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ABSTRACT

Current language models have significant limitations in their ability to encode and
decode factual knowledge. This is mainly because they acquire such knowledge
based on statistical co-occurrences, even if most of the knowledge words are rarely
observed named entities. In this paper, we propose a Neural Knowledge Language
Model (NKLM) which combines symbolic knowledge provided by a knowledge
graph with the RNN language model. The model predicts whether the word to
generate has an underlying fact or not. Then, a word is either generated from the
vocabulary or copied from the description of the predicted fact. We train and test
the model on a new dataset, WikiFacts. In experiments, we show that the NKLM
significantly improves the perplexity while generating a much smaller number of
unknown words. In addition, we demonstrate that the sampled descriptions include
named entities which used to be the unknown words in RNN language models.

1 INTRODUCTION

Kanye West, a famous <unknown> and the husband of <unknown>,
released his latest album <unknown> in <unknown>.

A core purpose of language is to communicate knowledge. Thus, for human-level language under-
standing, it is important for a language model to take advantage of knowledge. Although traditional
language models are good at capturing statistical co-occurrences of entities as long as they are
observed frequently in a corpus (e.g., words like verbs, pronouns, and prepositions), they are in
general limited in their ability to encode or decode knowledge, which is often represented by named
entities such as person names, place names, years, etc. (as shown in the above example sentence of
Kanye West.) When trained with a very large corpus, traditional language models have demonstrated
to some extent the ability to encode/decode knowledge (Vinyals & Le, 2015; Serban et al., 2015).
However, we claim that simply feeding a larger corpus into a bigger model hardly results in a good
knowledge language model.

The primary reason for this is the difficulty in learning good representations for rare or unknown
words because these are a majority of the knowledge-related words. In particular, for applications
such as question answering (Iyyer et al., 2014; Weston et al., 2016; Bordes et al., 2015) and dialogue
modeling (Vinyals & Le, 2015; Serban et al., 2015), these words are of our main interest. Specifically,
in the recurrent neural network language model (RNNLM) (Mikolov et al., 2010) the computational
complexity is linearly dependent on the number of vocabulary words. Thus, including all words of
a language is computationally prohibitive. Instead, we typically fill our vocabulary with a limited
number of frequent words and regard all the other words as the unknown (UNK) word. Even if we
can include a large number of words in the vocabulary, according to Zipf’s law, a large portion of the
words will be rarely observed in the corpus and thus learning good representations for these words
remains a problem.

The fact that languages and knowledge can change over time also makes it difficult to simply rely on
a large corpus. Media produce an endless stream of new knowledge every day (e.g., the results of
baseball games played yesterday) that is even changing over time (e.g., “the current president of the
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United States is ”). Furthermore, a good language model should exercise some level of reasoning.
For example, it may be possible to observe several occurrences of Barack Obama’s year of birth in a
large corpus and thus the model may be able to predict it. However, after seeing mentions of his year
of birth, presented with a simple reformulation of that piece of knowledge into a sentence such as
“Barack Obama’s age is ”, one would not expect current language models to handle the required
amount of reasoning in order to predict the next word (i.e. the age) easily. However, a good model
should be able to reason the answer from this context1.

In this paper, we propose a Neural Knowledge Language Model (NKLM) as a step towards addressing
the limitations of traditional language modeling when it comes to exploiting factual knowledge.
In particular, we incorporate symbolic knowledge provided by a knowledge graph (Nickel et al.,
2015) into the RNNLM. A knowledge graph (KG) is a collection of facts which have a form of
(subject, relationship, object). We observe particularly the following properties of KGs that make the
connection to the language model sensible. First, facts in KGs are mostly about rare words in text
corpora. KGs are managed and updated in a similar way that Wikipedia pages are managed to date.
The KG embedding methods (Bordes et al., 2011; 2013) provide distributed representations for the
entities in the KG. The graph can be traversed for reasoning (Gu et al., 2015). Finally, facts come
along with textual representations which we call the fact description and take advantage of here.

