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1.0 WHY NEURAL MODELS?

The obvious success of the modern computer has made it an

attractive metaphor for general information processing. In

particular, a symbol manipulation capability is often viewed as the

logical underpinning of intelligent behavior (Newell 80). The symbol

manipulation model is in close agreement with the actual mechanism of

computer processing, but its distinction between an active processor

and passive data may make it an inappropriate model for biological

information processing (Anderson and Hinton 81). Though logically

adequate, it does not reflect the pragmatic constraints on information

processing, such as limitations in time or space. Symbol manipulation

is an abstract model, and "does not attempt to be precise enough to

deal with such quibbles" (Newell 80). Only when dealing directly with

such constraints are specific biological analogies apt to be

recognized.

The purpose of this model is not the simulation of specific

biological systems, but implementation of general processes underlying

intelligent behavior using a neuron-like element as the basic building

block. Biologically motivated mechanisms for pattern storage,

recognition and learning are explored, with emphasis on achieving

maviTniiTn parallelism. Certain aspects of goal-directed behavior are

also investigated. Recent neurophysiological research has

demonstrated the existence of neural circuits that can be interpreted

as performing such functions. These biological models provide

important insight concerning possible approaches.
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1.1 Parallel Processing

The field of artificial intelligence (AI) has had its successes,

but it has also had its obvious failures. The sensory-motor skills of

the common laboratory rat are still unapproached despite the immediate

need for such capabilities in industrial robots. In such cases,

careful attention to what is known of biological intelligence may be

useful in designing similar artificially intelligent systems.

Although the physical mechanisms of information processing are

different (e.g., transmitter modulated ion channels vs. transistor

flip-flops), higher level functional similarities may be appropriate.

In particular, neural systems may prove very useful as models of large

scale parallelism (Kent 81).

Most useful applications of AI require large amounts of

computation. This may be because AI programs are uniformly

inefficient, but it more likely reflects the true amount of

computation needed for AI problems. Fahlman (79) has argued that

intersection of partially specified sets is an important process of

intelligence which, in general, cannot be implemented efficiently.

Because partial or best match pattern matching subsumes subgraph

monomorphism, which is an NP-complete problem, Hayes-Roth (78) has

concluded that many AI applications which rely on pattern-matching are

inherently computationally expensive.



Since programs are executed sequentially, efficiency is generally

measured in units proportional to CPU run time. However, advances in

LSI technology have made possible a radical change in computer

architecture through the utilization of parallel processors. Given

this capability, it is possible to explore techniques that minimize

reaction time (input to output) rather than the total amount of

computation. This should permit qualitatively different, and more

biologically oriented approaches to many problems.

For example, in detecting members of a particular category,

(e.g., a plant species), key features may not exist which distinguish

individuals of that group from members of closely related groups. In

the case of plant species, they may actually interbreed, producing

intermediate progeny. The only way to describe these categories is as

a probabilistic distribution of all features rather than the presence

or absence of any particular one. Thus, at a minimum, sequential

processing time is proportional to the number of features. As an

alternative to a sequential decision tree approach, the input might be

exhaustively compared to all group descriptions in one parallel step,

and the best match selected (e.g., Selfridge 59). Obviously this is

computationally expensive, but if the processes of comparison and best

match selection can be done in unit time, it can be done very quickly.

Such an approach can be used to implement many of the desirable

characteristics of biological memory such as associative or content

addressable access (Kohonen 77,80).



In fact, there may be fundamental limitations to the utility of

sequential computation since the use of a single CPU places a

practical upper limit on the rate of computation possible, a limit

which may prove fatal to many real-time AX applications. For example,

the human retina contains about 100 million cells, each of which can

integrate hundreds of inputs (in parallel) and respond hundreds of

times a second. This amount of raw computing power may be forever

beyond the reach of a single CPU operating within the laws of physics.

Even a single Purkinje cell has about 10 ** 5 inputs and can respond

about 10 ** 2 times a second, giving on the order of 10 ** 7

operations (multiplications) per second, a number above the range of

most computers.

To use parallel processing effectively, the necessary

computations must be decomposable. Unfortunately, programs written in

current computer languages for current computers seldom lend

themselves to large-scale decomposition. It is likely that the

computational medium has shaped the programming methods and the

domains of application. An alternative to attempting to decompose

existing programs is to reapproach the problems with the specific

intention of exploiting the computational potential of parallel

processing. In particular, pattern manipulation is an easily

decomposable process. Knowledge representation, utilization and

learning can be viewed as forms of pattern processing, so AI may be an

ideal area in which to intentionally explore the applications of

parallel computation. Many problems in AI might be effectively



approached in this manner if:

"The fundamental problem of understanding intelligence is not the
identification of a few powerful techniques, but rather the question
of how to represent large amounts of knowledge in a fashion that
permits their effective use and interaction." (Goldstein and Fapert
77)

It is possible that an over emphasis on sequential, high level

processes has obscured the importance of low level, parallel

processing. This point has been made by James Albus:

"An obvious but seldom recognized fact is that planning is not
characteristic of the behavior of most biological organisms. ... The
rarity and late arrival of the ability to plan suggests that a highly
developed precursor, or substrate was required from which planning
capabilities evolved. ... The implication is that a
sensory-interactive, goal-directed motor system is not simply an
appendage to the intellect, but is rather the substrate in which
intelligence evolved." (Albus 79)

High level processes such as natural language processing are

attractive problems, but it should not be overlooked that the

underlying mechanisms of a raf's behavior are equally enigmatic.

1.2 Intelligent Behavior

AI production systems capture the spirit of distributed (though

not ~necessarily parallel) processing, and have had reasonable success

in modeling intelligent behavior (Waterman and Hayes-Roth 78).

Specifically, behavior is broken down into a sequence of operator

applications. On the basis of the system's current goals, the current

state of the environment, and past experience, a heuristically best

guess of the correct operator can be made. Though this information is

usually not all represented explicitly in production systems, it could
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be without changing the nature of their operation. Because all

information can be brought to bear on the selection of each operator,

behavior can be viewed as a network of alternative actions, rather

than a collection of precanned sequences. This multiplicity of

decision points is important in avoiding rigid, stereotypic behavior.

Stimulus—response behavior in biological organisms can be viewed

from the same perspective. All organisms have receptors to sense

current conditions (analogous to antecedents in production rules), and

mechanisms by which they can effect changes in themselves and their

surroundings (analogous to production rule consequences). In

primitive organisms, a sensory cell may connect directly to a motor

cell. This results in a rigid behavioral system such that the

particular stimulus is always associated with a particular response.

If such a response is adaptive, as in withdrawal from a noxious

stimulus, the organism might be said to have made an intelligent

response to its environment. In more advanced organisms, one or two

interneurons may be inserted into the pathway. If these cells receive

information from other sensors, such as a food detector, the

advantages of leaving can interact with the advantages of staying

before the final motor cell is triggered. This response strategy is

more flexible and clearly capable of more "intelligent" responses to

the environment.

The evolution of biological intelligence can be viewed as the

progressive growth and specialization of a net of interneurons between

sensory and motor cells; in general, the thicker the net, the greater
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I the opportunity for analysis of the environment before a response is

triggered. Such a network is an example of distributed pattern

storage and recognition. The system is a completely distributed

intelligence since there is no "central executive" in it, and "memory"

is not something to be searched but is simply the modifiable pathway

between input and output. The behavioral systems of many lower

organisms provide reasonably well understood examples of such

distributed control (Kandel 76, 79a).

This neural structure can be applied to production systems. If

the left-hand sides of rules were implemented in a network of pattern

detectors, and right-hand sides as operators, the analogy would be

very close. If the production system displayed intelligent behavior,

an explicitly distributed version of it also would, assuming best fit

rule selection was an acceptable strategy. This would be an example

of a meaningfully intelligent system made up of individual elements,

each of which has little more processing power than a neuron.

1.3 Learning

The capacity for learning is an important aspect of any

intelligent system which can be separated from the processes of overt

behavior. This is illustrated biologically by people with certain

amnestic syndromes; they are unable to commit new information to

permanent memory, yet they can display intelligent behavior (Milner

70). Most production systems are in a comparable condition because
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their capacity for intelligent behavior is fixed at the time of

creation. For this reason, a great deal of effort is often expended

in discovering the right set of rules. This has generated

considerable interest in constructing systems that can create their

own productions, or at least add to a long-term store of useful facts.

In current AI models, any learning capabilities are typically

dependent on the action of an omnipotent central executive (e.g.,

Lenat 77) rather than low level, local adjustments (e.g., Holland and

Reitman 78).

The tunability of neural models is well established (Nilsson 65),

which demonstrates that at least some aspects of learning can be

implemented in low level, neural-like structures. In the invertebrate

Aplysia, such distributed learning has been extensively investigated

(Kandel 79ab). At the cellular level, several physiologically

distinct processes of learning have been described, and all have

direct expression in the overt behavior. Neural learning processes

have been observed in a wide range of organisms (Woody 82c).

Most formal neural learning algorithms are proposed because they

are simple and/or biologically plausible. It is then necessary to

discover and prove what can be learned using that process. However,

the effects of even very simple rules are often complex and difficult

to analyze (e.g., Amari 77a, Amari and Takeuchi 78). (Even without

learning, the analysis of neural nets can be quite complex, e.g.,

Amari 77b, Kishimoto and Amari 79). While these models can be

mathematically challenging, they are of little biological value if the
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There are a large number of learning algorithm variations, and

^ there is as yet no comprehensive theory of biological learning, so a
specifically targeted approach is taken here. Desired system behavior

I is identified, and mechanisms proposed to implement it. The proposed
model has the general characteristics of a production system, so it

I should be capable of interesting behavior, and though it is not

H developed as astrictly biological model, its central principles are
intended to be consistent with biological capabilities.

I The view taken here is that the brain is an inherently structured

I system, and that intelUganca is not simply an emergent property of
large groups of neurons. It is apparent that there are specific

I functions a brain must perform, and there are specific, hard-wired
structures to perform them. Consequently, an important aspect of this

study is an attempt to identify primitive processes underlying

I intelligejit behavior and to implement them with neural networks,
assuming specific, hard-wired systems as necessary. For example, it

I has been suggested that there are specialized plasticity controlling
systems which control the modification of synaptic connections (Krasne

H 78, Feldman 81, Kety 82, Kasamatsu 83).

I

I

I

I

I

initial assumptions are biologically incorrect, and of questionable

value to AI if the behaviors produced are not powerful enough to

address AI problems.
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In the development of the model, a fairly general

characterization of intelligence has been adopted: goal—directed

behavior which takes into consideration current conditions and past

experience* This is sufficiently general so that it does not conflict

with other definitions or examples of intelligence, but suggests the

important processes which must be considered: goal-seeking, knowledge

representation, pattern^natching and learning* Although enormous

amounts of effort have been expended tackling these problems with the

hope of achieving human-like performance, such an optimistic goal need

not be set immediately* It is often easier to analyze highly complex

systems when similar but simpler ones are already understood*

This characterization of intelligence is equally applicable to

all animate behavior, so it is possible to look for the most general

principles in the simplest organisms. This can be pursued to the

cellular level, since observable behavior in many simple organisms can

be traced to the firing of individual neurons. In a simple

invertebrate, an identifiable cell may trigger ingestion, another

might measure gut distension, and an array of others serve as

environmental sensors* More complex behavior may be organized along

similar lines, though with orders of magnitude increase in the number

of cells*
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1.4 Expected Benefits

The increased computational power of parallel processing may be

necessary for many real-time AI applications, such as those which must

continually respond or adjust to a rapidly changing, complex

environment. A fundamental problem is that external reality can be

much more complex and variable than its internal representation.

Ideally, the internal representation would constantly reflect all

psrtinent external conditions, and the decision making process would

continuously adjust to this information.

Distributed memory models based on neuron-like elements display

many of the desirable characteristics of biological memory, being

content addressable and potentially reconstructive (Hinton and

Anderson 81). Another potential benefit of distributed representation

and processing is a fail—soft capability. Biological organisms are

remarkable in their ability to function despite considerable damage

(Lashley 29), and the human brain is no exception (Lorber 80).

Another fundamental reason for this type of simulation is that

analytic description of behavior resulting from the interaction of

large numbers of variables over time can be effectively intractable.

It is clear that macroscopically sophisticated behavior can result

from the interaction of microscopically simple processes, but the

relationship may be too complex for analytic description. In many

cases simulation is necessary to demonstrate the relationship between

the two.
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Finally, the processes being explored are biologically motivated

and implemented using a neuron-like element, so there should be

similarities in implementation in the artificial and natural systems.

By observing how microscopic dysfunction affects macroscopic behavior

in a controllable artificial system, it may be possible to gain

insight into pathologies of biological information processing.

1.5 The Model

A neural model of adaptive behavior is developed. It is intended

to have the general properties of a production system. In particular,

it is intended to support arbitrary input-output (stimulus-response)

mappings in the Boolean domain. Behavioral completeness requires that

any mapping be possible, and learning completeness requires that any

mapping be learnable.

In chapter II, the gill withdrawal reflex of Aplysia is described

and analyzed as a neural model of adaptive operator application. In

chapter III, a model neuron is developed and a useful family of

computable functions is described. In chapter IV, a learning

algorithm is developed to train a single node (model neuron).

Assembly structure and learning controls appropriate for a single

operator are introduced in chapter V. Functional completeness in this

case is the ability of an operator to compute, and learn to compute,

any Boolean function. In chapter VI multiple operators are combined

into a Boolean behavioral system. A common memory with appropriate
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learning characteristics is introduced. Completeness for multiple

operators requires that any input be potentially able to trigger any

set of operators. Simple sensory-motor behavior is analyzed in terms

of the model and some psychological aspects of goal directed behavior.

In chapter VII, an evaluation system is developed. Evaluation is used

to train the application of operators and to identify behaviorally

relevant input patterns. Learned evaluation is introduced as a method

of learning sequences of actions. Chapter VIII contains a summary and

discussion of the overall model.

Terms such as teaching, evaluation, reward, motivation,

reinforcement and feedback are often confused in the literature, a

tradition which has been observed and perhaps advanced here. However,

evaluation, learning and behavioral situations will be mechanistically

defined, hopefully avoiding some of the confusion caused by the

imprecise connotations of these terms.
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2.0 GILL WITHDRAWAL

The gill withdrawal reflex of Aplysia is an example of

purposeful, adaptive behavior (Kandel 79ab). It is useful as a simple

neural model of intelligent operator application since the basic

purpose can be inferred and the mechanisms of implementation examined.

The computer model developed here is more elaborate, but is based on

observations and interpretations of gill withdrawal discussed in this

chapter.

2.1 The Biological Model

Behaviorally, the gill withdrawal reflex is quite simple. If the

animal is poked, the gill is withdrawn. This response can be

habituated by continual poking (jets of water from a water pic in the

actual experiments) so that the reflex is completely suppressed. The

response returns, however, if the animal is "hurt" (electrical

stimulation). The response is especially facilitated if the animal is

poked prior to being hurt (Carew et al. 83). Thus the response

displays both associative and non-associative conditioning.

At the risk of being teleological, the purpose of this system can

be interpreted as a protective withdrawal from possible trauma. That

is, since the animal may be hurt after initial contact with a foreign

object, it is adaptive to withdraw the delicate gill at the first

signs of danger. If the animal is continually poked with no

deleterious results, perhaps by a piece of seaweed, the response
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should be suppressed, (habituated), so that the animal isn't

continually holding its breath. If the animal is suddenly hurt, a

reasonable strategy would be to reinstate (sensitize) the response

until it could be safely habituated again. Sensitization is

especially reasonable if the painful experience was immediately

preceded by being poked.

This may be taking liberties in identifying the purpose of

Aplysia behavior, but the observed functioning of the system is

consistent with this interpretation. In any case, it is not

unreasonable to investigate it as a mechanism which fulfills this

purpose, even if the true biological significance of the system is

debatable.

H Similar behavior might be desired in a hypothetical crash
protector for a computer system. If a system goes down, it should

H have done a number of things in order to minimize the damage. A "core

m withdrawal reflex" might write crucial information from core to disk
at the first signs of impending danger. Adaptive behavior would

m include habituation and associative sensitization.

I
In Aplysia, the neural processes responsible for this behavior

are reasonably well understood. The actual biochemical mechanisms

aren't particularly enlightening (except to biochemists), but the

abstract functions of the various elements of the system are of

general interest. As shown in Figure 2.1, this system can be reduced

to 4 elements: a poke detector, a pain detector, a motor neuron and a
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muscle cell. (The actual system is somewhat more complex). Poking

the animal fires the poke detector. This in turn fires the motor

neuron which causes the muscle to contract, withdrawing the gill. In

the absence of any activity in the pain detector, the synapse between

the poke detector and the motor cell progressively loses its

effectiveness in firing the motor neuron. Eventually it becomes

totally ineffective. This is the physiological basis of gill

withdrawal habituation. If the pain detector fires, the synapse is

reactivated, restoring the reflex. Thus the action of the entire

system can be explained by the variable strength of a single synapse.

Gill withdrawal also displays what might be called long and short

term memory (Kandel 77, 79ac). The terminology is for convenience,

not to suggest a particular relationship with memory characteristics

of higher animals. The effects of both habituation and sensitization

may be either short term or long term. If training is for a short

period, its effects wear off and the synapse returns to its previous

state. If training is for a longer period, the effects become fixed.

This gives the system a capability for short term, episodic

adaptation, and a certain amount of noise rejection.

2.2 Principles And Interpretations

A number of important principles can be observed in this simple

system:
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Muscle cell

Motor neuron

-Variable synapse

a
Pain detector

Poke detector

6

Figure 2.1 Aplysia gill withdrawal syatem (simplified),



18

* The medium is the message. When a cell fires, it sends a pulse

down its axon. The pulse is indistinguishable from any other pulse on

any other axon. What gives it its meaning is which axon it is on.

There are no informative tokens passed. Such "labeled line" or "place

coding" of information underlies most physiological theories of mental

and behavioral processes (Kandel 76, 77, 79c, Gallistel 80, Hebb 49,

80, Barlow 72, Feldman 81), though it is questioned by others (John

76, 80, John and Schwartz 78).

* The functioning of the system is goal oriented, being designed

to correctly apply the "withdraw gill" operator. It may be difficult

to precisely identify the purpose of a complex biological system, but

the goals of simple ones can be guessed at, and the goals of

artificial systems can be precisely formulated. Only by identifying

the purpose of a system can its performance be evaluated.

* The gill withdrawal operator is a pattern detector. In this

simplified system there is only one synapse onto the motor neuron,

which corresponds to the output of the poke detector. However, one

could add a vision detector's output to the motor neuron's input so

the animal would have two input features on which to base its

decision. Their effects could both be regulated by the pain detector.

The pattern the withdrawal operator should respond to is one of

impending danger.
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* The "purpose" of individual neurons is determined by the

system(s) they function in. Since survival of the organism is a

crucial constraint, specialized systems have evolved to maximize that

property. Just as successful metabolism relies on specialized

structures (heart, lungs, kidneys etc.), successful behavior requires

specific information processing systems. The nervous system is highly

structured both in terms of visible anatomy and connections (Shepherd

79), and less observable transmitter systems (Cotman and McGaugh 80

ch. 6, Shepherd 83 ch. 9, 25). Since a system's function constrains

the properties of its parts, it makes sense to view individual neurons

as parts of larger systems. In the development of the model, desired

system behavior is identified and implemented. The properties of the

component parts are constrained by these system goals.

* The information a neuron receives is not homogeneous. In the

gill withdrawal reflex, the motor neuron receives information about

the current state of things from the poke detector. The pain detector

provides a specialized type of instructive input which tells the motor

neuron when it should have fired. The two types of input are

distinguished both functionally and physiologically. Systems

utilizing current conditions and instruction are sometimes called

feedback and feedforward systems (Cotman and McGaugh 80 ch. 11).

Feedback systems are essentially servomechanisms which compare a

desired value with an actual value and adjust their output

appropriately if the two are different. No learning takes place. A

furnace thermostat is an example of this. A feedforward system
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receives information indicating how correct its output was and adjusts

its output function accordingly.

