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Abstract

Background: Extracting biomedical entities and their relations from text has important applications on biomedical
research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be
made on feature engineering when feature-based models are employed. Moreover, pipeline models may suffer error
propagation and are not able to utilize the interactions between subtasks. Therefore, we propose a neural joint model
to extract biomedical entities as well as their relations simultaneously, and it can alleviate the problems above.

Results: Our model was evaluated on two tasks, i.e., the task of extracting adverse drug events between drug and
disease entities, and the task of extracting resident relations between bacteria and location entities. Compared with
the state-of-the-art systems in these tasks, our model improved the F1 scores of the first task by 5.1% in entity
recognition and 8.0% in relation extraction, and that of the second task by 9.2% in relation extraction.

Conclusions: The proposed model achieves competitive performances with less work on feature engineering. We
demonstrate that the model based on neural networks is effective for biomedical entity and relation extraction. In
addition, parameter sharing is an alternative method for neural models to jointly process this task. Our work can
facilitate the research on biomedical text mining.
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Background
Automatically extracting entities and their relations from
biomedical text has attracted much research attention
in biomedical text mining community due to its impor-
tant applications on knowledge acquisition and ontol-
ogy construction [1]. Recently, various related tasks have
been proposed, such as protein-protein interaction detec-
tion (PPI) [2], drug-drug interaction detection (DDI) [3],
adverse drug event extraction (ADE) [4] and the bacteria
biotope task (BB) [5].
Taking the ADE task for example, the objective of this

task is to recognize mentions of drug and disease enti-
ties, and extract possible ADE relations between them.
Given a sentence “A woman who was treated for thyro-
toxicosisdisease withmethimazoledrug developed agranu-
locytosisdisease.”, the outputs will be three entity mentions
and an ADE relation {methimazoledrug , agranulocyto-
sisdisease}ADE .
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Entity and relation extraction is a standard task in text
mining or natural language processing (NLP). Most of
previous work used two-step pipeline models to per-
form this task. First, entity mentions in a given sentence
are recognized using the technologies of named entity
recognition (NER). NER is usually casted as a sequence
labeling problem solved by conditional random fields
(CRFs) [6]. Second, each entity pair is examined to decide
whether they have task-specific relations using classifica-
tion models such as support vector machines (SVMs) [7].
In the biomedical community, pipeline models are also
frequently used for this task [8–14].
Such pipeline models suffer two main problems. First,

the errors generated in the NER step may propagate to
the step of relation classification. For instance, if a drug
or disease entity mention is incorrectly recognized, the
extraction of its related ADEs will be incorrect. Second,
the interactions between two subtasks in the two steps
are not able to be utilized, while these interactions may
help the subtasks. For instance, given a sentence “The tire
maker still employs 1400” [15], although it may be dif-
ficult to recognize “1400” as a person entity, the word
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“employs” indicates an employment-organization relation
which must involve a person entity. Therefore, such rela-
tion may help the model to recognize “1400” correctly.
Due to the aforementioned disadvantages of pipeline

models, joint models, which process entity recognition
and relation classification simultaneously, have been pro-
posed. Joint models process two subtasks simultaneously,
so they can alleviate the problem of error propagation.
On the other hand, some model parameters are shared
by the submodels of entity recognition and relation clas-
sification in joint models, so these parameters help the
models capture the interactions between two subtasks.
Roth and Yih [16] proposed a joint inference framework
based on integer linear programming to extract entities
and relations. Li and Ji [15] exploited a single transition-
basedmodel to accomplish entity recognition and relation
classification simultaneously. Kordjamshidi et al. [17] pro-
posed a structured learning model to extract biomedical
entities and their relationships. However, these feature-
based approaches require much feature engineering and
they also suffer feature sparsity problem, since the com-
bined feature space of a joint task is significantly larger
than those of its subtasks.
Recently, deep learning with neural networks has

received increasing research attention in the artificial
intelligence area [18, 19], as well as the text mining and
NLP areas [20, 21]. Compared with other models, deep
neural networks adopt low-dimensional dense embed-
dings to denote features such as words or part-of-speech
(POS) tags, which can effectively settle the feature spar-
sity problem. In addition, deep neural networks demand
less feature engineering, since they can learn features
from training data automatically. Ma and Hovy [22] and
Lample et al. [23] exploited similar frameworks by com-
bining recurrent neural networks (RNNs) with CRFs and
obtained the best results on several benchmark NER
datasets. For relation classification, there are two state-
of-the-art methods using deep neural networks, namely
RNNs [24] and convolutional neural networks (CNNs)
[25]. They used RNNs or CNNs to learn relation repre-
sentations along the words between two target entities or
along the words on the shortest dependency path (SDP)
of two target entities. Miwa and Bansal [26] proposed
an end-to-end relation extraction model and obtained
competitive performances in several datasets. However,
there is less related work in biomedical entity and relation
extraction using deep neural networks. Li et al. [27] and
Mehryary et al. [28] used similar approaches with [24, 25],
but they only focused on relation classification with given
entities. Li et al. [29] exploited a transition-based feed-
forward neural network to jointly extract drug-disease
entity mentions and their ADE relations. Jiang et al. [30]
proposed two independent neural models for DDI and
gene mention tagging tasks, respectively.

