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Abstract 

A neural model is proposed of how the visual system processes natural images under variable 

illumination conditions to generate surface lightness percepts. Previous models clarify how the brain can 

compute relative contrast. The Anchored Filling-In Lightness Model (aFILM) clarifies how the brain 

"anchors" lightness percepts to determine an absolute lightness scale that uses the full dynamic range of 

neurons. The model quantitatively simulates lightness anchoring properties (Articulation, Insulation, 

Configuration, Area Effect) and other lightness data (discounting the illuminant, the double brilliant 

illusion, lightness constancy and contrast, Mondrian contrast constancy, Craik-O’Brien-Cornsweet 

illusion). The model clarifies how retinal processing stages achieve light adaptation and spatial contrast 

adaptation, and how cortical processing stages fill-in surface lightness using long-range horizontal 

connections that are gated by boundary signals. The new filling-in mechanism runs 1000 times faster than 

diffusion mechanisms of previous filling-in models.  

 

1. Introduction  

1.1 From Luminance to Anchored Lightness. The retina receives luminance signals, which are a 

product of reflectances and illumination levels (Hurlbert, 1986; Lambert, 1760; Wyszecki & Stiles, 1982), 

from objects in the world. Surface reflectances, or the percentages of light reflected by a surface in each 

wavelength (also known as albedo), provide information about the material properties of objects. From 

these luminance signals, the visual system is able to estimate object reflectances by compensating for an 

immense dynamic range of mean illuminations across time, and for a wide dynamic range across a single 

scene. This process of “discounting the illuminant” is not sufficient, however, to efficiently see the world 

because illuminant-discounted signals may represent only the relative amounts of light that each object 

surface reflects to the eyes. For effective perception, the brain also needs to compute an absolute lightness 

scale that can represent the full-range of experience from dim moonlight to dazzling sunlight.  

 Early neural models of surface lightness perception simulated many classical psychophysical data 

based upon estimates of relative light levels, including brightness constancy, contrast, and assimilation; 

Craik-O’Brien-Cornsweet effect; Koffka-Benussi ring; Kanizsa-Minguzzi anomalous brightness 

differentiation; Hermann grid; Land Mondrians viewed under constant and gradient illumination 

conditions that could not be explained by Land’s Retinex theory; Bergström brightness percepts of step-

like and smoothly modulated luminance profiles; Hamada brightness percepts of luminance increments 

and decrements; Mach bands; low-contrast and high-contrast missing fundamental and nonlinear contrast 

effects associated with sinusoidal luminance waves; and Ehrenstein brightness enhancement (Cohen & 

Grossberg, 1984; Grossberg & Todorovic, 1988; Gove, Grossberg, & Mingolla, 1995; Neumann, Pessoa, 

and Mingolla, 1998). Consistent extensions of these models simulated 3D figure-ground brightness 

percepts, such as Fechner’s paradox; binocular brightness summation; Bregman-Kanizsa figure-ground 

separation; Kanizsa stratification; Munker-White effect; Benary cross; checkerboard percepts; 
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McCollough effect; Necker cube; transparency, and 3D neon color spreading (Grossberg, Hwang, & 

Mingolla, 2002; Grossberg & Kelly, 1999; Grossberg & Swaminathan, 2004; Grossberg & 

Yazdanbakhsh, 2003, 2004; Kelly & Grossberg, 2000; ((Ross & Pessoa, 2000))).  

Given the large amount of already simulated data, the present article developed a model that is 

consistent with these earlier explanations, while also proposing how an absolute lightness scale may be 

constructed by the brain. To realize this goal, the new Anchored Filling-In Lightness Model (aFILM) 

provides a more sophisticated account of early visual filtering, lightness filling-in, and lightness 

anchoring. The model quantitatively simulates, for the first time, key psychophysical data about lightness 

anchoring, as well as other lightness data to show that it is consistent with earlier model explanations. 

Neurophysiological and anatomical data that support model hypotheses are also summarized; see Table 1. 

aFILM can also process complex natural scenes under difficult lighting conditions. Although the present 

work focuses on achromatic images, a variant of the model has been shown capable of processing 

chromatic natural images as well (Hong & Grossberg, 2004). The model was briefly reported in Hong & 

Grossberg (2003). 

1.2 Discounting the Illuminant by Early Visual Preprocessing. Retinal preprocessing of visual 

signals contributes to discounting the illuminant and creating a relative lightness scale. These processes 

include two mechanisms of gain control: Light adaptation and contrast adaptation. Human vision adapts 

to ten orders of magnitude of daily variations of ambient illumination (Cornsweet, 1970; Dahai & Spitzer,  

Table 1 

Anatomy, Experiments Functional interpretation 

(equations in model) 
Selected references (species) 

Outer segment of retinal 

photoreceptor 

Automatic gain control  

(A1-A3) 

Koutalos & Yau (1996, frog, 

salamander, cow, human) 

Inner segment of retinal 

photoreceptor and HC 

connection 

Shift property by negative 

feedback (A4-A5) 
Verweij et al. (1996, goldfish) 

HC syncytium 
Input dependent gated 

diffusion (A6-A8) 
Kamermans et al. (1996, goldfish) 

Retinal ganglion cells, 

LGN cells; Physiology of 

ON, OFF channels. 

Center-surround property of 

ON, OFF channels (A9-A24) 

Jones et al. (2000, cat), Rosck et al. 

