
A Neural Extended Kalman Filter Multiple Model Tracker

M. W. Owen, U.S. Navy

SPAWAR Systems Center San Diego
Code 2725, 53560 Hull Street
San Diego, CA, 92152, USA

mark.owen@navy.mil

A. R. Stubberud, University of California

Department of Electrical Engineering and Computer
Science

Irvine, CA 92697 USA
arstubbe@uci.edu

Abstract-A neural extended Kalman filter algorithm was
embedded in an interacting multiple model architecture for
target tracking. The neural extended Kalman filter algorithm
is used to improve motion model prediction during
maneuvers. With a better target motion mode, noise reduction
can be achieved through a maneuver. Unlike the interacting
multiple model architecture which, uses a high process noise
model to hold a target through a maneuver with poor velocity
and acceleration estimates, a neural extended Kalman filter is
used to predict the correct velocity and acceleration states of a
target through a maneuver. The neural extended Kalman
filter estimates the weights of a neural network, which in turn
is used to modify the state estimate predictions of the filter as
measurements are processed. The neural network training is
performed on-line as data is processed. In this paper, the
results of a neural extended Kalman filter embedded in an
interacting multiple model tracking architecture will be
shown using a high fidelity model of a phased array radar.
Six different targets of varying maneuverability will be
tracked. The phased array radar is controlled via Level 4
Data Fusion feedback to the Level 0 radar process. Highly
maneuvering threats are a major concern for the Navy and
DoD and this technology will help address this issue.

I. INTRODUCTION

 The Robust Tracking with a Neural Extended Kalman
Filter (NEKF) project is an Office of Naval Research
(ONR) In-House Laboratory Independent Research (ILIR)
sponsored effort at SPAWAR Systems Center San Diego.
The project’s goal is to provide an improved state
estimation capability for current U.S. Navy tracking
systems. The NEKF provides added capability for real-
time modeling of maneuvers and, therefore, enhances the
ability of tracking systems to adapt appropriately.
 Extended Kalman filters using neural networks have
been used in the past in control system technology and for
system identification [1, 2]. In this paper, the NEKF will
be incorporated into an interacting multiple model tracking
architecture to provide robust tracking capabilities that are
currently unavailable.
 In [3] the second Tracking Benchmark problem was
presented to researchers to use as a testing environment for
new tracking algorithms. This paper will show preliminary
results on this benchmark problem.

II. BACKGROUND

 State estimation and tracking of highly maneuvering
targets is an extremely difficult task in modern tracking
systems. Current state estimation approaches to the
tracking problem include alpha-beta filters, Kalman filters,

interacting multiple model (IMM) filters, probabilistic data
association (PDA) trackers, and joint PDA (JPDA) trackers
[4 and 5]. State estimation is the problem of estimating a
set of system states that are of interest to a system designer
or a decision maker. System states consist of parameters
such as position, velocity, frequencies, magnetic moments,
and other attributes of interest. A mathematical system
model is necessary for the aforementioned filter algorithms
to perform state estimation.

2.1 Kalman Filter
 A well known state estimation algorithm is the Kalman
filter which was developed four decades ago by R. E.
Kalman [6]. A Kalman filter consists of the dynamic
system to be tracked, a mathematical system model, an
observation model, the Kalman gain, a predicted
observation, and the system state vector. A problem occurs
when the aircraft or system being tracked deviates from the
assumed motion model. The filter will tend to lag behind
the true state of the target and can even diverge, become
unstable, and be unable to estimate the system states. In
cases where the motion model and/or the observation
model are nonlinear, an extension of the linear Kalman
filter must be used. A common nonlinear extension of the
Kalman filter is the extended Kalman filter (EKF) [7],
which can handle known nonlinearities.

2.2 Interacting Multiple Model Filter
 Another well known state of the art tracking technique
is the interacting multiple model (IMM) filter [8]. The
technique employs multiple models (a bank of Kalman
filters) to perform state estimation. Each model may
contain a different mathematical system model, observation
model, variable dimension state vector, or noise processes.
The IMM architecture can also use EKF’s.