There are a few differences between the NKLM and the traditional RNNLM. First, we assume that a
word generation is either based on a fact or not. Thus, at each time step, before predicting a word, we
predict whether the word to generate has an underlying fact or not. As a result, our model provides
the predictions over facts in a topic in addition to the word predictions. Similarly to how context
information of previous words flows through the hidden states in the RNNLM, in the NKLM the
previous information on both facts and words flow through an RNN and provide richer context.
Second, the model has two ways to generate the next word. One option is to generate a “vocabulary
word” from the vocabulary softmax as is in the RNNLM. The other option is to generate a “knowledge
word” by copying a word contained in the description of the predicted fact. Considering that the
fact description is often short and consists of out-of-vocabulary words, we predict the position of
the word to copy within the fact description. This knowledge-copy mechanism makes it possible to
generate words which are not in the predefined vocabulary. Thus, it does not require to learn explicit
embeddings of the words to generate, and consequently resolves the rare/unknown word problem.
Lastly, the NKLM can immediately adapt to adding or modifying knowledge because the model
learns to predict facts, which can easily be modified without having to retrain the model.

Training the above model in a supervised way requires to align words with facts. To this end, we
introduce a new dataset, called WikiFacts. For each topic in the dataset, a set of facts from the Freebase
KG (Bollacker et al., 2008) and a Wikipedia description of the same topic is provided along with the
alignment information. This alignment is done automatically by performing string matching between
the fact description and the Wikipedia description.

2 RELATED WORK

There have been remarkable advances in language modeling research based on neural networks (Ben-
gio et al., 2003; Mikolov et al., 2010). In particular, the RNNLMs are interesting for their ability to
take advantage of longer-term temporal dependencies without a strong conditional independence
assumption. It is especially noteworthy that the RNNLM using the Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) has recently advanced to the level of outperforming
carefully-tuned traditional n-gram based language models (Jozefowicz et al., 2016).

There have been many efforts to speed up the language models so that they can cover a larger
vocabulary. These methods approximate the softmax output using hierarchical softmax (Morin &
Bengio, 2005; Mnih & Hinton, 2009), importance sampling (Jean et al., 2015), noise contrastive
estimation (Mnih & Teh, 2012), etc. Although helpful to mitigate the computational problem, these
approaches still suffer from the statistical problem due to rare or unknown words. Having the UNK
word as the output of a generative language model is also inconvenient (e.g, dialogue system).

1We do not investigate the reasoning ability in this paper but highlight this example because the explicit
representation of facts would help to handle such examples.
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To help deal with the rare/unknown word problem, the pointer networks (Vinyals et al., 2015) have
been adopted to implement the copy mechanism (Gulcehre et al., 2016; Gu et al., 2016) and applied
to machine translation and text summarization. With this approach, the (unknown) word to copy from
the context sentence is inferred from neighboring words. However, because in our case the context
can be very short and often contains no known relevant words (e.g., person names), we cannot use
the existing approach directly.

Our knowledge memory is also related to the recent literature on neural networks with external
memory (Bahdanau et al., 2014; Weston et al., 2015; Graves et al., 2014). In Weston et al. (2015),
given simple sentences as facts which are stored in the external memory, the question answering task
is studied. In fact, the tasks that the knowledge-based language model aims to solve (i.e. predict
the next word) can be considered as a fill-in-the-blank type of question answering. The idea of
jointly using Wikipedia and knowledge graphs has also been used in the context of enriching word
embedding (Celikyilmaz et al., 2015; Long et al., 2016).

3 MODEL

3.1 PRELIMINARY

A topic2 k in a set of entities E is associated with topic knowledge Fk (e.g., from Freebase) and topic
description Wk (e.g., from Wikipedia). Topic knowledge Fk is a set of facts {ak,1, ak,2, . . . , ak,|Fk|}
where each fact a is a triple of subject ∈ E , relationship, and object ∈ E , e.g., (Barack Obama,
Married-To, Michelle Obama). Topic description Wk is a sequence of words (wk1 , w

k
2 , . . . , w

k
|Wk|)

describing the topic (e.g., a description of a topic in Wikipedia). Because the subject entities in Fk
are all equal to the topic entity k3 and the words describing relationships can easily be found in the
vocabulary, we use the description of the object entity (e.g., Michelle Obama) as our fact description.