(2000, tiger salamander); Schiller 

(1992, frog, mudpuppy, goldfish, 

rabbit, cat, monkey)  

V1 simple cells 
Polarity-dependent boundary 

detection (A25-A32) 

Alonso et al. (2001, cat), Hubel & 

Wiesel (1962, cat) 

V1 complex cells 

Polarity-independent boundary 

detection  

(A33-A35) 

Alonso & Martinez (1998, cat) 

Filling-in related cortical 

activities in V1, V2; 

Psychophysics of filling-in  

Boundary-gated filling-in  

(A36-A44) 

Hung et al. (2001, cat); Paradiso and 

Nakayama (1991, human) 

Lightness perception 
Anchoring of lightness  

(A45-A53) 
Gilchrist et al. (1999, human) 
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1996; Kaufman, 1974; Martin, 1983; Sakmannn & Creutzfeldt, 1969). For example, if the brain gets an 

input like the one in Figure 1A, we “see” it as in Figure 1B. This light adaptation property depends in 

part on retinal circuitry. Figure 1C shows the model response to varying background illumination. The 

range of maximal sensitivity shifts with background illumination without undergoing compression, as 

also occurs in the retina (Rodieck, 1998; Werblin, 1971). Another dimension of adaptation is spatial 

contrast adaptation. For example, if there is a big contrast in the visual field, as in Figure 1D, the brain 

can rescale input signals to see the dark side as well as the bright side of the scene, as in the model 

simulation of Figure 1E. Since retinal ganglion cells, which are the sole output units of the retina, have 

firing rates that vary over less than three orders of magnitude, the visual system needs to compress the  

dynamic range of input at the retinal level, without a loss of sensitivity. Mechanisms of contrast 

 Figure 1. Retinal adaptation. (A-B) Input 

and the simulation of the model reflecting the 

result of light adaptation of the retina. (C) 

Shift property of sensitivity of the model 

retinal units. The model retina simulates the 

light adaptation property by automatically 

shifting its operating range to adapt to the 

ambient luminance of the visual field. When 

the luminance is too low, it simulates the 

physical limit of adaptation (the saturation of 

shifting on the left end of the graph). For 

clarity only four mean input intensities are 

shown besides the corresponding curves. The 

visible 3 leftmost curves have mean 

luminances of 10-4, 10-3, and 10-2 from the 

left-end, respectively. The visible rightmost 

curve has a mean luminance of 107. (D-E) 

Input with high spatial contrast and the model 

simulation of the input. It is assumed that the 

retinal circuit is responsible for this kind of 

non-linear rescaling of contrast that makes 

the brain “see” the dark part as well as the 

bright part. Photo courtesy of Arash Fazl and 

Bob Wagner. 

 

(B) SIMULATION (A) INPUT 

(E) SIMULATION (D) INPUT 

(C) SHIFT PROPERTY 

RESPONSE 

LOG INPUT INTENSITY 
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adaptation are still undergoing intensive experimental study (Demb, 2002; Baccus & Meister, 2002). 

Some retinal gain control mechanisms contributing to adaptation include: (1) Ca2+ ion-mediated negative 

feedback at the photoreceptors (Koutalos & Yau, 1996) and bipolar cells (Nawy, 2000); (2) bleaching of 

photopigments (Dowling, 1987; Fain, 2001); (3) surround negative feedback by horizontal cells (HC) 

(McMahon et al., 2001; Thibos & Werblin 1978; Werblin, 1974); and (4) a circuitry switch from cones to 

rods (Mills & Massey, 1995; Ribelayga, Wang & Mangel, 2002).  

 

1.3 Some Anchoring Hypotheses. Surface lightness percepts cannot fully be explained by such low-level 

mechanisms. For starters, visual percepts depend upon appropriate interactions between both ON and 

Figure 2. Predictions by various lightness theories. (A-B) Input and correct prediction of lightness by average luminance rule. 

(C-D) Input and wrong prediction by average luminance rule. According to average luminance rule, the whiteboard should 

look middle gray. (E-F) Input and correct prediction of lightness by Highest-luminance-as-white (HLAW) rule. (G-H) Example 

where HLAW rule makes an error. HLAW rule makes an error due to a prominent highest luminance like the one in (G). (I-L) 

Inputs and corresponding predictions made by the model developed here. The model with a new rule called blurred-highest-

contrast-as-white (BHCAW) rule correctly predicts percepts. See the text for further explanations. 

  (D)  (B) (C) INPUT (A) 

 (H)  (F) (G) INPUT (E) 

0

w

 (L)  (J) PREDICTION (K) INPUT (I) INPUT 

0

w
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OFF channel signals that are largely segregated up until cortical area V1 (Schiller, Sandell & Maunsell, 

1986; Schiller, 1992). Attempts to explain surface lightness range from the classic inference theory of 

Helmholtz (1866) to recent theories that Gilchrist and his colleagues classify as intrinsic image theories 

(Arend 1994; Gilchrist et. al., 1999). Several theories propose that lightness is derived from luminance 

ratios among surfaces in a display, but these computations can only recover relative lightness values. 