In this paper, we follow the novel line of work on
deep neural networks and propose a neural joint model
to extract biomedical entities and their relations. First,
our model uses CNNs to encode character information
of words into their character-level representations. Sec-
ond, character-level representations, word embeddings
and POS embeddings are fed into a bi-directional (Bi)
long short-term memory (LSTM) [31] based RNN to
learn the representations of entities and their contexts in
a sentence. These representations are used to recognize
biomedical entities. Third, another Bi-LSTM-RNN learns
relation representations of two target entities along their
SDP. These representations are used to classify their rela-
tions. The second Bi-LSTM-RNN is stacked on the first
one, i.e., the output vectors of LSTM units in the first
Bi-LSTM-RNN are used as the input vectors of LSTM
units in the second one. The parameters of LSTM units in
the first Bi-LSTM-RNN are shared by both networks, so
they are jointly affected by entity recognition and relation
classification tasks during training.
Our neural joint model was evaluated for extracting

biomedical entities and their relations on two tasks,
namely ADE [4] and BB [5]. Comparing with the state-of-
the-art model [29] for the ADE task, our model improved
the precision and recall of drug-disease entity recogni-
tion by 3.2 and 7.1%, and ADE relation extraction by 3.5
and 12.9%, respectively. Comparing with the best system
[14] for the BB task, our model boosted the precision
and recall of resident relation extraction by 30.5 and 0.8%,
respectively. Experimental results showed that our neu-
ral joint model could obtain competitive performances
with less feature engineering. In addition, ourmodel could
obtain better performances than pipeline models by shar-
ing parameters between the submodels. We demonstrate
that deep neural networks are also effective for biomedi-
cal entity and relation extraction. Therefore, our model is
able to facilitate the research on biomedical text mining.

Methods
CNN for character-level representations
Character-level features have been demonstrated to be
effective for neural NER models. For example, the suffix
“bacter” is a strong feature to indicate a bacteria entity
such as “campylobacter” or “helicobacter”. Following pre-
vious work [22, 23], CNNs are used to extract morpholog-
ical information (like the prefix or suffix of a word) from
characters of words. Figure 1 shows the process of extract-
ing character information from a word and encoding them
into a character-level vector representation.
Given a word w = {c1, c2, . . . , cN }, ci denotes its i-

th character and emb(ci) denotes the embedding of this
character. To use morphological information, the embed-
dings of continuous characters in a window size C are
concatenated as the final representation rci of ci. For
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Fig. 1 The CNN for extracting character-level representations. A
rectangular grid indicates a vector and a square indicates one
dimension of this vector, so character embeddings or representations
can be denoted as n-dimensional vectors. Shading rectangular grids
indicate special padding vectors

example, if C = 1, rci =[emb(ci−1), emb(ci), emb(ci+1)],
where “[]” denotes the vector concatenation operation.
Then the convolutional kernel of CNN needs N times of
convolutions for all the characters in this word and for
each convolution i, the kernel output oi is computed by

oi = tanh
(
W1rci + b1

)
, (1)

whereW1 and b1 are the parameter matrix and bias vector
that are learned, and tanh denotes the hyperbolic tan-
gent activation function. To generate the character-level
representation rw of this word w, max-pooling operations
are applied to all kernel outputs o1, o2, . . . , oN . The k-th
dimension of rw is computed by

rwk = max
1�i�N

oik . (2)

Bi-LSTM-RNN for biomedical entity recognition
Following state-of-the-art neural models [22, 23, 26],
biomedical entity recognition is casted as a sequence
labeling problem. For example, if the standard label
scheme BILOU is utilized in the ADE task, which includes
two entity types namely Drug and Disease, entity labels
can be designed as follows. B-Drug/B-Disease, I-Drug/I-
Disease and L-Drug/L-Disease denote the beginning,
following and last words of Drug/Disease entities, respec-
tively. U-Drug or U-Disease denotes the single word of
Drug or Disease entities. O denotes that the word does
not belong to any type of entities. For example, given a
sentence “gliclazide-induced acute hepatitis”, Fig. 2 shows
the process of labeling each word of this sentence by our
Bi-LSTM-RNN model.
Given a sentence w1/p1/rw1 ,w2/p2/rw2 , . . . ,wN/pN/

rwN , where wi denotes the i-th word, pi denotes the POS
tag of wi, and rwi denotes the character-level represen-
tation of wi. For the i-th step of sequence labeling, the