Given Fk and Wk, we perform simple string matching between words in Wk and words in the
fact descriptions in Fk and thereby build a sequence of augmented observations Yk = {ykt =
(wt, at, zt)}t=1:|Wk|. Here, wt ∈ Wk is an observed word, at ∈ Fk a fact on which the generated
word wt is based, and zt a binary variable indicating whether wt is in the vocabulary V (including
UNK) or not. Because not all words are based on a fact (e.g., words like, is, a, the, have), we
introduce a special type of fact, called Not-a-Fact (NaF), and assign NaF to such words.

For example, a description “Rogers was born in Latrobe, Pennsylvania in 1928” from a topic Fred
Rogers in Wikipedia, is augmented to, Y = {(w=“Rogers”, a=0, z=0), (“was”, NaF, 1), (“born”,
NaF, 1), (“in”, NaF, 1), (“Latrobe”, 42, 0), (“Pennsylvania”, 42, 1), (“in”, NaF, 1), (“1928”, 83, 0)}.
Here, we use facts on Fred Rogers, a42 = (Fred Rogers, Place of Birth, Latrobe Pennsylvania), a83 =
(Fred Rogers, Year of Birth, 1928), and a special fact a0 = (Fred Rogers, Topic Itself, Fred Rogers)
which we define in order to refer to the topic string itself. We also assume here that the words Rogers,
Latrobe and 1928 are not in the vocabulary.

During the inference and training of topic k, we assume that the topic knowledge Fk is loaded
in the knowledge memory in a form of a matrix Fk ∈ RDa×|Fk| where the i-th column is a fact
embedding ak,i ∈ RDa . The fact embedding is the concatenation of subject, relationship, and
object embeddings. We obtain these entity embeddings from a preliminary run of a knowledge graph
embedding method such as TransE (Bordes et al., 2013). Note that we fix the fact embedding during
the training of our model to help the model predict new facts at test time. But, we learn the embedding
of the Topic Itself. For notation, to denote the vector representation of any object of our interest,
we use bold lowercase characters. For example, the embedding of a word wt is represented by
wt = W[wt] where WDw×|V| is the word embedding matrix, and W[wt] denotes the wt-th column
of W.

2In this work, a topic is one of the entities which exist in both Wikipedia and Freebase. This is different to
the concept in topic modeling where a topic is represented by a distribution over words.

3Although in Freebase the topic entity can be either the subject or the object, for convenience we process
them such that the subject is always equal to the topic entity k.
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Figure 1: The NKLM model. The input
consisting of a word (either wo

t−1 or wv
t−1)

and a fact (at−1) goes into LSTM. The
LSTM’s output ht together with the knowl-
edge context e generates the fact key kt.
Using the fact key, the fact embedding
at is retrieved from the topic knowledge
memory. Using at and ht, knowledge-copy
switch zt is determined, which in turn de-
termines the next word generation source
wv
t or wo

t . The copied word wo
t is a sym-

bol taken from the fact description Oat .

3.2 INFERENCE

At each time step, the NKLM follows four sub-steps. First, using both the word and fact outputs
from the previous time step as the input of the current time step, we update the LSTM controller.
Second, given the output of the LSTM, the NKLM predicts a fact (including NaF) and extracts
corresponding fact embedding from the knowledge memory. Thirdly, with the extracted fact and
the state of the LSTM controller, the NKLM makes a binary decision to choose the source of word
generation. Finally, a word is generated according to the chosen source. A model diagram is depicted
in Fig. 1. In the following, we describe these four steps in more detail.

1) Input Representation and LSTM Controller. As shown in Fig. 1, the input at time step t is the
concatenation of three embedding vectors corresponding to a fact at−1, a vocabulary word wvt−1, and
a copied word wot−1, all predicted in the previous time step. However, because at a time step, the
predicted word comes only either from the vocabulary or by copying from the fact description, we
set either wvt−1 or wot−1 to a zero vector when it is not selected in the previous step. As we shall see,
we use position embeddings to represent the copied words by its position within the fact description.
And, because the dimensions of the vocabulary word embedding and the position embedding for
copied words are different, we use such concatenation of wvt−1 and wot−1 to represent the word
input. The resulting input representation xt = fconcat(at−1,w

v
t−1,w

o
t−1) is then fed into the LSTM

controller, and obtain the output states (ht, ct) = fLSTM(xt,ht−1). Note that at−1 and wo
t−1 (e.g.,

corresponding to n-th position) together can deliver information that a symbol in n-th position in the
description of fact at−1 was used in the previous time step.