There remains the problem of mapping relative lightness values to the absolute lightness values that are 

experienced. One proposed solution is the average luminance rule of Helson (1943), which postulates that 

the average luminance of the display, defined as middle gray, is an “anchor” for other luminances; higher 

luminances than average luminance will then have higher lightness values than middle gray. Figures 2A 

and 2B show an example where this rule makes a correct prediction. However, in response to Figure 2C, 

it make((s)) the error shown in Figure 2D: The whiteboard becomes middle gray. The average luminance 

rule thus does not explain lightness data quantitatively. Wallach introduced an anchoring hypothesis 

which became known as highest-luminance-as-white (HLAW) rule (Horn 1977; Land & McCann, 1971; 

Wallach, 1948, 1976). This rule assumes that the perceptual quantity “white” is assigned to the highest 

luminance in a given scene as the standard, and that lower luminant surfaces are assigned to gray values 

relative to it. According to this rule, the whiteboard in Figure 2E should look white, as in Figure 2F. In 

cases like Figure 2G, however, the HLAW rule makes a wrong prediction, as shown in Figure 2H. The 

white curve in Figure 2H that is superimposed on the image shows the profile of the predicted lightness 

along the horizontal section of the image that crosses the light source. The value “w” in  Figure 2H marks 

(B) (A) 

Figure 3. Blurred-highest-contrast-as-white (BHCAW) rule and spatial scale. (A) BHCAW rule with a large area of 

highest luminance. The dashed line indicates the value of WHITE which the blurred highest luminance attains. The thick 

line (ANCHORED LIGHTNESS) illustrates a 1-D profile of the anchored lightness. In this example, the blurred highest 

luminance equals white because the area of the highest luminance is at least as large as the kernel used for blurring in the 

BHCAW module (the inset). (B) BHCAW rule with a small area of highest luminance. Here the blurred highest luminance 

is smaller than the highest luminance because of the small size of the area of highest luminance relative to the blurring 

kernel. When the blurred highest luminance is anchored at white, the highest luminance gets pushed above white, 

becoming self-luminous. 
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the lightness value “white” along the vertical axis. By converting the intense illumination source into 

“white,” the HLAW rule drives other lightness values to dark levels. 

To overcome these shortcomings, the current model proposes how brain dynamics may instantiate a new 

anchoring rule called the blurred-highest-contrast-as-white (BHCAW) rule. Blurring, or spatial 

integration, is sensitive to the area subtended by the highest luminance, thus introducing spatial scale into 

the lightness computation (Figure 3A). Blurring also predicts why some surface regions appear self-

luminous (Figure 3B). See Section 2.5 for further explanation.   

Figures 2I and 2J show a model simulation that provides a result like the HLAW rule in Figures 2E and 

2F. Figures 2K and 2L, in contrast, show how the BHCAW rule can correctly predict lightness when a 

2 

5 

10 

 (G)  (F) 

(A) (C) (D) (E) (B) 

Figure 4. Articulation effect. (A-E) Illustration of the procedure and percepts of Articulation effect experiment. See the text for details. 

The patterned backgrounds illustrate the dark background in the experiment. (F) Data of Articulation effect. As more gray patches are 

added to a display, the range of perceived reflectance (lightness) widens. In the graph, the widening of the perceived reflectance 

corresponds to the steeper overall curve as the number of gray level target surfaces increases from one to ten as illustrated in B to E. The 

widening effect makes the gray patches look darker. The diagonal line shows the perfect situation of lightness constancy. The horizontal 

line shows the situation where there is just one surface on the Ganzfeld (a homogeneous background covering the entire visual field with 

no other visual cues). (G) Simulation results. PERCEIVED REFLECTANCE in the model is ANCHORED LIGHTNESS of the 

simulation. See the text for details. Figure F is from Gilchrist et al. (1999). 
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bright light source occurs, which was not done by HLAW. The curve on Figure 2L shows the simulated 

lightness profile of the image horizontal section that crosses the light source. The peak of the curve going  

above white “w” predicts that the light source will look self-luminous. The model can also quantitatively 

simulate the four sets of data (Articulation, Configuration, Insulation, and Area Effect) that Gilchrist and 

his colleagues (1999) have proposed should be explained by any quantitative lightness theory, as is shown 

next.  

Articulation Effect. Figures 4A to 4E illustrate the procedure and the percepts of the Articulation Effect: 

A black patch (reflectance 3%) is fixed in front of a homogenous dark background (Figure 4A). When the 

patch gets illumination 30 times that of the dark background resulting in the luminance of 1.4 ftL (foot 

Lambert), it looks white (Figure 4B). (This 30-to-1 foreground-background illumination setting is also 

used in the Configuration, Insulation, and Area Effect). When a real white patch (reflectance 90%) 

appears near the white-looking black patch, the black patch appears gray (Figure 4C). In the experiment, 

the subjects indicated perceived reflectance by selecting a match from a Munsell chart of 16 examples. 

The Munsell chart was illuminated with a different light source so that the luminance of the whitest white, 

Munsell 9.5, was 160 ftL. That a black surface can look white when intensely illuminated, as illustrated in 

Figure 4B, is called the Gelb effect (see Cataliotti & Gilchrist, 1995). As more gray patches are added, the 

less luminant ones ones look increasingly dark (Figures 4C, D and E). This darkening effect does not 

affect the highest luminance surface, which remains “anchored” to white (Figure 4F). Figure 4G shows 

the that the model can quantitatively simulate these data. (No effort was made to show error bars in the 

simulations since none appeared with the data.) Even in the two-Mondrian case in Figure 4C, the 

reflectances of the patches range from black to white covering the full span of reflectance used in the 

experiment. Adding different luminance patches is thus just a process of “articulation”.  

Configuration Effect. Figures 5A and 5B illustrate the procedure and the percepts of the Configuration 

Effect: A Mondrian display in Figure 5B—namely, a 2-D arrangement of juxtaposed gray patches—

widens the range of perceived reflectance compared to the linear arrangement of patches shown in Figure 

5A. That is, the dark patches in Figure 5A appear lighter than the corresponding dark patches in Figure 

5B. Figures 5C and 5D show the data. Comparison of the 5C and 5D shows that this effect becomes 

greater with more local articulation. Figures 5E and 5F show that the model can quantitatively simulate 

this effect.  

