN

∫
Ω1

W 2∗−1
Λ,x1

WΛ,xi
=

B1Λ
N−2

|xi − xj |N−2
+O

( 1

|xi − xj |N−2+σ

)
.

Thus, we obtain

αN

2∗

∫
Ωε

W 2∗ = k
( 1

2∗
Ā0 +

(
Ā3 −

1

2∗
Ā1

)
γΛε+

k∑
j=2

B1Λ
N−2

|xi − xj |N−2

+O
(
ε1+σ +

(
ln

1

ε

)2∗ ∫
Ω1

U2∗−2
1
Λ ,x1

(

k∑
i=2

U 1
Λ ,xi

)2
))

.

(A.31)

Here, we have used

|WΛ,xj
| ≤ C| ln ε|U 1

Λ ,xj
,

which can be obtained directly from Lemma A.1.
Note that for y ∈ Ω1, |y − xi| ≥ 1

2 |xi − x1|. Thus
k∑

i=2

U 1
Λ ,xi

≤ C

k∑
i=2

1

(1 + |y − x1|)
N−3

2

1

|x1 − xi|
N−1

2

≤ 1

(1 + |y − x1|)
N−3

2

k∑
i=2

1

|x1 − xi|
N−1

2

.
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As a result,

∫
Ωε

U2∗−2
1
Λ ,x1

(
k∑

i=2

U 1
Λ .xi

)2 = O
(
εN−1kN−1

)
,

which, together with (A.31), gives

(A.32)
αN

2∗

∫
Ωε

W 2∗ = k
( 1

2∗
Ā0+

(
Ā3−

1

2∗
Ā1

)
γΛε+

k∑
j=2

B1Λ
N−2

|xi − xj |N−2
+O

(
ε1+σ

))
.

Combining (A.30) and (A.32), we are led to

(A.33) I(W ) = k
(
A0 −A1γΛε−

1

2

k∑
i=2

B1Λ
N−2

|x1 − xi|N−2
+O

(
ε1+σ

))
,

where A0 and A1 are some positive constants.
Since

|xj − x1| = 2|x1| sin
2(j − 1)π

k
, j = 2, . . . , k,

we have
k∑

j=2

1

|xj − x1|N−2
=

1

(2|x1|)N−2

k∑
j=2

1

(sin (j−1)π
k )N−2

=

⎧⎨
⎩

2
(2|x1|)N−2

∑ k
2

j=2
1

(sin (j−1)π
k )N−2

+ 1
(2|x1|)N−2 if k is even;

2
(2|x1|)N−2

∑[ k2 ]
j=2

1

(sin (j−1)π
k )N−2

if k is old.

But

0 < c′ ≤
sin (j−1)π

k
(j−1)π

k

≤ c′′, j = 2, . . . , [
k

2
].

So, there is a constant B4 > 0 such that

k∑
j=2

1

|xj − x1|N−2
= B4(εk)

N−2 +O
(
εN−2k

)
.

Using ε = k−
N−2
N−3 , we obtain

I(W ) = k
(
A0 −A1γΛε−A2Λ

N−2ε+ o(ε)
)
,

where A0, A1 and A2 are some positive constants. �

For the case N = 3, we have

Proposition A.4. For N = 3, we have

I(W ) = k
(
D1 −D2γεΛ ln

1

Λε
−D3εΛβkk ln k +O(ε)

)
,

where Di, i = 1, 2, 3, is some positive constant, and βk → 1 as k → +∞.

Proof. Similar to the proof of Proposition A.3, we find

I(W ) = k
(
D1 −D2γεΛ ln

1

Λε
−

k∑
j=2

D̄Λ

|xj − x1|
+O(ε)

)
,
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where D1, D2 and D̄ are some positive constants. Noting that |xj − x1| =
2
ε sin

2(j−1)π
k , and

k∑
j=2

1

j
= (c0 + o(1)) ln k,

we obtain
k∑

j=2

D̄Λ

|xj − x1|
= D3εΛβkk ln k,

where βk → 1 as k → ∞. Thus, the result follows. �

Appendix B. Basic estimates

First, we prove that W ≤ C, where C > 0 is a constant, independent of k. We
have a more general result.

Lemma B.1. For any α > 0,

k∑
j=1

1

(1 + |y − xj |)α
≤ C

(
1 +

k∑
j=2

1

|x1 − xj |α
)
,

where C > 0 is a constant, independent of k.

Proof. Define

Ωj =
{
y = (y′, y′′) ∈ R

2 × R
N−2 :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.

Without loss of generality, we assume y ∈ Ω1. Then,

|y − xj | ≥ |y − x1|, ∀ y ∈ Ω1.