2) Fact Extraction. Then, we predict a relevant fact at on which the word wt will be based. If
the word wt is supposed to be irrelevant to any fact, the NaF type is predicted. Unlike the fact
embeddings, we learn the NaF embedding during training.

Predicting a fact is done in two steps. First, a fact-key kfact ∈ RDa is generated by kfact =
ffactkey(ht, ek). Here, ek ∈ RDa is the topic context embedding (or a subgraph embedding of
the topic) which encodes information about what facts are available in the knowledge memory so
that the key generator adapts to changes in the knowledge memory. For example, if we remove a
fact from the memory, without retraining, the fact-key generator should be aware of the absence of
that information and thus should not generate a key vector for the removed fact. Although, in the
experiments, we use mean-pooling (average of the all fact embeddings in the knowledge memory) to
obtain ek, one can also consider using the soft-attention mechanism (Bahdanau et al., 2014). For the
fact-key generator ffactkey, we use an MLP with one hidden layer of ReLU nonlinearity.

Then, using the generated fact-key kfact, we perform key-value lookup over the knowledge memory
Fk to predict a fact and retrieve its embedding at,

P (at|ht) =
exp(k>factFk[at])∑
a′ exp(k

>
factFk[a

′])
, (1)

at = argmax
at∈Fk

P (at|ht), (2)

at = Fk[at]. (3)
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Note that in order to perform the copy mechanism, we need to pick a single fact from the knowledge
memory instead of using the weighted average of the fact embeddings as in the soft-attention.

3) Knowledge-Copy Switch. Given the encoding of the context ht and the embedding of the
extracted fact at, the model decides the source for the next word generation: either from the
vocabulary or from the fact description by copy. As zt = 1 if the word wt is in the vocabulary, we
define the probability of selecting copy as:

ẑt = p(1− zt|ht) = sigmoid(fcopy(ht,at)). (4)

Here, fcopy is an MLP with one ReLU hidden layer and a single linear output unit. For facts about
attributes such as nationality or profession, the words in the fact description (e.g., “American” or
“actor”) are likely to be in the vocabulary, but for facts like the year of birth or father name, the
model is likely to choose to copy.

4) Word Generation. Word wt is generated from the source indicated by the copy-switch ẑt as
follows:

wt =

{
wvt ∈ V, if ẑt < 0.5,

wot ∈ Oat , otherwise.

For vocabulary word wvt ∈ V , we use the softmax function where each output dimension corresponds
to a word in the vocabulary including UNK,

P (wvt = w|ht) =
exp(k>vocaW[w])∑

w′∈V exp(k
>
vocaW[w′])

. (5)

where kvoca ∈ RDw is obtained by fvoca(ht,at) which is an MLP with a ReLU hidden layer and
linear output units of dimension Dw.

For knowledge word wot ∈ Oat , we predict the position of the word in the fact description and then
copy the word on the predicted position to output. This is because, unlike with the traditional copy
mechanism, our context words (i.e., the fact description) often consist of all unknown words and/or
are short in length. Copying allows us not to rely on the word embeddings for the knowledge words.
Instead, we learn the position embeddings shared among all knowledge words. This makes sense
because words in the fact description usually appear one by one in increasing order. Thus, given that
the first symbol o1 = “Michelle” was used in the previous time step and prior to that other words
such as “President” and “US” were also observed, the model can easily predict that it is time to
select the second symbol, i.e., o2 = “Obama”.

For this copy-by-position, we first generate the position key kpos ∈ RDo by a function fposkey(ht,at)
which is again an MLP with one hidden layer and linear outputs whose dimension is equal to the
maximum length of the fact descriptions No

max = maxa∈F |Oa| where F = ∪kFk. Then, the n-th
symbol on ∈ Oat is chosen by

P (wot = on|ht, at) =
exp(k>posP[n])∑
n′ exp(k>posP[n′])

, (6)

with n′ running from 0 to |Oat | − 1. Here, PDo×No
max is the position embedding matrix. Note that

No
max is typically a much smaller number (e.g., 20 in our experiments) than the size of vocabulary.