2.3 Extended Kalman Filter Neural Network Training
 If a nonlinear model is unattainable, then a system
identification technique might be used to create a model.
In the late 80’s and early 90’s, the technology of using
artificial neural networks for identification became popular.
An artificial neural network is actually a function
approximator, that is, given a set of inputs and a desired set
of outputs, a neural network can be trained to approximate
a smooth function relating the two. A neural network can
be thought of as a nonlinear polynomial in which the
coefficients of that polynomial must be found to
approximate a desired function. A neural network contains

0-933957-31-9 2111

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 SEP 2003

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Neural Extended Kalman Filter Multiple Model Tracker

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SPAWAR Systems Center San Diego Code 2725, 53560 Hull Street San
Diego, CA, 92152, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002146. Oceans 2003 MTS/IEEE Conference, Held in San Diego, California on September
22-26, 2003. U.S. Government or Federal Purpose Rights License, The original document contains color
images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

a set of weights (coefficients) that must be determined in
order to approximate a function. To train neural networks,
techniques such as backpropagation [9] and the extended
Kalman filter [10] have been used. A neural network
equation is shown in (2.1).

(()* *
1 1

N J
NNm wim fi Ik wki

i k
∑ ∑=
= =) (2.1)

where
()

1

1 exp
i

i

f
x

=
+ −

i

 is the output of the ith hidden

node, x is the dot product sum of the previous input
layer’s outputs with the connecting weights of the hidden
layer, is the mth output of the neural network, w is
the mth output weight connected to the ith hidden node,

 is the kth input weight connected to the ith hidden
node, and

mNN

k

im

kiw
I is the kth input feeding the neural network.

2.4 Neural Extended Kalman Filter
 The Neural Extended Kalman Filter (NEKF)
developed by Stubberud [1] is based on the Singhal and
Wu EKF neural network trainer in [10]. The algorithm
uses an extended Kalman filter to estimate the states by
using a dynamic system model while, at the same time,
using the extended Kalman filter to train a neural network
to calculate the nonlinearities, mismodeled dynamics,
higher order modes, and other unknown facets of a system.
Estimation of the system states are performed at once
without the necessity of modeling the nonlinearities a
priori as in the case of the extended Kalman filter. The
neural network’s function is described below
 Given the true target motion model defined by the
nonlinear vector equation

(2.2)

and an estimator’s view defined by the “hat” system

(2.3)

an NEKF is used to correct the errors in the “hat” system.
Ideally this would mean

(2.4)

where NN is the neural network trained on-line as data is
processed by the NEKF.
 A mathematical system model of the neural network is

1

1 1

1 0

k k

k kk k

k k

NN NN
A

k

k

x x x
x wx

w w
I

+

+ +

+

∂ ∂
+

∂ ∂= = Φ =

 
     
         

w



(2.5)

where

1k k k

k k

NN NN
kx Ax x w

x w+

∂ ∂
= + +

∂ ∂

   
   
   

 (2.6)

1kw w+ = k (2.7)
and finally

'

1k k

k

NN
kx A x w

w+

∂
= +

∂

 
 
 

 (2.8)

where
'

k

NN
A A

x

∂
= +

∂
 (2.9)

Equations (2.5-2.6) show that the neural network modifies
the predicted system state 1kx + through the Jacobian of the
system transition matrix A’. The inputs to the neural
network are the updated states of the filter as shown in Fig.
1. The outputs of the neural network NN(k), are the

()ˆ 1|k k+z

()ˆ 1|c k k+x

()ˆ 1|k k∆ +z

()1k +K

()ˆ 1| 1k k+ +x

()ˆ |k kx

()kF

()1k +H

()ˆ 1|L k k+x()NN k
()ˆ 1|k k+x

()1k +z

+ +Discrete
System

Unit
Dela

- +
+

+

Fig. 1. NEKF Block Diagram

corrections to the linear predicted state. The inputs are
passed through an input layer, a hidden layer with
nonlinear squashing functions, and an output layer as
shown in Fig. 2. The outputs of the neural network are
nonlinear corrections to the linear predicted state of the
underlying Kalman filter.