Fig. 2 The Bi-LSTM-RNN for biomedical entity recognition. Rectangular
grids indicate vectors of feature embeddings or representations. At the
bottom, three kinds of vectors are concatenated and fed into LSTMs.
Dashed arrow lines denote bottom-up computations along the network
framework and solid arrow lines denote left-to-right computations
along the sentence

Bi-LSTM-RNN layer takes the concatenation of the word
embedding, POS tag embedding and character-level rep-
resentation of wi as inputs, given by

ti = [
emb (wi) , emb (pi) , rwi

]
. (3)

Based on t = {t1, t2, . . . , tN }, a LSTM unit in the left-
to-right direction associates each of them with a hidden
state

−→
h i, so t corresponds to

−→
h = {−→h 1,

−→
h 2, . . . ,

−→
h N }.

Here
−→
h i does not only capture the information in the

current step, but also that in the previous steps. To cap-
ture the information in the following steps, we also add a
counterpart

←−
h i of

−→
h i in the reverse direction, so t also

corresponds to
←−
h = {←−h 1,

←−
h 2, . . . ,

←−
h N }. In the hidden

layer,
−→
h i and

←−
h i are selected as one input source in the i-

th step. Moreover, the last entity label lei−1 is also selected
as another input source to consider label dependence (e.g.,
the label I-Drug should not follow the label O). This is
not shown in Fig. 2 for conciseness. The final inputs and
outputs of the i-th step in the hidden layer are given by

hei = tanh
(
W2

[−→
h i,

←−
h i, emb

(
lei−1

)] + b2
)
, (4)

where hei denotes the output vector of the hidden layer,W2
and b2 denote the parameter matrix and bias vector that
are learned.
Finally, the softmax output layer calculates the probabil-

ities ye of all entity labels Le, given by

ye = softmax
(
W3hei + b3

)
, (5)
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where the k-th label with the maximum probability yek is
selected as the label of the i-th word.

Bi-LSTM-RNN for relation classification
Once entity recognition is finished, our model starts rela-
tion classification to determine whether a task-specific
relation exists between all possible entity pairs. Prior
work has demonstrated the effectiveness of SDPs in the
dependency trees for relation classification [24, 26]. The
words along SDPs concentrate on most relevant informa-
tion while diminishing less relevant noise. Following these
studies, we use the Bi-LSTM-RNN to model relation rep-
resentations between two target entities along their SDP.
For example, given a sentence “gliclazide-induced acute
hepatitis”, Fig. 3 shows the process of classifying ADE
relations by our Bi-LSTM-RNN.
Given an entity pair ea (e.g., gliclazide) and eb (e.g.,

acute hepatitis) in a sentence, the last words a (e.g., gli-
clazide) and b (e.g., hepatitis) of these entities are used

Fig. 3 The Bi-LSTM-RNN for relation classification. The input sentence
is tokenized before it is analyzed by a dependency parser. Tokens are
indexed by Arabic numerals. Basic (a.k.a, projective) dependency style
is utilized to build a tree. The bold lines in the tree denote the shortest
dependency path (SDP) between “gliclazide” and “hepatitis” with
their lowest common ancestor “induced”. xi indicates the input vector
of a LSTM unit as shown in Eq. 6 and i corresponds to the index of a
token. In the Bi-LSTM-RNN layer, solid arrow lines denote bottom-up
and top-down computations along the SDP in the dependency tree.
↑ ha , ↑ hb , ↓ ha , ↓ hb are listed in Eq. 8

to build the SDP between them. The SDP can be for-
mally represented by {a, a1, . . . , am, c, bn, . . . , b1, b} (e.g.,
{gliclazide, induced, hepatitis}), where c denotes their
lowest common ancestor in the dependency tree (e.g.,
induced). a1, . . . , am denote the words occurring between
a and c on the SDP, and b1, . . . , bn denote the words
occurring between b and c. The SDP can be divided into
two parts: {a, a1, . . . , am, c} (e.g., {gliclazide, induced}) and
{b, b1, . . . , bn, c} (e.g., {hepatitis, induced}) are bottom-
up sequences; {c, am, . . . , a1, a} (e.g., {induced, gliclazide})
and {c, bn, . . . , b1, b} (e.g., {induced, hepatitis}) are top-
down sequences. We extract features from both kinds of
sequences by the Bi-LSTM-RNN. The input of each LSTM
unit is a concatenation of three parts, given by

xi =
[−→
h i,

←−
h i, emb(di)

]
, (6)

where emb(di) denotes the embedding of dependency
type di between the word wi and its governor in the
dependency tree.