If |y − x1| ≤ 1
2 |x1 − xj |, then

|y − xj | ≥ |xj − x1| − |y − x1| ≥
1

2
|x1 − xj |.

But if |y − x1| ≥ 1
2 |x1 − xj |, then

|y − xj | ≥ |y − x1| ≥
1

2
|x1 − xj |, ∀ y ∈ Ω1.

Thus,

|y − xj | ≥
1

2
|x1 − xj |, ∀ y ∈ Ω1, j = 2, . . . , k.

Hence,

k∑
j=1

1

(1 + |y − xj |)α
≤ C +

k∑
j=2

1

(1 + |y − xj |)α

≤ C
(
1 +

k∑
j=2

1

|x1 − xj |α
)
.

�

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NEUMANN PROBLEM IN NONCONVEX DOMAINS 4609

For each fixed i and j, i �= j, consider the following function:

(B.1) gij(y) =
1

(1 + |y − xj |)α
1

(1 + |y − xi|)β
,

where α ≥ 1 and β ≥ 1 are two constants. The following two lemmas can be found
in Appendix B in [64].

Lemma B.2. For any constant 0 ≤ σ ≤ min(α, β), there is a constant C > 0,
such that

gij(y) ≤
C

|xi − xj |σ
( 1

(1 + |y − xi|)α+β−σ
+

1

(1 + |y − xj |)α+β−σ

)
.

Lemma B.3. For any constant 0 < σ < N − 2, there is a constant C > 0, such
that ∫

RN

1

|y − z|N−2

1

(1 + |z|)2+σ
dz ≤ C

(1 + |y|)σ .

Let us recall that

ε = k−
N−2
N−3 if N ≥ 4, ε = e

D3
D2γ βkk ln k if N = 3.

Lemma B.4. Suppose that τ = N−3
N−2 . Then there is a small θ > 0 such that

∫
RN

1

|y − z|N−2
W

4
N−2 (z)

k∑
j=1

1

(1 + |z − xj |)
N−2

2 +τ
dz

≤ C
k∑

j=1

1

(1 + |y − xj |)
N−2

2 +τ+θ
+ o(1)

k∑
j=1

1

(1 + |y − xj |)
N−2

2 +τ
,

where o(1) → 0 as k → +∞.

Proof. First, we consider N ≥ 6. Then 4
N−2 ≤ 1. Thus

W
4

N−2 (z) ≤
k∑

i=1

1

(1 + |z − xi|)4(1−β)
,

where β > 0 can be chosen as any small fixed constant. So, we obtain∫
RN

1

|y − z|N−2
W

4
N−2 (z)

k∑
j=1

1

(1 + |z − xj |)
N−2

2 +τ
dz

≤
k∑

j=1

∫
RN

1

|y − z|N−2

1

(1 + |z − xj |)4(1−β)+N−2
2 +τ

dz

+

k∑
j=1

∑
i �=j

∫
RN

1

|y − z|N−2

1

(1 + |z − xi|)4(1−β)

1

(1 + |z − xj |)
N−2

2 +τ
dz.

By Lemma B.3, if θ > 0 is so small that N−2
2 + τ + θ < N − 2, then∫

RN

1

|y − z|N−2

1

(1 + |z − xj |)4(1−β)+N−2
2 +τ

dz

≤
∫
RN

1

|y − z|N−2

1

(1 + |z − xj |)2+
N−2

2 +τ+θ
dz ≤ C

(1 + |y − xj |)
N−2

2 +τ+θ
.
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On the other hand, it follows from Lemmas B.2 and B.3 that for i �= j,∫
RN

1

|y − z|N−2

1

(1 + |z − xi|)4(1−β)

1

(1 + |z − xj |)
N−2

2 +τ
dz

≤ C

|xi − xj |2
∫
RN

1

|y − z|N−2

( 1

(1 + |z−xi|)2+
N−2

2 +τ
+

1

(1 + |z−xj |)2+
N−2

2 +τ

)
dz

≤ C

|xi − xj |2−4β

( 1

(1 + |y − xi|)
N−2

2 +τ
+

1

(1 + |y − xj |)
N−2

2 +τ

)
.

Noting that

∑
j �=i

1

|xi − xj |2−4β
≤ C(εk)2−4β

k∑
j=1

1

j2−4β
≤ C(εk)2−4β = o(1),

we obtain
k∑

j=1

∑
i �=j

∫
RN

1

|y − z|N−2

1

(1 + |z − xi|)4(1−β)

1

(1 + |z − xj |)
N−2

2 +τ
dz

= o(1)
k∑

j=1

1

(1 + |y − xj |)
N−2

2 +τ
.