* The poke detector does not "control" the motor neuron. Many

models of biological motor activity rely on metaphors such as "module

A outputs a command to do X", or "system A controls system B". This

implies that a cell or module has selective control over what effects

its output produces. A tempting explanation of this is that module A

somehow notices that module B effects something it wants done. Module

A therefore establishes control over that system so it can be fired

(or inhibited) when appropriate. The result is that output from A

controls B. An alternative view is that B receives information as

to when it should have fired. It then notices that A has predictive

potential of this and makes the appropriate adjustments. The final

result is the same, but the learning process is conceptually

different.

2.3 Improved Aplysia

With these interpretations, the Aplysia model can be formalized

somewhat* Instead of the poke detector, there can be an array of

size, shape and smell sensors, and in place of gill withdrawal, any

avoidance operator can be substituted. Pain still seems a good

measure of things to avoid, but it could be elaborated with an array

of detectors for various unpleasant conditions. A small modification

in the pathway will also be made, which makes it much easier to model
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(and draw). The pain detector will directly inform the motor neuron

when it should have fired. The motor neuron can then adjust its own

input synapses rather than having the pain detector do it. This

reduces the model's biological validity somewhat since it confounds

pre- and post synaptic adjustment, but if the purpose of the

biological system is correctly interpreted, the functional result of

synaptic modification should be similar in the model and natural

system.

The purpose of this more general system (Fig. 2.2) is still the

same: learning to avoid damage to the organism. As Thorndike put it,

"He who learns and runs away, lives to learn another day" (Thorndike

99). The pain detector tells the motor neuron when it should have

fired, and in the absence of that signal the motor neuron assumes it

shouldn't have. A problem with this arrangement is that completely

avoiding a predator produces no pain, so the response habituates.

However, the alternative of always bolting and never waiting to see

what is really dangerous has its own drawbacks.

The behavior of this improved Aplysia can be quite flexible. If

a certain organism with shape Shi, size Sz3, and smells Sm4 and Sm7

were to bite the Aplysia, the pain detector would tell the motor

neuron it should have fired. The motor neuron should then adjust its

synaptic weights so that any future occurrence of Shi, Sz3, Sm4 and

Sm7 would cause it to fire. The motor neuron would act as an AND gate

for those features. It might also be that there is some variability

in that type of predator so that a family resemblance should be
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sufficient reason to trigger avoidance, say at least 2 of the 4

features. At the other extreme, there may be several distinct types

of predators with smells Sm9, SmlO and Smll. The motor neuron should

then function as an OR gate for those input features.

Empirical evidence as to the actual computational capabilities of

neurons is scarce, so it may be informative to investigate the

I theoretical characteristics of model neurons. The models may be
inaccurate, but their capabilities and limitations are usually well

I.
defined. By attempting to build functional systems, some constraints

g on the necessary (or sufficient) characteristics of biological neurons
may be surmised.
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3.0 A MODEL NEURON

3.1 The Goal

A model neuron is developed in this chapter. It is compatible

with the pattern detection capabilities attributed to the motor neuron

in the gill withdrawal reflex. Whether this emphasis is biologically

correct may be debatable, but it is consistent with the observed

behavior of gill withdrawal and permits nodes to be assembled into

larger and more powerful networks.

The type of output a neuron theoretically produces depends on the

type of neural model used. Although most formal models focus on

neurons as binary pattern classifiers (Nilsson 65), it is possible to

describe more general capabilities. Since a neuron varies its output

in response to its inputs, it can be thought of as computing a

function. The inclusion of memory permits more elaborate models

(e.g., the neuron as a finite-state machine), but the model developed

here is designed to implement a trainable function.

For parsimony, neural assemblies (chapters 5, 6 and 7) will be

constructed with a single type of trainable node - a sort of abstract

pyramidal cell. The constraints on its behavior are straightforward:

if a single node cannot compute a necessary function, then an assembly

of nodes must be able to. For example, model neurons capable of

computing OR and AND can be assembled into a network capable of

computing any Boolean function, since all Boolean functions can be

represented in disjunctive (OR of ANDs) or conjunctive (AND of ORs)
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normal form. If the desired output is limited to Boolean functions,

such a model is formally complete, though not necessarily efficient.

Intuitively, the number of nodes needed to compute a complex function

is inversely proportional to the complexity of the individual nodes.

3.2 The General Function

The McCulloch-Pitts "formal neuron" was proposed in 1943

(McCulloch and Pitts 43) and is still in many ways the generic neuron

model. Many of its assumptions and limitations are present in current

models. One such limitation common to almost all neural models (which

is perpetuated here) is that the function computed by a node is of the

form:

Out := F(^^Fi(Xi))
That is, the output. Out, is computed as a function, F, of the sum of

the functions, Fi, of the individual inputs, Xi. While this is a

rather strong theoretical limitation, it works reasonably well in

practice since it can compute a wide range of useful functions

(including OR and AND) and is easy to implement.

3.2.1 Summation Of Inputs — Simple summation is justifiable to some

extent as an application of conditional probability, and also has some

biological validity. Summation corresponds precisely to a Bayesian

statistical model if the probability that a node should fire can be

conditioned on a set of exhaustive and mutually exclusive occurrences
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(Hunt 75). If [ABi] is the probability (frequency) that A and Bi

occur together, A = the node, Bi = an input feature,, then [ABi]/[Bi]

is the probability that A will occur, given that Bi has. This

probability times the current input probability of Bi can be summed

over all Bi to give the total probability that A should fire.

However, since a given collection of input features is most likely

neither exhaustive nor mutually exclusive, a rigorous justification on

these grounds is difficult.

The biological justification is that the decision to fire a

neuron is made (ideally) in one place only, the base of the axon,

where all dendritic inputs are summed. This is a common

simplification of the process of neural integration. The actual

process is more complex (Shepherd 79 ch. 3, 83 ch. 8, Kandel and

Schwartz 81) and is still poorly understood, but at a minimum is

presumably capable of (something like) simple summation.

One very desirable characteristic of summation is that it can be

implemented as a one step operation. For example, multiple current

sources can add their contribution to a final summed current,

independent of other current sources. Thus it is possible to sum the

contributions of any number of features in a constant amount of time.

3.2.2 Input Functions - Limitations on the input functions, Fi(Xi),

also constrain the functional capabilities of the node. A common

limitation is that the input functions are restricted to a single
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weight times the input.

Fi(Xi) := Wi * Xi

The weight, Wi, is meant to model the strength of a single synaptic

connection. Most proofs of neural model behavior are for functions of

this form. For an input of 0, the result is necessarily 0. If Xi is

limited to between 0 and 1, the input function describes a line from

the origin (0,0) to (l,Wi). In the proposed model this limitation is

modified somewhat. Input is limited to between -1 and 1, and the

input function describes a line from (-l,Ni) to (0,0) and from (0,0)

to (l,Pi). Both weights Ni and Pi are trainable. (The reason for

those particular limits will be discussed shortly.)

While it can be useful for conceptual purposes to view this as a

single function, it is computed as two separate, single weight

functions.

Fi(Xi) := ~Xi * Ni + Xi * Pi

Thus this more complex input function can be computed with single

weight functions, provided that both the signal Xi and its complement

~Xi are available as inputs. (The relationship of ~Xi to Xi will also

be considered shortly.) Among other things, this allows patterns to be

defined on the basis of missing features as well as present ones.

This is a simple extension of the "formal neuron" and all proofs

involving single-weight functions are still applicable.

Biological synapses may be either excitatory or inhibitory,

although a single synapse is most likely fixed as to its type. Since

it is unnecessary for an input to be both excitatory and inhibitory
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simultaneously, in this model the range o£ individual synaptic weights

is allowed to vary from negative (inhibitory) to positive (excitatory)

so that one synapse can do the work of two.

A further increase in capabilities could be made if the input

functions were not required to be linear. For binary input features

which are necessarily either present or absent, a linear function is

reasonable since the extremes of the function are associated with the

extremes of the input value. Intermediate input represents the

probability of the feature's presence, and a linear function gives

intermediate output. However, for non-binary features, intermediate

input need not represent probability, but may represent the true

magnitude of the stimulus intensity. Successful behavior might

require different responses to different intensities. Linear input

functions allow a node to respond maximally to the extreme values of

an input, but not to intermediate ones. For that case, a parabola or

any inverted U-shaped function would be appropriate. Obviously, more

complex input functions, Fi, allow a node to compute a more complex

output function.

3.2.3 Unknown - The ability to distinguish the value "unknown" from

other values is of considerable importance. If an object is described

as having feature A, this does not imply that all other features are

missing, they are only unspecified. If input (and output) values are

limited to between 0 and 1, and interpreted as 0 and 100% probability,

there is no place on the scale which represents unknown. This is a
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problem inherent in any implementation of the law of the excluded

middle. Many logic applications confound false and unknown (e.g.,

Prolog).

This could be avoided by using two nodes, one to represent Xi and

another to represent ~Xi. Unknown would be represented by a summed

contribution of 0 (treating ~Xi as a negative number). An alternative

arrangement using only a single node is to establish a baseline

floating level of output and express the^probability of presence or

absence as variations above and below that level. This appears to be

biologically common (Sejnowsi 81), and because it requires half the

number of nodes, that approach is the one developed here. Input and

output are constrained to be between -1 (certainly not present) and 1

(certainly present). Unknown is represented as the non-excluded

middle value of 0. A similar logic strategy is used in the Mycin

system (Shortliffe 75).

With this representation, "no information" and "conflicting

information" are confounded since both can produce a zero output. If

Xi and ""Xi were represented separately, that problem could be avoided,

but such a capability didn't seem especially useful, so single node

representation was acceptable.

3.2.4 The Final Function F - The nature of the final function, F, of

the summed input signals depends on the type of output desired. If a

threshold pattern detector is needed, output may be limited to 0 or 1.
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If probabilistic output is desired, output may be restricted to

between 0 and 1. For a completely general function, an unbounded

range would be necessary. In addition, there is no reason output has

to vary linearly with summed input. Biologically, neural response

seems to vary with the logarithm (or as a power function) of input

intensity (Shepherd 83 pg. 198), permitting a wider range of

intensity to be represented within fixed limits. In the current

model, a linear range of -1 to 1 is implemented. Values outside of

that range are simply interpreted as the appropriate limit.

Most pattern detectors have a single threshold value which the

summed inputs must exceed in order to fire the node at all, and above

which it fires at full intensity. Besides any computational

advantages this strategy may have, it is a reasonable approximation of

neural behavior. Textbook neurons do respond in an all-or-nothing

fashion. However, this does not mean that magnitude information is

not conveyed. Input is also temporally simimed, so that a strong input

produces a higher frequency of firing than a weaker input. Firing

frequency is commonly interpreted as a magnitude measure (Barlow 72).

This style of expressing magnitude information may have some

theoretical advantages, but it may also simply reflect biological

limitations inherent to neurons. There did not appear to be any

obvious benefits in transmitting magnitude by frequency modulation, so

in the proposed model the magnitude of output is expressed directly in

the amplitude, which is considerably easier to model.
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In the original McCulloch-Pitts neuron, there was one inhibitory

input which was absolutely inhibitory rather than additive. This

feature may have some biological relevance. In the central nervous

system, synapses are sometimes classified as type 1 and type 2, which

appear to represent the extremes of a continuum. (Cotman and McGaugh

80 ch. 3). Type 1 synapses are generally excitatory and on the

dendrites of the neuron, which is the "normal" location for input.

Type 2 synapses are generally inhibitory and on the cell body. They

can have longer term and more general inhibitory effects than

inhibitory inputs on the dendrites. Certainly, different

neuro-transmitters have different effects and different time courses

of action (Shepherd 83 ch. 9). Though non-additive input is not

included in the current model, it is likely that it could serve a

useful purpose, to adjust overall sensitivity, for example. The

standard binary classifier (Nilsson 65) has one constant input used to

adjust the firing threshold. However, a variable threshold is not

necessary in the present model, so that capability is not utilized.

3.3 The Neural Function

The final result is a node (model neuron) that has two values

(synaptic weights) associated with each of its inputs, Fi. One is

referred to as Pi for "present" input, and the other as Ni for "not

present". Both weights may be either positive (excitatory) or

negative (inhibitory). There may be any number of inputs. Output is

calculated as:
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Out := Fi * Pi + - Fi * Ni
Fi > 0 Fi < 0
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3.4 Some Useful Functions

Karnaugh maps (Fig. 3.1) provide a useful technique for

representing functions of Boolean features (Dietmeyer 78, Mano 79).

Each box represents a specific combination of input features, and all

possible combinations are represented. A Boolean function can be

specified by shading or placing I's in the boxes corresponding to the

desired "true" conditions. The remaining "false" boxes can be filled

with O's or left blank. If appropriate, continuously valued output,

or a "don't care" response could also be indicated. The topological

properties of such a representation are convenient for designing

circuits to compute Boolean functions, since a minimal OR of ANDs

representation can be determined by grouping blocks of Is. Visually,

Karnaugh maps are not very useful for more than 4 features, but since

the size of the input space increases exponentially with the number of

features, it proved impractical to exhaustively model large feature

spaces anyway. Consequently, examples will be for functions of 4 or

fewer features, though any number can be simulated. The number of

features is specified as a runtime variable.

Choosing synaptic weights for Boolean functions is reasonably

straightforward (Fig. 3.2). With inputs A, B and C, if the desired

function is (A OR B), then appropriate weights are Pi = (3/2, 3/2, 0)
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and Ni = (-1/2, -1/2, 0) (Fig. 3.2a). If either A or B are present

(=1) input will sum to 1 or greater. If both inputs are absent (=

-1), input sums to -1. If one input is .5 and the other is -1, the

node's output is .25 rather than the probabilistically correct answer

of .5. If both inputs are .5, output is 1.25 rather than the correct

value of .75. This inability to compute exact probabilities is an

inherent limitation of the functional form, but probabilistically

correct calculations are more susceptible to inaccuracies due to

unknown inter-feature dependencies (Adams 76, Shortliffe 75).

The AND relationship can also be expressed (Fig. 3.2b). If the

function desired is (A AND B), (written (AB) for convenience),

appropriate weights are Pi = (1/2, 1/2, 0) and Ni = (-3/2, -3/2, 0).

It is also possible to represent functions such as (at least 2 of

3) features. Pi = (1,1,1), Ni = (-1,-1,-1), (Fig. 3.2c), or in

general (at least X of N) features. This is a formalization of what

I Kent has cnlleh the ••hlMOSI" gate (Kent 81). It is interesting to
note that OR and AND are simply the extremes of this function (Shapiro

I 79). (At least 1of N) is equivalent to OR and (at least Nof N) is
equivalent to AND. A dramatic advantage over specialized AND/OR nodes

is realized for intermediate functions. (At least 10 of 20) can be

detected by one general node but would require about 10 ** 5 strictly

AND/OR nodes.
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I
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The above examples apply equally veil to patterns involving the

absence of a feature. The Pi and Ni values of that feature are simply

exchanged.

3.5 Weight Limits

For the general case of (at least X of N), it is straightforward

to solve for values of Pi and Ni such that exactly X features yield a

sum of 1 and exactly X-1 features yield a sum of -1. More than X

features give a sum > 1 and less than X-1 features give a sum < -1.

X * Pi + (N - X) * Ni = 1
(X - 1) * Pi + (N - X + 1) * Ni = -1

Solving for Pi and Ni gives values of

Pi = (2(N - X) + 1)/N
Ni = -(2X - 1)/N)

At the extreme of X = N (= AND)

Pi = 1/N
Ni = -2 + 1/N

At the other extreme of X = 1 (= OR)

Pi • 2 - 1/N

Ni = -1/N

As N varies from 1 to infinity, these weights vary between 2 and -2.

Thus the (at least X of N) function can discriminate on the basis of a

single feature within a weight limit of 2. Similar calculations for

output limits of 0 and 1 (or -.5 and .5) yield a weight limit of 1.

In general, the distance between output limits determines the

necessary weight limits.



37

With fixed output limits, the computational power of a node can

be increased by increasing the weight limits. For example, allowing

weights to vary between -4 and 4 rather than -2 and 2 allows a node to

compute new functions such as ((A OR B) AND C). (Pi > (3/2, 3/2, 0)

Ni = (-1/2, -1/2, -4)). In general, larger weight limits allow

increasing depth of parenthesization. The same effect can be achieved

with fixed weight limits by reducing the distance between the output

limits.

Many models allow unbounded synaptic weights. This allows a

wider range of functions to be computed, but has a problem in that the

possible error of a weight is also unbounded. By limiting weights to

a maximum of + or - 2, a weight can never be further than 4 from the

correct value. The unbounded weights of the standard binary

classifier could be scaled to within fixed limits, but in practice

seldom are.

Even without a weight limit, some simple Boolean functions cannot

be computed by a single node (e.g., Exclusive Or). This is another

limitation of the functional form. However, it 'is unlikely that

biological neurons can compute all functions of their inputs either.

In fact, the limitations of a linear input function may parallel

important biological limitations. Of the 16 possible Boolean

functions of 2 features, only Exclusive Or and Equivalence cannot be

expressed as a linear function, and those appear to be the most

difficult to learn (Bourne 70, Hunt et al. 66, Neisser and Weene 62).
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3.6 Prototype Pattern Detection

The (at least X of N) function can be interpreted as a prototype

detector. It gives its strongest response to the central prototype

(all N of N) and decreasing output for decreasing numbers of features

(N-1 of N), (N-2 of N), ... etc. As was shown, it can give perfect

discrimination on the basis of a single feature. Prototype, or family

resemblance detection, is a useful capability for the description of

natural categories (Mervis and Rosch 81).

With output thresholds of -1 and 1 and synaptic weights between

-2 and 2, a single node can represent prototypes of the form:

at most XI features give output = -1 (= false)
at least X2 features give output = 1 (= true)
where X2 - XI >= 1

This function can also be implemented with only positive weights

and variable thresholds. Which form is preferable is problematic

since the use of this alternative representation was not extensively

explored. Both inhibitory synapses and variable thresholds exist in

the nervous system, so neither form is inherently unrealistic.

Although it is possible to implement pattern classifiers with a

single threshold value, this introduces difficulty in representing

magnitude information. With a single threshold, all output above (and

below) the threshold is roughly equivalent. With two thresholds, the

magnitude of values between the thresholds can be meaningful.
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3.7 Results

The ability for one type of neuron to describe many types of

functions is of considerable importance. In the generalized Aplysia

example, the motor neuron is trained to detect the proper function.

There was no reason, a priori, for putting any particular type of

functional node (AND/OR etc.) in that position.

Prototype pattern detection is a general function that the

present model can compute. Because this function contains OR and AND,

it is sufficiently powerful for Boolean completeness of assemblies.

The intermediate input intensity example is a type of function which

the proposed model node cannot describe. There are presumably many

useful properties which are beyond the capabilities of the present

model. As they are observed they may suggest modifications.

Immediately implementing the most powerful capabilities might be

argued for, but more elaborate models are more difficult to deal with.

The present one is viewed as an acceptable trade off between power and

simplicity.
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4.0 TRAINING A NODE

4.1 The Goal

A learning algorithm for the model neuron is developed in this

chapter. The general method of training and the type of output

desired are consistent with the gill withdrawal reflex. Specifically,

a trainable neuron (the motor neuron) is viewed as a pattern detector.

It receives instruction (pain) indicating the correct value of its

output which it can increase (by sensitization), or decrease (by

habituation). This is viewed as a general learning paradigm which

gill withdrawal is a simple instance of. It is equivalent to the

formal constraints of perceptron training (Nilsson 65), so there is

nothing uniquely biological about gill withdrawal if it is formalized

in this way. The basic learning process developed in this chapter is

equivalent to perceptron training, but a number of modifications and

extensions will be introduced.

4.2 Neural Plasticity Mechanisms

There are many organizing processes that shape the nervous

system. During early development, cell division, migration and

differentiation take place, and specific patterns of interconnection

develop. Later, selective cell death and synaptic degeneration occur,

producing a highly structured system before it is exposed to the

environment (Cowan 79, Lund 78, Shepherd 83 ch. 10). Some aspects of

neural growth are present throughout the life span of most organisms.
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At the synaptic level, learning-related structural changes are often

observed (Thompson et al. 83).

Even in a statically wired organism a considerable amount of

neural, and therefore behavioral plasticity remains, due primarily to

the existence of variable synapses (Tsukahara 81). The mechanisms of

synaptic modification can be classified as either homosynaptic or

heterosynaptic (Kandel 79c). Homosynaptic processes are intrinsic to

the synapse and include habituation and its converse of facilitation.