Insulation Effect. Figures 6A to 6C show the procedure and the percepts of the Insulation Effect: When 

the staircase arrangement is surrounded by a white insulating region, the range of perceived reflectance 

widens (Figure 6B). This does not occur when the staircase is insulated by a black border (Figure 6C). 

Figure 6D summarizes the data and Figure 6E the simulation.  

Area Effect. The lower part of Figure 7A shows the Area Effect set-up. The subject’s head is covered by 

a dome that is divided into two regions. The upper part of Figure 7A illustrates the stimuli and 

corresponding percepts. When the highest luminance area occupies more than half of the visual field, it 

appears white while the darker part looks gray. As the darker area occupies more than half of the visual 
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field, it approaches white, while the lighter area appears self-luminous. Figure 7B shows the data and 

Figure 7C the model simulation.  

 

 

No published models have yet simulated these data using an anchoring process, among other stages in 

processing lightness information. Below it is explained how the aFILM simulates these and other 

lightness data. The reader who prefers can skip to the Results Section 3 for model simulation explanations 

before reading about the model in Section 2. 

Figure 5. Configuration effect. (A-B) Illustration of the experimental settings and the percepts of Configuration effect. See 

the text for details. (C-D) Data of Configuration effect. The lower inset of each figure shows the Mondrian arrangement; 

the upper inset, staircase arrangement. Mondrian arrangement of gray target surfaces widens the range of lightness 

compared to the staircase arrangement. Comparison of C and D shows that articulation makes the effect bigger. (E-F) 

(C) (D) 

(E) (F) 

(A) (B) 
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Figure 6. Insulation effect. (A-C) Illustration of the experimental settings and the percepts of Insulation effect. See the text for 

details. (D) Data of Insulation effect. Insulation by a white surrounding widens the range of perceived reflectance. This effect 

does not seem to happen when a black surrounding is used for insulation. (E) Simulation results. The model fits the data of 

configuration effect in the anchoring theory. See the text for further explanation. Figure D is from Gilchrist et al. (1999). 

 

Figure 7. Area effect in divided Ganzfeld 

situation. (A) Illustration of the experimental 

settings and the percepts of Area effect. See the 

text for details. (B) Qualitative illustration of 

the area effect. As the non-highest luminance 

area becomes bigger than the half of the visual 

field, it approach to white, while the smaller 

area of highest luminance becomes luminous. 

The divided discs along the abscissa with light 

and dark surfaces show the configurations of 

the stimuli. (C) Simulation result of Area effect. 

The model simulates the concept of the effect 

quantitatively. The squares along the abscissa 

with light and dark surfaces show the 

configurations of the stimuli. See the text for 

details. Figure B is from Gilchrist et al. (1999). 

(A) (B) (C) 

(E) (D) 

(C)(B)

(A) 
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2. Model Description  

Figure 8 provides a model macrocircuit. Variants of its processing stages, except the Anchored Lightness 

and BHCAW stages, have earlier been used to simulate lightness data. The present model refines the 

operations in these stages as well, as indicated below. The Retinal Adaptation stage adapts to ambient 

luminance and spatial contrasts. Using the adapted signal, the Contrast stage generates contrast signals 

using multiple-scales of antagonistic ON-center OFF-surround and OFF-center ON-surround processes. 

The light-adapted signal also goes without change via a parallel pathway to the Luminance stage. The 

model then branches into two cortical streams, the boundary and surface streams, which have previously 

been modeled as a Boundary Contour System (BCS) and Feature Contour System (FCS), respectively 

(Grossberg, 1994, 1997; Grossberg & Kelly, 1999; Grossberg & Mingolla, 1985a, 1985b; Grossberg & 

Howe, 2003; Grossberg & Swaminathan, 2004; Grossberg & Todorovic, 1988; Kelly & Grossberg, 

2000). The luminance and contrast signals are pooled at the Surface Filling-In stage, where their spread 

via long-range horizontal connections is gated, or blocked, by contrast-sensitive signals from the 

Boundary stage. The filled-in signals are then rescaled at the Anchored Lightness stage. These anchored 

signals represent perceived lightness in the model.  

 

 

Figure 8. Illustration of the model. See the text for details. Each box indicates an array of cells doing a similar task. Arrow-heads 

indicate excitatory signals for the post-synaptic units; round-heads indicate inhibitory. The Mexican-hat shape and the up-side-

down shape of it between the RETINAL ADAPTATION and CONTRAST modules illustrate the one-dimensional shapes of the 

on-center off-surround and off-center on-surround antagonistic filters for contrast calculation. The bell-shaped curve between the 

ANCHORED LIGHTNESS and BHCAW modules illustrates the one-dimensional shape of the blurring kernel for anchoring. For 

clarity, BOUNDARY SYSTEM shows just one orientation. In the simulation, four orientations are used.  
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2.1 Retinal Adaptation. The model retina calculates the steady-state of retinal adaptation (light 

adaptation and spatial contrast adaptation) to a given input image. It adapts the response of photoreceptors 

to varying levels of incoming light, since otherwise the visual process could be desensitized by saturation 

right at the photoreceptor. Light adaptation, at the photoreceptor outer segment, protects each 

photoreceptor from saturation by using intracellular temporal adaptation that shifts the photoreceptor 

sensitivity curve (GATED INPUT in Figure 9; Baylor, Hodgkin & Lamb, 1974a, 1974b; Carpenter & 

Grossberg, 1981; Koutalos & Yau, 1996). See Appendix A, equations (A1)-(A3) for this mechanism.  

