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Abstract 
 

In this paper, we present a connectionist approach for 
detecting and precisely localizing semi-frontal human faces 
in complex images, making no assumption about the content 
or the lighting conditions of the scene, or about the size or 
the appearance of the faces. We propose a convolutional 
neural network architecture designed to recognize strongly 
variable face patterns directly from pixel images with no 
preprocessing, by automatically synthesizing its own set of 
feature extractors from a large training set of faces. We 
present in details the optimized design of our architecture, 
our learning strategy and the resulting process of face 
detection. We also provide experimental results to 
demonstrate the robustness of our approach and its 
capability to precisely detect extremely variable faces in 
uncontrolled environments. 
 

 

1. Introduction 
 

Human face detection is becoming a very important research 

topic, due to its wide range of applications, like security 

access control, model-based video coding or content-based 

video indexing, advanced human and computer interaction. 

It is also a required preliminary step to face recognition and 

expression analysis. Many different approaches for face 

detection have been proposed in the last years. Most 

methods are based on local facial features detection by low-

level computer vision algorithms and classification using 

statistical models of human face [2,3,10].  Other approaches 

are based on template matching where several correlation 

templates are used to detect local sub-features, considered as 

rigid in appearance (eigenfaces [5]) or deformable [2,9]. The 

main drawback of these approaches is that either little global 

constraints are applied on the face template or extracted 

features are strongly influenced by noise or change in facial 

expression or viewpoint. Generally, the use of skin color 

information is an important cue for constraining the search 

space. In [1], we proposed a fast method using skin color 

filtering and probabilistic classification of facial textures 

based on statistical measures extracted from a wavelet 

packet decomposition.  

In the general case of grey level images, unlike other 

systems depending on a hand crafted feature detection stage, 

followed by a feature classification stage, some techniques 

based on neural networks have been proposed. These 

techniques have the clear advantage of learning underlying 

rules contained in the highly variable face patterns from 

large training sets of images. They proved to be very 

tolerant to noise and distorsions. The first advanced neural 

approach that reported results on a large and difficult dataset 

was by Rowley et al. [7]. Their system incorporates face 

knowledge in a retinally connected neural network, looking 

at windows of 20x20 pixels. In their single neural network 

implementation (referred as system 5), there are two copies 

of a hidden layer with 26 units, where 4 units look at 10x10 

pixel subregions, 16 look at 5x5 subregions, and 6 look at 

20x5 pixels overlapping horizontal stripes.  A large number 

of adjustable weights (2,905) are learnt through standard 

backpropagation. The input window is pre-processed 

through lighting correction (a best fit linear function is 

subtracted) and histogram equalization, like in the Sung and 

Poggio’s system [8]. The image is scanned with a moving 

20x20 window at every possible position and scale (with a 

subsampling factor of 1.2). To reduce the number of false 

alarms, they combine multiple neural networks with an 

arbitration strategy. Osuna et al. [6] developed a support 

vector machine (SVM) approach to face detection. The 

proposed system uses the same pre-processing stage for 

lighting correction and scan input images over scales with a 

19 x 19 window. A SVM with a 2nd-degree polynomial as a 

kernel function is trained with a decomposition algorithm 

that guarantees global optimality. Approximately 2,500 

support vectors are obtained and use for face detection. 

In this article, we propose a novel scheme based on 

convolutional neural networks that have been introduced by 

Le Cun et al. and successfully applied to handwritten 

character recognition [4]. In comparison to the two methods 

mentioned above, our system automatically derives optimal 

convolution filters that act as feature extractors. Therefore, 

the use of receptive fields, shared weights and spatial 

subsampling in such a neural model provides much higher 

degrees of invariance to translation, rotation, scale, and 

deformation of the face patterns, while strongly reducing the 

number of adjustable weights to learn, aiding generalization. 

Moreover, no preprocessing on the input image is required 

and fast processing is automatically provided by successive 

simple convolutional and subsampling operations.  

We first present in details the design of our architecture, 

our learning strategy. Then, we present the process of face 

detection using this architecture. Finally, we provide 

experimental results and a comparison to the technique 

proposed in [7] to demonstrate the robustness of our 

approach and its capability to precisely detect extremely 

variable faces in uncontrolled environment. 
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2. The Proposed Approach 
 

2.1. Neural network architecture 
 

The convolutional neural network, shown in Fig.1, consists 

of a set of three different kinds of layers. Layers Ci are 

called convolutional layers, which contain a certain number 

of planes. Layer C1 is connected to the retina, receiving the 

image area to classify as face or non face.  Each unit in a 

plane receives input from a small neighborhood (biological 

local receptive field) in the planes of the previous layer. The 

trainable weights (convolutional mask) forming the 

receptive field for a plane are forced to be equal at all points 

in the plane (weight sharing). Each plane can be considered 

as a feature map that has a fixed feature detector that 

corresponds to a pure convolution with a trainable mask, 

applied over the planes in the previous layer. A trainable 

bias is added to the results of each convolutional mask. 