The synapse spontaneously becomes either more or less effective based

on its previous activity. Heterosynaptic processes are dependent on

the activity of other pathways, and include dishabituation

(sensitization) and its converse of inhibition. In this case an

external signal causes a change in synaptic strength. There are

additional processes in both categories (Krasne 78). In addition to

modification of specific synapses, the sensitivity of the neuron as a

whole to its synaptic inputs can be modifiable (Lynch et al. 77,

Woody et al. 76, Brons and Woody 80, Kandel 77, Woody 82 pg. 151,

195, Brons et al. 82).

Since there are a number of biological learning mechanisms

besides habituation and sensitization, it is obvious that the gill

withdrawal model of biological learning is not complete. However, it

provides a good starting point, and the other processes may be best

understood by exploring their capabilities and limitations

individually. By modeling processes without identifying their

purpose, there is the risk of merely simulating biological
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limitations.

The learning process implemented here is conceptually consistent

with gill withdrawal, but the actual method of implementing the

process departs from the biological model. At some point it is

important to notice that computers and neurons work on different

physical principles, so that increasingly detailed simulation of

biological processes is simply increasingly inefficient implementation

of the desired behavior.

4.3 Learning Models

Formal learning models have been categorized in different ways

(Duda and Hart 73, Hunt 75, Nilsson 65). One common distinction is

between parametric and non-parametric training. In general,

parametric training implies a certain amount of pre-knowledge of the

correct functional form and appropriate features, so that only certain

population variables require measurement. In non-parametric training,

the functional form and the appropriate features are not

predetermined, so a general form is used, such as linear or quadratic.

The function is tuned by adjusting its coefficients during training.

Since an "unbiased" linear form is probably a reasonable approximation

of the actual neural function, this distinction is rather indistinct

in the case of neural learning.
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A second major division of learning is between training with and

without a teacher. The Hebbian model of synaptic modification (Hebb

49) is the pre-eminent example of learning without a specialized

teacher input. In the Hebb model, a synaptic weight is increased if

there is input on that line when, or just before, the node fires.

Something like this has been demonstrated in several neural systems

(e.g., O'Brien and Quinn 82). Teacherless learning is appealing since

the question of who generates the teacher signal doesn't arise, and

with the addition of some whole network constraints it can lead to the

self-organization of a number of interesting types of pattern

detectors (Amari and Takeuchi 78). However, there are limits to the

types of functions that can be learned this way. Learning is

essentially limited to picking out statistical associations from

background noise. If input is unpatterned (e.g., random sequences of

random combinations of features), there is nothing to be learned. To

learn useful output, some input information must be interpreted as

instruction or evaluation. In addition, the basic Hebbian model is

susceptible to a number of saturation and stability problems (Sutton

and Barto 81).

Learning with a teacher implies specialized input information

with instructive properties. Threshold pattern classifiers are a

common example (Nilsson 65). In this case, a teacher input specifies

which side of the threshold input should sum to, so the weights, and

perhaps the threshold, can be adjusted accordingly. A teacher signal

can describe appropriate output with arbitrary precision by indicating
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for each input whether the current output is right or wrong, too high

or low, or by specifying the correct output directly. If teaching

information is used to fire the node, Hebbian learning can be

utilized. In general, instructive input might be specialized in time

(the period immediately after a neuron fires), synapse type (as in

gill withdrawal), signal pattern or transmitter type, so long as it is

functionally identified to the receiving neuron. In addition,

learning may be equally selective for the preceding inputs and

activity of the receiving neuron.

Without belaboring the biological validity of the basic Hebb

model, it can be observed that most implementations are inherently

input oriented. That is, a network is organized solely by its input,

and little attention is given to desired output. Since it was

suggested that an important aspect of network organization is goal

directed behavior, development of this model will concentrate on that

process. This requires specialized instructive/evaluative input to

indicate appropriate output.

The current model assumes the existence of a perfect teacher

(i.e., the correct answer is always available to adjust the function).

However, with multiple operators, a global evaluation of behavior may

not provide an unambiguous teacher for each operator. For example,

knowing that you did something wrong may not tell you what would have

been right. This problem will be avoided in greater detail when

evaluation is discussed (chapter 7).
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4.4 Adjusting Weights: The Basic Algorithm

The basic learning process in the model can be summarized as four

conditions.

A weight should be increased if:

1) The node should have fired
2) There was input on that line
3) The node's output was < 1

(i.e., less than the upper threshold)
4) The weight is not already its maximum value

Jj Number 1uses the teacher input(s) to indicate correct output.
In gill withdrawal, this corresponds to the pain input. Number 2

I makes learning associative. Gill withdrawal displays both associate
I and non-associative components. Number 3prevents needless learning

and a host of problems resulting from unneeded modifications. Gill

I withdrawal has not been reported to display this characteristic, but
the resulting phenomena of "blocking" (section 4.6) is displayed by

I other molluscs (Sahley et al. 81). Number 4enforces the fact that
n synaptic weights cannot be unbounded. Except for 4, these conditions

are the same as perceptron training (Nilsson 65). They are also

IP similar to what has been called Rescorla-Wagner learning (Rescorla 72,
Rescorla and Wagner 72). One important characteristic is that

learning takes place only when the node did not respond correctly,

that is when output < 1. More succinctly, "organisms only learn when

events violate their expectations" (Rescorla and Wagner 72).

I

I

I One possible learning function for achieving the above
constraints is:

I Wi := Wi +
" TS * In(i) * (1 - Out) * (2 - Wi) * wt_rt

I

I



I

Where:

Wi = the synaptic weight (-2 to 2) associated
with input from node(i)

TS "a teaching signal (0 to 1) expressing the
probability that the node should have fired

In(i) = the output (0 to 1) of node(i)
Out = the current output (-1 to 1) of this node
wt_rt a constant determining the maximum rate

of weight change
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If TS = 1, In = 1, Out = -1 and Wi «= -2 the weight will increase by

the maximum amount, 8 * wt_rt. In(i) is between 0 and 1 rather than

-1 and 1 because Pi and Ni are adjusted separately. Positive values

are used to adjust Pi and negative values to adjust Ni. Synaptic

weakening takes place by a complementary process.

By applying the function to each weight, (either Pi or Ni for

each input) a node can be trained, by appropriate selection of input

and TS, to compute any of the previously discussed functions. For

proof that such algorithms converge on the correct output, see Nilsson

(65).

4.5 Modifications

The preceding function is more for illustration of the basic

constraints than for serious implementation. It suffers from a niunber

of practical limitations which effect the rate of convergence.

However, since the basic approach is convergent, it is possible to

consider ways of improving it so that the correct output is reached
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more efficiently. Rather than formulating a simple, elegant learning

algorithm and discovering its capabilities, the specific goal of

training a node's output rapidly and efficiently will be pursued. A

number of modifications will be suggested to that end.

4.5.1 The Rate Constant Wt_rt - An obvious candidate to increase

learning speed is the value of vt_rt. Though a large value produces

rapid learning, it also results in a short memory and greater noise

sensitivity. This particular constant could be tuned to the noise

level of its environment. However, a limit to the maximum rate of

output change has subsequently made this value largely irrelevant

since the resulting weight changes are usually much less than the

limit.

4.5.2 Approaching Limits - A more useful method of increasing

learning speed is to modify the rate at which limits are approached.

The correct values can be approached (and achieved) much more rapidly

if they are not approached asymptotically. Two limits are

asymptotically approached in the learning function, the extreme values

of the weights and the correct value of output of the node. For the

weight limit, this modification is straightforward. The adjustment is

calculated without regard to the limit, and if the adjusted weight is

beyond a limit, it is set back to it.
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Approaching the output limit is treated in a. similar manner. It

is desirable to approach the limit rapidly, but without overshoot.

The limiting term (1 - Out) reduces the rate of increase as output

approaches 1, but does not take into consideration the nximber of

features being adjusted. For patterns with few features the rate of

approach will be slow, and for patterns with many features overshoot

will occur. The solution to this problem was to calculate the weight

adjustments without regard to the output limit, then recalculate the

current output on the basis of the new weights. If output is greater

than a limit, the weight changes are scaled back so that output equals

the limit exactly.

This technique is also used to limit the rate of output change

for the node as a whole, nd_rt, usually to .3. This makes the maximim

rate of individual weight change largely irrelevant, but the same

tradeoffs between speed of learning and noise sensitivity occur at the

whole node level. Actually, a variable nd_rt which increases with the

error magnitude proved to be useful and is currently employed:

nd_rt := .3 + Abs(CO - Out) * .2

where CO is the correct output, and AbsCCO - Out) is the error of Out.

The constants were empirically adjusted during network simulation.

4.5.3 Choosing Relevant Features - Another process which strongly

affects the speed of learning is identification of the appropriate

features to adjust. In most learning processes, the relevant features

are identified by the "simple requirement that they are present when
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weights are being modified. This strategy is adequate for small

feature spaces, but becomes progressively worse with increasing

numbers of irrelevant features. (Irrelevant in the sense that they do

not affect the value of the function being learned). The problem is

obvious in the case of a constant feature. For learning the function

(A OR B) when C is a constant 1, it is clear that C is irrelevant,

though it is always present. A constant (or in general, independently

distributed) feature should not be considered an important part of any

pattern. Unfortunately the learning algorithm is helpless to prevent

this, and expends a considerable amount of time and effort increasing

and decreasing the weight on C. Taken to extremes, this problem is

fatal to the learning process. If there is one key feature and a

great deal of irrelevant background activity, the learning process

will be unusably slow since the relevant feature cannot be separated

from the background. The perceptron training process requires one

constant feature which corresponds to an adjustable threshold, but

increasing the number of constant features beyond the minimum of one

decreases the rate of convergence.

A remedy for this problem is suggested by the predictive nature

of input for correct output. The value of [X|Bi] (the probability of

X given Bi) is equal to [X] (the probability of X) if Bi has no

predictive value for X, as is the case for a constant feature. If

[XlBi] is greater than [X], Bi is predictive of X's occurrence. If

[XiBi] is less than [X], Bi is predictive of X's non-occurrence. This

permits a modification of the learning algorithm so that weights are
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made more positive for only those features which have positive

predictive value. Likewise, weights are made more negative for

features having negative predictive potential (e.g., a missing feature

in an AND). Related conditional or predictive processes have been

considered in other models (Sutton and Barto 81, Klopf 82, Rosch 78,

Uttley 79, Bindra 75, Sejnowski 81).

To implement this, the increase (decrease) in weights is limited

to the ratio of the predictive potential of each feature to the

maximum (minimum) value of all the features currently present. Since

this ratio is always between 0 and 1, its effects can be tuned to some

extent by taking it to an adjustable exponent. For example, to

sharpen the focus on only the most predictive features rather than

spreading the responsibility around, the ratio could be squared. It

is interesting to note that for many Boolean functions, a weight

vector exactly proportional to conditional probability will correctly

categorize the input space.

A conditional probability "trace" can be iteratively calculated

as:

Method I

[XBi]

[Bi]
[XiBi] I
IX] ^

or as;

« [XBi] + (X * Bi - [XBi]) * frq_rt
= [Bi] + (Bi - [Bi]) * frq_rt
•= [XBi]/[Bi]

= [X] + (X - [X]) * frq_rt

Method II

[XiBi] := [XiBi] + (X - [X|Bi]) * Bi * frq_rt
[X] := [X] + (X - [X]) * frq_rt

where frq_rt is a constant determining the maximum rate of change.
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The first method has the seemingly desirable property of

adjusting for the amount (frequency and intensity) of input. However,

it has several drawbacks. In the absence of input, Bi, the stored

information decays into the background noise. Reducing the rate of

change delays the process but doesn't eliminate the problem. A

related problem is that the ratio [XBi]/[Bi] can vary widely with

small changes in [XBi] or [Bi]. Because of this, the computed

conditional probability can wander around quite a bit depending on the

distribution of the input feature's occurrences and the value of

frq_rt. The second method has neither of these problems, but has its

own drawback. Since it doesn't adjust for input amount, low level or

infrequent features take longer to reach their proper value.

Both methods also suffer from a theoretical limitation of all

single "trace" theories. Unless X is Boolean, frequency and intensity

are confounded, so that an intense but infrequent signal can be

equivalent to a weaker but more frequent one (e.g., a trace value of

.8 can result from 1.0 80% of the time, .8 100% of the time, or

anything in between). Both methods also suffer from the usual rate of

change trade off. A long memory (small rate of change) is appropriate

for a reasonably stable system, and a short memory is needed for rapid

adaptation. The current learning rate (frq_rt = .1) was selected to

give reasonable results when cycling through the complete input space

of 4 or 5 features. Both methods were implemented and work

adequately, though with the above defects. For lack of a clear cut

preference, either method can be chosen as a run time option, though
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method II is generally used.

Another variation on the calculation of conditional probability

is to adjust the trace values only when output is incorrect. In this

case, the trace is predictive of when the node's output should

increase or decrease, rather than when it should be on or off. This

has some theoretical appeal, and often gives superior results. It is

implemented as a run time option.

4.5.4 Learning Vs Unlearning - The use of conditional probability

works well in identifying weights which should be increased in

magnitude, but selectively identifying those which are too large and

should be decreased in magnitude proved more difficult. Fortunately

it also proved to be less crucial than selective increase (if in fact

it is desirable at all), so for convenience, decreases are currently

calculated without regard to predictive potential. This still leaves

the problem of how much they should be decreased. The solution was to

make a distinction between learning (increasing in magnitude) and

unlearning (decreasing in magnitude). Their relative contributions

depend on your faith in the accuracy of past learning. Arbitrarily,

the contributions of unlearning and learning were set at .1 and .9 of

the total change. Unlearning only works exactly for the Boolean

extremes of input, but hasn't been noticeably troublesome in

subsequent development when intermediate values also occur.
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Weight limits of -2 and 2 are adequate for the (at least X of N)

function, but the model learns faster if it has extra room to maneuver

in. However, if weights go beyond -2 and 2, it is because other

unnecessary weights are accumulating. In order to give the model some

extra room, but to discourage its abuse, the weight limits were

doubled to -4 and 4, and the unlearning fraction was coupled to the

weight of the most predictive feature in the current input.

un_frac := un_frac + (1 - un_frac) * ((Wt - 2)11)

It also proved useful to adjust the unlearning rate with the magnitude

of error. A large error is indicative of inappropriate weight

accumulation, so unlearning is increased with increasing error.

un_frac ;= un_frac + AbsCCO - Out) * .2
if un_frac > .8 then un_frac := .8

The constants were empirically adjusted.

In certain biological systems it has been suggested that

unlearning does not occur at all, and that as a result, memory becomes

saturated with increasing age (Barnes 79, Baudry et al. 81). On the

surface, this appears to be more of a limitation than a feature.

Though perhaps unbiological, these adjustments of unlearning proved

quite effective in avoiding weight saturation, and keep a node near

the center of its plasticity range.

4.5.3 Rate And Direction - Finally, it should be noticed that there

are basically two variables controlling the change in output of a

node: the direction (increase or decrease), and the rate of change.
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The correct output, CO, indicates direction, and Rt controls the rate.

New_out := 01d_out + (CO - 01d_out) * nd_rt * Rt

In the original algorithm, the teaching signal, IS, controlled both

rate and direction.

New_out :• 01d_out + (1 - 01d_out) * nd_rt * IS
- (1 + 01d_out) * nd_rt * (1 - TS)

An alternative is to control direction and rate separately. TS can be

used to indicate correct output, and a separate value, Rt, can be used

to adjust the rate.

New_out := 01d_out + (TS - 01d_out) * nd_rt * Rt

In assembly training (next chapter) it is useful to control rate and

direction separately, so the latter form is utilized.

4.3.6 Memory Time And Noise Rejection - Typically the environment

does not provide instruction which is 100% accurate. The fact that

things get better or worse may or may not be contingent on the

preceding activity of the organism. Uncontingent reinforcement is

essentially noise in the teaching signal. Since there is a great deal

of uncontrolled environmental feedback to any organism, any learning

process should be as insensitive to teaching noise as possible. The

logical extreme of this problem is what a neuron, or organism, should

do in response to a totally uncontrolled reinforcement signal. This

appears to be a significant problem for a wide range of organisms

(Seligman 75, Maier and Seligman 76, Maier and Jackson 79).
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As previously observed, noise sensitivity can be reduced by

decreasing the learning speed, but slow learning has its own

drawbacks. The memory characteristics of Aplysia (Kandel 77, 79ac)

can be interpreted as a response to this problem. Variable synapses

may display both long and short term memory. Simplified a bit, the

important characteristic of this phenomena is that if a synapse is

held at one value (say W > 1) long enough, it becomes fixed.

Otherwise it decays back to the previously fixed value. This allows a

certain amount of teaching signal noise rejection and the capability

for a short term episodic memory.

At a minimum, two weights are required, a short term value (ST)

and a long term value (LT). ST is the weight that is actually used in

output calculations, and it is trained the same as before except:

1) it can move faster toward LT than away from it
2) it may spontaneously decay back to LT with some

slow rate constant.

Number 1 rejects noise by keeping ST from "random walking" away from

LT. Number 2 makes some specific assumptions about useful episode

times, since effects decay with a specific time constant. The other

process to consider is the training of LT. It can be trained with the

same teaching signal as ST but with a slower rate constant, or may

move toward ST at some slow rate. This arrangement is different than

a single memory with a slower rate of change, since noise sensitivity

can be reduced without a concurrent reduction in the maximum rate of

noiseless learning.
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Theoretically this process could be extended with as many levels

of memory as desired, giving a wide spectrum of adaptation times.

Each weight could be coupled with its immediate neighbors as ST and LT

were coupled to each other, or it might move toward some weighted

average of other weights. As before, only the shortest term value

need be used in actual output calculations. The current model

applications are not intended to be either episodic or noisy, so this

is not of much immediate value, but a dual trace memory is implemented

as a runtime option.

4.6 Neural Learning And Classical Conditioning

It has been demonstrated that perceptron-like learning algorithms

can display many characteristics of classical conditioning (Sutton and

Barto 81, Rescorla and Wagner 72, Rescorla 72). The phenomena of

blocking is such an effect. As an example of this, if a node is

completely trained to detect some feature A before a new feature B is

paired with A, further training will not increase the input weight of

B. Since the node is already responding correctly, there is no need

for any weights to be adjusted.

More generally, the Rescorla-Vagner learning model emphasizes the

predictive nature of the inputs for the correct output (Rescorla 67),

a feature which is specifically addressed in the Bayesian selection of

appropriate features to strengthen. However, Rescorla-Wagner learning

shows a contingency effect only after a period of training. In the
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proposed model, conditional probability is stored as a separate input

trace which can produce differential conditioning on a single trial.

This two-stage model of learning is similar to one proposed by

Mackintosh (Mackintosh 75, Dickinson and Mackintosh 78, Mackintosh and

Reese 79). In that model, the "salience" constant in Rescorla-Wagner

learning is replaced by a variable reflecting a feature's current

predictiveness. This modification explains a number of "latent

learning" phenomena that are not adequately captured by the

Rescorla-Wagner model (Mackintosh 75, Lubow 73, Pearce and Hall 79,

Rescorla and Holland 82, Gormezano et al. 83). In the current model,

conditional probability is adjusted to predict when a node should be

on, or alternatively when output should be increased. Roughly

equivalent acceleration of learning is possible, though the resulting

"latent learning" effects are somewhat different. There are other

computational variations, each of which produces slightly different

effects. The important commonality is that a two-stage model permits

a significant acceleration of learning by explicitly utilizing feature

salience.

Ferceptron training does have some differences from classical

conditioning however. Rescorla reports that if two separately

conditioned stimuli are paired together for a time, they are no longer

as effective individually (Rescorla 72, Rescorla and Holland 76).

This is the same as saying that if input sums beyond 1, the weights

are reduced. At the moment this doesn't seem advantageous, so it is

not implemented in the model.
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Another feature of classical conditioning that is not displayed

by this model is that novel stimuli are more apt to be utilized as

relevant features. In current applications of the model, novelty is

not a useful characteristic to detect. Consequently, that process is

not addressed here, though it clearly is an aspect that should be

considered for more general conditions.