−→
h i and

←−
h i correspond to the word wi

and they are identical to those notations mentioned in
Eq. 4. Since

−→
h i and

←−
h i are used as the inputs of these

LSTM units, the Bi-LSTM-RNN for relation classification
is stacked on the Bi-LSTM-RNN for entity recognition.
Therefore, two Bi-LSTM-RNNs in our joint model share
partial parameters and these parameters can be tuned
during jointly training, which assists our joint model to
capture the interactions between two subtasks. Miwa and
Bansal [26] also demonstrated the effectiveness of such
method for neural models.
The last LSTM outputs computed along bottom-

up sequences {a, a1, . . . , am, c} and {b, b1, . . . , bn, c} are
denoted as ↑ ha and ↑ hb. The last LSTM outputs com-
puted along top-down sequences {c, am, . . . , a1, a} and
{c, bn, . . . , b1, b} are denoted as ↓ ha and ↓ hb.
In the hidden layer, ↑ ha,↑ hb,↓ ha and ↓ hb

are selected as one input source, and the entity repre-
sentations ra and rb are used as another input source,
computed by

ra = 1
|Ka|

∑

k∈Ka

[−→
h k ,

←−
h k

]
,

rb = 1
|Kb|

∑

k∈Kb

[−→
h k ,

←−
h k

]
,

(7)

where Ka and Kb denote the index sets of the words in two
entities, and

−→
h k and

←−
h k are identical to those notations

in Eq. 4. Entity representations are used to compensate
information losses, since the SDP are built according to
the last words of two target entities. For conciseness, this
part is not shown in Fig. 3.



Li et al. BMC Bioinformatics  (2017) 18:198 Page 5 of 11

Finally, all vector representations of two input sources
are concatenated and then computed in the hidden layer
to generate the outputs hr , given by

hr = tanh (W4 [↑ ha,↑ hb,↓ ha,↓ hb, ra, rb] + b4) .
(8)

A softmax layer calculates the probabilities yr of all
relation labels Lr , given by

yr = softmax
(
W5hr + b5

)
, (9)

where the k-th label with the maximum probability yrk
is selected as the relation type of two target entities
ea and eb.

Training
Both submodels of our joint model employ the same train-
ing algorithm and AdaGrad [32] is employed to control
the update step. We describe their training in one section
for conciseness.
Online learning is exploited to train model parame-

ters. Given a sentence with gold-standard entities and
relations, we generate some training examples for entity
recognition and relation classification submodels. When
each example is sent to its corresponding submodel, the
cross-entropy loss for this example is computed and gra-
dients are back-propagated to each layer of the submodel
for updating parameters. Therefore, we can consider two
submodels are trained alternately. Moreover, since the
parameters of LSTM units in the entity recognition sub-
model are shared by two submodels, the loss of each
example can propagate to these parameters. Therefore,
they are affected by both entity recognition and relation
classification tasks.
Formally, assuming that the gold-standard label and its

predicted probability are l and probl, the loss for each
example is calculated via -log probl. If all losses are accu-
mulated with a L2 regularization term, the final objective
is given by

L(θ) = −
∑

i
log probl + λ

2
‖ θ ‖22, (10)

where θ denotes all model parameters, and λ is the regu-
larization parameter.

Data
We carried out experiments on two tasks, namely adverse
drug event extraction (ADE) [4] and the bacteria biotope
task (BB) [5].
The ADE task aims to extract two kinds of entities

(drugs and diseases) and relations about which drug is
associated with which disease (ADEs). Its dataset is pub-
lished in the form of independent sentences that come
from 1644 PubMed abstracts. Sentences in the dataset

are divided into two categories, namely 6821 sentences
in which at least one drug/disease entity pair has the
ADE relation (i.e., ADE sentences), and 16695 sentences
in which no drug/disease entity pair has the ADE relation
(i.e., non-ADE sentences). Biocurators only annotated
drug/disease entities (i.e., the arguments of ADE relations)
in the ADE sentences, so there are no annotated enti-
ties in the non-ADE sentences. Following previous work
[29], only ADE sentences were used in our experiments
since we need to evaluate the performances of both entity
recognition and relation extraction. Similar to prior work
[12, 29], 120 relations with nested gold annotations were
removed (e.g., “lithium intoxication”, where “lithium” is
related to “lithium intoxication”).
The BB task aims to extract bacteria-related knowledge

from PubMed abstracts. We focus on the BB-event+ner
subtask, which consists of two parts, namely recogniz-
ing bacteria, habitat and geographical entity mentions,
and extracting Lives_In relations between bacteria enti-
ties and their locations (either habitat or geographical
entities). The training, development and test set of the
BB-event+ner subtask include 71, 36 and 54 documents,
which contain 1158, 736, 1049 entities and 327, 223, 314
relations, respectively. The statistics of the final data used
in our experiments are shown in Table 1.

