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Abstract-A neural extended Kalman filter algorithm was 
embedded in an interacting multiple model architecture for 
target tracking. The neural extended Kalman filter algorithm 
is used to improve motion model prediction during 
maneuvers. With a better target motion mode, noise reduction 
can be achieved through a maneuver. Unlike the interacting 
multiple model architecture which, uses a high process noise 
model to hold a target through a maneuver with poor velocity 
and acceleration estimates, a neural extended Kalman filter is 
used to predict the correct velocity and acceleration states of a 
target through a maneuver. The neural extended Kalman 
filter estimates the weights of a neural network, which in turn 
is used to modify the state estimate predictions of the filter as 
measurements are processed. The neural network training is 
performed on-line as data is processed. In this paper, the 
results of a neural extended Kalman filter embedded in an 
interacting multiple model tracking architecture will be 
shown using a high fidelity model of a phased array radar.  
Six different targets of varying maneuverability will be 
tracked.  The phased array radar is controlled via Level 4 
Data Fusion feedback to the Level 0 radar process.  Highly 
maneuvering threats are a major concern for the Navy and 
DoD and this technology will help address this issue. 

 
I.  INTRODUCTION  

 
 The Robust Tracking with a Neural Extended Kalman 
Filter (NEKF) project is an Office of Naval Research 
(ONR) In-House Laboratory Independent Research (ILIR) 
sponsored effort at SPAWAR Systems Center San Diego.  
The project’s goal is to provide an improved state 
estimation capability for current U.S. Navy tracking 
systems.  The NEKF provides added capability for real-
time modeling of maneuvers and, therefore, enhances the 
ability of tracking systems to adapt appropriately. 
 Extended Kalman filters using neural networks have 
been used in the past in control system technology and for 
system identification [1, 2].  In this paper, the NEKF will 
be incorporated into an interacting multiple model tracking 
architecture to provide robust tracking capabilities that are 
currently unavailable. 
 In [3] the second Tracking Benchmark problem was 
presented to researchers to use as a testing environment for 
new tracking algorithms.  This paper will show preliminary 
results on this benchmark problem. 
 

II. BACKGROUND  
 
 State estimation and tracking of highly maneuvering 
targets is an extremely difficult task in modern tracking 
systems.  Current state estimation approaches to the 
tracking problem include alpha-beta filters, Kalman filters, 

interacting multiple model (IMM) filters, probabilistic data 
association (PDA) trackers, and joint PDA (JPDA) trackers 
[4 and 5].  State estimation is the problem of estimating a 
set of system states that are of interest to a system designer 
or a decision maker.  System states consist of parameters 
such as position, velocity, frequencies, magnetic moments, 
and other attributes of interest.  A mathematical system 
model is necessary for the aforementioned filter algorithms 
to perform state estimation. 
 
2.1 Kalman Filter 
 A well known state estimation algorithm is the Kalman 
filter which was developed four decades ago by R. E. 
Kalman [6].  A Kalman filter consists of the dynamic 
system to be tracked, a mathematical system model, an 
observation model, the Kalman gain, a predicted 
observation, and the system state vector.  A problem occurs 
when the aircraft or system being tracked deviates from the 
assumed motion model.  The filter will tend to lag behind 
the true state of the target and can even diverge, become 
unstable, and be unable to estimate the system states.  In 
cases where the motion model and/or the observation 
model are nonlinear, an extension of the linear Kalman 
filter must be used.  A common nonlinear extension of the 
Kalman filter is the extended Kalman filter (EKF) [7], 
which can handle known nonlinearities.   
 
2.2 Interacting Multiple Model Filter 
 Another well known state of the art tracking technique 
is the interacting multiple model (IMM) filter [8].  The 
technique employs multiple models (a bank of Kalman 
filters) to perform state estimation.  Each model may 
contain a different mathematical system model, observation 
model, variable dimension state vector, or noise processes.  
The IMM architecture can also use EKF’s. 
 