Wi
TI STWo

∆

∆

∆

∆

x()1 ,k kx f x u+ =
xk xk+
xk+y
yyk+()1

ˆˆ ,k kx f x u+ = yk+biak

bias

() () (1
ˆ, , ,k k k k k k k kx f x u f x u NN x u w+ = = +),

Fig. 2. NEKF Inputs and Outputs

III. NEURAL EXTENDED KALMAN FILTER
INTERACTING MULTIPLE MODEL TRACKING

ALGORITHM

 A new tracking algorithm called the neural extended
Kalman filter interacting multiple model (NEKF IMM)
algorithm is now discussed from [12]. Combining the
NEKF algorithm with the IMM algorithm the authors were
able to design a very robust estimator. The NEKF IMM
uses 3 models. Two of the models are constant velocity
models with a low and high process noise, respectively,
and the third model is the NEKF. The algorithm combines

 2112

the benefits of the IMM soft switching capability between
models and the on-line maneuver learning capability of the
NEKF. The IMM architecture allows for Kalman filter
models of different state dimensions to be mixed together
appropriately. What is different and novel in this IMM
architecture is that the neural network weights that are not
dependent on the dynamic equations are mixed in with the
other dynamic models. The state vector mixing equations
of the NEKF in a 2 model NEKF IMM architecture are

(2.10)

where x1 is the system state vector for model 1, x2 is the
system state vector for model 2, w is the neural network
weight state vector, and µ is the mixing mode probability
weight. Equation (2.10) shows that the neural network
weight vector is weighted by the mixing mode probability.
This is a key point to the architecture’s stability. For the
covariance mixing

(10)

the upper block covariance mixing is the same as with
other IMM dynamic systems, the off diagonal blocks and
lower block matrices are due to the neural network weights
and are weighted appropriately by the NEKF mixing mode
probability µ. With these two modifications to the mixing
process of the IMM architecture to accommodate the
NEKF neural network weight vector and covariance
matrix, the rest of the IMM algorithm is the same.

IV. BENCHMARK TRACKING RESULTS

 A set of preliminary results of using the NEKF IMM
algorithm on the Benchmark II Problem [3] was published
in August, 2003 [12]. These results are only for the 6
targets including false alarms. The metric print out taken
from the MATLAB software has been put into Table 1
below. The NEKF IMM algorithm was used to generate
the six results along with a heuristic algorithm to pick the
waveform type to use at each radar look. The waveform
heuristic attempted to keep the SNR returned by the radar
above a specified threshold. If the SNR was high above the
threshold, i.e. greater than 3dB, the waveform number
would be reduced by 1. If the SNR dropped below 6dB
above threshold, the waveform number was increased by 1.
The waveform heuristic caused the radar to choose
waveforms with a long integration time for targets at a
longer distance away. The waveform algorithm also chose
a short integration time waveform for targets at a short
distance away from the radar. Bar-Shalom’s, et al,
adaptive revisit algorithm was used from [11] to choose the
next dwell time. The threshold was set to 8 dB and raised
to 12 dB when a reacquisition of the target using a search
dwell was required. After the search dwell call, the track
dwell mode was reinitiated and the threshold was slowly
lowered again to 8 dB. Table 1 shows the results of the

NEKF IMM for the Benchmark II scenarios. The control
algorithms were designed to minimize the power used by
the radar and to maximize the sampling rate of the radar.
During all six simulations, the NEKF algorithm was active
during target maneuvers. The constant velocity motion
model with a low process noise was active during straight
line motion. Finally, the constant velocity motion model
with a high process noise was active during the quick onset
and ending of maneuvers.

TABLE 1. Results for 100 Monte-Carlo Runs. 1 21 2 22

22

* *

*mix

k

x x
x

w

µ µ

µ

+
=
 
  

Tgt
#’s

%
Lost
Tgts

Samp
Time
(Secs)

Avg #
of

Samp

Pos
RMSE
Meter

Speed
RMSE
Meters/
Second

Dwell Time
per Run
Millisecs

1 3 2.08 79 110 42 93.3
2 0 1.49 101 84 44 114.3
3 3 1.67 87 110 54 99.5
4 0 1.31 142 36 24 155.1
5 3 1.71 106 142 70 121.0
6 5 1.59 118 86 73 131.2

 In Table 1, only Target 6 failed the 4% loss of target
metric. The sampling time varied between 1.3 to 2.1
seconds per radar revisit across the 6 targets. The average
number of radar revisits varied between 79 and 142 visits.
The position RMSE was between 36 and 142 meters. The
speed RMSE varied between 24 and 73 meters per second.
The dwell time per run was between 93 and 155
milliseconds. The following are more results not shown or
discussed in [12].