Evaluation metrics
Standard precision (P), recall (R), F1 were used as
evaluation metrics of entity and relation extraction,
computed by

P = TP
TP + FP

,

R = TP
TP + FN

,

F1 = 2 × P × R
P + R

,

(11)

where a recognized entity mention was counted as true-
positive (TP) if its boundary and type matched those of
a gold entity mention. An extracted relation was counted
as TP if its relation type was correct, and the boundaries
and types of its related entities matched those of the enti-
ties in a gold relation. A recognized entity or extracted
relation was counted as false-positive (FP) if it did not
match the corresponding conditions mentioned above.

Table 1 Statistics of the ADE and BB data used in our experiments

ADE BB

Sentences 6821 Documents 161

Entities 10666 Entities 2943

Relations 6686 Relations 864
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The number of false-negative (FN) instances was com-
puted by counting the gold entities or relations that had
not been identified by our model.
Since there were no official development set in the

ADE task, we evaluated our model using 10-fold cross-
validation, where 10% of the data were used as the
development set, 10% were used as the test set and the
remaining were used as the training set. Then the final
results were displayed as macro-averaged scores.
For the BB task, we used P, R and F1 to evaluate our

model on the development set. The final results on the
test set were given by the official evaluation service [5],
which showed only the overall performance of relation
extraction in P, R and F1.

Hyper-parameter settings
Some of hyper-parameter values were tuned according
to the development set and others were chosen empiri-
cally following prior work [22, 26] since it is infeasible to
perform full search for all hyper-parameters. Their final
values are shown in Table 2. For conciseness, the dimen-
sions of model parameter matrices W1,W2,W3,W4,W5
and bias vectors b1, b2, b3, b4, b5 are not shown since they
can be easily deduced from this table. Their values were
randomly initialized with a uniform distribution.
The initial AdaGrad learning rate α and regulariza-

tion parameter λ were set to 0.03 and 10−8, respectively.
The dimension of word embeddings was set to 200 and
those of other feature embeddings were set to 25. We
used pre-trained biomedical word embeddings [33] to ini-
tial our word embeddings and other kinds of embeddings
were randomly initialized in the range (-0.01, 0.01). All
the embeddings were tuned during training except word
embeddings.
For CNN, the character window size C was set to 3,

so the dimension of convolutional kernel inputs rc can
be computed as (2×3+1)×25=175. For Bi-LSTM-RNN in

Table 2 Hyper-parameter settings

Type Hyper-parameter

Training α = 0.03, λ = 10−8

Embedding dim(emb(wi)) = 200

dim(emb(pi), emb(di) or emb(lei )) = 25

CNN dim(emb(c)) = 25, C = 3

dim(rw) = 25

Bi-LSTM-RNN (Entity) dim(
−→
h i) or dim(

←−
h i) = 100

dim(hei ) = 100

Bi-LSTM-RNN (Relation) dim(↑ ha ,↑ hb ,↓ ha or ↓ hb) = 100

dim(hr) = 100

dim denotes vector dimensions and emb denotes feature embeddings

entity recognition, we set the dimensions of LSTM hid-
den states

−→
h i or

←−
h i, and the hidden layer hei to 100.

For Bi-LSTM-RNN in relation classification, we set the
dimensions of LSTM hidden states ↑ ha,↑ hb,↓ ha or
↓ hb, and the hidden layer hr to 100. The dimensions of
entity representations ra and rb can be computed as 200.

Preprocessing
Given a document, we used some heuristic rules to split
it into sentences and then tokenized these sentences
into words. Tokenization was performed using not only
whitespaces but also punctuations, since we might not
find the node for an entity (e.g., “gliclazide”) in the depen-
dency tree if it was not separated from a piece of text (e.g.,
“gliclazide-induced”). All the words were transformed into
their lowercase forms and numbers were replaced by
zeroes. The version 3.4 of Stanford CoreNLP toolkit [34]
was used for POS tagging and dependency parsing. To
ensure dependency structures as trees, we employed basic
(a.k.a., projective) dependencies. In particular, the discon-
tinuous and nested entities were removed, in order to fit
our model.