Actually, the entire concept of classical conditioning may be

something of a red herring. As observed by Woody (Woody 82) and many

others, classical conditioning is not a unitary phenomena, but is in

fact the result of several distinct learning processes. It is a style

of behavior under particular conditions, not a specific mechanism.

Consequently it may be misleading to debate whether an organism

displays "real" classical conditioning. For example, Aplysia displays

associative learning but has not been reported to display blocking

(though other molluscs have). It may be more productive to explore

the individual processes of learning rather than classify their

combination as "classical" or not.

From a functional point of view, an important characteristic of

classical conditioning is that its best formal model (Rescorla and

Wagner 72) is similar to the mathematically useful perceptron training

process (Nilsson 65). The particular mechanisms are immaterial if

their results are adequately captured at the functional level.

Aplysia learning (as described here) is not sufficiently powerful to

completely implement the perceptron training process, but it seems

reasonably safe to assume that such mechanisms do exist in simple



59

organisms,

4.7 Results

The final result is an algorithm which is several pages long, and

considerably more complex than the Hebb hypothesis. It is, however,

reasonably efficient in training a node's output. By having a complex

process produce a simple result rather than vice versa, it is possible

to proceed to larger neural assemblies since the action of the

component parts is reasonably well defined.

Because it is a linear function, learning convergence in the

proposed model could presumably be proved using something like the

perceptron convergence theorem. Conditional probability, weight

limits and unlearning complicate the issue, but the basic process of

training a linear function as a pattern detector is well established.

In Figure 4.1, the function (at least 3 of 4) is learned. For

convenience, patterns are cycled in numeric order (i.e., -1-1-1-1 = 0

and 1111 = 15), though the actual order of presentation is largely

immaterial. The output for representative inputs with N, N-1, N-2,

N-3, and N-4 features is shown. Positive instances are learned in

order of similarity to the central prototype (all 4 of 4), and

negative instances are learned in order of similarity to the inverse

of the prototype (0 of 4). This is consistent with human learning of

prototypes (Mervis and Rosch 81). As a corollary, it's clear that

borderline hits and misses (X and X-1 features) are the best training
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examples (Winston 75). Though cyclic repetition of all input

possibilities is an unnatural situation, it seems reasonable that

highly specific resolution (separating (2 of 4) from (3 of 4)) would

generally take longer to leam than low resolution (separating (0 of

4) from (4 of 4)).

As an example of a node's ability to learn AND's, a node was

sequentially trained to detect each letter of the alphabet using a

14-stroke representation scheme (Fig. 4.2) (Rumelhart and Siple 74).

For each letter, the complete alphabet was cycled through until

discrimination was perfect. All letters were successfully learned in

an average of 9 cycles.

Two styles of input presentation are used in testing the model.

Either the input patterns are cycled through in numeric order, or they

are presented in randomized blocks of one cycle. Totally random

pattern selection also works, but the results are difficult to assess.

For individual functions, input order can effect training speed, but

on the average it had little effect.
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(3of 4)

(Oof 4) (lot 4) (2 of 4)

Figure 4.1 Prototype learning, (at least 3 of 4)
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Figure 4.2 14 stroke alphabetic representation.
(Rumelhart and Siple 74)
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5.0 A MODEL OPERATOR

5.1 The Goal

If behavior is viewed as a series of operator applications, the

only requirement for intelligent behavior is that each input pattern

results in the appropriate response, or conversely that each operator

is a pattern detector for those conditions under which it should fire.

Since the features an operator detects can be the output of any other

neuron, this is consistent with both externally and internally

generated behavior. The general purpose of this chapter is to

I

investigate network controls which can train a collection of nodes to

act together in a cooperative manner so as to implement an abstract

operator.

As previously observed, if there are desirable functions a single

node cannot detect, then an assembly of nodes should be able to. The

current domain is restricted to Boolean inputs, so for completeness an

operator should be able to detect any Boolean function. There are

Boolean functions a single node (linear function) cannot detect,

(e.g.. Exclusive Or), so the need to train an assembly to detect them

arises. The specific goal of this chapter is to develop network

structures and associated learning processes appropriate for learning

arbitrary Boolean functions.
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5.2 Operator Structure

The structure of a Boolean operator can be quite simple. Since

all Boolean functions can be expressed as the OR of ANDs, this

determines the minimum computation needed for completeness. A

two-level structure is a sufficient, though not necessarily efficient,

representation (Fig. 5.1). A single OR node on top is required for

the final output, and since an unbounded ( <•= 2 ** N for N features)

number of AND nodes may be needed for arbitrarily complex Boolean

functions, a plane of arbitrarily large size is used for the lower

nodes. The minimum connections required are that the plane nodes see

the input features and that the top node sees the plane nodes. Thus

the desirable simplicity of linear functions can be maintained for

individual nodes while implementing a completely general Boolean

function. Reaction time (input to output) is two node delays.

This is essentially the structure of a perceptron (Rosenblatt 58,

62). However, both the lower nodes and the top node are trainable.

In the standard perceptron only the top node is trainable; the lower

plane is a collection of pre-wired functions. Another important

difference in the current model is that each plane node can always see

all the input features. No attempt is made to minimize

interconnections as has been emphasized in perceptron analysis (Minsky

and Papert 72). With increasing network size, that problem must

ultimately be addressed, but any approach which does not work with

optimal interconnection is not apt to improve with limited

connections.



I

I

I

I

I

I

I

65

OR node

AND nodes

Input sensors

Input features

Figure 5.1 Minimal structure capable of Boolean completeness using
linear function nodes.
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Even in very simple systems a variety of distinct types of

associations can be identified. For example, in Figure 5.2a, the

co-occurrence of features A and B produces response R. Direct

stimulus-response (or CS-US) associations (A -> R, B -> R) are the

basis of most formal models of instrumental or classical conditioning

(e.g., Rescorla and Wagner 72).

For Boolean completeness, the model requires at least one

intervening layer between stimulus and response. It seems reasonable

that biological S-R connections also possess intermediate levels of

analysis. Consequently, intermediate associations are possible (Fig.

5.2b). The existence of such associations (A -> C, B -> C, C -> R)

has been demonstrated and incorporated into the Rescorla-Wagner model

(Rescorla 73).

Finally, the introduction of recurrent connections (Fig. 5.2c)

produces a new set of associations. Sideways connections (A -> B, B

-> A), are the most direct interpretation of within-stimulus learning

phenomena (Rescorla and Durlach 81). Top-down connections (C -> A, C

-> B), provide a form of "cognitively" driven expectation.

5.3 Lateral Inhibition

Lateral inhibition between nodes is often used to implement

specific network properties. Two common approaches are inhibition of

output and inhibition of learning. If the firing of a node is

inhibitory to the firing of other nodes, there is a maximum number of
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Figure 5.2 Increasing complexity of input-output associations,
a) direct b) indirect c) recurrent
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nodes that can be on at any one time« Many neural models incorporate

this principle as diffuse or random inhibitory connections within a

network (Amari 77a}, and it is a common mechanism for sharpening

discrimination in natural systems (Linsay and Norman 77). Lateral

inhibition of learning is similar, except that the firing of a node

reduces the ability of other nodes to increase their output (Fukushima

75, 80, Fukushima and Miyake 78, 82). An obvious difference is that

there need not be any limit to the number of nodes that are on at one

time.

Both of these processes can be structured so as to support

assemblies more complex than a single pool of nodes. A layered

network can be constructed by limiting interaction to planes, and a

topographic effect can be achieved by limiting the effects to nearby

nodes (Amari 80, Kohonen 82ab, Overton and Arbib 82).

5.4 Operator Training

Training an operator can be viewed as two separate processes:

training the top node and training the plane. Training the top node

to be an OR is trivial if the bottom nodes are already correctly

trained, and impossible if they aren't, since it uses their output.

The pain to train falls mainly in the plane. Constraints on the

plane's output are relatively simple:

1) For all incorrect input patterns
all nodes should be off.

2) For all correct input patterns
at least one node should be on.
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The first constraint is easy to implement. The desired value of

TS ^ -1 is simply broadcast to all nodes in the plane. All nodes with

output greater than -1 learn and adjust their output downward. The

second constraint is more complex. If TS 1, then at least one node

should have output >=1. If this is the case, no changes are

necessary. If this is not the case, learning should take place and

nodes should adjust their output upward. This can be implemented by

controlling either the value to be approached, TS, or the rate at

which it is approached, Rt. As before:

New_out := 01d_out + (TS - 01d_out) * Rt

5.4.1 Varying TS - A form of lateral inhibition is achieved if TS

for all nodes in the plane except the one with maximum output is

calculated as:

Plane_TS := TS - Max_out * 2
If TS = -1 then Plane_TS := -1
Truncate(Plane_TS, -1, 1)

As the node with maximum output (Max_out) approaches the desired limit

(Max_out = TS = 1) all other nodes are forced back to -1. Truncate

limits Plane_TS to between -1 and 1. The node with maximum output is

trained with TS directly. For convenience the value of Max_out is

determined by sequentially searching all nodes in the plane, but

biologically motivated parallel networks displaying appropriate

behavior have been demonstrated (Amari and Arbib 77). When run to

completion, the plane specializes so that exactly one node is on for

all correct inputs, and all are off for incorrect ones. The top node
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can now be trained as an OR of the plane'^s output.

Actually, the top node need not wait, nor receive output only

from the plane. It can be connected to the input features as well,

and be trained with TS while the plane is being trained. If it needs

the plane's output it simply won't do very well until the plane is

correctly trained and will then converge on the desired output. Of

course if the function can be learned by a single node, the output of

the plane isn't necessary, and the top node can learn the pattern

directly.

Unfortunately, there is a potential problem in connecting the

output node directly with the input. The plane's output will produce

a decodable representation (the ANDs of an OR) while the raw input may

not be decodable by a single node. There are some cases (e.g., Fig.

5.3a, which will be considered in greater detail shortly) such that

the output node does better without raw input. Empirically, the raw

input was not especially useful to the output node anyway. Rather

than completely disconnecting them, the rate of change for those links

was reduced.

5.4.2 Varying Rt - An alternative approach is to not demand that

correct inputs trigger exactly one node in the plane (as varying TS

does) but only that at least one node fires. This can be implemented

as a limitation of the rate of change:

Plane_Rt := TS - Max_out
If TS = -1 then Plane_Rt := 1
Truncate(Plane_Rt,0,1)
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Figure 5.3 a) Prototypic category without central exenplar* exactly 3

of 4

b) Prototypic category with central exemplar, at least 3

of 4
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Rather than being forced back to -1 as Max_out approaches 1, the

output of other nodes in the plane simply stops going up. In effect,

as Max_out approaches 1 the learning process is turned off in the rest

of the plane. As before, when IS *= -1 all nodes are trained to be

off. This is considerably more efficient since it allows patterns to

overlap, and it is easier (faster) for the plane to learn more

inclusive, general patterns than highly specific ones. In addition,

fewer nodes are required. Under conditions where overlap is possible,

this algorithm converges much more rapidly on the correct output.

Because of this advantage, controlling Rt was the method chosen for

further development.

5.4.3 Group Dispersal - There is one modification that is necessary

for either of the preceding algorithms to work very effectively (i.e.,

at all). The problem is that Max_out has to be rather large before it

begins to effectively inhibit other nodes. Consequently, in the early

phases of training there is considerable crosstalk and confusion as to

just which node(s) are responding to which pattern. This could be

remedied by making inhibition effective at lower levels of Max_out:

Plane_Rt := (TS - Max_out) ** 2

This technique would be acceptable if the Max_node were always

the correct node to learn the pattern. Though this is often the case,

it is not always true and the algorithm might be unusably slow or fail

to converge. For example, in Figure 5.3a an especially pathological

case was shown. It is a prototypic category (at least 3 of 4
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features) (Fig. 5.3b), without the central prototype itself (4 of 4

features). This is clearly an unnatural situation; if all tlie Smith

children differ from their father in exactly one (different) feature,

and all look like Smiths, then so should the father who has all the

common features. The initial response of the plane is to

over-generalize and learn the pattern (at least 3 of 4), which is easy

to learn since it requires only one node. This is not unreasonable,

and people display similar behavior by strongly categorizing central

examples without any prior exposure to them (Mervis and Rosch 81).

What the plane needs to do is break up the single pattern, which

is wrong in the center, into 4 separate cases. (A different strategy

is considered in the next chapter). If Max_out =1, it is still

necessary to turn off learning in the plane, but it is clearly

disadvantageous to shut off learning in other nodes well before

Max_out reaches 1, since it may be an incorrect over-generalization.

The extreme form of this is to make Plane_Rt (or Plane_TS) a step

function which is 1 when Max_out < 1 and 0 (or -1) when Max_out = 1.

This is conceptually simpler and is currently implemented.

Unfortunately this results in an even greater amount of mutual

interference.

What is needed is a method of limiting the training effects to

those nodes most likely to correctly learn the pattern, and minimize

the effects on those which are least likely to be able to. Since it

is generally true that nodes with a large preexisting response to an

input are more apt to learn it correctly, a rather Hebbian technique
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is used which limits a node's rate of learning to its output as

compared with the other nodes in the plane. The node(s) with the

smallest output do not learn at all, and those with the largest output

learn at the maximum rate. All other nodes learn at intermediate

rates.

Rank :« (Out - Min_out)/(Max_out - Min_out)
Rt :•= Plane_Rt * Rank

The function has subsequently been made more sensitive to the

distribution of output values, but this simple form was also adequate

for the functions tested. This is consistent with reports linking a

neuron's likelihood of learning a pattern to its predisposition to

respond to it. (Weinberger 82 pg. 65, 83, Woody 82a pg. 135).

The algorithm utilizes a global teaching signal, TS, that

indicates when a node should be on, but not which one. By including a

node's current output in the calculation of Rt, an element of

reinforcement is introduced into the training process. Uniform

reinforcement is reasonable if there is little information as to the

correct node to reinforce; by spreading the credit around, the best

node is apt to be reinforced some at least (for any reasonable

definition of best). As the system develops, the group of potentially

correct nodes becomes smaller, and reinforcement can be more

selective. Only when Hax_out equals 1 does that node get exclusive

credit for detecting the input pattern.



75

The basic tradeoff is between minimizing training cross talk

(which is disruptive training noise to all but the correct node) and

maximizing the chance that an appropriate node is affected by the

training signal. This unavoidable disruption of preexisting weights

is consistent with standard theories of forgetting. In particular,

intervening activity (new learning) causes disruption, and similar

patterns disrupt each other more than dissimilar ones.

5.4.4 Error Driven Learning - The amount of change required of the

plane can be reduced a bit. If the output of the top node is correct

(equal to TS), it is not necessary that the lower nodes be adjusted,

no matter what their output. The purpose of the assembly, after all,

is that the top node respond correctly. To implement this, a global

rate variable can be controlled with the error of the top node:

GRt := abs(TS - Top_out)
truncate (GRt,0,1)
Plane_Rt := Plane_Rt * GRt

This was generally effective in accelerating convergence, and is

implemented as a runtime option. The concept of error controlled

learning is central to the multi-operator system developed in the next

chapter.

5.4.5 Detecting Negative Instances - Given almost any learning

scheme, some functions will be harder to learn than others. For

example, the function in Figure 5.4a can most simply be detected as

((~AB~C~D) OR (~ABCD) OR (A~BCD) OR (A-B-C~D)), which is a top level 4
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way OR of 4 way ANDs. The complement of the function, (Fig. 5.4b),

can be represented as ((~A~B) OR (AB) OR (~CD) OR (C~D)), which is a

top level 4 way OR of 2 way ANDS. Since patterns with more features

take longer to learn, it would be expected that the first would take

longer. In fact the first takes 20 cycles to learn while the second

takes only 10.

The current model is designed to detect when an operator should

be applied. As previously discussed, this corresponds to circling the

Is on a Karnaugh map. An alternative technique is to describe the

complement of the function by circling the Os. This describes the

conditions under which the operator should not be applied, and it is a

simple matter to negate this function. One of the two may be much

easier to learn. This suggests a possible improvement. The two

processes can be run in parallel, with a final node to utilize the

output of the two networks. The top node will learn to use whichever

is the more useful and can combine the two to capitalize on the

strengths of both. Simulations were run with this structure, and it

behaves as expected. However, the increase in learning speed was

usually not spectacular, and since it doubled the number of nodes

needed, this course was not pursued.
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5.5 Pattern Encoding And Decoding

Allowing more than one node in the plane to be on at a time has
/

several theoretical advantages. In a fully interconnected net of N

nodes, there are M ** 2 pieces of information stored as the synaptic

weights. (The present network is not fully interconnected for several

reasons. That aspect will be discussed later). If output of the

plane is restricted to at most one node, at most N states can be

expressed, but if any subset of nodes can be on, the plane can

represent 2 ** N possible states. Restricting output to N values when

N ** 2 can be stored and 2 ** N represented is a considerable waste of

information, obviously a bad characteristic for a knowledge

representation system.

An analogous situation occurs in other models where output is

identified as distinct patterns of oscillation (self-sustaining firing

patterns). Under certain assumptions of net characteristics, it has

been demonstrated that only N distinct oscillation patterns are

possible in a fully interconnected net of N neurons (Shaw 78).

This technique of encoding a single value (state, category,

concept, feature) with a set of general nodes rather than a single,

highly specialized one is used in the nervous system. For example,

rather than a series of narrowly tuned color (wavelength) detectors,

the color continuum is initially encoded as the relative output of 3

broadly tuned, overlapping detectors (Mollon 82). This representation

technique is also used in the other senses, and has been identified as
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a general principle of biological information representation (Erickson

74, Kent 81). Albus's cerebellum model explicitly incorporates this

principle (Albus 79, 81). Susceptibility to damage is greatly reduced

since information is distributed across a large number of nodes. This

is a commonly cited "holographic" property of biological memory.

Node specificity is inversely related to the size of the encoding

set, forming a continuim from high specificity (one concept, one node)

to broad tuning (one concept, many nodes). This point has been made

by Wickelgren:

"... the conflict between specific-neuron theories and more holistic
(distributed holographic) theories of encoding comes down to the
following: When we think of an idea, is the subset of neurons that
are activated above (or below) baseline (spontaneous firing rate) a
very small or a very large subset of all the neurons in the cortex."
(Wickelgren 79)

Distributed representation has many advantages, but it would be

useless if the information could not be decoded when narrow resolution

is needed, for example, to say "yellow" under appropriate conditions.

(For an argument that this isn't obvious see Carlson 80 pg. 222). In

Figure 5.5 a 2 to 1 encoding and decoding network is shown. It

encodes N mutually exclusive input features into simultaneous activity

of N/2 features. A final output node decodes the value of the

original input C. If the plane is interpreted topographically, the

output node's weights are analogous to the center surround weightings

found in the retina (Hubel and Wiesel 79, Kuffler and Nicholls 76,

Linsay and Norman 77). The Pi values are excitatory in the center and

inhibitory at the sides, and the Ni weights are the inverse of this.

Both weight patterns are found in the retina.
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Rather than completely decoding a distributed representation,

specialized detectors need only be trained to extract the specific

features which are currently useful. This way an organism can have

the advantages of both extremes in information representation. In

general, any encoding scheme which encodes into sets of nodes can be

decoded by a single AND node. It just takes longer to learn the

proper decoding for larger sets. Lateral inhibition of output is used

in many neural systems to limit the size of encoding sets (Linsay and

Horman 77).

While it is possible to encode up to 2 ** N mutually exclusive

features (both quality and quantity, e.g., hue and intensity) as

Boolean sets of N nodes, it is theoretically possible to encode an

unbounded (more or less) number of features in only 2 nodes if their

ratios of activity are used (Fig. 5.6). Output ratio determines

quality, and total output conveys quantity. A two-level assembly of

nodes is capable of decoding ratios, but the necessary weight size

varies inversely with resolution, which places a practical limit on

the number of distinct features that can be decoded. Though the model

is computationally capable of decoding ratios, the current learning

algorithm is designed for Boolean inputs and does not converge on

those structures. A different approach which does will be discussed

in the next chapter.

Mathematically, it is possible to encode an unbounded number of

features in a single value, but that does not appear to be

biologically realistic.
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Using set and/or ratio encoding, single features can be uniquely

represented, but simultaneous occurrence is represented ambiguously.