2.3 Extended Kalman Filter Neural Network Training 
 If a nonlinear model is unattainable, then a system 
identification technique might be used to create a model.  
In the late 80’s and early 90’s, the technology of using 
artificial neural networks for identification became popular.  
An artificial neural network is actually a function 
approximator, that is, given a set of inputs and a desired set 
of outputs, a neural network can be trained to approximate 
a smooth function relating the two.  A neural network can 
be thought of as a nonlinear polynomial in which the 
coefficients of that polynomial must be found to 
approximate a desired function.  A neural network contains 
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a set of weights (coefficients) that must be determined in 
order to approximate a function.  To train neural networks, 
techniques such as backpropagation [9] and the extended 
Kalman filter [10] have been used.  A neural network 
equation is shown in (2.1). 
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2.4 Neural Extended Kalman Filter 
 The Neural Extended Kalman Filter (NEKF) 
developed by Stubberud [1] is based on the Singhal and 
Wu EKF neural network trainer in [10].  The algorithm 
uses an extended Kalman filter to estimate the states by 
using a dynamic system model while, at the same time, 
using  the extended Kalman filter to train a neural network 
to calculate the nonlinearities, mismodeled dynamics, 
higher order modes, and other unknown facets of a system.  
Estimation of the system states are performed at once 
without the necessity of modeling the nonlinearities a 
priori as in the case of the extended Kalman filter.  The 
neural network’s function is described below 
 Given the true target motion model defined by the 
nonlinear vector equation  
 

(2.2) 
 
and an estimator’s view defined by the “hat” system 
 

(2.3) 
 
an NEKF is used to correct the errors in the “hat” system.   
Ideally this would mean 
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where NN is the neural network trained on-line as data is 
processed by the NEKF.   
 A mathematical system model of the neural network is 
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Equations (2.5-2.6) show that the neural network modifies 
the predicted system state 1kx +  through the Jacobian of the 
system transition matrix A’.  The inputs to the neural 
network are the updated states of the filter as shown in Fig. 
1.  The outputs of the neural network NN(k), are the  
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Fig. 1. NEKF Block Diagram 
 
corrections to the linear predicted state.  The inputs are 
passed through an input layer, a hidden layer with 
nonlinear squashing functions, and an output layer as 
shown in Fig. 2.  The outputs of the neural network are 
nonlinear corrections to the linear predicted state of the 
underlying Kalman filter. 
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Fig. 2. NEKF Inputs and Outputs 
 

III. NEURAL EXTENDED KALMAN FILTER 
INTERACTING MULTIPLE MODEL TRACKING 

ALGORITHM 
 

 A new tracking algorithm called the neural extended 
Kalman filter interacting multiple model (NEKF IMM) 
algorithm is now discussed from [12].  Combining the 
NEKF algorithm with the IMM algorithm the authors were 
able to design a very robust estimator.  The NEKF IMM 
uses 3 models.  Two of the models are constant velocity 
models with a low and high process noise, respectively, 
and the third model is the NEKF.  The algorithm combines 
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the benefits of the IMM soft switching capability between 
models and the on-line maneuver learning capability of the 
NEKF.  The IMM architecture allows for Kalman filter 
models of different state dimensions to be mixed together 
appropriately.  What is different and novel in this IMM 
architecture is that the neural network weights that are not 
dependent on the dynamic equations are mixed in with the 
other dynamic models.  The state vector mixing equations 
of the NEKF in a 2 model NEKF IMM architecture are  
 

(2.10) 
 
 
where x1 is the system state vector for model 1, x2 is the 
system state vector for model 2, w is the neural network 
weight state vector, and µ is the mixing mode probability 
weight.  Equation (2.10) shows that the neural network 
weight vector is weighted by the mixing mode probability.  
This is a key point to the architecture’s stability.  For the 
covariance mixing  
 

(10) 
 
 
the upper block covariance mixing is the same as with 
other IMM dynamic systems,  the off diagonal blocks and 
lower block matrices are due to the neural network weights 
and are weighted appropriately by the NEKF mixing mode 
probability µ.  With these two modifications to the mixing 
process of the IMM architecture to accommodate the 
NEKF neural network weight vector and covariance 
matrix, the rest of the IMM algorithm is the same.   
 