Results
Result comparisons with other work
Table 3 shows the results of prior work that processed
the ADE task. Kang et al. [12] utilized a knowledge-
based pipeline method, namely recognizing entities via
an off-the-shelf tool, and extracting ADEs via the UMLS
Metathesaurus and Semantic Network [35]. As shown in
Table 3, their method obtained the imbalanced precision
and recall. One likely reason is that their method did
not distinguish between ADE relations and drug-disease
treatment relations due to the limitations of manually
designed rules and knowledge bases, so this strategy led to
a high recall but a low precision. By contrast, our neural
joint model achievedmore balanced precisions and recalls
without the assistance of knowledge bases. In addition,
the recall of relation extraction is comparable with that of
their method.
Li et al. [29] used a feed-forward neural network to

jointly extract drug-disease entities and ADE relations.
For drug-disease entity recognition, our model improved
the precision, recall and F1 by 3.2, 7.1 and 5.1%, respec-
tively. For ADE relation extraction, the precision, recall

Table 3 Result (%) comparisons with other work in the ADE task

Method
Entity recognition Relation extraction

P R F1 P R F1

Kang [12] — — — 42.1 76.3 54.3

Li [29] 79.5 79.6 79.5 64.0 62.9 63.4

Our model 82.7 86.7 84.6 67.5 75.8 71.4
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and F1 was improved by 3.5, 12.9 and 8.0%, respec-
tively. Their method used knowledge bases such as Word-
Net [36] and CTD [37] to help improving performances.
Moreover, they manually designed global features to cap-
ture the interactions of entity recognition and relation
extraction. By contrast, our model obtained much better
results without using any knowledge base and captured
the interactions automatically.
Table 4 shows the results of related work that processed

the BB task. LIMSI [14] achieved the best F1 in the official
evaluation. It leveraged a pipeline framework using CRF
to recognize mentions of bacteria and locations, and SVM
to extract Lives_In relations between two entity mentions.
UTS [5] also employed a pipeline framework that relied
on two independent SVMs to perform entity recogni-
tion and relation classification, respectively. As shown in
Table 4, they suffered either low precisions or recalls. Our
neural joint model outperformed their methods without
using knowledge bases provided by the task organizers.
In addition, neural features reduced the work of feature
engineering in CRF or SVM.
All the methods in the BB task achieved lower recalls

than precisions, which might be caused by two reasons.
The first reason is that there is much disagreement among
annotators on whether to annotate an entity mention or
relation as a gold answer based on the official statistics [5]
shown in Table 5. This implies that it is a challenging task
to extract Lives_In relations from PubMed abstracts, even
for professional annotators. The second reason is that
there are 27% inter-sentence relations (i.e., the argument
entities of a relation occurring in different sentences)
based on the official statistics of BB task, so the meth-
ods restricted to extract intra-sentence relations (i.e., the
argument entities of a relation occurring in the same sen-
tence) will suffer low recalls. Nevertheless, the extraction
of inter-sentence relations is still a very challenging prob-
lem in the text mining or NLP area, which is not taken into
account for the moment in this paper.

Feature contributions
The experiments were carried out on the development
set to explore the contributions of different features. For

Table 4 Result (%) comparisons with other work in relation
extraction of the BB task

LIMSI UTS Our model

Precision 19.3 33.1 49.8

Recall 19.1 13.3 19.9

F1 19.2 19.0 28.4

F1(Habitat) 18.6 17.4 29.2

F1(Geographical) 28.3 35.0 20.5

F1(Intra-sentence) 28.6 23.4 35.1

Table 5 The inter-annotator agreement (%) of entity mentions
and Lives_In relations [5]

P R F1

Entity Mentions 95.5 62.1 75.3

Lives_In Relations 95.2 31.1 46.8

entity recognition, our features consist of words, charac-
ters, POS tags and entity labels. For relation extraction,
our features consist of words, dependency types, entity
representations. In feature contribution experiments, we
took the model using word features as the baseline, and
added only one kind of other features at a time.
In Table 6, entity labels were most useful in the ADE

task, improving the precision and recall by 2.4 and 1.9%,
respectively. While in the BB task, POS tags contributed
the most, improving the precision and recall by 2.3 and
4.1%, respectively. The effectiveness of character features
was moderate, improving the F1 by 0.3 and 1.3%.
In Table 7, by adding entity representations, our model

achieved the biggest improvements in F1, by 1.0% in the
ADE task and 3.0% in the BB task.While dependency type
features contributed the most for the precision in the BB
task.
Based on our experiments, the contributions of these

features are not consistent in different tasks, which is rea-
sonable due to the characters of these tasks and their
datasets.