Increasing the number of nodes in the representation decreases the

ambiguity, and when the number of nodes equals the number of features,

ambiguity can be reduced to zero. Having 3 color detectors in the

retina (rather than 2 or 4 for instance) can be viewed as a practical

compromise between economy of representation (2 detectors) and the

reduction of ambiguity in color detection (4 or more).

5.6 Number Of Nodes

System capacity and learning speed can be improved by increasing

the number of nodes. This was accomplished in three ways: increasing

the number of nodes in the plane, increasing the number of planes to

form a stack, and increasing the number of stacks.

As a general rule, it is advantageous to have more nodes in a

plane than the minimum needed for the final structure. A node does

best if it is taught only the correct pattern and is not confused by

the training of other nodes. With only a small pool of nodes, it is

difficult for all the patterns to be covered adequately and rapidly,

so there is more confusion as to which node gets what pattern while

they sort themselves out.

Unfortunately it is sometimes difficult to determine the minimum

number of nodes needed to represent an arbitrary function in linear or

prototypic normal form. One upper bound is the number of nodes needed



84

for an OR of ANDs representation. This is useful, but it can be

misleading since an OR of ANDs representation of the function (at

least 10 of 20) would suggest about 10 ** 5 nodes as appropriate, when

in fact only one is needed. Despite the fact that it is not a tight

upper bound, it is often a reasonable approximation. For

representational completeness, the plane must have on the order of 2

** N nodes for N features, and empirically, increasing the number of

nodes per plane beyond that was not beneficial.

Under many circumstances, system performance can also be improved

by increasing the number of planes. They can be stacked so that each

plane sees the output of the planes below it, or they can be arrayed

in parallel stacks of one or more planes. All planes can be trained

independently with the same teaching signal.

There are a number of ways multiple planes can improve the top

node's output. Primarily, this allows more nodes to be specialized

for correct patterns, since the planes will represent the correct

patterns in duplicate. Although all planes will eventually converge,

they may take some time to perfectly converge. Different initial

states may converge at different rates and in different ways. By

providing redundant representation, the output node's learning can be

accelerated. A noisy message can be decoded if it is repeated often

enough.
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Another reason for multiple planes is that information can be

shared. For example, if one node in a plane detects ((ABC) AND D),

another detects ((ABC) AND E), and a third is to be trained to detect

((ABC) AND F), it would be advantageous if (ABC) were pre-detected by

a node in a lover plane (Fig. 5.7). Since the new pattern would

require only 2 features rather than 4, it would .be easier to learn.

Conceptually, it is easier to learn complex patterns if they are

formed of precomputed chunks. The present learning algorithm doesn't

effectively exploit this capability, but a different one which does

will be developed in the next chapter.

Since there is a statistical advantage in multiple

representation, a number of potential problems can be side stepped by

the introduction of statistical diversity. Increasing either the

number of planes or stacks can achieve this. However, it is

presumably preferable to specifically address problems of convergence

rather than statistically swamp them, so further development of the

model will be limited to a single stack, and usually a single plane.

In practice, multi-plane systems are rather expensive to simulate

anyway. The number of nodes per plane, and the number of planes are

entered as runtime variables.
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5.7 Interconnection

An important concept that has not been considered in any detail

is the level of interconnection within the network. The only

possibilities that have been described so far are connecting a node to

only the plane below it, or to all nodes below it. It is cheaper to

simulate if the connections are restricted, but more powerful if each

node has more information available to it. A high degree of

interconnection can be advantageous, but is not without drawbacks

(Ashby 60). For example, a node with a large number of inputs may be

less dependent on any one of them, but is dependent on the functional

constancy of a larger set of features. In a constantly adapting

system, this may be a significant liability. If a small set of

reliable features is available, it can only be detrimental to dilute

them with less reliable ones.

Connecting the output node directly with the input as well as

intermediate planes has some biological justification. The neocortex

is a layered structure, and its principle output (pyramidal) cells

have inputs which connect with the raw input as well as the output of

other layers (Shepherd 79). In addition, different layers may receive

different inputs. Deep connections are a significant advantage in

layered systems. If each layer were connected only to its nearest

neighbors, the same information might have to be sequentially learned

by each layer before it could be utilized at the top level. By

connecting a node with all nodes below it (or conversely making its

output available to all nodes above it), the top level can use
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information as soon as it becomes available anywhere in the network.

The logical extreme of this principle is to connect each node

with all other nodes. This is obviously more expensive since the

number of weights grows as N ** 2, but the number of distinct

communication channels is only N since a node's output is essentially

broadcast. A fully interconnected net has the advantage that every

node has access to all information represented in the network.

An interesting result of this is that a plane can learn lateral

inhibition of output, a property that is hard-wired in many model and

neural systems. This is most obvious when the output of a plane is

restricted to exactly one node. During simulation, nodes rapidly

learned that any activity in the same plane is inhibitory, though

there was no structural predisposition toward this. Such an ability

can be advantageous, since mutually incompatible interpretations

develop mutual inhibition. Mutual inhibition gives rise to the

phenomena of relaxation, in which different interpretations of an

input compete with one another until only one (hopefully the best) is

left. This has been identified as an imp^)rtant aspect of biological

information processing (Anderson and Hinton 81, Feldman 81).

Conceptually, recurrent connections also allow reconstruction of

unknown features (e.g., McClelland and Rumelhart 80, Rumelhart and

McClelland 80, Kohonen el al. 81). For example, if 4 of 5 features

are present for a 5 way AND and the last feature is unknown (Output =

0), the AND may decide that the pattern it detects is ,most likely
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present. If the unknown feature is able to look upward, it will

notice that a highly predictive node is on (a node detecting a pattern

that the feature is a part of). The unknown feature may then conclude

that it is probably present also. If features can see each other, the

parts of a pattern may also learn to recognize each other. The

relative effects are determined by the connection weights which

reflect the network's training experiences.

5.8 Feedback

An important property of many recurrently connected neural

networks is the potential for self-sustaining activation or

oscillation (Oguztoreli 79, Amari 72). Such structures can exist in

the proposed network (e.g., cycles of Pi ^ 1 or odd length cycles of

NOTs), but they are not stable in the long run. This results from the

nature of the reinforcement system. The system is designed to

reinforce useful structures, and self-sustaining activity is not

useful in this model. Ideally, if the learning process is correctly

designed, the information processing system won't develop pathological

structures.

With recurrent connections, the development of some positive

feedback is inevitable due to a basic feature of the learning

algorithm: learning takes place after several passes of output

calculatidn. By failing to distinguish between input values that

appear before a node's own output is introduced into the network and
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those that appear afterward, pre and postdictive features are

confounded. Postdictive features may reflect useful information, but

may also simply reflect a node's own output, which is not useful and

can in fact be dangerous. For es^ample, in a partially trained system,

a node's own output can be more correlated with its correct output

than any of its "real" input features. (In a perfectly trained system

it's 100% correlated). Consequently the node will begin to

selectively listen to itself after it has reached some minimal level

of competence.

This is similar to the problem of a director surrounded by "yes

men". Only their opinion prior to the stating of his own is of value,

since afterward it is simply a restatement of his own. If the

director were to believe this postdictive input (assign positive input

weights to it), a cycle of self-sustaining opinion could develop

totally decoupled from external reality.

The most direct feedback loop can be avoided by not connecting a

node with itself. Though useful, this does not solve the problem in

general. Consequently, in fully interconnected networks, learning was

limited to those features which were present before a node's own

output could significantly affect the network, usually before it

reached a magnitude of .3. This is an effective, but rather

heavy-handed approach.
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A possible biological example of such a function has been

described in the crayfish tail flip response (Krasne 78). The

crayfish tail flip is similar to gill withdrawal in that the

triggering feature (poking the abdomen) can be habituated. An

important difference is that a tail flip has the effect of massively

stimulating the poke sensors. Thus one tail flip would cause a series

of flips and habituate the response. Similar to the problem

encountered with recurrent connections, a cell's output can influence

its own input in a detrimental way. The crayfish's solution to this

problem is presynaptic inhibition of the sensor's input to the flip

motor neuron when that cell fires. By briefly ignoring certain inputs

after it fires, the motor neuron is not misled by the effects of its

own output. Krasne suggests that this may be an important technique

for controlling plasticity in the nervous system.

With bottom-to-top, unidirectional information flow, a network's

output can be calculated in one pass from input to final output. With

recurrent connections, several passes must be allowed as information

circulates in the network. Output levels usually stabilize after 4 or

5 passes, though it is not crucial that they do so. The system is

given a fixed number of iterations to make up its mind, and as long as

output is correct after the last pass, system behavior is correct.

The number of iterations is entered as a runtime variable.

The large number of weights and the extra passes of output

calculation required for complete interconnection take a heavy toll on

the speed of simulation, so while it is implemented as a runtime
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option, full interconnection is eeldom used in practice. An

intermediate compromise might be to connect each node with all nodes

below it and all nodes in the same plane. If output in the plane were

computed synchronously, all nodes would have one cycle to use the

output of other nodes in the same plane without danger of feedback.

5.9 Weight Patterns

Controlling either TS or Rt will train a network to detect

Boolean functions. The result is roughly equivalent to an OR of ANDs

circuit designed by circling groups of Is on a Karnaugh map. If TS is

controlled the groups do not overlap, but by controlling Rt, overlap

is possible (and desirable). For some Boolean functions the algorithm

converges on exactly an OR of ANDs, but since nodes are not limited to

being OR and AND, other final states are possible. If the top node is

connected only to the plane, the first approach of controlling TS

forces the top node to be an OR, though the lower nodes are still not

necessarily trained to be ANDs. If the top node also receives input

from the feature detectors, it is no longer constrained to be an OR

since it can detect patterns of simultaneous activity in the detectors

and the plane. The second approach of adjusting Rt can result in

somewhat more complex weight patterns. Error driven learning and

recurrent connections further complicate interpretation of the weight

pattern the nodes develop. If ratios were decoded, the results would

presumably be more opaque yet.
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This progress from clarity to obscurity results from the

continual relaxation of constraints on correct network structures. By

relaxing constraints, the number of correct structures increases and

the amount of change needed to reach one decreases. Thus capacity and

learning speed are bought at the price of decreasing perspicuity of

the resulting answer.

5.10 Results

Using a small network (one plane, 20 nodes in the plane), the

operator training algorithm was tested on a set of 40 Boolean

functions of 4 features (Fig. 5.8). For each function, each of the

16 input patterns was presented in constant rotation until the

accumulated error of the output node (its difference from TS) reached

zero for a complete cycle. All functions were successfully learned in

an average of 12 cycles. In Figures 5.9abc, 3 of these functions and

their learning curves are shown. In Figure 5.10 a single learning

curve is shown for the network as it is sequentially retrained to

detect those three examples. Examples 5.9b and 5.9c are about the

hardest and easiest functions of 4 features for the network to learn.

As can be seen in Figure 5.9b, error does not necessarily decrease

monotonically. This results from training the output node while the

plane is still incompletely trained.
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With only 4 features, the current algorithm appears to be

complete. However, the "missing prototype" function (Fig. 5.3a)

becomes increasingly hard to learn as the number of relevant features

is increased. With cyclic presentation, the plane may fail to

converge. Using a random presentation order the plane eventually

converges, but still with considerable difficulty. The missing

prototype function points out a potential problem with the algorithm;

it can be overly eager to generalize.

Rather than address that issue immediately, a different learning

system will be introduced in the next chapter. Once developed, it can

be superimposed on the operator training process to guarantee

arbitrarily rapid convergence, though with a parallel reduction in the

ability to generalize.
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6.0 A TRAINABLE BEHAVIOR SYSTEM

6.1 The Goal

A logical extension of a single Boolean operator is a Boolean

behavioral system, mapping inputs to sets of output actions. If only

one operator is applied at a time, the result is a production system.

Many AI domains, such as game playing, can be appropriately modeled as

the sequential application of single operators, but competent

sensory-motor behavior is apt to require simultaneous operator

application. Biologically this is certainly the case. The model

developed in this chapter is appropriate for either single or

simultaneous operator application, though it is trained only as a

production system.

6.2 Shared Memory

A trivial but effective approach is to individually train a

collection of separate operators. Although it would produce the

desired behavior, this technique has serious drawbacks. The most

obvious is that providing a separate "brain" for each operator is

impractically extravagant. Another objection is that totally separate

operators cannot share information. If the same pattern is important

to several operators, it must he learned and represented separately by

each of them.
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The latter objection can be overcome by interconnecting the nodes

of the various operator networks, but keeping their reinforcement

systems separate. The number of nodes is not reduced, but information

can be shared. (Henceforth only nodes in the final output level will

be considered as operators; the lower level(s) function as common

memory). Unfortunately, the first problem can't be solved in such a

straightforward manner. The individual teaching signals can't simply

be merged to train a shared pool of nodes. The learning algorithm was

designed for a single operator so that any activity when the operator

should be on was good, and any activity when it should be off was bad.

With multiple operators, some will be on and some off most of the

time. Only when all operators should be off can all nodes in the

shared memory be trained to be off.

Actually, even that point is debatable. It has been questioned

whether a state of behavioral quiescence is a state of operator

inactivity, or a state of actively applying the "do nothing" operator

(Seligman 75). The psychological implications are different, and the

model differs as to whether a "no-op" operator is implemented or not.

One implication of having such an operator is that there are now no

inputs for which TS ° -1 can be broadcast to all nodes. For an active

organism, those situations may be vanishingly small and of little

relevance to the learning process anyway.

Conceptually, the two alternatives are not mutually exclusive.

Inactivity may result from indecision (nothing comes to mind), or from

highly specific knowledge (if you don't move, it won't bite). The
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model is usually run without a no-op operator, but the blank spots on

a Karnaugh map can just as easily be filled in with its specific

application. This is implemented as a runtime option. When

inactivity is appropriate, purposefully doing nothing is a more

reliable response than indecisively doing nothing, so it would make

sense to convert the latter to the former.

The operator training algorithm is simply inappropriate for a

shared memory. Because of this, a different learning strategy is

utilized. It has two components:

1) Input driven categorization
2) Goal driven focusing

These two learning processes will be considered separately. The

approach is similar to one utilized in (Reilly et al. 82). For

simplicity, operators are limited to single nodes and the shared

memory to a single plane since that structure is minimally complete in

the Boolean domain (Fig. 6.1).

6.3 Input Driven Categorization

Input driven categorization can be summarized as:

At least one node in the common memory should be on for any input.

This introduces an intrinsic learning process in the plane.

Independent of the system's output, learning takes place until input

is categorized one way or another. Learning is identical to that in

the previous chapter, except that TS is equal to 1 for all inputs.

There is good biological evidence for input driven learning (Spinelli
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Figure 6.1 Minimal structure capable of arbitrary input-output mappings
in the Boolean domain using linear function nodes.
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et al. 72).

Useful categories tend to reflect the natural categories in

environmental input (Mervis and Rosch 81), so input driven learning

should capture those natural associations. Many neural learning

models based on the Hebb hypothesis are designed to model this

process. Given the specific needs of a particular type of organism,

the structure could also be innately prebiased toward detecting those

categories which will most likely prove useful.

6.4 Goal Driven Focusing

Goal driven focusing can be summarized as:

If an output error occurs, the common memory does not represent the
current input pattern in a specific enough form for the operators to
use. Therefore the state of the common memory should be adjusted to
produce a more specific representation.

The same experimental approach demonstrating input driven learning

(Spinelli et al. 72) has also been used to demonstrate goal driven

modification (Spinelli and Jenson 79,82).

With a single operator, output error can be computed as the

difference between the operator's actual and desired output. For

multiple operators this has to be modified, but if at most one

operator is applied at a time, only minimal modification is necessary.

Only the output (Op_out) of the applied operator (Op_node) is used:

1) If Op_node is the Correct_op then
error := 1 - Op_out

2) If Op_node is not the Correct_op then
error := 1
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A more sensitive measure might include the output level of other

operators. Memory should be adjusted when error > 0. This can be

implemented as a step function, but works more smoothly if the amount

of adjustment varies continuously with error. In general, the amount

of adjustment should be proportional to the probability that a more

specific representation would improve behavior.

In the current model, operators are single nodes detecting (at

least X of N) features, so any memory modification should converge on

a representation which is decodable by that function. An obviously

decodable extreme results if each input pattern is uniquely detected

by a node in the lower plane. The operators could then pick and

choose, functioning only as ORs. Any learning process which converges

on this state will eventually converge on correct behavior, although

it may need up to 2 ** N nodes to completely cover an N feature input

space.

In order to implement this process, large categories must be

subdivided into smaller ones. One mechanism for achieving this is to

focus the most specific current category more narrowly on the current

input whenever an operator error occurs. If the error persists, the

category should ultimately be focused down to a single input pattern,

intuitively, focusing a node means that it fires more selectively for

inputs resembling the current input. This requires:

1) Shifting its central prototype (all N of N)
toward the current input

2) Sharpening its discrimination by increasing
X in (at least X of N)
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If carried to completion, the combination of these two processes will

eventually focus a node on a single input pattern. Input driven

learnings fills in any conceptual gaps left by the focusing process.

The specific learning characteristics of focusing may be

important when observing neural learning processes. In operator

training the effects of learning are immediately obvious; a node

increases or decreases its response to the current input. With

focusing, a node might modify (reduce) its output for everything

except the current input. If no immediate output changes are

observed, this could lead to the mistaken conclusion that no learning

took place. Such decreases in background firing rate may be quite

common (Weinberger personal communication).

The general process of training the common memory to detect

increasingly specific input categories has a number of appealing

features. Most important, it is a (potentially) complete technique

for learning Boolean functions. It is also compatible with biological

evidence for both input and goal driven learning phenomena. In

addition, focusing is a reasonably efficient process, since network

modification takes place only when behavior is apt to be improved. If

no output errors occur, the representation must be specific enough for

perfect behavior, so no learning is required. If an error does occur,

the representation is not specific enough at that point. Through

successive focusing, the area of error is identified and can then be

used by the operators to correct their output. Thus any detectable

deviation from optimal behavior creates a change which shifts behavior
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toward optimality. Since the general purpose of biological learning

is presumably to improve behavior, the system is a fairly general

model of adaptation.

With more powerful decoding capabilities, the operators could

detect a wider range of functions, and the shared plane would have to

change less to reach a decodable state. The current operators are

single nodes, but if an operator had a small private network (as it

did in the previous chapter), it could decode an additional range of

patterns. Clearly there is a tradeoff between the resources allocated

to individual operators vs the common memory. As usual, the current

model is a sufficient, but not necessarily efficient implementation.

6.5 The Focusing Mechanism

A neural system displaying what might be interpreted as focusing

has been described in the hippocampus (Alger and Teyler 76, Dunwiddie

and Lynch 78, Anderson et al. 80). In that system, the current

inputs to a neuron become more effective in firing it, and the unused

inputs become less effective. Its firing function is thus modified to

look more like the current input. This is apparently achieved by

simultaneously strengthening the synapses of the active inputs and

raising the firing threshold of the cell as a whole. This learning

process has been extensively studied only in the hippocampus, but may

be functional throughout the cortex (Lee 82).
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The proposed model neuron does not have an adjustable threshold,

but a similar effect can be achieved by increasing the negative

weights on the inverse or "not" of the current input features, (making

their absence more inhibitory). For biological realism, (and some

practical reasons) the model was also modified to use an adjustable

threshold, but since the desired behavior can be implemented without

structural modification, the threshold technique was not extensively

developed.

6.5.1 Invert Focusing - The primary method of adjusting weights by

"invert" focusing is:

A) Center prototype
1) reduce all positive weights
2) reallocate weight based on current input

B) Sharpen discrimination
1) shrink current output toward 1
2) invert current input
3) increase negative weights

This has the desired effect of driving the node's output function

toward (all N of N) of the current input features. Focusing is

activated only when Max_out >= 1, and only one node (the most specific

current category) need be focused. This keeps the computational

burden of focusing to a minimum, while still assuring that the plane

converges on a decodable representation (or on a state containing a

decodable representation to be more precise). This is not to say that

single node focusing is an optimal adjustment process, just that it

doesn't appear to be too bad.
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6.5.2 Threshold Focusing - The threshold focusing process utilizes a

variable threshold and focuses by:

A) Center prototype
1) reduce positive weights
2} reallocate weight based on current input

B) Sharpen discrimination
1) shrink current output toward 1
2) increase threshold toward 1

This is more realistic, but still contains significant

modification used to avoid weight saturation. In the biological

model, weight saturation apparently can occur (Barnes 79, Baudry et

al. 81), though the learning capability is probably designed to last

somewhat longer than the organism. Rather than permit unbounded

weights or build inevitable senility into the model, a form of

unlearning is included. Weights are redistributed while output is

reduced toward 1, and the threshold varies between 0 and 1. The

biological concern of how best to distribute plasticity over a

specific life span was also not addressed.