IV. BENCHMARK TRACKING RESULTS  
 
 A set of preliminary results of using the NEKF IMM 
algorithm on the Benchmark II Problem [3] was published 
in August, 2003 [12].  These results are only for the 6 
targets including false alarms.  The metric print out taken 
from the MATLAB software has been put into Table 1 
below.  The NEKF IMM algorithm was used to generate 
the six results along with a heuristic algorithm to pick the 
waveform type to use at each radar look.  The waveform 
heuristic attempted to keep the SNR returned by the radar 
above a specified threshold.  If the SNR was high above the 
threshold, i.e. greater than 3dB, the waveform number 
would be reduced by 1.  If the SNR dropped below 6dB 
above threshold, the waveform number was increased by 1.  
The waveform heuristic caused the radar to choose 
waveforms with a long integration time for targets at a 
longer distance away.  The waveform algorithm also chose 
a short integration time waveform for targets at a short 
distance away from the radar.  Bar-Shalom’s, et al, 
adaptive revisit algorithm was used from [11] to choose the 
next dwell time.  The threshold was set to 8 dB and raised 
to 12 dB when a reacquisition of the target using a search 
dwell was required.  After the search dwell call, the track 
dwell mode was reinitiated and the threshold was slowly 
lowered again to 8 dB.  Table 1 shows the results of the 

NEKF IMM for the Benchmark II scenarios.  The control 
algorithms were designed to minimize the power used by 
the radar and to maximize the sampling rate of the radar.  
During all six simulations, the NEKF algorithm was active 
during target maneuvers.  The constant velocity motion 
model with a low process noise was active during straight 
line motion.  Finally, the constant velocity motion model 
with a high process noise was active during the quick onset 
and ending of maneuvers.   
 

TABLE 1. Results for 100 Monte-Carlo Runs. 1 21 2 22
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1 3 2.08 79 110 42 93.3 
2 0 1.49 101 84 44 114.3 
3 3 1.67 87 110 54 99.5 
4 0 1.31 142 36 24 155.1 
5 3 1.71 106 142 70 121.0 
6 5 1.59 118 86 73 131.2 

 
 In Table 1, only Target 6 failed the 4% loss of target 
metric.  The sampling time varied between 1.3 to 2.1 
seconds per radar revisit across the 6 targets.  The average 
number of radar revisits varied between 79 and 142 visits.  
The position RMSE was between 36 and 142 meters.  The 
speed RMSE varied between 24 and 73 meters per second.  
The dwell time per run was between 93 and 155 
milliseconds.  The following are more results not shown or 
discussed in [12].   
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Fig. 3 shows the trajectory for target 1 in the XY plane.  
Overlayed on the plot are the 100 Monte-Carlo run 
estimates for the XY trajectory.  In this particular scenario 
the target stayed at a constant altitude.  Since the sampling 
rate was variable during each Monte-Carlo run some 
samples were only averaged once. 
 

 
Fig. 3. Target 1 Trajectory 

 
Fig. 4 shows the root mean squared error (RMSE) for the 
position of target 1 in meters.  The RMSE was taken over 
100 Monte-Carlo runs.  The average position RMSE taken 
from Table 1 for target 1 is 110 meters.  The peak position 
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error during the most severe maneuver was approximately 
610 meters around 135 seconds. 
 

 
Fig. 4. Target 1 Position RMSE 

 
Fig. 5 shows the RMSE for the velocity of target 1 in 
meters per second.  The RMSE was taken over 100 Monte-
Carlo runs as mentioned before.  The average RMSE taken 
from Table 1 for the velocity of target 1 is 42 meters per 
second.  The peak velocity error during the most severe 
maneuver was approximately 130 meters per second.  A 
peak point at approximately 135 seconds of 180 meters per 
second was due to a large noise deviation in the Monte-
Carlo run and a single point for averaging. 
 

 
Fig. 5. Target 1 Velocity RMSE 

 
Fig. 6 shows the mode probabilities and the neural network 
output corrections over time.  During the maneuvers the 
neural network mode probability was approximately 90% 
or more.  During the onset and end of maneuvers the high 
process noise mode was in effect.  During straight line 
motion the low process noise model was in effect.  This 
figure shows the typical performance of the NEKF IMM 
across all 6 target scenarios for the Benchmark II.  For the 
results shown in this paper only the velocity states were 
corrected by the neural network during maneuvers. 
 

 
Fig. 6. Target 1 NEKF Outputs and Mode Probabilities 

 
Fig. 7 shows the 3 dimensional target trajectory for target 
number 2.  The three axes in X, Y, and Z are all in meters.  
The target begins at 4500 meters in altitude and descends to 
3000 meters as it moves in towards the sensor located at 
the origin.  There are two 90 degree turns during this 
scenario in the XY plane.  This scenario’s target is the 
closest to the phased array radar sensor.  It has the largest 
SNR returns for the radar, and therefore, can utilize the 
shortest integration time waveforms for the radar.  These 
waveforms have the most accurate range estimates for the 
radar.   
 