Discussion
Comparisons of joint and pipeline models
Since our model uses parameter sharing to joint two
Bi-LSTM-RNN networks, it is necessary to evaluate the
effectiveness of such method. To this end, a pipeline
model was built without parameter sharing and compared
with the joint model.
The pipeline model was built by replacing

−→
h i and

←−
h i

in Eq. 6 with word embeddings emb(wi). Therefore, the
connections between two Bi-LSTM-RNNs were cut off
and they became independent submodels. To be fair, both
the pipeline and joint models used only word embedding
features.

Table 6 Feature contribution experiments for entity recognition

Features
ADE BB

P R F1 P R F1

Word 80.1 83.6 81.8 67.1 56.7 61.4

+char 80.2 84.0 82.1 66.4, 59.4 62.7

+pos 80.5 84.7 82.5 69.4 60.8 64.8

+label 82.5 85.5 84.0 66.1 59.5 62.6

All 82.4 86.4 84.3 68.0 63.4 65.6

Here “+” means only that feature is added. “char”, “pos” and “label” denote character,
POS tag and entity label features, respectively
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Table 7 Feature contribution experiments for relation extraction

Features
ADE BB

P R F1 P R F1

Word 62.7 69.9 66.1 34.5 20.4 25.6

+dep 63.3 71.0 66.9 42.0 19.9 27.0

+entity 63.4 71.2 67.1 34.1 24.7 28.6

All 67.3 75.7 71.3 42.7 25.2 31.7

Here “+” means only that feature is added.“dep” and “entity” denote dependency
type and entity representation features, respectively

As shown in Table 8, the performance differences
between the pipeline and joint models are slight in the
ADE task. While in the BB task, the performance of
the joint model is much better than that of the pipeline
model, and the F1 scores of the joint model increase by
2.8 and 4.2% in entity recognition and relation classifica-
tion, respectively.Miwa and Bansal [26] performed similar
experiments in other datasets and the performance differ-
ences varied between 0.8–1.1%.
In general, we believe that parameter sharing between

the subtasks of a joint model is effective since these
parameters are influenced by correlated subtasks and they
can help a joint model capturing the interactions of these
subtasks. Nevertheless, such strategy may have few effects
on improving performances for a specific task, so the
characters of a task also need to be considered.

Error analysis
The errors were divided into two parts, namely FP and
FN. For entity recognition, both FP and FN errors can be
divided into two types: The boundary of an entity is incor-
rectly recognized and the type of an entity is incorrectly
recognized. For relation extraction, FP errors contain two
types: the entity mentions of a relation are incorrect
(either boundaries or types), and entity mentions are cor-
rect but their relation is incorrectly predicted. FN errors
consist of two types: First, at least one entity mention of
a relation has not been recognized, leading to losing this
relation; Second, both entity mentions of a relation have
been recognized, but the model does not determine that
they have such relation.
The statistics of error analysis was performed on the

development sets of two datasets. As shown in Table 9,

Table 8 Performance comparisons of joint and pipeline models

Task Method
Entity recognition Relation extraction

P R F1 P R F1

ADE Pipeline 79.6 83.5 81.5 62.5 69.9 66.0

Joint 80.1 83.6 81.8 62.7 69.9 66.1

BB Pipeline 67.2 52.0 58.6 26.6 17.7 21.2

Joint 67.1 56.7 61.4 34.5 20.4 25.6

Table 9 Error analysis of entity recognition

Task Error type %

ADE FP Incorrect boundaries 55.3

Incorrect types 1.3

FN Incorrect boundaries 42.1

Incorrect types 1.3

Total 100

BB FP Incorrect boundaries 37.1

Incorrect types 3.6

FN Incorrect boundaries 55.7

Incorrect types 3.6

Total 100

boundary identification seems to be much more difficult
than type identification in biomedical entity recognition.
The errors of boundary identification account for more
than 90% of total errors in both tasks. This may be ratio-
nal due to the following reasons: First, there are only
several entity types in the ADE (drug/disease) and BB
(bacteria/emphhabitat/geographical) tasks, so it is eas-
ier for the model to identify entity types; Second, the
characters of biomedical entities are more obvious than
those of the entities in the common area, which helps
the model to identify their types. For example, a bacte-
ria entity “helicobacter” or drug entity “gliclazide” is much
less ambiguous than an organization entity “bank”, since
“bank” has anothermeaning “riverside”; Third, the bound-
ary of a biomedical entity is more difficult to be identified,
since it may include a number of words to express an inte-
grated biomedical concept, such as a disease entity “bilat-
eral lower leg edema” or habitat entity “monocyte-like
THP-1 cells”.
In Table 10, the percentage of the first type of FP errors

is much higher than that of the second one in both tasks
(55.7% vs. 3.1% and 22.7% vs. 15.2%), which implies the