By eliminating the "invert input" step, the independence of input

signals and their complements is restored. In fact, this reintroduces

the technique of representing a category and its complement with

different nodes. A greater number of nodes are needed, and learning

is a bit slower, but the technique appears to be equally viable.

One advantage of using a variable threshold rather than negative

weights, is that the threshold value provides a single direct measure

of how "focused" a node is. This suggested an interesting learning

strategy. Since unused, unfocused nodes are ideal for filling gaps in
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the Karnaugh map (starting new concepts), it is advantageous to have a

ready supply. Consequently, whenever the pool of unfocused nodes

drops below 10% of the total pool, all nodes are defocused slightly by

reducing their thresholds. That value was rather arbitrarily based on

an observation that about 10% of the neurons in the brain may be

measurably plastic (Bures and Buresova 70). This background process

of neural "garbage collection" was effective in recycling old,

underutilized nodes to satisfy current learning needs.

Another advantage of threshold focusing is that it can train a

network to decode ratios. As previously observed, ratio encoding is

biologically common and has several theoretical advantages, suggesting

that threshold focusing may be the more promising for future

development. However, to avoid complicating the original structure of

a node, invert focusing will be used in subsequent examples.

Threshold focusing is implemented as a runtime option.

6.6 Rate Of Focusing

The speed of operator convergence can be adjusted by changing the

rate of focusing. The faster the plane is focused, the sooner the

operator level can converge on correct behavior. Unfortunately, a

greater number of nodes are required. Ideally, memory modification

would not occur beyond the minimum required for correct operator

application. Some overshoot is inevitable since the operators require

time to utilize the plane's output, but the slower the rate of
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focusing, the smaller the overshoot. Somewhat arbitrarily, the

focusing algorithm was adjusted so that the 4-feature test set was

learned at about the same rate as with the operator training algorithm

developed in the previous chapter.

People sometimes display what is sometimes called one-shot

learning. After only a single presentation of a particular pattern (a

picture for example), it can be reliably recognized for weeks. If

desired, the focusing process could be run to completion on a single

presentation in order to produce such instantaneous learning.

However, as previously observed, representation by broadly tuned,

overlapping categories has several advantages over narrowly tuned,

highly specific categorization. In addition, one-shot learning runs

the risk of being too specific. By inadvertently including a number

of irrelevant features as necessary, that specific pattern may never

be encountered again. By incrementally focusing, the relevant

features can be identified with conditional probability. Sensory

habituation, selective attention and novelty detection are all methods

of identifying relevant features for an organism, and so can

presumably reduce the hazards of rapid learning.

6.7 Common Memory Focusing Vs Operator Training

Biologically, there appears to be a functional distinction

between behavioral (procedural) learning and the encoding of specific,

behaviorally uncommitted (declarative) information (Squire 82, Squire
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et al. 83, Kent 81). The difference between operator and common

memory training is consistent with this functional dichotomy.

Operator training is inherently output oriented and is inappropriate

for learning specific instances. Focusing on the other hand, is

behaviorally uncommitted and is quite capable of learning specific

instances, in one shot if necessary. It has been suggested that

hippocampus-type learning (focusing) is a unique invention of the

higher vertebrates (Lynch and Baudry 83).

This functional difference results directly from the basic

processes of learning. An operator learns to be on when presented

with positive instances and to be off when presented with negative

ones. Consequently, it requires a number of input presentations to

completely distinguish a particular pattern from related ones.

Focusing learns both when to be on (for the current input), and when

to be off (anything else) when presented with a positive instance.

The resulting one-shot learning capability is necessary for the

encoding of unique events.

6.8 Convergence

The operator training process only empirically demonstrated

convergence with random order input, but an intuitive argument can be

made for convergence of the shared memory. First, it should be

noticed that focusing a single node is trivially convergent; a single

presentation is sufficient to learn the AND of a collection of input
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features. Incremental focusing simply does it in smaller steps.

Secondly, focusing always shrinks the category a node describes.

Because a node is focused only if its output is greater or equal to 1,

it can't be continuously focused on more than one pattern. As its

discrimination sharpens, competing focusing points drop out when their

output drops below 1. The only other possible source of interference

is input driven learning. This does cause some defocusing of useful

nodes, but unused nodes are also pulled into gaps in the Karnaugh map.

If useful nodes are later refocused, only unused nodes are left.

Focusing can be superimposed on the operator training process.

This reduces its ability to generalize, but generally increases the

rate of convergence.

6.9 Number Of Nodes

The shared memory learning process requires more nodes than

operator training since it has only a minimal tendency to generalize

(effectively none), and at least one node must be on for all inputs,

rather than correct ones only. As before, the system generally does

better with a surplus of nodes, though the minimum can be hard to

determine. Pathological "checkerboard" cases (e.g.. Fig. 6.2) may

require on the order of 2 ** N nodes, but most cases are not so bad.

(Interestingly, Figure 6.2 requires only 4 nodes). Of course, in real

life learning, only a small percentage of possible feature

combinations are ever encountered or need to be learned in perfect
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detail. The possibility of set and ratio encoding reduce the average

number of nodes needed, but since optimum encoding is not guaranteed,

the contribution is difficult to quantify.

As in the single operator system, the number of nodes in the

shared memory can be increased by increasing the number of nodes per

plane, the number of planes per stack and the number of stacks.

Multi-plane systems can be trained by applying the focusing process to

each level. Multi-stack systems were not implemented for the same

theoretical and practical reasons they were not pursued in the single

operator system. The number of nodes per plane and the number of

planes are entered as runtime options.

If only a single node in a plane is focused, the "signal to

noise" ratio decreases as the number of nodes per plane increases.

"Noise" in this case is slightly predictive categories which can share

the learning credit. The model is usually run with 20 nodes per

plane, but it has been run with up to 200 without noticeable

degradation. However, with increasing node number, some modification

would eventually be necessary. Hard-wired lateral inhibition appears

to be a viable approach for limiting the size of encoding sets.

A possible objection to uniform training of a multi-plane stack

is that changes in the top level affect only the appropriate weight

patterns of the operator level, while changes in the bottom level

potentially disrupt weight patterns in all other levels. A straight

forward modification addressing this problem is to reduce the rate of
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change in the lower levels. This was implemented by halving the error

signal at each level. In multi-level systems, this often increased

the rate of convergence on the desired output. If an output error can

be rapidly corrected in the upper levels, the lover levels are

modified very little. If errors persist, modifications are pushed

deeper into the memory network. By learning the more general patterns

in the deeper levels, sharing of information is facilitated. Over a

period of time, the most abstract categories are learning in the

deepest, most "visible" levels. Realistically, multi-modal sensory

information doesn't come together until the "middle" of the nervous

system, making that the conceptual bottom of the current model (or

top, depending on your point of view). Tapered learning is

implemented as a runtime option.

This arrangement produces another form of long and short term

memory. Like the dual (or multiple) weight mechanism previously

proposed, tapered learning provides some noise rejection by reducing

the rate of change in the lower levels without sacrificing speed of

adaptation in the upper levels. For the same reason, short term,

episodic adjustment is also possible. Unlike the previous mechanism

in which long and short term memory reside in the same synapse, long

and short term representations are in different nodes in different

planes. Tapered learning could also have been implemented in the

operator training process, giving it an episodic memory capability. A

range of memory spans appears to be a generally useful property for

noise rejection, and could probably be implemented to protect any
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trainable values in the system.

6.10 Interconnection And Temporal Encoding

The nodes of the common memory can be interconnected in a variety

of ways, as they were in the single operator system. For the extreme

case of full interconnection, a number of test runs were made.

Because of the different learning strategy, the danger of positive

feedback loops of more than one node was considerably reduced, though

a direct connection of a node to itself was still troublesome.

Convergence was not accelerated, but the network did converge.

In a fully trained, fully interconnected system it is interesting

to note that different input patterns produce different temporal

firing patterns in the same node. Only the final output value

represents a node's decision on categorization, but a post-stimulus

trace of its output can be much more informative than its final output

alone. This is in keeping with John's observations that post-stimulus

firing patterns can accurately distinguish an animal's categorization

of input (John 76, 80, John and Schwartz 78).

A fully interconnected network (one operator, one plane, 20

nodes, 4 iterations) was trained to detect the function in Figure 6.3.

After the network was completely trained, the post-stimulus firing

pattern of the operator node was recorded for each of the 16 inputs.

Many input patterns can be distinguished on the basis of shape alone,

and if output levels are considered, most inputs can be easily
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identified. Nodes in the common memory shoved different, but often

equally distinctive firing patterns.

This demonstrates an alternative to the "labeled line" theory of

information representation. Rather than representing a concept as a

particular state of neural activation, it can be represented as a

temporal firing pattern. Not only the final state of activation, but

the pattern of spreading activation (Ratcliff and McKoon 81, Quillian

67, Collins and Loftus 75, Collins and Quillian 72, Anderson and

Hinton 81) conveys useful information. The temporal pattern might

vary from cell to cell as it does in the current model, or may be

relatively location independent as in John's observations.

Utilization of temporal information could have important

consequences for the appropriate interconnections of an assembly. For

example, in order to use all information in the common memory, an

operator currently must be connected to all nodes in it. If an

operator could decode temporal sequences, it could tap in to a highly

interconnected memory anywhere and still have access to its entire

>

store of information. Complete interconnection within the common

memory is expensive, but the necessary connections between it and the

operators are drastically reduced. Actually, complete interconnection

is not an absolute necessity, since even unidirectional information

flow can produce distinctive firing patterns as successive waves of

analysis reach the higher levels. Increasing interconnection simply

increases the potential complexity of firing patterns.
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While these model results are similar to John's neural

observations, they do not entirely support his conclusions. In

particular, this is not evidence against the "pattern detector" theory

of neuron function, since the nodes are trained exclusively as pattern

detectors. The fact that categories can be reliably distinguished on

the basis of temporal firing patterns does not necessarily mean this

information is used. Temporal encoding may veil be used in the

nervous system, but in the present model, post-stimulus firing

patterns are simply a by-product of information flow, not an optimized

representation in their own right.

It is also interesting to note that the learning processes can

form functional pathways between indirectly connected nodes in a

sparsely connected network. With probabilistic interconnection,

increasing the number of planes increases the chances that a pathway

exists between any specific input feature and output node. Under such

conditions, interconnection complexity and network depth may be traded

off against each other.

6.11 Sensory-Motor Behavior

Useful output can be produced in a strictly Boolean domain (e.g.,

poker playing (Waterman 70)), so the model is capable of potentially

interesting behavior. In addition, although the input-output mappings

are explicitly defined only for Boolean inputs, non-Boolean values can

also be handled. Sensory-motor behavior is a natural area of
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application. In particular, a great deal of intelligent behavior can

be modeled in terms of continuously valued servomechanisms (Albus 81,

Gallistel 80, Miles and Everts 79, Powers 73, Robinson 81).

Simple goal-seeking systems can be built quite easily. If an

operator is considered to be off when its output is zero or below, a

single valued servomechanism can be built using two operators (Fig.

6.4). (For illustrative purposes, the reference and actual values are

between 0 and 1 although the "invert" focusing algorithm expects input

values between -1 and 1). The system is defined at the Boolean

extremes, but also works appropriately for intermediate values;

operator output is proportional to the difference between the

reference and actual value. Separate "motor neurons" can be provided

for each operator (Fig. 6.4a), or a single one can be shared if both

its positive and negative output are used (Fig. 6.4b). Two

servomechanisms can be used to control two values, such as x and y

coordinates for movement in a plane (Fig. 6.5). Simultaneous

movement along both axes will occur when appropriate.

In a servomechanism, the actual and desired values are both input

with the same type of signal. Neither signal has any special

properties. Albus analyzes the cerebellum in servomechanistic terms

(Albus 81). He observes:

"[input] fibers can be categorized into at least two classes based on
their point of origin: those carrying information that may include
commands from higher levels in the motor system, and those carrying
feedback information about the results of motor outputs. Once those
two sets of fibers enter the cerebellum, however, they intermingle and
become virtually indistinguishable."
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In the cerebellum, specialized (climbing) fibers uniquely address

each output (Purkinje) cell. These are commonly thought to adjust the

Purkinje cell's output function, though few researchers have reported

direct physiological evidence for this (Ito 82ab). Whatever the

mechanism, the cerebellum does appear to have important learning

capabilities (Thompson 83, Thompson et al. 82, 83).

The previous examples of servomechanisms cannot be turned off.

The reference value is always between 0 and 1, and the actual value is

continuously adjusted to match it. It is useful to provide an

enable/disable input (Fig. 6.6). In this case a disable input is

provided to directly inhibit an operator whenever it should not be

enabled. Inhibition (disabling, depotentiation) of lower level

systems by higher level ones is common in the nervous system (Kandel

and Schwartz 81 ch. 24, Rent 81, Gallistel 80).

It is also useful to gate (multiplex) one of a number of

reference values into a servomechanism (Fig. 6.7). By making the

reference value an "input parameter", the process of goal selection

can be conceptually separated from the process of goal achievement.

If appropriate lover level systems already exist, all that is needed

to modify behavior is to gate in a different sequence of goals.

Biologically, selective gating is implemented with either direct

inhibition of excitatory input neurons, or as presynaptic inhibition

of their output synapses (Kandel and Schwartz 81 pg. 274). The

current model does not include presynaptic inhibition, so direct

inhibition is used. This example can be represented as a 5 feature
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Boolean function, but a Karnaugh map representation would be of

questionable value.

A more elaborate network combining the previous examples is shown

in Figure 6.8. This network is capable of putting a peg in a hole,

given:

Boolean values

Want peg in bole
If peg is in hole
If peg is in hand

location values

X and y coordinates of hand
X and y coordinates of peg
X and y coordinates of hole

and hand operators

grasp

ungrasp

move north, east, south, west

The appropriate input-output connections can be described as a Boolean

function mapping 9 features to 6 operators.

In simulated networks, the resulting weight patterns are usually

too complex for easy interpretation, but this hand-designed system

demonstrates some interesting features. The highest level goal is

successively refined through a 4 level hierarchy to low level,

executable goals. For example:

goal: peg in hole *>
goal: hold peg =>
goal: hand at peg •=>
goal: move hand east

Because it describes a Boolean function, this behavioral system could
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also be expressed as a two-level network, but a hierarchal approach

permits greater sharing of information. The complexity of the network

is increased somewhat, but the complexity of the individual nodes is

decreased.

It is interesting to note that many of the basic "meanings" of

neurons are represented. There are input driven feature detectors

(peg in hole), output generating motor nodes (grasp), and a bunch of

"intentional" nodes (goal: get peg). Depending on your point of

view, these internal signals can be interpreted as goals, commands,

drives or needs to achieve something, or simply as shared patterns

which happen to be predictive of correct output. They can also be

viewed as means-ends selected operators since they are triggered by

current and desired conditions (Newell and Simon 72), or as a

hierarchy of servomechanisms (Albus 81). The network could also be

explicitly represented as a production system, since any node can be

expressed as an if-then rule.

The top level input "want peg in hole" still seems a bit

mentalistic, but if a person were instructed to put the peg in the

hole when a green light goes on, that input could be replaced with

sensory input "light is green". The system would then be completely

mechanistic, though still teleologically interpretable in terms of

internal goals and intentions. If the top level input were an

internal "thirst" sensor and "put peg in hole" were interpreted as

"empty glass in mouth", the system could also be interpreted as

modeling a homeostatic activity.
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The preceding example suggeetE that a niunber of interesting

psychological aspects of behavior can be addressed in the context of a

Boolean stimulus-response model. One potentially interesting result

is that behavioral terms such as trigger features, drives, commands,

needs, intentions and goals can find natural expression in a

homogeneous neural network whose design criteria can be

mechanistically specified in terms of efficient input-output

connections. This is in keeping with Gallistel's observation that

"the problem of motor control coordination becomes the problem of

motivation as one ascends the action hierarchy" (Gallistel 80).

6.12 Results

A 9 feature input space is too large to actually simulate, but a

one dimensional version (movement along one axis only) is of

reasonable size. The resulting 6 feature, 4 operator function was

learned by a one plane network in 18 cycles. Location extremes of -1

and 1 were used since that is the expected range for the learning

algorithm. Only 25 nodes were used in the common memory plane, well

short of the 64 different input patterns.

In general, development and testing was limited to 4-feature

functions. The same set of 40 functions used to test operator

training (Fig. 3.8) was also used to test focusing. Overall learning

speed was adjusted to be about the same for the two processes, but

speed on individual functions was often quite different. As expected.
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operator training is better when generalization is possible (e.g.,

pattern 6) and focusing is generally superior when specific instances

are important (e.g., pattern 12).

To investigate the limits of system capabilities, an 8-feature

checkerboard was learned (the 8-feature counterpart to pattern 12).

This is one of the hardest functions to learn with any number of

features. The system was run with 350 nodes in the memory plane (2 **

8 = 236). The function was successfully learned in 32 cycles - not

greatly in excess of the 22 cycles required to learn the 4-feature

version. However, it took 25 cpu hrs, so larger input spaces were not

investigated. Though the number of cycles needed to learn the

function didn't increase greatly, with sequential simulation each

additional feature requires about 4 times the previous runtime.
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7.0 EVALUATION AND CREDIT ASSIGNMENT

7.1 The Goal

The model, as developed so far, is capable of learning arbitrary

S-R mappings, provided it is explicitly taught the correct function.

The need for such an omnipotent instructor is a common criticism of

neural learning "with a teacher". The purpose of this chapter is to

develop a plausible model of neural instruction.

The standard argument that learning is unnecessary if the correct

response is already known ignores the fact that instruction may occur

only after a response is made. The correct response is not known

beforehand, but may be at least partially deduced from succeeding

state changes. This is the essence of trial-and-error learning, a

common feature of biological behavior. Post-response instruction may

completely specify the correct output, "learning with a teacher", or

may only evaluate the correctness of the preceding action (sometimes

referred to as "learning with a critic" (Barto et al. 81, Widrow et

al. 73}). Although a critic may not directly indicate the correct

output, it conveys useful information for modifying output, which from

a local point of view is explicit teaching. The specific problems

addressed in this chapter are the evaluation of behavior and the

generation of specific teaching signals based on that evaluation.
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7.2 Evaluation

Implementation of a specialized evaluation process is consistent

with what is known of biological reinforcement systems. In

particular, limbic structures such as the hypothalamus and amygdala

seem to be involved in evaluation (Gallistel 73, Gallistel et al. 81,

Olds and Forbes 81, Rolls et al. 80, Rolls 81, Pugh 77, Kent 81, Kapp

et al. 82, Albus 81). As Albus observes:

"The ability to discriminate good from bad and to evaluate whether a
particular activity is rewarding or punishing is critical to the
selection and control of behavior. The emotional centers of the

limbic system provide this capacity for evaluation. These regions of
the brain provide the value judgements as to whether the results
reported by the sensory-processing regions of the brain are good or
bad. These are the centers that tell us whether what we are doing (or
are thinking of doing) is rewarding or punishing." (Albus 81 pg. 95)

This hypothesis is consistent with reports that direct electrical

stimulation of the hypothalamus or amygdala can modulate learning

speed in other parts of the brain (Woody 82 pg. 159, Woody et al.

83, Kim et al. 83, McGaugh 83).

The functional distinction between data and evaluation type

information is sometimes anatomically distinguishable.