 
Fig. 7. Target 2 Trajectory 

 
Figs. 8 and 9 show the 2 dimensional plots for the XY and 
Z trajectories, respectively.  Overlayed in the figures are 
the 100 Monte-Carlo run estimates in both the XY and Z 
planes, respectively.  The two turns in the scenario occur 
before and after the climbing maneuver, respectively. 
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Fig. 8. Target 2 XY Trajectory 

 

 
Fig. 9. Target 2 Z Trajectory 

 
Fig. 10 shows the root mean squared error (RMSE) for the 
position of target 2 in meters.  The average position RMSE 
taken from Table 1 for target 2 is 84 meters.  The peak 
position error during the most severe maneuver was 
approximately 375 meters. 
 

 
Fig. 10. Target 2 Position RMSE 

 

Fig. 11 shows the RMSE for the velocity of target 2 in 
meters per second.  The average RMSE taken from Table 1 
for the velocity of target 2 is 44 meters per second.  The 
peak velocity error during the most severe maneuver was 
approximately 175 meters per second.  An outlier peak 
point was approximately 275 meters per second.  This point 
was due to lack of averaging in the Monte-Carlo runs. 
 

 
Fig. 11. Target 2 Velocity RMSE 

 
Fig. 12 shows the trajectory for target 3 in the XY plane.  
Overlayed on the plot are the 100 Monte-Carlo run 
estimates for the XY trajectory.  In this particular scenario 
the target stayed at a constant altitude.  Since the sampling 
rate was variable during each Monte-Carlo run some 
samples were only averaged once. 
 

 
Fig. 12. Target 3 Trajectory 

 
Fig. 13 shows the root mean squared error (RMSE) for the 
position of target 3 in meters.  The average position RMSE 
taken from Table 1 for target 3 is 110 meters.  The peak 
position error during the most severe maneuver was 
approximately 500 meters. 
 

 2115



 
Fig. 13. Target 3 Position RMSE 

 
Fig. 14 shows the RMSE for the velocity of target 3 in 
meters per second.  The average RMSE taken from Table 1 
for the velocity of target 3 is 54 meters per second.  The 
peak velocity error during the most severe maneuver was 
approximately 210 meters per second. 
 

 
Fig. 14. Target 3 Velocity RMSE 

 
Fig. 15 shows the 3 dimensional target trajectory for target 
number 4.  The target begins at 2300 meters in altitude as it 
moves towards the sensor located at the origin and then 
climbs to 4500 meters as it moves away from the sensor.  
The climb takes 50 seconds to complete at a rate of 45 
meters per second in the Z domain.  There are two turns 
during this scenario in the XY plane, a very slow 90 degree 
turn and then a very quick 90 degree turn right at the end of 
the first 90 degree turn.  Figs. 16 and 17 show the 2 
dimensional plots for the XY and Z trajectories, 
respectively.  Notice in Fig. 16 the very gradual first turn 
followed by the severe turn.  After the turns the target 
moves into the steep climb shown in Fig. 17.  Overlayed on 
the figures are the 100 Monte-Carlo run estimates in both 
the XY and Z planes. 
 

 
Fig. 15. Target 4 Trajectory 

 

 
Fig. 16. Target 4 XY Trajectory 

 

 
Fig. 17. Target 4 Z Trajectory 

 
Fig. 18 shows the root mean squared error (RMSE) for the 
position of target 4 in meters.  The average position RMSE 
taken from Table 1 for target 4 is 36 meters.  The peak 
position error during the most severe maneuver was 
approximately 150 meters.  An outlier approximately equal 
to 400 meters per second is shown in the plot.  This needs 
to be investigated why it occurred on a straight track. 
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Fig. 18. Target 4 Position RMSE 

 
Fig. 19 shows the RMSE for the velocity of target 4 in 
meters per second.  The average RMSE taken from Table 1 
for the velocity of target 4 is 24 meters per second.  The 
peak velocity error during the most severe maneuver was 
approximately 90 meters per second.  There is an outlier 
near the end of the scenario at 210 meters per second.  This 
needs to be investigated why it occurred on a straight track. 
 