The light-adapted signal is further processed at the photoreceptor inner segment where it gets feedback 

from a horizontal cell (HC) that is connected with other HCs by gap junctions, forming a syncytium that 

is sensitive to spatial contrast (Figure 9). HC inhibition further adjusts the sensitivity curve to realize 

spatial contrast adaptation. It is assumed that the permeability of gap junctions between HCs decreases as 

the difference of the inputs to HCs from coupled photoreceptors increases. In Figure 9, for example, 

where the input pattern has a steep difference (the thick and thin input arrows), the permeability between 

the left and right HCs decreases. When there is not much difference in inputs, the permeability between 

 

 

Figure 9. Circuit of retinal adaptation. Two stages of Retinal adaptation are implemented: One light adaptation at the outer 

segment of the photoreceptors, the other, spatial contrast adaptation at the negative feedback circuit between the inner-segments 

of photoreceptors and a syncytium of HCs. It is assumed that the permeability of the gap junctions between HCs decreases as the 

difference of the inputs to the HCs from the coupled photoreceptors increases. For simplicity only the connections between 

nearest neighbors are shown. In simulations, long-range connections are also allowed. The gray bidirectional arrows show the 

mutual influence between connected units. See the text and Appendix for further details.  

HORIZONTAL CELL 

SYNCYTIUM 

OUTER 

INNER 

PHOTORECEPTOR 

INPUT 

GATED INPUT 

INTRACELLULAR GATE

GLUTAMATE RELEASE

GAP JUNCTION FILLING-IN 

INPUT 

HORIZONTAL CELL 

DENDRITE 

Ca
2+

INFLUX 
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the HCs remains large. The model retina hereby segregates and selectively suppresses signals in regions 

that have strong contrasts, such as a light source. Figure 9 shows only connections between nearest 

neighbors. In simulations, connections reaching farther than nearest neighbors are also used that model 

the connectivity and cell types in the retina (Masland, 2001; Sterling, 1998). Inhibition of the HC on the 

photoreceptor controls the output of the photoreceptor (GLUTAMATE RELEASE in Figure 9) by 

modulating Ca2+ influx at the photoreceptor inner segment. This feedback prevents the output from being 

saturated by localized high-contrast input signals. It hereby helps us see a room lit by a light bulb, the 

light bulb itself, and the label on it. See Appendix A, equations (A4)-(A8). 

 

2.2 Multiple-Scale Contrast and Luminance Stage. The retinally-adapted signal is processed by the 

Contrast stage, which is realized by center-surround networks. The Contrast stage thus receives 

normalized input signals. The Contrast stage carries out spatial frequency-specific processing in multiple 

scales using cell types with ((on-center off-surround)) (ON cells) or off-center on-surround (OFF cells) 

found in the retina (Barlow, 1953; Cook & McReynolds, 1998; Kuffler, 1953; Werblin & Dowling, 1969) 

and the lateral geniculate nucleus (LGN) (Dubin & Cleland 1977; Hubel & Wiesel, 1961; Jones et. al., 

2000; Schiller 1992). Retinal and LGN mechanisms are lumped together to provide the simplest 

realization of mechanisms that are needed to derive the desired results. See Appendix A, equations (A9)-

(A22). 

 The 1-D cross-sections of the contrast operators are illustrated in Figure 8 between the RETINAL 

ADAPTATION and CONTRAST stages. For example, a feedforward shunting on-center off-surround 

network (Grossberg, 1980, 1983) extracts local contrasts and significantly attenuates illumination 

gradients and background levels in a scale-specific manner. It does so using automatic gain control that 

divides the input of the center by the local average represented by the surround, thus estimating the local 

contrast: 

  

                                                         , Contrast
backgroundspot

backgroundspot

LL

LL

+

−
=

 

where Lspot, and Lbackground are the luminances of the probe stimulus and background, respectively. Using 

different sizes of surround, the system extracts small-scale to large-scale contrasts. These various 

surround sizes simulate the different sizes of lateral inhibition cell types in the retina (for a review, see 

Masland, 2001). The model uses a fixed narrow center kernel with the different surround scales 

(Grossberg et al, 1995; Mingolla et al, 1999) and thereby also simulates the output of a sharp center at the 

ganglion cells due to interactions in the retinal network (Cook & McReynolds, 1998; Roska et al., 2000). 

This is sufficient to simulate the targeted lightness data. Although the shunting center-surround network is 

presented separately from the retinal adaptation stage, it also contributes to background adaptation. 

Likewise, the adaptation by the HC network is a type of center-surround process with a large surround 

scale.  
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Figure 10. One-dimensional illustration of center-surround processes in different spatial scales. The figure shows two stimuli and 

corresponding processed signals in different spatial scales in the left, right columns. The surround kernels of different spatial-

scales are shown in the middle column. For clarity, the narrow center kernels, whose sizes are the same, are not shown. As a 

given surface divides into smaller patches, such as from the stimulus on the left to the stimulus on the right, medium and large-

scale center-surround processes do not fully activate and fully suppress the homogeneous area. Since the model uses the weighted 

sum of multiple scale signals, this leads to a more veridical or non-compressed representation. The model takes this contrast 

calculation mechanism as part of the Articulation, Configuration, and Insulation effects of lightness anchoring. See Lightness 

Anchoring section for further details.  