"The operant conditioning process may then be the result of classical
conditioning of certain cells, such as those of the basal ganglia, by
inputs from the reward [evaluation] system immediately after they are
successfully fired by input activity from the cortical action scheme
generators or perceptual analyzers [data]. ... The distribution of
these two input systems to the cells of the basal ganglia is
consistent with this idea. The cortical inputs carrying activation
patterns to generate specific outputs are restricted to selected
cells. The reward system's input, relevant to any just completed
action is diffuse and widespread." (Kent 81 pg. 186)
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Biologically oriented models often use terms such as

reinforcement or pleasure to explain the learning process. However,

mechanistic implementation of those evaluative terms must eventually

result in the alteration of specific values, requiring an implicit

teaching process. For example, if it is pleasurable to do something

when you should have (output •= 1, teacher ^ 1) and painful to do

something when you shouldn't have (output ® 1, teacher *= -1), then

maximizing pleasure and minimizing pain result in matching output to

the implicit teacher value. (Biologically, pleasure and pain do not

appear to be as symmetric as this example would suggest). If

instruction is in response to the node's output, the term evaluation

may be more appropriate, but if instruction is not dependent on the

output of the node, teaching seems the better term. The pain detector

in gill withdrawal is an example of a teaching signal.

7.3 Credit Assignment

The model must address two basic problems of credit assignment if

a single, global evaluation of behavior is used to train multiple

outputs. If more than one operator is applied simultaneously, it is

not clear which ones are responsible for desirable or undesirable

changes (Barto et al. 81). Similarly, if a sequence of operators is

applied before a goal is achieved, it is difficult to determine which

operators contributed to the final achievement (Hinsky 63). It should

be noticed, however, that these problems of credit assignment occur

only in training the operators, not in training the common memory.
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Whenever an error occurs, the shared representation is simply made

more specific.

In addition, there is what Feldman (82) has called the "deferred

outcome" problem, in which the results of behavior may not be

innnediately observed. This is one step further back in the learning

sequence:

stimulus •=> behavior => results => evaluation =>

credit assignment •=> teaching/learning

and so compounds the previous two problems. It was once thought that

reinforcement must be delivered almost immediately for effective

conditioning. However, the Garcia effect (specific food aversion due

to delayed sickness) has shown that behavior-result delays of an hour

or more are sometimes acceptable (Garcia and Koelling 66, Garcia et

al. 82, Dickinson and Mackintosh 78). This may be a specialized

system, but similar effects have now been shown in other situations

(D'amato et al. 81). In any event it is a significant limitation in

biological learning. That problem will not be addressed in the

current model. Any relevant effects of behavior are assumed to be

immediately observable.

7.3.1 Simultaneous Application - The first problem of simultaneous

operator application can be avoided by training the model as a

production system. If only one operator is applied at a time, it is

clear which should get credit or blame:

1) If an operator fired and things get worse,
then it was wrong and should be off.

2) If an operator fired and things get better.
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then it was right and should be on
and everybody else should be off.

3) If nobody fired and things get worse,
then somebody should have been on so all move up.

4) If nobody fired and things get better,
then nobody should be on (and they weren't)
and perhaps learn to apply the no-op operator.

If the current evaluation is less than optimal, staying the same can

be treated the same as getting worse. This trial-and-error strategy

will cycle through all the operators (repeating some) until the

correct operator is applied. The system will then stabilize for that

input pattern. Providing the amount of mutual interference isn't

excessive, the system will eventually stabilize on correct output for

all inputs.

This is essentially the same as Thorndike's Law of Effect

(Thorndike 13). As summarized by Hilgard and Bower, this law states:

"responses to a situation which are followed by a rewarding state of

affairs will be strengthened or stamped in as habitual responses to

that situation; responses which are unsuccessful will be weakened or

stamped out as responses to that situation" (Hilgard and Bower 75 ch.

2). The basic process is the formation of associations between

stimulus and response as controlled by evaluation.

7.3.2 Sequential Application - The second problem of sequential

credit assignment can be addressed with the introduction of learned

secondary evaluation. Primary (innate) evaluation identifies a

specific goal state, and secondary (learned) evaluation indicates the

likelihood that any other state is on a path to that goal. This
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learning rule was implemented as:

Eval := Eval + (Next_eval - Eval) * r

In effect this says the secondary evaluation of a state should predict

the evaluations of succeeding states.

For example, in an n state sequence, state n-1 is as good as the

goal state, n (Eval >=1), if the correct operator for that transition

is known. The learned evaluation of state n-1 then makes the

transition from n-2 to n-1 rewarding. Action sequences are learned

backwards, producing a gradient of positive evaluation leading to the

final goal state. Primary evaluation identifies innate goal states,

while secondary evaluation provides immediate feedback for transitions

leading toward those states.

Samuel implemented a similar learning process in his checkerboard

evaluation function:

"We are attempting to make the score [evaluation], calculated for the
current board position, look like that calculated for the terminal
board position of the chain of moves which most probably will occur
during actual play. Of course, if one could develop a perfect system
of this sort it would be the equivalent of always looking ahead to the
end of the game. The nearer this ideal is approached, the better
would be the play" (Samuel 63).

By simulating succeeding states, Samuel used this information to

choose the next transition. Because the current model doesn't

anticipate future states, the correctness of a transition can be

determined only after it has actually been made. A similar approach

has also been used to learn pole balancing (Barto et al. 82).
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One characteristic of this learning scheme is that the evaluation

gradient disappears as behavior stabilizes. That is, when behavior is

well learned, secondary evaluation predicts succeeding evaluation very

closely. A similar effect has been observed in biological learning:

"Once organized, goal gradients and anticipatory goal responses become
cumbersome and unnecessary ... there is some evidence that the goal
gradient does, in fact, occur primarily during the early stages of
learning or exploration ... I might add that organization probably
precedes from the "goal" backwards ..." (Handler 75 pg. 36).

Because the evaluation gradient saturates, it is necessary to

temporarily habituate positive evaluation in order to avoid the

possibility of looping action sequences.

This explicit separation of evaluation learning from behavior

learning is consistent with the observation that aversive conditioning

involves two separate processes, the learning of "conditioned fear"

(evaluation) and the learned behavioral response to it (Thompson et

al. 83, Thompson 83, Rescorla and Solomon 67, Weinberger 82).

Since the evaluation system can use the output of the common

memory, single node evaluation is possible. As with single node

operators, the logical extreme of completely decoding the input space

is trivially adequate since the correct evaluation can be uniquely

attached to each input pattern. However, like output error, a large

change in evaluation may now indicate that input categorization is

insufficiently specific, in this case for accurate evaluation.

Consequently, the magnitude of evaluation change was included in the

common memory focusing rate. Thus evaluation is also logically

complete and reasonably efficient since memory modification is
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proportional to evaluation error. As in the case of single node

operators, the burden on the conunon memory could be significantly

reduced by providing a small dedicated network for evaluation.

Training an evaluation node is slightly different than other

nodes in the system, since it is the only type which is trained with a

non-Boolean teaching signal. The weight adjustment algorithm is

appropriate for training continuous output, but the teaching value for

conditional probability was kept Boolean by predicting whether a

node's output should go up or down, rather than whether it should be

on or off. If correct output is approached cautiously (no more than a

50% correction on each input) this is quite adequate. It is also

possible to generalize the conditional probability trace to predict

intermediate output. This permits faster convergence, but is

theoretically at risk because it confounds teaching frequency and

intensity. For lack of a clear preference, both techniques are

implemented as runtime options.

The implementation of specialized evaluation and sensory-motor

systems introduces the most general learning problem the model has to

address: the formation of an acceptable mapping between initially

goalless behavior and initially behaviorless goals. Learned behavior

can be more elaborate than genetically hardwired action, but the

learning process itself may be quite complex. Initial exploration of

this problem does not suggest that there is a simple solution. On the

contrary, though the problem can be simply specified, implementation

of an efficient, general solution appears to be quite difficult.
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7.4 Learned Homeostatic Behavior

Simple homeoatatic (servomechanistic) behavior can be learned

with primary evaluation alone. For example, if it is rewarding to

drink when thirsty or eat when hungry, then behavior will converge on

those homeostatic actions. Taking a specific example, it is innately

rewarding to taste sugar when hungry. The appropriate primary value

for this state can be defined as (hungry AND sweet_taste) *> (Eval "

1). Any behavior which results in sugar ingestion will be reinforced

if the organism is hungry. For instance the Eat operator might learn

to fire in the state (hungry and looks_fruit_like). The internal

feature "hungry" is a necessary part of both the reward and behavior

system. Neuron firing which is dependent on both hunger and the sight

of food has in fact been observed in the hypothalamus (Rolls 81).

These neurons were closely associated with the internal reward system.

It is interesting to note that the neurons responded to the sight of

learned food objects.

In order to learn homeostatic behavior, two internal signals must

be provided: reinforcement for correct behavior, and a

motivational/drive signal to indicate when the goal is active (i.e.,

will be rewarded). It is reasonable to assume that many such

homeostatic teachers exist in an organism, corresponding to the

observed homeostatic behaviors (eating, drinking, etc.). This is

consistent with the known involvement of the hypothalamus in

homeostatic function. Direct electrical stimulation of the

hypothalamus produces results which can be described as both
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motivational and rewarding (Deutsch and Howarth 63, Gallistel 73). In

that theory, stimulation

"activated two systems, a drive or motivational system that was the
energizing factor responsible for the initiation of behavior, and a
satisfying or reinforcing system that was responsible for the
establishment of the connection between the response and the brain
stimulus" (Olds and Forbes 81 pg. 529).

This two-system theory is not universally accepted, but its functional

distinction between motivation and reward would seem to be justified

in the context of the proposed model.

As previously observed, a drive signal is treated the same as

other data in the system. Any "motivational" properties it has are

due simply to its inclusion as a relevant feature in the production of

behavior.

It is generally accepted that some homeostatic processes are

regulated by both drive and satiety (anti-drive) signals (Gormezano et

al. 83). That is, a homeostatic activity (eating for example) is not

only activated by positive instances (hungry), but is actively

inhibited by negative ones (full). This provides an ability to

distinguish the absence of hunger from actually being stuffed, which

can be of considerable practical significance. Satiety can be modeled

as the inverse of a 2-signal drive-reward system. A complementary

satiety-punishment system is logically adequate and biologically

parsimonious.
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7.5 Models Of Learning And Memory

As demonstrated by the veil known amnestic patient H.M.,

bilateral temporal lobe damage in humans produces a dramatic reduction

in long term memory formation (Milner 70). Consequently, models of

human learning and memory often speculate on the function of that

region of the brain, and the hippocampus and amygdala in particular.

It is thought that this region is dynamically involved with cortical

centers in the consolidation of memory (Squire 82, Squire et al. 83).

Based on the processes implemented in this model it is possible to

hypothesize a specific effect: the identification of useful short

term (ST) values so long term (LT) values can move toward

(consolidate) them. The hippocampus and other medial temporal

structures are thus seen as an important link between the evaluation

and sensory-motor systems of the brain.

The period of time before an LT value moves completely to a new,

correct ST value constitutes a period of vulnerability for newly

established memories. Loss of the ST value before "consolidation" is

complete would produce a permanent memory deficit. If LT values move

incrementally toward ST values, permanent loss would be inversely

proportional to memory age. Such effects are observed in humans after

electroconvulsive therapy (Squire 82), and in animals with shock or

protein synthesis inhibitors (Agranoff 82). If there was no

consolidation, ST values would eventually return to their previous LT

states. ST and LT memory would both be functional, but there would be

no transfer between them. This appears to be the case for H.M.
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To effectively control consolidation, a general learning rule can

be adopted that LT moves toward ST when ST is useful, otherwise ST

moves to LT. Thus a possible scenario for long term memory formation

is:

1} short term modification learns a new input
pattern.

2) Subsequent evaluation (and usefulness detection
in general) determines that some or all of it
is worth remembering.

3) The hippocampus selectively identifies (points
to) those short term values so they can be
consolidated.

Albus has suggested a similar function:

"Evaluations are also useful in the control of memory storage. Some
events are very important to remember; others are not. The emotions
tell us what is worth remembering. ... The hippocampus is believed
to make the emotional judgements as to what is worth remembering.
This allows the brain to be selective in what it stores. ...

Destruction of this selection center would therefore result in

everything being forgotten as if unimportant" (Albus 81 pg.97)

Observations that H.M. is more impaired in the acquisition of

"facts" than behavior (Milner 70, Squire 82, Squire et al. 83),

suggests that the hippocampus is selectively involved with (something

like) the behaviorally uncommitted focusing process, rather than the

output oriented operator training process. It has also been reported

that if a rat is preexposed to a new environment prior to training,

subsequent electroconvulsive shock (ECS) does not disrupt learning

(Miller 82). This suggests that ECS is more disruptive of situation

learning (focusing) than behavioral adjustment (operator training).

Prior environmental exposure permits undisturbed situation learning,

and the subsequent behavior adjustment is resistant to ECS.
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As proposed in the model, the evaluative system must also learn.

Thompson (Thompson et al. 80) has observed learning in the

hippocampus and has commented on the central importance of evaluation:

... the learning-dependent increase in hippocampal neuron activity
that ve have described is a general phenomenon whenever training
involves the pairing of a signal and a reinforcing stimulus.

More specifically, it has been suggested that the hippocampus and

amygdala are involved in the learning of contingencies between

stimulus and reinforcement (Gabriel et al. 80, Rolls 82). The

temporal parameters of hippocampal learning are in a behaviorally

relevant range. Learning (long term potentiation) can be induced in

seconds, and may persist briefly or for weeks (Bliss and Lomo 73,

Lynch and Baudry 83, Douglas and Goddard 75, Lynch and Schubert 80,

Barrionuevo and Brown 83). In addition, individual hippocampal cells

may display complex forms of associative conditioning (HcNaughton and

Barns 77, McNaughton et al. 78, Levy and Steward 79).

The preceding model of short term modification is not intended as

a general model of short term memory, since it is only one aspect of a

collection of possible short term memory phenomena. In examples of

neural "short term memory", it is useful to clearly distinguish

between reverberating circuits (Carlson 80 ch. 18), prolonged

activity in individual neurons (Roberts and Grant 76), the delayed

activation of different neurons (Bindra 76), physically distinct input

traces (Button and Barto 81), and short term weight modification (gill

withdrawal Kandel 77, 79ac). In addition, there are probably more

biological levels of consolidation than the two (ST and LT)
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implemented in the model.

On the other hand, the implemented LT/ST distinction is not too

far from the functional LT/ST distinction used in animal learning.

"short-term is defined as mediating acquisition — the trial-to-trial
improvement in responses within a single session. Long-term memory
mediates the improvement in performance maintained from one session to
another over intervals of hours to days, or even longer" (Agranoff
82).

As observed in the case of H.M., the model is also compatible with

some important aspects of human LT/ST memory.

7.6 Results

The standard set of 40 4-feature functions was used to test

sequential application. Using the no-op option, a 2 operator

production system was produced. A single input pattern, (1111), was

chosen as the primary goal state (Eval =1), and other states were

learned as a sequence leading to it. Thus a 4-feature Boolean

function can be treated as a sequence of 15 operator selections.

Appropriate operator action received reinforcement resulting from a

transition to the next state in the sequence, and inappropriate action

resulted in a transition to a neutral, unreinforced state. As before,

the system was trained with cyclic presentation of all input patterns.

Early' behavior is always random since training information is

available for only the final transition. The large number of errors

(things don't get better) causes the common memory to learn the input

space. With the input patterns identified, correct behavior and the



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

146

resulting evaluation gradient move back from the final state. Since

correct output must be learned sequentially, learning is much slower,

but all functions were learned in an average of 51 cycles.

As a more concrete example of the model's ability to assemble

action sequences, it can learn to run Karnaugh map mazes. A single

state is selected as the goal, and 4 operators are provided to move

between adjacent states. As before, behavioral success is determined

by the resulting change in evaluation. Rather than a 15 step sequence

of 2 operators, 4 operators are used in sequences which need not be

longer than 4 (the farthest apart 2 states can be on a 4 feature map).

Learning proceeds much the same as in the previous example. Early

behavior is random since all states are evaluated as 0 except for the

goal state. This unsuccessful early behavior causes the common memory

to learn the input space. Correct action and the resulting evaluation

gradient then move out from the goal state, except that they can now

spread in 4 directions rather than 1. After 18 cycles, behavior is

stable with all state transitions leading toward the final goal (Fig.

7.1a).

While demonstrating the model's ability to assemble sequences,

the previous example isn't a particularly challenging maze. In order

to implement walls, the model was extended to include negative

evaluation. Walls were modeled as states with negative primary

evaluation (Eval •= -1). Learning is the same as before, except that

the evaluation of a state is the sum of several, independent

evaluations. A positive gradient spreads out from the goal state, and
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Figure 7.1 Learned goal-seeking behavior on a Karnaugh map maze,
a) no bad states b) 3 bad states
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negative evaluation spreads out from the "bad" states. The learned

evaluation of any state is simply the sum of these overlapping

gradients. The number, type and location of the primary values are

entered at runtime. An example with 3 negative states and one

positive state is shown in Figure 7.1b. As can be seen in the figure,

behavior is appropriate since all paths lead to the goal, and none

pass through bad states. This example was learned in 32 cycles.
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8.0 SUMMARY AND DISCUSSION

8.1 The Goal

As attempt has been made to define and implement a minimal neural

system capable of adaptive behavior in a completely defined

environment. Behavior is modeled as the application of specific

operators in response to patterns of internal and external features.

Behavioral completeness requires that any stimulus (feature pattern)

potentially be able to trigger any response (set of operators).

Learning completeness requires that any stimulus-response (SR) mapping

be learnable. Goal based behavior evaluation determines what the

appropriate SR mapping is. Thus the necessary functioning of the

model system can be precisely defined. The resulting problem is

simple enough to be formally approached, but general enough to address

a niunber of interesting issues.

8.2 SR Behavior

\

The proposed model is behaviorally neutral in the sense that any

response can be made to any stimulus in order to achieve any goal.

However, it is clear that all stimulus-response-reinforcer

combinations are not biologically equivalent (Lolordo 79, Manning 76).

A completely general SR model may not be biologically realistic, but

there seems little value in immediately modeling species-specific

idiosyncrasies. A general model can be specialized for constrained

circumstances, while the reverse process may be considerably more
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difficult. Of course the underlying assumption is that there are

general processes and that intelligent behavior is not just a

collection of special purpose tricks.

Though the model may be too general in some ways, it is very

limited in others. One conspicuous limitation is the almost complete

exclusion of temporal information. For example, information about the

recent past and expected future could be maintained or computed to

supplement input from the current state. In a noisy environment, this

would allow an organism's world model to "flywheel" through higher

levels of input noise (Albus 81). Including such internal features

may be stretching the SR model a bit, but it is clearly a useful

capability. Certainly the ability to project expected future states

is necessary for the development of any planning capacity. It has

been suggested that the necessary action-result associations are an

important aspect of biological behavior (e.g., Adams and Dickinson

81).

Autonomous activity is another limitation of strict SR models.

Some aspects of autonomous behavior can be adequately modeled as

chained sequences of internal stimulus-response actions, but it is

also true that even individual neurons are capable of autonomous

behavior. Autonomous central programs or pattern generators appear to

be important in the behavior of all organisms (Gallistel 80, Shepherd

83 ch. 20, 21, Bentley and Ronishi 78). As Gallistel observed:

"It is now recognized by neurobiologists, if not yet by psychologists,
that endogenously active oscillators constitute a second kind of
elementary functional unit in behavior" (Gallistel 80).
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To suggest internal SR loops within individual . neurons is clearly

stretching the SR model beyond its usual application.

There is another important problem with SR models. While SR

associations are commonly thought of as connecting input features with

output actions, it can easily be shown that learned associations are

in fact between mental concepts and behavioral goals (McGaugh 81).

For example, if a learned stimulus is the visual presentation of a

cube, it may be recognized with varying orientation, lighting, size

etc. Certainly the raw visual features have very little in common;

it is the invariant mental representation of a cube that is the

salient feature. A similar argument can be made on the output side.

A rat trained to run a maze will swim through it if necessary. The

motor output has nothing in common other than the same goal.

The preceding objection is not to SR theory in general, but only

to peripheral SR explanations. SR associations exist, but it must be

accepted that they are between mental concepts and behavior goals.

Specifying exactly what those are and how they are acquired

complicates the SR model considerably. In simplified situations the

distinction may not be important, but for real-world learning the

issue must be addressed.