Suppose now that N = 5. Recall that ε = k−
3
2 and

Ωj =
{
y = (y′, y′′) ∈ Ωε :

〈 y′

|y′| ,
xj

|xj |
〉
≥ cos

π

k

}
.

For z ∈ Ω1, we have |z − xj | ≥ |z − x1|. Using Lemma B.2, we obtain

k∑
j=2

1

(1 + |z − xj |)3(1−β)
≤ 1

(1 + |z − x1|)
3
2

k∑
j=2

1

(1 + |z − xj |)
3
2−3β

≤ C

(1 + |z − x1|)
7
3−3β

k∑
j=2

1

|xj − x1|
2
3

≤ C

(1 + |z − x1|)
7
3−3β

since
k∑

j=2

1

|xj − x1|
2
3

≤ C(εk)
2
3

k∑
j=2

1

j
1
3

= O(ε
2
3 k) = O(1).

Thus,

W
4
3 (z) ≤

( C

1 + |z − x1|)3(1−β)
+

C

(1 + |z − x1|)
7
3−3β

) 4
3 ≤ C

(1 + |z − x1|)
28
9 −4β

.

As a result, for z ∈ Ω1, using Lemma B.2 again, we find that for θ > 0 small,

W
4
3 (z)

k∑
j=1

1

(1 + |z − xj |)
3
2+τ

≤ C

(1 + |z − x1|)
28
9 + 3

2+τ−4β
+

C

(1 + |z − x1|)2+
3
2+τ+θ

k∑
j=2

1

|xj − x1|
10
9 −θ−4β

≤ C

(1 + |z − x1|)2+
3
2+τ+θ

.
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So, we obtain

∫
Ω1

1

|y − z|3W
4
3 (z)

k∑
j=1

1

(1 + |z − xj |)
3
2+τ

dz

≤
∫
Ω1

1

|y − z|3
C

(1 + |z − x1|)2+
3
2+τ+θ

dz ≤ C

(1 + |y − x1|)
3
2+τ+θ

,

which gives

∫
Ωε

1

|y − z|3W
4
3 (z)

k∑
j=1

1

(1 + |z − xj |)
3
2+τ

dz

=

k∑
i=1

∫
Ωi

1

|y − z|3W
4
3 (z)

k∑
j=1

1

(1 + |z − xj |)
3
2+τ

dz

≤
k∑

i=1

C

(1 + |y − xi|)
3
2+τ+θ

.

Suppose that N = 4. In this case, ε = k−2. We have that for z ∈ Ω1,

k∑
j=2

1

(1 + |z − xj |)2(1−β)
≤ C

(1 + |z − x1|)
2
3−2β

k∑
j=2

1

|xj − x1|
1
2

≤ Cε
1
2 k

(1 + |z − x1|)
3
2−2β

≤ C

(1 + |z − x1|)
3
2−2β

and thus,

W 2(z)

k∑
j=1

1

(1 + |z − xj |)1+τ
≤ C

(1 + |z − x1|)3−4β

k∑
j=1

1

(1 + |z − xj |)1+τ

≤ C

(1 + |z − x1|)4+τ−4β
+

C

(1 + |z − x1|)2+1+τ+ 1
2−4β

k∑
j=1

1

|x1 − xj |
1
2

≤ C

(1 + |z − x1|)2+1+τ+ 1
2−4β

,

which gives

∫
Ωε

1

|y − z|2W
2(z)

k∑
j=1

1

(1 + |z − xj |)1+τ
dz

=

k∑
i=1

∫
Ωi

1

|y − z|2W
2(z)

k∑
j=1

1

(1 + |z − xj |)1+τ
dz

≤
k∑

i=1

C

(1 + |y − xi|)
1
2+1+τ−4β

.
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For N = 3, z ∈ Ω1, since knλ−α = o(1) for any n > 0 and α > 0 as k → +∞, we
have for α > β > 0,

k∑
j=2

1

(1 + |z − xj |)1−β
≤ C

1

(1 + |z − x1|)1−α

and

W 4(z)
k∑

j=1

1

(1 + |z − xj |)
1
2+τ

≤ C

(1 + |z − x1|)2+
1
2+τ+2−5α

,

which gives ∫
Ωε

1

|y − z|W
4(z)

k∑
j=1

1

(1 + |z − xj |)
1
2+τ

dz

=
k∑

i=1

∫
Ωi

1

|y − z|W
4(z)

k∑
j=1

1

(1 + |z − xj |)
1
2+τ

dz

≤
k∑

i=1

C

(1 + |y − xi|)
1
2+τ−5α+2

.
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