 
Fig. 19. Target 4 Velocity RMSE 

 
Fig. 20 shows the 3 dimensional target trajectory for target 
number 5.  The target begins at 1500 meters in altitude as it 
moves towards the sensor located at the origin  and then 
climbs to 4500 meters as it moves away from the sensor.  
There are three turns during this scenario in the XY plane, 
one 45 degree turn and two 90 degree turns.  Fig. 21 and 22 
show the 2 dimensional plots for the XY and Z trajectories, 
respectively.  Overlayed on the figures are the 100 Monte-
Carlo run estimates in both the XY and Z planes.  This 
particular scenario was the most distant target to track from 
the sensor across all six targets.  In order to keep a high 
SNR the largest integration time waveforms were utilized 
to produce these results. 
 

 
Fig. 20. Target 5 Trajectory 

 

 
Fig. 21. Target 5 XY Trajectory 

 

 
Fig. 22. Target 5 Z Trajectory 

 
Fig. 23 shows the root mean squared error (RMSE) for the 
position of target 5 in meters.  The average position RMSE 
taken from Table 1 for target 5 is 142 meters.  The peak 
position error during the most severe maneuver was 
approximately 650 meters. 
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Fig. 23. Target 5 Position RMSE 

 
Fig. 24 shows the RMSE for the velocity of target 5 in 
meters per second.  The average RMSE taken from Table 1 
for the velocity of target 5 is 70 meters per second.  The 
peak velocity error during the most severe maneuver was 
approximately 275 meters per second.  There is an outlier 
at 20 seconds due to lack of averaging. 
 

 
Fig. 24. Target 5 Velocity RMSE 

 
Fig. 25 shows the 3 dimensional target trajectory for target 
number 6.  The target begins at 1550 meters in altitude and 
descends to 800 meters as it moves towards the sensor 
located at the origin and then moves away from it.  There 
are four turns during this scenario in the XY plane, two 90 
degree turns, a 135 degree turn, and finally a 45 degree 
turn.  This scenario is the most stressing with the target 
executing up to 7g-turns in the horizontal and vertical 
plane.  Figs. 26 and 27 show the 2 dimensional plots for the 
XY and Z trajectories, respectively.  During the second 90 
degree turn the target pitches downward and pulls a 7g dive 
while executing the turn.  In Fig. 27 it is shown how 
quickly the descent is executed on the order of seconds.  
Overlayed on the figures are the 100 Monte-Carlo run 
estimates in both the XY and Z planes. 
 

 
Fig. 25. Target 6 Trajectory 

 

 
Fig. 26. Target 6 XY Trajectory 

 

 
Fig. 27. Target 6 Z Trajectory 

 
Fig. 28 shows the root mean squared error (RMSE) for the 
position of target 6 in meters.  The average position RMSE 
taken from Table 1 for target 6 is 86 meters.  The peak 
position error during the most severe maneuver was 
approximately 420 meters.  There is an outlier of 720 
meters due to lack of averaging. 
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Fig. 28. Target 6 Position RMSE 

 
Fig. 29 shows the RMSE for the velocity of target 6 in 
meters per second.  The average RMSE taken from Table 1 
for the velocity of target 6 is 73 meters per second.  The 
peak velocity error during the most severe maneuver was 
approximately 300 meters per second.  There is an outlier 
equal to 600 meters per second due to lack of averaging. 
 

 
Fig. 29. Target 6 Velocity RMSE 

 
V. CONCLUSIONS  

 
 In this paper, we discussed the use of a neural 
extended Kalman filter embedded in an IMM architecture 
for air target tracking problem.  The NEKF uses a neural 
network to adapt on-line to unmodeled dynamics or 
nonlinearities in the target trajectory.  This on-line 
adaptation provides for a robust state estimation for 
tracking applications because the maneuvers do not have to 
be known beforehand.  The NEKF is a generic state 
estimator that can be used to estimate any state vector such 
as position, velocity, magnetic moment, frequency 
signatures, etc...  A set of preliminary results on the 
Benchmark II from 1996 were presented in a tabular form.  
Also, plots of RMSE errors and Monte-Carlo estimates 
were shown to demonstrate the NEKF IMM tracking 
capability.  
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