 

Figure 10 illustrates how three different scales, that are defined by different Gaussian off-surround filter 

widths, respond to luminance inputs. Since the large-scale signal represents the luminance signal better 

(see LARGE-SCALE RESPONSE in Figure 10), it plays the role of a luminance signal. In order to 

preserve image resolution, single-scale models typically use such a small scale. However, a small scale 

may exhibit brightness bowing (see SMALL-SCALE RESPONSE in Figure 10) because a small-scale 

(high frequency) center-surround unit acts like an edge detector, and thereby suppresses information from 

large homogeneous surface regions. 
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 The model postulate of multiple scales is consistent with electrophysiological observations in V1 

of alert primates (Bartlett & Doty, 1974; Kayama et al., 1979; Kinoshita & Komatsu, 2001; Komatsu, 

Murakami & Kinoshita, 1996) and anesthetized cats (MacEvoy, Kim & Paradiso, 1998), where cells code 

not only edge signals but also uniform surface luminance as well. The electrophysiological study with 

alert monkeys by Friedman et al. (2003) also shows that cells in V1 and V2 code uniform color surface 

information. In the LGN, uniform surface luminance coding units have been found in anesthetized 

primates (Marrocco, 1972) and cats (Papaioannou & White, 1972) as well as in alert primates (Barlow, 

Snodderly & Swadlow, 1978; Kayama et al., 1979). When surface luminance was temporally modulated, 

cells in the LGN and V1 of anesthetized cats coding the surface region were modulated (Rossi et al, 1996; 

Rossi & Paradiso, 1999). Kahrilas, Doty, and Bartlett (1980) failed to detect such neurons in visual cortex 

of the awake rabbit. Their data suggest that there may be some differences between species, and 

techniques of anesthesia also seem to play an important role. 

 

2.3 Boundary Formation. Boundary-gated filling-in has helped to simulate many psychophysical and 

neural data about surface perception (Arrington, 1994; Cohen & Grossberg, 1984; Grossberg & Mingolla, 

1985a, 1985b; Grossberg & Kelly, 1999; Grossberg, Hwang & Mingolla, 2002; Kelly & Grossberg, 2000; 

Pessoa, Mingolla & Neumann, 1995). Grossberg & Todorovic (1988) developed this concept to simulate 

psychophysical data about brightness (perceived luminance). In their model, the illuminant is discounted 

by a contrast-detecting on-center off-surround network among cells obeying shunting equations. The 

surviving contrast signals are used to fill-in a surface brightness estimate within a region surrounded by 

boundaries that are themselves derived from the illuminant-discounted contrast signals. The Anchored 

Filling-In Lightness Model (aFILM) adopts this hypothesis to explain lightness data using contrast and 

luminance signals together to trigger filling-in of lightness in regions that are defined by surrounding 

boundaries (Figure 8). The filling-in mechanism is, however, assumed not to be diffusion, but rather a 

much more rapid propagation of signals using long-range horizontal connections.  

Simple cells. Boundary formation begins at model simple cells that simulate orientationally-tuned 

simple cells in layer 4 of cortical area V1 (Figure 8), which have contrast-polarized and oriented ON 

(excitatory for luminance) and OFF (excitatory for darkness) regions in their receptive fields (Bullier & 

Henry 1979; Gilbert 1977; Hubel & Wiesel 1962). Model simple cells pool model ON cell LGN outputs 

in their ON region and OFF cell LGN outputs in their OFF region, consistent with data showing that the 

ON and OFF subfields of simple cells originate from projections of ON and OFF cells in the LGN, 

respectively (Alonso, Usrey & Reid 2001; Lee et al., 2000; Reid & Alonso, 1995). Receptive fields of a 

simple cell are modeled by a pair of elongated Gaussian kernels with shifted centers (Grossberg, Mingolla 

& Williamson, 1995; Mingolla, Ross & Grossberg, 1999; Pessoa, Mingolla & Neumann, 1995). The 

model simple cell is maximally active when a luminance edge is aligned with the oriented border between 

the ON and OFF regions due to a push-pull design of the ON and OFF regions. For example, a simple cell 

with a vertical orientation and a light-dark polarity from left to right pools excitatory inputs from on-
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center off-surround contrast signals on the left side of the kernel and off-center on-surround signals from 

the right side of the kernel, and also pools inhibitory inputs from on-center off-surround contrast signals 

on the right side of the kernel and off-center on-surround signals from the left side of the kernel. Since the 

output is a rectified sum of the filtered signals, the simple cell is active only when a luminance imbalance 

occurs with the correct polarity across the oriented axis. See Appendix A, equations (A25)-(A32). 

Complex cells. The boundary signals of an object need to be joined together even in cases where 

a scene’s contrast polarity reverses along the border of the object, such as at the edge of a middle gray 

object on a white-and-black checkerboard background (Grossberg, 1994). The model does this using 

model complex cells that pool a pair of light-dark and dark-light simple cell signals of the same 

orientation at each position. Pooling simulates the known complex cell property of responding to oriented 

luminance edges without clear ON/OFF subfield zones (Mechler & Ringach, 2002). See Appendix A, 

equation (A33). A hierarchical combination of simple cell outputs at complex cells (Hubel and Wiesel 

1962; Schiller, Finlay & Volman, 1976) is supported by recent experimental data (Alonso & Martinez, 

1998; Dresp & Grossberg, 1997; Martinez & Alonso, 2001), theoretical analysis (Sakai & Tanaka, 2000) 

and modeling studies (e.g., Gove, Grossberg & Mingolla, 1995; Grossberg & Mingolla, 1985a). 