1 2 | 22

| 22 | 22

(,) *

* *
J

J

k k

Tk

k k k k w

mix P P P
P mix

P P

µ

µ µ
=
 
 
  

Fig. 3 shows the trajectory for target 1 in the XY plane.
Overlayed on the plot are the 100 Monte-Carlo run
estimates for the XY trajectory. In this particular scenario
the target stayed at a constant altitude. Since the sampling
rate was variable during each Monte-Carlo run some
samples were only averaged once.

Fig. 3. Target 1 Trajectory

Fig. 4 shows the root mean squared error (RMSE) for the
position of target 1 in meters. The RMSE was taken over
100 Monte-Carlo runs. The average position RMSE taken
from Table 1 for target 1 is 110 meters. The peak position

 2113

error during the most severe maneuver was approximately
610 meters around 135 seconds.

Fig. 4. Target 1 Position RMSE

Fig. 5 shows the RMSE for the velocity of target 1 in
meters per second. The RMSE was taken over 100 Monte-
Carlo runs as mentioned before. The average RMSE taken
from Table 1 for the velocity of target 1 is 42 meters per
second. The peak velocity error during the most severe
maneuver was approximately 130 meters per second. A
peak point at approximately 135 seconds of 180 meters per
second was due to a large noise deviation in the Monte-
Carlo run and a single point for averaging.

Fig. 5. Target 1 Velocity RMSE

Fig. 6 shows the mode probabilities and the neural network
output corrections over time. During the maneuvers the
neural network mode probability was approximately 90%
or more. During the onset and end of maneuvers the high
process noise mode was in effect. During straight line
motion the low process noise model was in effect. This
figure shows the typical performance of the NEKF IMM
across all 6 target scenarios for the Benchmark II. For the
results shown in this paper only the velocity states were
corrected by the neural network during maneuvers.

Fig. 6. Target 1 NEKF Outputs and Mode Probabilities

Fig. 7 shows the 3 dimensional target trajectory for target
number 2. The three axes in X, Y, and Z are all in meters.
The target begins at 4500 meters in altitude and descends to
3000 meters as it moves in towards the sensor located at
the origin. There are two 90 degree turns during this
scenario in the XY plane. This scenario’s target is the
closest to the phased array radar sensor. It has the largest
SNR returns for the radar, and therefore, can utilize the
shortest integration time waveforms for the radar. These
waveforms have the most accurate range estimates for the
radar.

Fig. 7. Target 2 Trajectory

Figs. 8 and 9 show the 2 dimensional plots for the XY and
Z trajectories, respectively. Overlayed in the figures are
the 100 Monte-Carlo run estimates in both the XY and Z
planes, respectively. The two turns in the scenario occur
before and after the climbing maneuver, respectively.

 2114

Fig. 8. Target 2 XY Trajectory

Fig. 9. Target 2 Z Trajectory

Fig. 10 shows the root mean squared error (RMSE) for the
position of target 2 in meters. The average position RMSE
taken from Table 1 for target 2 is 84 meters. The peak
position error during the most severe maneuver was
approximately 375 meters.

Fig. 10. Target 2 Position RMSE

Fig. 11 shows the RMSE for the velocity of target 2 in
meters per second. The average RMSE taken from Table 1
for the velocity of target 2 is 44 meters per second. The
peak velocity error during the most severe maneuver was
approximately 175 meters per second. An outlier peak
point was approximately 275 meters per second. This point
was due to lack of averaging in the Monte-Carlo runs.

Fig. 11. Target 2 Velocity RMSE

Fig. 12 shows the trajectory for target 3 in the XY plane.
Overlayed on the plot are the 100 Monte-Carlo run
estimates for the XY trajectory. In this particular scenario
the target stayed at a constant altitude. Since the sampling
rate was variable during each Monte-Carlo run some
samples were only averaged once.