Multiple planes are used in each layer so that multiple 

features can be detected.     

Once a feature has been detected, its exact location is less 

important.  Hence, each convolutional layer Ci is typically 

followed by another layer Si that performs a local averaging 

and subsampling operation. More precisely, a local 

averaging over a neighborhood of four inputs is performed 

followed by a multiplication by a trainable coefficient and 

the addition of a trainable bias. This subsampling operation 

reduces by 2 the dimensionality of the input and increases 

the degrees of invariance to translation, rotation, scale, and 

deformation of the face patterns. 

In our implementation, layers C1 and C2 perform 

convolutions with trainable masks of dimension 5x5 and 

3x3 respectively. Layer C1 contains 4 feature maps and 

therefore performs 4 convolutions on the input image.  

Layers S1 and C2 are partially connected. Mixing the outputs 

of feature maps helps in combining different features, thus 

in extracting more complex information. In our system, 

layer C2 has 14 feature maps. Each of the 4 subsampled 

feature maps of S1 is convolved by 2 different trainable 

masks 3x3, providing 8 feature maps in C2. The other 6 

feature maps of C2 are obtained by fusing the results of 2 

convolutions on each possible pair of feature maps of S1.  

Layers N1 and N2 contain simple sigmoid neurons. The 

role of these layers is to perform classification, after feature 

extraction and input dimensionality reduction are performed. 

In layer N1, each neuron is fully connected to every points 

of one feature map only of layer S2. The unique neuron of 

layer N2 is fully connected to all the neurons of the layer N1. 

The output of this neuron is used to classify the input image 

as face or non face. For training the network, we used the 

classical backpropagation algorithm with momentum 

modified for being used in convolutional networks as 

described in [4]. Desired responses are set to –1 for non-

faces and to +1 for faces. 

In our system, the dimension of the retina is 32x36. 

Because of weight sharing, the network has only 897 

trainable parameters, despite the 127,093 connections it 

uses. Local receptive fields, weight sharing and subsampling 

provide many advantages to solve two important problems 

at the same time: the problem of robustness and the problem 

of good generalization, which is critical given the 

impossibility of gathering in one finite-sized training set all 

the possible variations of the face pattern.  This topology has 

another decisive advantage. In order to search for faces, the 

network must be replicated (or scanned) at all locations in 

the input image, as done in the above mentioned approaches 

[6,7]. In our approach, since each layer essentially performs 

a convolution (with a small-size kernel), a very large part of 

the computation is in common between two neighboring 

locations in the input images. This redundancy is naturally 

eliminated by performing the convolutions corresponding to 

each layer on the entire input image at once. The overall 

computation amounts to a succession of convolutions and 

non-linear transformations over the entire images. 

 
Fig. 1: Convolutional neural network architecture 

 

2.2. Training Methodology 
 

We built our training set by manually cropping 2,146 highly 

variable face areas in a large collection of images obtained 

from various sources over the Internet.  Most of the neural 

network-based approaches in the literature [6,7] use an input 

window of dimension around 20x20, reported as being the 

smallest window one can use without loosing critical 

information. Usually, this window is the very central part of 

the face, excluding the border of the face and any 

background. We have chosen approximately the same 

window for the central part of the face but we have added in 

the input the border of the face and in some cases some 

portions of background. By doing so, we give the network 

some additional information, which can help in 

Retina 
32x36 
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characterizing the face pattern and canceling some border 

effects that may arise in the convolutions. Finally, the 

cropped faces have a size of 32x36 in order to account for 

the face aspect ratio. No intensity normalization is applied 

on the cropped faces, such as histogram equalization and 

overall brightness correction that are performed in [6,7]. In 

addition, we have no need to perform the tedious task of 

spatial normalization so that the eyes, mouth and other parts 

of the faces remain exactly at the same position [6,7]. 

Moreover, systems in [6,7] are only tolerant to small 

rotations of ±5 degrees. As mentioned earlier, our network 

topology is quite robust in scale and position, and we aim at 

enforcing this robustness by providing examples that are not 

normalized. In order to create more examples and to 

enhance the capabilities of invariance to rotation and 

variation of intensity, some transformations such as rotation 

of ±30 degrees and contrast reduction are applied to all the 

examples, leading to a final training set of 12,976 faces. 

Some samples are shown in Fig. 2.  
 

 

Fig. 2: Some samples of the training set. 
 

We collect non-face examples via an iterative 

bootstrapping procedure. We first build an initial training set 

of non face examples by producing random images. The 

network is then trained with face and non face examples. 

The iterative bootstrapping procedure acts as follows. For 

the first iteration, the trained network is used for scanning a 

set of 120 various highly textured images containing no 

face. Areas where the response of the network is greater 

than a threshold thr=0.8 are added to the set of non face 

examples. Then, the same network is retrained with the set 

of face examples and the updated set of non face examples. 

The procedure of scanning for false alarms and training the 

network is repeated for 4 more iterations reducing the 

threshold thr by 0.2 at each iteration until it reaches 0.0, 

which is the separating value between face and non faces. 