The position embedding matrix P is learned during training.

Although in this paper we find that the simple position prediction performs well, we note that one
could also consider a more advanced encoding such as one based on a convolutional network (Kim,
2014) to model the fact description. At test time, to compute p(wkt |wk<t), we can obtain {zk<t, ak<t}
from {wk<t} and Fk using the automatic labeling script, and perform the above inference process
with hard decisions taken about zt and at based on the model’s predictions.

3.3 LEARNING

Given word observations {Wk}Kk=1 and knowledge {Fk}Kk=1, our objective is to maximize the
log-likelihood of the observed words w.r.t the model parameter θ,

θ∗ = argmax
θ

∑
k

logPθ(Wk|Fk). (7)
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# topics # tokens # unique tokens # facts # entities
10K 1.5M 78k 813k 560K

# relations maxk |Fk| avgk|Fk| maxa |Oa| avga|Oa|
1.5K 1K 79 19 2.15

Table 1: Statistics of the WikiFacts-FilmActor-v0.1 Dataset.

Because, given Wk and Fk, a sequence of Yk = {yt = (wt, zt, at)}t=1:|Wk| is deterministically
induced for each word wt, the following equality is satisfied

Pθ(Wk|Fk) = Pθ(Yk|Fk). (8)

By the chain rule, we can decompose the probability of the observation Yk as

logPθ(Yk|Fk) =
|Yk|∑
t=1

logPθ(y
k
t |yk1:t−1,Fk). (9)

Then, after omitting Fk and k for simplicity, we can rewrite the single step conditional probability as

Pθ(yt|y1:t−1) = Pθ(wt, at, zt|ht) = Pθ(wt|at, zt, ht)Pθ(at|ht)Pθ(zt|ht). (10)

We maximize the above objective using stochastic gradient optimization.

4 EVALUATION

4.1 WIKIFACTS DATASET

An obstacle in developing the above model is the lack of the dataset where the text corpus is
aligned with facts at the word level. To this end, we produced the WikiFacts dataset by aligning
Wikipedia descriptions with corresponding Freebase facts. Because many Freebase topics pro-
vide a link to its corresponding topic in Wikipedia, we choose a set of topics for which both a
Freebase entity and a Wikipedia description exist. In the experiments, we used a version called
WikiFacts-FilmActor-v0.1 where the domain is restricted to the /Film/Actor in Freebase.

For all object entity descriptions {Oak} associated with Fk, we performed string matching to the
Wikipedia description Wk. We used the summary part (first few paragraphs) of the Wikipedia page
as text to be modeled but discarded topics for which the number of facts is greater than 1000 or
the Wikipedia description is too short (< 3 sentences). For the string matching, we also used the
synonyms and alias provided by WordNet (Miller, 1995) and Freebase.

We augmented the fact set Fk with the anchor facts Ak whose relationship is all set to
UnknownRelation. That is, observing that an anchor (words under hyperlink) in Wikipedia
descriptions has a corresponding Freebase entity as well as being semantically closely related to the
topic in which the anchor is found, we make a synthetic fact of the form (Topic, UnknownRelation,
Anchor). This potentially compensates for some missing facts in Freebase. Because we extract the
anchor facts from the full Wikipedia page and they all share the same relation, it is more challenging
for the model to use these anchor facts than using the Freebase facts. As a result, for each word w in
the dataset, we have a tuple (w, zw, aw, kw). Here, kw is the topic where w appears. We provide a
summary of the dataset statistics in Table 1. The dataset will be available on a public webpage4.