By applying only one operator at a time, the problem of credit

assignment for simultaneous actions was avoided. However,

simultaneous application permits more sophisticated behavior, so the

problem must eventually be considered. The "reinforcement learning"
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work of Barto, Sutton and Klopf does address this problem.

Despite these problems, a considerable amount of interesting

behavior can be produced vitbin the SR domain. Useful SR behavior is

demonstrated by AX production systems, and even simple Boolean

production systems are capable of producing interesting behavior. By

implementing the capabilities of a production system using a

neuron-like element, the gap between neural level processes and

useful, macroscopic behavior can be bridged.

8.3 Summary

The model was developed in five steps:

1) analysis of gill withdrawal
2) structure and training of a model neuron
3) structure and training of a single operator
4) structure and training of multiple operators
3) behavior evaluation and credit assignment

8.3.1 Gill Withdrawal - The behavior and mechanism of Aplysia gill

withdrawal (Randel 79ab) was analyzed as a neural model of adaptive

operator application. An operator was formalized as a trainable

category detector. Gill withdrawal can be viewed as a trainable

operator which is "taught" its correct output by a pain detector. A

combination of associative sensitization and habituation is sufficient

to produce the observed behavior.
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8.3.2 Structure Of A Model Neuron - In a system requiring Boolean

completeness, the necessary properties of a node's output are veil

defined. Either a node must be able to individually compute any

Boolean function, or it must have sufficient power so that an assembly

of nodes can. The complexity required for complete "decoding" of an

input space grows exponentially with the number of inputs, providing

an upper bound on the functional complexity necessary for Boolean

completeness. Minimum complexity is simply proportional to the number

of inputs.

A linear function was chosen since it is sufficiently powerful

for Boolean completeness of assemblies, is relatively simple to

implement, and is probably within neural capabilities. A similar

function was originally proposed as the McCulloch-Pitts "formal

neuron" (McCulloch and Pitts 43) and is the most common functional

form used to model neural computation. Many aspects of biological

learning can be described with a simple linear function (Sutton and

Barto 81) and its limitations may also parallel biological limitations

(Bourne 70, Hunt et al. 66, Neisser and Weene 62)

It was observed that a linear function can implement the (at

least X of N features) function, formalizing the "ALMOST" gate

suggested by Kent (81). Significantly, this function can be treated

as a prototype description which includes OR (at least 1 of N) and AND

(at least N of N) as its extremes. Prototypes appear to play an

important role in both the process of biological learning and the

actual structure of natural categories (Mervis and Rosch 81).
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Blather than single threshold, binary pattern classification, a

continuous, three-valued logic was implemented. Output above and

below the resting "unknown" output value of 0 represents increasing

certainty in the presence or absence of the category detected by the

node. This appears to be biologically common (Sejnowski 81). Output

beyond the limits of 1 and -1 is interpreted as absolute certainty.

With output thresholds of -1 and 1 and synaptic weights between -2 and

2, the range of computable prototypes is:

at most XI features give output <= -1
at least X2 features give output >= 1
where X2 - XI >= 1

8.3.3 Training A Node - The ability to convergently train a linear

function as a binary pattern classifier is well known as the

perceptron convergence theorem (Nilsson 65). This algorithmic process

is similar to formal theories of classical conditioning (Rescorla and

Wagner 72), and is consistent with biological learning in the gill

withdrawal reflex of Aplysia. In particular, a node is told both when

it should be on and when it should be off, and its input weights are

adjusted accordingly. This standard process was modified in several

ways. Most importantly, the adjustment of weights was based on a

Bayesian selection of appropriate features to strengthen. This was

effective in excluding irrelevant activity from weight modification.

A similar two-stage conditioning process has been suggested as an

extension to the Rescorla-Wagner model (Mackintosh and Reese 79).
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Unlearning was introduced and used to avoid weight saturation.

Reversible learning appears to exist in the gill withdrawal system,

but may not in hippocampal learning (Barnes 79, Baudry et al. 81).

As a consequence, the learning capacity of that system might

eventually saturate if the organism were to live long enough.

Since rapid adaptation results in greater noise sensitivity, a

dual trace memory was implemented to minimize the effects of learning

noise. Several of its characteristics parallel human memory

properties.

8.3.4 A Single Operator - Using nodes that can be trained to compute

OR and AND, it is possible to compute any Boolean function. Based on

disjunctive normal form, a minimal two-level structure is adequate.

This is similar to the structure of a perceptron (Rosenblatt 59, 62).

Unlike the standard perceptron, both levels are trainable. The

problems of restricted interconnection (Minsky and Papert 72) were not

addressed.

A learning algorithm was developed which encodes "correct" input

patterns as potentially overlapping categories in the lower plane.

Though perfect generalization is not guaranteed, the algorithm tends

to produce the largest categories possible, thus requiring the minimum

number of nodes. The "holographic" advantages of representation by

large, overlapping categories rather than highly specific ones were

discussed. Several network structures and interconnection schemes
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were explored, though for simulation efficiency the minimal network

was the most extensively investigated.

The introduction of recurrent connections produces the

possibility of vithin-stimulus learning. Though not necessary for

completeness, this appears to be an important aspect of biological

learning (Rescorla and Durlach 81). The possibility of

self-sustaining activity or oscillation is also produced. The

formation of inappropriate positive feedback was observed and

inadequately dealt with.

8.3.5 Multiple Operators - Multiple operators were combined into a

single behavioral system. Completeness in this system requires

mapping arbitrary inputs to arbitrary sets of outputs. While the

desired behavior could be produced by training a set of totally

independent operators, it seems unavoidable that shared memory is

required for systems of any size.

The operator training algorithm was inappropriate for shared

memory, so another process was developed, loosely based on hippocampal

plasticity (Dunwiddie and Lynch 78). Unlike the operator training

process which learned on both positive and negative instances, the

common memory learns only on positive instances, when nodes are

"focused" on the current input. Input driven learning complements the

focusing process by defocusing the existing concepts sufficiently to

categorize all input patterns. This adjustment of the common memory
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is compatible with both input (data) and output (goal) driven neural

learning phenomena (Spinelli et al. 72, Spinelli and Jensen 79, 82).

Tapered focusing was introduced as a mechanism to facilitate the

sharing of information in a hierarchically layered system. By

reducing the speed of learning in the lower levels, only the most

abstract concepts are formed there over an extended period of time.

This appears to be an effective approach for the self-organization of

hierarchical systems.

With increasing interconnection, an alternative method of

information representation was made possible. Rather than

representing a category as a static state of neural activation,

categories can be identified as temporal firing patterns. Though only

the final state represents a node's decision on categorization, a

post-stimulus trace of its activity can reliably distinguish many

input patterns. This is similar to some biological observations (John

76, 80, John and Schwartz 78). The current model doesn't decode

temporal patterns, so although such information is available, it isn't

utilized.

It was observed that the operator training process is good at

learning generalizations, but inappropriate for learning specific

instances. Focusing on the other hand, is capable of learning

specific patterns in "one shot", but poor at generalization. This is

consistent with a biological dichotomy observed between behavioral

adjustment and the acquisition of specific, behaviorally uncommitted
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information (Squire 82, Squire et al. 83, Kent 81).

8.3.6 Evaluation And Credit Assignment - A specialized evaluation

system was developed and used to train the behavioral system

implemented in the preceding chapters. Two problems of credit

assignment were addressed. The problem of training simultaneous

operators with a single evaluation signal (Barto et al. 81) was

avoided by restricting the system to single operator application. The

sequential credit assignment problem (Minsky 63) was addressed with

the introduction of secondary evaluation. Primary evaluation

identifies innate state values, while secondary (learned) evaluation

provides immediate feedback for any state change. This approach was

utilized by Samuel to learn checkers (Samuel 63), and appears capable

of organizing arbitrarily long sequences of actions to achieve a

single goal. It is generally compatible with what is known of

biological "reward" systems (Gallistel 73, Pugh 77).

8.4 Discussion

The complete model is shown in Figure 8.1. Behavior is the

result of information flow between input and output. Learning occurs

in three places. Operators are trained to be on and off, the common

memory is trained to categorize the input space, and evaluation learns

to predict future evaluation. Change detection compares succeeding

evaluations to see if things get better or worse. Appropriate
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operator application is deduced from this change. Learning in the

common memory is triggered by operator error or by large changes in

evaluation. Candidate behavior is produced by trial and error and

selected by evaluation.

This system demonstrates a biologically plausible model of

adaptive behavior. It is constructed with linear function elements

which are probably within neural capabilities. The various forms of

learning are proposed in order to organize appropriate action. They

are not implemented to model specific biological phenomena, but are

required by the basic constraints on adaptive behavior. The fact that

similar processes have been observed in biological behavior and have

been tentatively identified in neural systems suggests that this is a

useful conceptual division of function.

By modeling specific functions of neural systems rather than

detailed physiology, it should be easier to investigate the

relationship between neural processes and intelligent behavior. In

addition, a more functional approach avoids the problems created by

nature's tendency to implement the same function in a variety of ways.

For example, the presynaptic process proposed for Aplysia learning is

not a unique mechanism for associative conditioning. It is reassuring

to have specific neural mechanisms, but there is no reason to assume

that they are the same in all organisms.
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8.4.1 Completeness And Efficiency - The combination of individually

trainable operators plus a trainable common memory is viewed as a

minimal, adaptive sensory-motor system. Because of its ability to

represent disjunctive normal form, (and linear or prototypic normal

form in general), the system is computationally complete in the

Boolean domain. The structure can be elaborated with multiple planes

and stacks, and various interconnection schemes, but the minimal

system (single node operators, one common memory plane) is logically

sufficient.

Learning completeness is equally desirable, but is not as easily

demonstrated. Because it implements a linear function, the model node

could presumably be shown to learn pattern classification by use of

the perceptron convergence proof (Nilsson 65). Unfortunate ly.

considering the current complexity of the program, a formal proof of

assembly behavior would be difficult. With common memory focusing

there appears to be some hope for formally demonstrating learning

completeness. If so, operator training can be modified to include

sufficient focusing to guarantee its convergence as veil. Because of

simulation expense, the system was developed on an input space of 4

features, and empirically it appears to be complete for that size

feature space. The programming details have been adjusted for a small

number of features, but the conceptual approach appears to be

extendable.
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Efficiency in time and space are important, though often

contradictory constraints on network characteristics. For example,

rapid focusing produces rapid (efficient) learning, but is very

inefficient in resource utilization because it requires many more

nodes. Efficiency is a matter of trade-offs determined by the

particular situation. A number of modifications were introduced as

ways of improving efficiency, but the issue was only addressed in a

very general fashion.

In terms of node utilization, representation in prototypic form

is significantly more efficient than disjunctive or conjunctive normal

representation. For real world categories, prototypic representation

may be especially advantageous. Because of its strong tendency to

generalize, the operator training process produces representations

that are quite efficient in the use of nodes.

With sequential simulation, the model is, or course, very time

inefficient. However, a node's output can theoretically be calculated

in one parallel step, and the output of multiple nodes can be computed

in parallel. The identification of Max_out can also be done in one

parallel step. Consequently, an actual parallel implementation would

have a very short reaction time. With one-pass output calculation (no

recurrent connections), reaction time is determined by the depth of

the network. A deeper network permits an advantageous sharing of

information but sacrifices reaction speed. Biological systems are

presumably structured in order to optimize behavior within their

particular time and space constraints. Human reaction time suggests
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an upper bound of about 100 cell delays between input and output.

8.4.2 AI Concerns - In the introduction, a general characterization

of intelligence was given as "goal-directed behavior which takes into

consideration current conditions and past experience". Mechanistic

implementation of this in the context of a production system requires

some activity in a number of standard fields in AI such as knowledge

representation, pattern matching, learning and problem solving.

However, the use of neuron-like elements results in a number of

interesting differences from more standard AI approaches to these

problems.

Knowledge representation is an interesting area in which to

compare neural and more standard AI approaches. While a linear

function of input features is natural for neural concept

representation, its power to describe prototypes, and the ability of

prototypes to describe real world categories, are seldom used in AI

systems. Categorization in AI is typically based on identifying a

minimal set of necessary and/or sufficient features, rather than a

probabilistic distribution of all features. Since necessary (AND) and

sufficient (OR) features can be identified as the ends of the

prototypic continuum, it is not surprising that features of

intermediate value are more the rule than the exception. With

sequential computation, it is more economical to utilize such key

features when they exist, but it should be recognized that such an

approach is a highly restrictive technique for dealing with natural
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categories.

Continuous values are also natural in neural models, but seldom

found in AI knowledge representation (e.g., Michalski et al. 83).

For real world situations, continuous representation may be quite

useful.

Several of the more philosophical issues of knowledge

representation can have precise expression in neural networks. In a

hierarchically connected system, the "primitives" of representation

are the raw input sensors. The "extension" of a concept is the set of

input patterns a node responds to, and its "intention" is defined by
V

its connection weights to higher level nodes.

If recurrent connections are permitted, the network is still well

defined, but its semantic interpretation is complicated somewhat. For

example, feedback can lead to a logical paradox if a NOT node is

connected with itself. (A => ~A). This can be an annoying problem in

logic, often causing "all hell to break loose" (McCawley 81), but

(perhaps unfortunately) poses no problem at all in network

implementation. It is a simple oscillator. In general, recurrent

connections complicate the logical definition of a concept since it

may be partly cyclic. Since positive and negative feedback are both

useful information processing techniques, this points out a limitation

of standard logic for modeling some neural processes.
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In addition, "unknovrn" is not effectively handled in standard

logic. The logical values in the network are better described as a

continuous three-valued logic than the discrete two-valued logic

commonly used. Various forms of multi-valued and fuzzy logic have

been proposed (McCawley 81 ch. 12), but none is in common use. It

appears that some form of extended logic is necessary to adequately

describe neural computation.

Another important difference between neural intelligence and

standard AX is in the appropriateness of symbol manipulation as the

basic model of information processing. Much of AX is in cXose

agreement with the symbol manipulation paradigm. This has probably

resulted from general adoption of the Von Neuman computer as a

metaphor for abstract information processing. Computer architecture

is in close agreement with the symbol manipulation model, but neural

hardware is not.

Xn particular, the distinction between an active processor and

passive data is inappropriate for neural computation. Memory is not a

collection of passive facts to be searched by a central executive, but

comprises the entire active network of neurons between input and

output. Biological memory is inherently associative and content

addressable, and potentially reconstructive, producing a fundamental

distinction between biological and computer-like memory.
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Likewise, the concept of a central processor is inappropriate for

the description of neural assemblies. There is no "little man in the

network" corresponding to the CPU of a computer. Computation is a

distributed, parallel process which Feldman calls "computing with

connections" (Feldman 81). The characteristics of such distributed

computation can be quite different than computation based on a single

central processor. For example, with parallel processing, techniques

which minimize reaction time rather than total computation can be

utilized.

The use of a single processor produces a sequential bottleneck in

computation. This computational bottleneck is a significantly

limiting factor to the complexity of problems which can be effectively

addressed. Consequently, AX problems and approaches have been

strongly selected for those which can be efficiently dealt with using

sequential computation. Appropriately parallel domains such as

sensory-motor behavior have been effectively defined out of the field

of AT. Symbol manipulation is useful as a conceptual model of high

level processing, but it is possible that over-reliance on this

general model has obscured the possibilities of more specialized

approaches.

It is hard to contrast learning techniques in neural and

artificial intelligence because they are only partially characterized

in both cases. However, it seems unavoidable that the "what" of

learning will affect the "how", so it is not surprising that AI

learning techniques tend toward identifying necessary and sufficient
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conditions, while neural learning models employ a more probabilistic

approach. Which approach is more appropriate is determined by the

domain of application, but as previously discussed, neural models are

sometimes more appropriate for representing real world categories.

Another difference is that neural learning tends to be

incremental and thus potentially noise resistant. AI learning

techniques are often very sensitive to noise. In general, learning

speed and noise resistance are inversely related. The proposed model

contains a dual (short term and long term) memory which improves noise

resistance without as great a sacrifice in learning speed.

Operator training and focusing seem to represent two

fundamentally different learning paradigms. Operator training is

equivalent to many AI learning situations. A category description is

progressively refined by the presentation of positive and negative

examples (Hunt 75, Cohen and Feigenbaum 82 ch. D3, Michalski et al.

83). Focusing is driven by positive instances only: a prototype

category is made more specific by focusing on the current input. In

the common memory, the two learning processes complement each other.

Focusing makes large, general categories more specific, and gap

filling (the operator training algorithm without negative instances)

attempts to broaden (generalize) existing categories to include new

instances.
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In a system with finite memory, learning and forgetting are

directly related. Forgetting can be due to loss of access (e.g., if a

concept is too specific to be triggered), but a more interesting case

is the modification of old concepts by new learning. When a node is

focused, it may leave gaps in the Karnaugh map. Input driven learning

fills these gaps by broadening old categories. Nodes may also be

refocused on new categories. Because of this, old concepts are

progressively modified until they are entirely forgotten. If the rate

of learning is large compared to system capacity, forgetting will be

rapid and noticeable. Conversely, when capacity is large compared to

the learning rate, forgetting may be imperceptible. Machine learning

algorithms typically do not explicitly worry about memory

requirements.

The learning and memory characteristics of the model are

consistent with general biological characteristics: new learning

causes forgetting, similar concepts interfere with each other more

than dissimilar ones, and loss can be progressive rather than all or

nothing. In addition, unlearning of a particular overt behavior is

largely a process of over-writing the old connections with new

correcting ones. The old connections are not eliminated, the system

is simply adjusted to correct for them. Because the model does

incorporate a certain amount of explicit unlearning at the node level,

it does not have to deal with the biological problems of weight

saturation and the appropriate distribution of plasticity over a

finite life span.
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A useful model which is seldom used in AX is the servomechanism

concept. The servomechanism has proved useful in psychology as a

mechanistic model of goal seeking, and neural models are quite

compatible with a servomechanistic interpretation of behavior. One

interesting characteristic of servomechanisms is that desired (goal)

states and the actixal, current state are treated as the same type of

information. Goals and current conditions can be freely intermixed in

a servo/neural behavioral system. Some production systems use this

capability by explicitly including goals as left-hand side features

(e.g., Lenat 77).

8.4.3 Biological Relevance - A number of biological parallels were

observed in the development of the model. Since the model was

strongly constrained by completeness and efficiency issues, these

parallels suggest that some neural characteristics may be similarly

shaped. Besides the general issue of Boolean completeness, a number

of specific constraints were considered. Some of these were node and

network complexity, parallelism, interconnection, information sharing,

learning and reaction speed, noise rejection, network capacity and

resistance to damage. Different emphasis on any of these issues would

produce different behavior in the overall model, but all are

significant constraints on adaptive, intelligent behavior, and have

presumably shaped neural characteristics.
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Perhaps the most interesting possibility is the central

importance of focusing as a learning process. At present the

biological evidence for this is only suggestive, but model results

demonstrate that prototype focusing is at least a theoretically viable

process. It would be equally gratifying if neural characteristics

similar to the conditional probability trace method II were to be

demonstrated. Animals display similar conditional learning, but it

has not been determined whether this is a property of individual

neurons or of larger systems.

It is always dangerous to infer the purpose of biological

processes, but a useful understanding must ultimately be based on

function rather than an exhaustively detailed description of

mechanisms which does not distinguish between unavoidable limitations

and selectively optimized capabilities. Of course, if one looks hard

enough, there is usually sufficient biological evidence to selectively

support almost any hypothesis, but on the whole, the good agreement

between model results and general biological characteristics suggests

that many neural mechanisms can be usefully viewed in terms of the

desired capabilities and the resulting structures and processes which

have been developed in the model.

8.4.4 Future Work - The domain of Boolean input patterns was chosen

because of its well defined, mathematically tractable nature. This is

a significant restriction since spatial, temporal and relational

inputs are not explicitly modeled, but it may be possible to extend
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the Boolean formalism to include those domains. For instance, the

temporal firing pattern of a single input can be represented and

detected in the same manner that simultaneous firing of multiple

inputs is detected. Relational patterns can be expressed as temporal

sequences, suggesting that the temporal domain may be a profitable

area of future development. Spatial or topographic effects are

achieved in many models simply by limiting connections and interaction

to neighboring nodes. These possible extensions suggest that progress

in the Boolean domain may provide a useful foundation for

investigation into other domains.
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