By doing so, we gather iteratively false examples which are 

close to the boundaries of the cluster of “faces” in network 

space, without gathering to many false alarms in the early 

stages of training. We finally obtain about 15,000 false 

examples.  

 
2.3. Face Localization 
 

In order to detect faces of different sizes, the input image is 

repeatedly subsampled via a factor of 1.2, resulting in a 

pyramid of images. Each image of the pyramid is filtered by 

our network. In [6,7], the neural filter is applied at every 

pixel of each image of the pyramid, after some operations of 

lighting corrections, given that it has very small invariance 

in intensity, position and scale.  In our approach, as 

mentioned earlier, each image of the pyramid is entirely 

convolved at once by the network. For each image of the 

pyramid, an image containing the network results is 

obtained. Because of the successive convolutions and 

subsampling operations, this image has a size approximately 

four times smaller than the original one. This fast procedure 

corresponds to the application of the network retina at every 

location of the input image with a step 4 in both dimensions, 

without computational redundancy. This search may be seen 

as a very fast rough localization, where the positive answers 

of the network correspond to candidate faces.  

Then, candidate faces in each scale are mapped back to 

the input image scale. They are iteratively grouped 

according to their proximity in image and scale spaces. Each 

group of candidate faces is fused in a representative face 

whose center and size are computed as the average of the 

centers and sizes of the grouped faces weighted by their 

network responses.  After applying this grouping algorithm, 

the representative face candidates serve as a basis for the 

next stage of the algorithm in charge of fine face 

localization and false alarm dismissal. 

A fine search is performed in an area around each rough 

face candidate center in image-scale space.  A search space 

centered at the face candidate position is defined in image-

scale space for precise localization of the candidate face. It 

corresponds to a small pyramid centered at the face 

candidate position covering 5 scales varying from 0.8 to 1.4 

of the scale of the face candidate. For every scale, the 

presence of a face is evaluated on a grid of 6x6 pixels 

around the corresponding face candidate center position. 

Usually true faces give positive responses in 2 or 3 

consecutive scales, but non-faces not so often. We therefore 

count the number nok of positive responses in the fine 

search space. Face candidates are accepted if nok>6. Fig. 3 

shows different steps of the detection process for an image 

containing 3 faces at different scales. The first line presents 

the feature maps computed by layer C1, at the scale 

corresponding to the central face. The second line presents 

the final responses of the network at all scales. The black 

points correspond to positive responses. The third line 

shows the positions and sizes of the faces detected during 

fine search, and the final results. One can notice that one 

false alarm has been detected, with only 2 votes in fine 

search and removed according to the criterion nok>6. 

 

3. Experimental Results 
 

The proposed method has been evaluated using the test 

data set used in [1], which contains images kindly provided 

by the Institut National Audiovisuel (INA), France and by 

ERT Television, Greece. This test data of 100 images 

contains 124 faces (of minimal size 19x22 pixels) that 

present large variability in size, illumination, facial 

expression, orientation, and partial occlusions. In Fig. 4., we 

present some results of the proposed face detection scheme 

on this test data set. These examples include images with 

multiple faces of different sizes and different poses.  
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Fig. 3: The process of detection 
 

False alarms and false dismissals examples are presented 

as well. On this test set we obtained a good detection rate of 

97.5% with 3 false alarms for nok>6. It should be noted that 

the number of false alarms is very small. This may illustrate 

the capability of the convolutional network architecture to 

highly separate face from non-face examples.  As a 

comparison, with our previous approach [1] we obtained 

94.23% of good detection rate with 20 false alarms when 

104 faces (of size greater than 48x80 pixels which was the 

minimal size for this approach) are considered. Considering 

this subset of 104 faces, the CMU’s system [7] resulted in 

85.57% of good detection and 15 false alarms and the 

approach proposed in this paper in 98% of good detection 

and 1 false alarm. An interactive demonstration of our 

system is available on the Web at 

www.csd.uoc.gr/~cgarcia/FaceDetectDemo.html, allowing 

anyone to submit images for processing and to see the 

detection results for pictures submitted by other people.  

 

4. Conclusion 
 

Our experiments have shown that using convolutional neural 

networks for face detection is a very promising approach. 

The robustness of the system to varying poses, lighting 

conditions, and facial expressions was evaluated using a set 

of difficult images. In addition, the stability of responses in 

consecutive scales and a precise localization of faces were 

noticed. Because of its convolutional nature, our system is 

faster than the other approaches  [6,7] which require a dense 

scanning of the input image at all scales and positions. It 

processes a 352x288 image in less than 4 sec. on a PC (PIII 

933Mhz with 256M memory). Moreover, the proposed 

approach is not restricted to vertical semi-frontal faces. It is 

able to detect faces tilted up to ±30 degrees.  

As an extension of this work, we plan to use the 

information contained in the convolution layers of the 

network at the end of the face detection step for other 

purposes related to face analysis. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: Some results of the proposed method 
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