4.2 EXPERIMENTS

Setup. We split the dataset into 80/10/10 for train, validation, and test. As a baseline model, we
use the RNNLM. For both the NKLM and the RNNLM, two-layer LSTMs with dropout regular-
ization (Zaremba et al., 2014) are used. We tested models with different numbers of LSTM hidden
units [200, 500, 1000], and report results from the 1000 hidden-unit model. For the NKLM, we
set the symbol embedding dimension to 40 and word embedding dimension to 400. Under this
setting, the number of parameters in the NKLM is slightly smaller than that of the RNNLM. We used

4https://bitbucket.org/skaasj/wikifact_filmactor
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Validation Test
Model PPL UPP UPP-f PPL UPP UPP-f # UNK
RNNLM 39.4 97.9 56.8 39.4 107.0 58.4 23247
NKLM 27.5 45.4 33.5 28.0 48.7 34.6 12523
no-copy 38.4 93.5 54.9 38.3 102.1 56.4 29756
no-fact-no-copy 40.5 98.8 58.0 40.3 107.4 59.3 32671
no-TransE 48.9 80.7 59.6 49.3 85.8 61.0 13903

Table 2: We compare four different versions of the NKLM to the RNNLM on three different
perplexity metrics. We used 10K vocabulary. In no-copy, we disabled the knowledge-copy func-
tionality, and in no-fact-no-copy, using topic knowledge is also additionally disabled by setting all
facts as NaF. Thus, no-fact-no-copy is very similar to RNNLM. In no-TransE, we used random
vectors instead of the TransE embeddings to initialize the KG entities. As shown, the NKLM shows
best performance in all cases. The no-fact-no-copy performs similar to the RNNLM as expected
(slightly worse partly because it has smaller model parameters than that of the RNNLM). As expected,
no-copy performs better than no-fact-no-copy by using additional information from the fact embed-
ding, but without the copy mechanism. In the comparison of the NKLM and no-copy, we can see the
significant gain of using the copy mechanism to predict named entities. In the last column, we can
also see that, with the copy mechanism, the number of predicting unknown decreases significantly.
Lastly, we can see that the TransE embedding is important.

100-dimension TransE embeddings for Freebase entities and relations, and concatenate the relation
and object embeddings to obtain fact embeddings. We averaged all fact embeddings in Fk to obtain
the topic context embedding ek. We unrolled the LSTMs for 30 steps and used minibatch size 20.
We trained the models using stochastic gradient ascent with gradient clipping range [-5,5]. The initial
learning rate was set to 0.5 for the NKLM and 1.5 for the RNNLM, and decayed after every epoch
by a factor of 0.98. We trained for 50 epochs and report the results chosen by the best validation set
results.

Evaluation metric. The perplexity exp(− 1
N

∑N
i=1 log pwi

) is the standard performance metric for
language modeling. This, however, has a problem in evaluating language models for a corpus
containing many named entities: a model can get good perplexity by accurately predicting UNK
words. As an extreme example, when all words in a sentence are unknown words, a model predicting
everything as UNK will get a good perplexity. Considering that unknown words provide virtually no
useful information, this is clearly a problem in tasks such as question answering, dialogue modeling,
and knowledge language modeling.

To this end, we introduce a new evaluation metric, called the Unknown-Penalized Perplexity (UPP),
and evaluate the models on this metric as well as the standard perplexity (PPL). Because the actual
word underlying the UNK should be one of the out-of-vocabulary (OOV) words, in UPP, we penalize
the likelihood of unknown words as follows:

PUPP(wunk) = P (wunk)/|Vtotal \ Vvoca|.
Here, Vtotal is a set of all unique words in the corpus, and Vvoca is the vocabulary used in the softmax.
In other words, in UPP we assume that the OOV set is equal to |Vtotal\Vvoca| and thus assign a uniform
probability to OOV words. In another version, UPP-fact, we consider the fact that the RNNLM can
also use the knowledge given to the NKLM to some extent, but with limited capability (because the
model is not designed for it). For this, we assume that the OOV set is equal to the total knowledge
vocabulary of a topic k, i.e.,

PUPP-fact(wunk) = P (wunk)/|Ok|,
where Ok = ∪iOak,i . In other words, by using UPP-fact, we assume that, for an unknown word,
the RNNLM can pick one of the knowledge words with uniform probability. We describe the detail
results and discussion on the experiments in the captions of Table 2, 3, and 4.