Fig. 12. Target 3 Trajectory

Fig. 13 shows the root mean squared error (RMSE) for the
position of target 3 in meters. The average position RMSE
taken from Table 1 for target 3 is 110 meters. The peak
position error during the most severe maneuver was
approximately 500 meters.

 2115

Fig. 13. Target 3 Position RMSE

Fig. 14 shows the RMSE for the velocity of target 3 in
meters per second. The average RMSE taken from Table 1
for the velocity of target 3 is 54 meters per second. The
peak velocity error during the most severe maneuver was
approximately 210 meters per second.

Fig. 14. Target 3 Velocity RMSE

Fig. 15 shows the 3 dimensional target trajectory for target
number 4. The target begins at 2300 meters in altitude as it
moves towards the sensor located at the origin and then
climbs to 4500 meters as it moves away from the sensor.
The climb takes 50 seconds to complete at a rate of 45
meters per second in the Z domain. There are two turns
during this scenario in the XY plane, a very slow 90 degree
turn and then a very quick 90 degree turn right at the end of
the first 90 degree turn. Figs. 16 and 17 show the 2
dimensional plots for the XY and Z trajectories,
respectively. Notice in Fig. 16 the very gradual first turn
followed by the severe turn. After the turns the target
moves into the steep climb shown in Fig. 17. Overlayed on
the figures are the 100 Monte-Carlo run estimates in both
the XY and Z planes.

Fig. 15. Target 4 Trajectory

Fig. 16. Target 4 XY Trajectory

Fig. 17. Target 4 Z Trajectory

Fig. 18 shows the root mean squared error (RMSE) for the
position of target 4 in meters. The average position RMSE
taken from Table 1 for target 4 is 36 meters. The peak
position error during the most severe maneuver was
approximately 150 meters. An outlier approximately equal
to 400 meters per second is shown in the plot. This needs
to be investigated why it occurred on a straight track.

 2116

Fig. 18. Target 4 Position RMSE

Fig. 19 shows the RMSE for the velocity of target 4 in
meters per second. The average RMSE taken from Table 1
for the velocity of target 4 is 24 meters per second. The
peak velocity error during the most severe maneuver was
approximately 90 meters per second. There is an outlier
near the end of the scenario at 210 meters per second. This
needs to be investigated why it occurred on a straight track.

Fig. 19. Target 4 Velocity RMSE

Fig. 20 shows the 3 dimensional target trajectory for target
number 5. The target begins at 1500 meters in altitude as it
moves towards the sensor located at the origin and then
climbs to 4500 meters as it moves away from the sensor.
There are three turns during this scenario in the XY plane,
one 45 degree turn and two 90 degree turns. Fig. 21 and 22
show the 2 dimensional plots for the XY and Z trajectories,
respectively. Overlayed on the figures are the 100 Monte-
Carlo run estimates in both the XY and Z planes. This
particular scenario was the most distant target to track from
the sensor across all six targets. In order to keep a high
SNR the largest integration time waveforms were utilized
to produce these results.

Fig. 20. Target 5 Trajectory

Fig. 21. Target 5 XY Trajectory

Fig. 22. Target 5 Z Trajectory

Fig. 23 shows the root mean squared error (RMSE) for the
position of target 5 in meters. The average position RMSE
taken from Table 1 for target 5 is 142 meters. The peak
position error during the most severe maneuver was
approximately 650 meters.

 2117

Fig. 23. Target 5 Position RMSE

Fig. 24 shows the RMSE for the velocity of target 5 in
meters per second. The average RMSE taken from Table 1
for the velocity of target 5 is 70 meters per second. The
peak velocity error during the most severe maneuver was
approximately 275 meters per second. There is an outlier
at 20 seconds due to lack of averaging.