Additional feedback interactions exist (see Raizada and Grossberg, 2003), but are not needed for present 

purposes. 

 

2.4 Surface Filling-In. At the Surface Filling-In stage, cells pool signals from both the Contrast and the 

Luminance stages. Three scales are pooled: Small-scale and medium-scale contrast signals and large-

scale luminance signals. See Appendix A, equation (A38). These pooled signals fill-in along long-range 

horizontal connections, a new model feature. See Appendix A, equations (A40)-(A44). Filling-in is 

blocked by signals from the Boundary System stage. 

 As noted above, boundary-gated surface filling-in has been used to explain many psychophysical 

data about brightness and color perception and 3D figure-ground perception. The filling-in mechanism 

utilizes two streams of the What cortical visual pathway: The surface stream has been predicted to run 

through the blobs and V2 thin strips to V4, whereas the boundary stream runs through V1 interblobs and 

V2 pale stripes to V4 (Grossberg, 1994). These two streams have been proposed to compute 

complementary properties during visual information processing (Grossberg, 2000). A growing list of 

experiments support the existence of such a filling-in process. The important psychophysical study of 

filling-in by Paradiso and Nakayama (1991) attempted to catch filling-in “on the fly.” Arrington (1994) 

used the Grossberg and Todorovic (1988) model to fit the Paradiso and Nakayama (1991) data about the 

dynamics of filling-in. The dynamics of aFILM are consistent with the Arrington (1994) explanation. 

 Filling-in in the blind spot is another example of surface filling-in (Komatsu et al., 1996, 2000). 

Surface representations can be formed early in visual processing even without top-down cognition signals 

(Kamitani & Shimojo, in press). Sasaki et al. (2001) showed using fMRI that when a human subject 

perceives a transparent illusory region bounded by illusory contours, the V1 region corresponding to the 
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illusory visual field became active. These data, combined with data about illusory contour representations 

known to exist in V2 (von der Heydt, Peterhans, & Baumgartner, 1984), are consistent with the 

possibility that surface representations may start to form in V2. More direct evidence comes from 

electrophysiology combined with cortical imaging: Hung et al. (2001) reported that the Craik-O’Brien-

Cornsweet Effect can be detected in V1 and is prevalent in V2. In their experiment, the activities of cells 

having receptive fields inside the homogeneous surfaces were modulated with cusps at the edge of the 

surfaces. The large spatial scale needed to fully integrate information across visual space (Angelucci et 

al., 2002) also marks V2 as a processing stage where surface representations start to get formed. Data 

concerning border ownership representations in V2 and V4 (Zhou et al., 2000) are also consistent with 

this conclusion. See Grossberg (1994, 1997) for further discussion.  

Figure 11 shows a 1-D illustration of the model filling-in network. The round units on top 

represent the cells in the Surface Filling-In stage. The cells in the Contrast and Luminance stage feed their 

signals topographically to the corresponding filling-in cells. These signals spread between filling-in cells 

along long-range horizontal connections with Gaussian receptive fields. Signal propagation is gated by 

Boundary System signals (represented by a vertical line in Figure 11) coming from the complex cells (for 

simplicity just one set of gating cells is shown). The gated horizontal connections have smaller 

conductances (thin horizontal lines) than the other ones (thick horizontal lines). The gray levels of the 

filling-in cells and of the contrast and luminance input cells represent the level of cell activation. The 

FILLING-IN LAYER illustrates two homogeneous filled-in regions, black and middle gray, separated by 

a boundary signal. 

FILLING-IN 

LAYER 

CONTRAST AND 

LUMINANCE 

INPUTS 

Complex Cell 

Simple Cell 

Gating Signal 

Figure 11. Schematic representation 

of the parallel filling-in mechanism. 

In the filling layer, the signals coming 

from the contrast and luminance units 

are homogenized within areas defined 

by luminance boundary signals. The 

horizontal connections that propagate 

signals are gated by the gating signals 

coming from the complex cells. The 

gated lateral connections have smaller 

conductances (thin lines) than the 

other ones (thick ones). The gray 

levels in the round units represent the 

activities of them. Just one set of 

gating signal is shown for clarity. 
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Figure 12. BHCAW rule and Area Effect in a two-field Ganzfeld configuration. (A) Model circuit of lightness anchoring. The 

activities of the ANCHORING units are locally pooled by BHCAW units to form a blurred version of the ANCHORING signals. 

The filter used to generate the blurred signals is shown as a bell-shaped figure between the ANCHORING and BHCAW 

modules. The BHCAW signals are fed to an inhibitory unit H. The unit H becomes active when any of the BHCAW unit exceeds 

its threshold set to WHITE and fires. When active, H inhibits the tonically active unit Ψ that modulates the activities of 

ANCHORING units. This circuit allows the activities of ANCHORING units to grow until at least one of the blurred version of 

anchoring signals, BHCAW, meets the criterion of WHITE. See Appendix A for mathematical details. One thing to notice is that 

the inhibition by H on Ψ lowers but does not completely shut off the activity of Ψ, leaving a chance to the BHCAW signals to go 

beyond WHITE when the bottom up signal is strong enough, for example, a bright light source of some size. In such a case, even 

the BHCAW rule will be violated. (B-D), Two-dimensional simulation of two-field Ganzfeld configuration. The curve on each 

figure represents the activities of the units along the horizontal midline. This convention applies to all the following figures. The 

scale for the curve is denoted on the left side of each figure. B.STIMULUS shows the input configuration. D.ANCHORED 

LIGHTNESS shows the area effect corresponding to the one in Figure 4B. Note that the highest activity of the BHCAW module 

in Figure C is anchored to white (w).  