Observations from the experiment results. Our observations from the experiment results are as
follows. (a) The NKLM outperforms the RNNLM in all three perplexity measures. (b) The copy
mechanism is the key of the significant performance improvement. Without the copy mechanism,
the NKLM still performs better than the RNNLM due to its usage of the fact information, but the
improvement is not so significant. (c) The NKLM results in a much smaller number of UNKs (roughly,
a half of the RNNLM). (d) When no knowledge is available, the NKLM performs as well as the
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Validation Test
Model PPL UPP UPP-f PPL UPP UPP-f # UNK
NKLM 5k 22.8 48.5 30.7 23.2 52.0 31.7 19557
RNNLM 5k 27.4 108.5 47.6 27.5 118.3 48.9 34994
NKLM 10k 27.5 45.4 33.5 28.0 48.7 34.6 12523
RNNLM 10k 39.4 97.9 56.8 39.4 107.0 58.4 23247
NKLM 20k 33.4 45.9 37.9 34.7 49.2 39.7 9677
RNNLM 20k 57.9 99.5 72.1 59.3 108.3 75.5 13773
NKLM 40k 41.4 49.0 44.4 43.6 52.7 47.1 5809
RNNLM 40k 82.4 107.9 92.3 86.4 116.9 97.9 9009

Table 3: The NKLM and the RNNLM are compared for vocabularies of four different sizes
[5K, 10K, 20K, 40K]. As shown, in all cases the NKLM significantly outperforms the RNNLM.
Interestingly, for the standard perplexity (PPL), the gap between the two models increases as the
vocabulary size increases while for UPP the gap stays at a similar level regardless of the vocabulary
size. This tells us that the standard perplexity is significantly affected by the UNK predictions,
because with UPP the contribution of UNK predictions to the total perplexity is very small. Also,
from the UPP value for the RNNLM, we can see that it initially improves when vocabulary size is
increased as it can cover more words, but decreases back when the vocabulary size is largest (40K)
because the rare words are added last to the vocabulary.

Warm-up Louise Allbritton ( 3 july <unk>february 1979 ) was
RNNLM a <unk><unk>who was born in <unk>, <unk>, <unk>, <unk>, <unk>, <unk>, <unk>
NKLM an english [Actor]. he was born in [Oklahoma] , and died in [Oklahoma]. he was married to [Charles] [Collingwood]
Warm-up Issa Serge Coelo ( born 1967 ) is a <unk>
RNNLM actor . he is best known for his role as <unk><unk>in the television series <unk>. he also
NKLM [Film] director . he is best known for his role as the <unk><unk>in the film [Un] [taxi] [pour] [Aouzou]
Warm-up Adam wade Gontier is a canadian Musician and Songwriter .
RNNLM she is best known for her role as <unk><unk>on the television series <unk>. she has also appeared
NKLM he is best known for his work with the band [Three] [Days] [Grace] . he is the founder of the
Warm-up Rory Calhoun ( august 8 , 1922 april 28
RNNLM , 2010 ) was a <unk>actress . she was born in <unk>, <unk>, <unk>. she was
NKLM , 2008 ) was an american [Actor] . he was born in [Los] [Angeles] california . he was born in

Table 4: Sampled Descriptions. Given the warm-up phrases, we generate samples from the NKLM
and the RNNLM. We denote the copied knowledge words by [word] and the UNK words by <unk>.
Overall, the RNNLM generates many UNKs (we used 10K vocabulary) while the NKLM is capable
to generate named entities even if the model has not seen some of the words at all during training.
In the first case, we found that the generated symbols (words in []) conform to the facts of the topic
(Louise Allbritton) except that she actually died in Mexico, not in Oklahoma. (We found that the
place of death fact was missing.) While she is an actress, the model generated a word [Actor].
This is because in Freebase, there exists only /profession/actor but no /profession/actress. It is also
noteworthy that the NKLM fails to use the gender information provided by facts; the NKLM uses
“he” instead of “she” although the fact /gender/female is available. From this, we see that if a fact is
not detected (i.e., NaF), the statistical co-occurrence governs the information flow. Similarly, in other
samples, the NKLM generates movie titles (Un Taxi Pour Aouzou), band name (Three Days Grace),
and place of birth (Los Angeles). In addition, to see the NKLM’s ability to adapt to knowledge
updates without retraining, we changed the fact /place of birth/Oklahoma to /place of birth/Chicago
and found that the NKLM replaces “Oklahoma” by “Chicago” while keeping other words the same.