Fig. 24. Target 5 Velocity RMSE

Fig. 25 shows the 3 dimensional target trajectory for target
number 6. The target begins at 1550 meters in altitude and
descends to 800 meters as it moves towards the sensor
located at the origin and then moves away from it. There
are four turns during this scenario in the XY plane, two 90
degree turns, a 135 degree turn, and finally a 45 degree
turn. This scenario is the most stressing with the target
executing up to 7g-turns in the horizontal and vertical
plane. Figs. 26 and 27 show the 2 dimensional plots for the
XY and Z trajectories, respectively. During the second 90
degree turn the target pitches downward and pulls a 7g dive
while executing the turn. In Fig. 27 it is shown how
quickly the descent is executed on the order of seconds.
Overlayed on the figures are the 100 Monte-Carlo run
estimates in both the XY and Z planes.

Fig. 25. Target 6 Trajectory

Fig. 26. Target 6 XY Trajectory

Fig. 27. Target 6 Z Trajectory

Fig. 28 shows the root mean squared error (RMSE) for the
position of target 6 in meters. The average position RMSE
taken from Table 1 for target 6 is 86 meters. The peak
position error during the most severe maneuver was
approximately 420 meters. There is an outlier of 720
meters due to lack of averaging.

 2118

Fig. 28. Target 6 Position RMSE

Fig. 29 shows the RMSE for the velocity of target 6 in
meters per second. The average RMSE taken from Table 1
for the velocity of target 6 is 73 meters per second. The
peak velocity error during the most severe maneuver was
approximately 300 meters per second. There is an outlier
equal to 600 meters per second due to lack of averaging.

Fig. 29. Target 6 Velocity RMSE

V. CONCLUSIONS

 In this paper, we discussed the use of a neural
extended Kalman filter embedded in an IMM architecture
for air target tracking problem. The NEKF uses a neural
network to adapt on-line to unmodeled dynamics or
nonlinearities in the target trajectory. This on-line
adaptation provides for a robust state estimation for
tracking applications because the maneuvers do not have to
be known beforehand. The NEKF is a generic state
estimator that can be used to estimate any state vector such
as position, velocity, magnetic moment, frequency
signatures, etc... A set of preliminary results on the
Benchmark II from 1996 were presented in a tabular form.
Also, plots of RMSE errors and Monte-Carlo estimates
were shown to demonstrate the NEKF IMM tracking
capability.

V. REFERENCES

[1] A Stubberud,., H. Wabgaonkar. 1990 “Approximation

and Estimation Techniques for Neural Networks,”
Proceedings of the 28th Conference on Decision and
Control, (December), Honolulu, Hawaii, pp. 2736-
2740.

[2] R.N. Lobbia, S.C. Stubberud, and M.W. Owen,
“Adaptive Extended Kalman Filter Using Artificial
Neural Networks,” The International Journal of Smart
Engineering System Design, Vol. 1, pp. 207-221,
1998.

[3] W. Blair and G. Watson, “Benchmark II Problem for
Radar Resource Allocation and Tracking
Maneuvering Targets in the Presence of ECM”,
NSWCDD Technical Report – 96, September 1996.

[4] S. Blackman, Multiple-Target Tracking with Radar
Applications, Artech House, 1986.

[5] S. Blackman and R. Popoli, Design and Analysis of
Modern Tracking Systems, Artech House, 1999.

[6] A. Gelb, Applied Optimal Estimation, M.I.T. Press,
1974.

[7] M. Santina, A. Stubberud, and G. Hostetter, Digital
Control System Design, Saunders College Publishing,
1994.

[8] Y. Bar-Shalom and X. Li, Estimation and Tracking:
Principles, Techniques, and Software, Artech House,
1993.

[9] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley
Publishing Company, 1990.

[10] S. Singhal and L. Wu, “Training Multilayer
Perceptrons with the Extended Kalman Algorithm,”
Advances in Neural Information Processing System I,
D.S. Touretzky (ed.) Morgan Kaufmann, 1989, pages
133-140.

[11] E. Daeipour, Y. Bar-Shalom, and X. Li. 1994
“Adaptive Beam Pointing Control of a Phased Array
Radar Using an IMM Estimator,” Proceedings of the
American Control Conference, (June), Baltimore,
Maryland, pp. 2093-2097.

[12] M. Owen and A. Stubberud, “NEKF IMM Tracking
Algorithm,” Proceedings of SPIE: Signal and Data
Processing of Small Targets 2003, volume 5024,
Oliver Drummond, editor, San Diego, California,
August, 2003.

 2119