Table 10 Error analysis of relation extraction

Task Error type %

ADE FP Entities incorrectly recognized 55.7

Entities correct, relations wrong 3.1

FN Entities not found 40.7

Entities found, relations not found 0.5

Total 100

BB FP Entities incorrectly recognized 22.7

Entities correct, relations wrong 15.2

FN Entities not found 43.7

Entities found, relations not found 18.4

Total 100
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importance of entity recognition for relation extraction.
The proportion of the second type of FP errors in the BB
task is larger than that in the ADE task (15.2% vs. 3.1%),
which demonstrates the relations in the BB task are more
difficult to be predicted.
In addition, the first type of FN errors accounts for

nearly 50% of total errors in both tasks, which indicates
that missing entities is the main reason of missing rela-
tions. Therefore, one way to alleviate this problem is to
build a high-quality entity recognition model in order to
reduce errors propagating to the subsequent step of rela-
tion extraction. Another alternative way is to use joint
models to alleviate such error propagation. By contrast,
the distribution of the second type of FN errors shows
obvious differences between two tasks. In the ADE task,
such errors account for 0.5%, while in the BB task, they
account for 18.4%. The reasons for this may be because
we only used ADE sentences, which contain at least one
ADE relation, as our dataset in the ADE task, since the
entities in non-ADE sentences were not annotated. The
relation expression in ADE sentences may be apparent so
they are easier for the model to determine. In contrast, we
used all sentences in the BB task, which increases the dif-
ficulty of relation extraction. Furthermore, the relations in
the ADE task were annotated in the sentence level, while
ones in the BB task were annotated in the document level,
so inter-sentence relations were lost.
To further demonstrate our observations from error

analysis, we performed additional experiments to com-
pare our model with two relation extraction methods
that are based on co-occurrence entities inside one sen-
tence and gold entity mentions. As shown in Table 11,
co-occurrence and gold-mention basedmethods achieved
pretty high performances (>95% in F1) in the ADE task,
which demonstrates the errors of our model mainly come
from entity recognition. Therefore, the low error rates of
the second FP (Entities correct, relations wrong: 3.1%) and
FN (Entities found, relations not found: 0.5%) in Table 10
are explainable. Achieving high performances when enti-
ties are given is mainly due to the annotation method of

Table 11 Comparisons with the methods based on
co-occurrence entities inside one sentence and gold
entity mentions

Task Method
Relation Extraction

P R F1

ADE Co-occurrence 97.3 100 98.6

Gold mentions 97.5 99.9 98.7

Our model 67.3 75.7 71.3

BB Co-occurrence 34.9 72.5 47.1

Gold mentions 58.7 43.6 50.0

Our model 42.7 25.2 31.7

ADE corpus: if drug and disease entities have noADE rela-
tions in a sentence, entities will not be annotated in that
sentence either; therefore, if entities are given, ADE rela-
tions are almost determined. By contrast, the submodel
of relation classification in our model also contributed
a number of errors in the BB task, since co-occurrence
and gold-mention based methods achieved modest per-
formances when entities were given. It also explains the
high error rates of the second FP (Entities correct, rela-
tions wrong: 15.2%) and FN (Entities found, relations not
found: 18.4%) in Table 10.

Limitations of our model
The main limitation of our model is that it is not able
to extract inter-sentence relations, which is a much more
challenging task since it requires discourse-level language
understanding and coreference resolution technologies.
Some prior work has explored the methods for inter-
sentence relation extraction [38, 39] or event extraction
[40]. In future work, our main objective is to alleviate this
limitation.

Conclusions
In this paper, we explore a neural joint model to extract
biomedical entities and their relations. Our model utilizes
the advantages of several state-of-the-art neural mod-
els for entity recognition or relation classification in text
mining and NLP. Experimental results on two related
tasks showed that our model outperformed the best sys-
tems in those tasks. We find that deep neural networks
can achieve competitive performances with less work
on feature engineering and less dependence on external
resources such as knowledge bases. In addition, param-
eter sharing is an effective method for neural models
to jointly process several correlated tasks. We believe
that our work can facilitate the research on biomedical
text mining, especially for biomedical entity and rela-
tion extraction. Whether our model is effective for other
biomedical entity-relation-extraction tasks remains to be
investigated.
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