RNNLM. (e) KG embedding using TransE is an efficient way to initialize the fact embeddings. (f)
The NKLM generates named entities in the provided facts whereas the RNNLM generates many
more UNKs. (g) The NKLM shows its ability to adapt immediately to the change of the knowledge.
(h) The standard perplexity is significantly affected by the prediction accuracy on the unknown words.
Thus, one need carefully consider it as a metric for knowledge-related language models.

5 CONCLUSION

In this paper, we presented a novel Neural Knowledge Language Model (NKLM) that brings the
symbolic knowledge from a knowledge graph into the expressive power of RNN language models. The
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NKLM significantly outperforms the RNNLM in terms of perplexity and generates named entities
which are not observed during training, as well as immediately adapting to changes in knowledge. We
believe that the WikiFact dataset introduced in this paper, can be useful in other knowledge-related
language tasks as well. In addition, the Unknown-Penalized Perplexity introduced in this paper in
order to resolve the limitation of the standard perplexity, can be useful in evaluating other language
tasks. The task that we investigated in this paper is limited in the sense that we assume that the true
topic of a given description is known. Relaxing this assumption by making the model search for
proper topics on-the-fly will make the model more practical. We believe that there are many more
open research challenges related to the knowledge language models.
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APPENDIX: HEATMAPS

p_copy_fact

, 2008 ) was an american Actor . he was born in Los Angeles california .
<naf>

profession-Screenwriter

profession-Actor

place_of_birth-Los Angeles

profession-Film Producer

topic_itself-Rory Calhoun

unk_rel-Spellbound

unk_rel-California

unk_rel-Santa Cruz

Figure 2: This is a heatmap of an example sentence generated by the NKLM having a warmup “Rory
Calhoun ( august 8 , 1922 april 28”. The first row shows the probability of knowledge-copy switch
(Equation 5 in Section 3.1). The bottom heat map shows the state of the topic-memory at each time
step (Equation 2 in Section 3.1). In particular, this topic has 8 facts and an additional <NaF> fact.
For the first six time steps, the model retrieves <NaF>from the knowledge memory, copy-switch is
off and the words are generated from the general vocabulary. For the next time step, the model gives
higher probability to three different profession facts: “Screenwriter”, “Actor” and “Film Producer.”
The fact “Actor” has the highest probability, copy-switch is higher than 0.5, and therefore “Actor” is
copied as the next word. Moreover, we see that the model correctly retrieves the place of birth fact
and outputs “Los Angeles.” After that, the model still predicts the place of birth fact, but copy-switch
decides that the next word should come from the general vocabulary, and outputs “California.”

p_copy_fact

an english Actor . he was born in Oklahoma , and died in Oklahoma . he was married to Charles Collingwood .
<naf>

education.institution-University of Oklahoma

performance.film-Son of Dracula

location.people_born_here-Oklahoma City

performance.film-The Egg and I

marriage.type_of_union-Marriage

marriage.spouse-Charles Collingwood

profession-Actor

topic_itself-Louise Allbritton

unk_rel-Universal Studios

unk_rel-Pasadena Playhouse

unk_rel-Pittsburgh

unk_rel-Sitting Pretty

unk_rel-Hollywood

unk_rel-World War II

unk_rel-United Service Organizations

Figure 3: This is an example sentence generated by the NKLM having a warmup “Louise Allbritton ( 3
july<unk>february 1979 ) was”. We see that the model correctly retrieves and outputs the profession
(“Actor”), place of birth (“Oklahoma”), and spouse (“Charles Collingwood”) facts. However, the
model makes a mistake by retrieving the place of birth fact in a place where the place of death fact is
supposed to be used. This is probably because the place of death fact is missing in this topic memory
and then the model searches for a fact about location, which is somewhat encoded in the place of
birth fact. In addition, Louise Allbritton was a woman, but the model generates a male profession
“Actor” and male pronoun “he”. The “Actor” is generated because there is no “Actress” representation
in Freebase.
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