(C) BHCAW SIGNAL (D) ANCHORED LIGHTNESS 

(B) STIMULUS (A) 
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2.5 Anchored Lightness. Anchored Lightness stage cells receive inputs from the Surface Filling-In stage. 

These cells are modulated by a feedback signal originating from the anchoring cells themselves that 

renormalizes their activities to realize an absolute lightness scale (Figures 8 and 12A). As noted in 

Section 1.3, the new Blurred-Highest-Contrast-As-White (BHCAW) anchoring rule overcomes problems 

of the classical HLAW rule. See Appendix A, equations (A45)-(A53), for the anchoring equations.  

Figures 3A and 3B illustrate the model’s explanation of the area effect for a two-field Ganzfeld 

configuration, as in Figure 7. In such a display, there are just two homogeneous surfaces with different 

luminances, one the target surface, the other the Ganzfeld. To achieve anchoring, the model first 

computes a blurred version of the filled-in surface activity, called the BHCAW signal (Figure 12A). The 

highest value of this blurred pattern is anchored to white by using a feedback signal, labeled ψ (Figures 8 

and 12A), that multiplicatively rescales the filled-in surface signals by automatic gain control. The 

process H, which inhibits ψ, becomes activated whenever any BHCAW signal exceeds a threshold that 

determines the value of white (WHITE in Figures 3A and 3B). Since the highest value of the blurred 

filled-in activity is used for anchoring, the anchored lightness (ANCHORED LIGHTNESS), or unblurred 

pattern, will look self-luminous (Figure 3B) when the area of the highest filled-in activity is not broad 

enough to span the blurring kernel. This happens because the blurring kernel averages lower activities as 

well at this position, so WHITE will be a smaller value than the maximum filled-in activity. As the area 

of the highest filled-in activity becomes larger, this mechanism predicts that the background will 

approach WHITE because of the small difference between the highest and background signals that are 

averaged by the blurring kernel (Figure 3A). Figures 12B to 12D show a 2-D simulation of the two-field 

Ganzfeld configuration. The curve in each figure shows the activities of the cells along the horizontal 

middle section of the 2-D image. The labels on the left side of each figure indicate the scale of vertical 

axis for the curve; in particular, w denotes white.  

 

3. Simulation Results  

The first results demonstrate that the model can simulate various classical lightness properties, while also 

anchoring the results. 

 

3.1 Light Adaptation. As noted in Section 1.1, the model retina can realize light adaptation properties; 

see Figures 1A and 1B. Figure 1C illustrates the shift of retinal sensitivity with background illumination 

that makes model light adaptation possible. This shift property emulates neurophysiological data of 

Werblin (1971), among others. The leftmost curve of the shift property at lower values of background 

luminance corresponds to the physical limit of light adaptation observed in retinal ganglion cells (Barlow 

& Levick, 1969; Enroth-Cugell & Shapley, 1973a). Over a wide range of background luminances, the 

model obeys the classical Weber law (Grossberg, 1983). Intracellular temporal adaptation in each 

photoreceptor acts like a divisive negative feedback signal. See Appendix B for stimuli used in this 

simulation.  
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3.2 Lightness Constancy and Discounting Illumination Gradients. Figures 13A and 13B illustrate how 

the model discounts the illuminant in response to two light patches on a dark gradient of illumination in 

the background. To generate the input, light patches with the same reflectance and a background with a 

smaller constant reflectance were multiplied by a gradient of illumination. The curves on Figures 13A and 

13B show the input intensities and anchored lightnesses along the horizontal midline, respectively. Figure 

13B shows the property of lightness constancy and illumination discounting: The light patch on the left is 

almost as light as the one on the right, unlike the one in Figure 13A. This property comes from the ratio-

calculating property of the local contrast units. Figure 13B also shows that, when the gradient of 

illumination is big enough, the model exhibits a lightness bias where the square patch with higher 

illumination looks slightly lighter than the one with lower illumination This property is due to the large 

scale that computes a more veridical representation of the stimuli. This prediction is supported by the 

observation that, when subjects are asked to decide the perceived reflectance of surfaces, they always give 

a higher value to the highly illuminated one than the same one with low illumination. (Gilchrist et. al., 

1999, p. 826).  

 

Figure 13. Discounting illuminant. Unevenly 

illuminated two light patches with identical 

reflectance (A.STIMULUS) generate a percept that 

discounts the illumination (B.ANCHORED 

LIGHTNESS). However, the model also predicts a 

bit of bias introduced by the illumination gradient. 

The light patch on the right looks a bit lighter than 

the left one. The model also picks up the 

illumination gradient itself using the large scale.  

 

 

 

Figure 14. Simultaneous contrast. Two identical 

square patches on different backgrounds 

(A.STIMULUS) are perceived differently 

(B.ANCHORED LIGHTNESS). The one on the dark 

background looks lighter. Local contrast signals 

provide the source of this difference. 

(A) STIMULUS (B) ANCHORED 

LIGHTNESS

(A) STIMULUS (B) ANCHORED LIGHTNESS 
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Figure 15. Evenly and unevenly illuminated Mondrians. To facilitate the comparison, a part of the square on the upper left of 

each figure has been cut and pasted to the square on the bottom right of the figure. (A-B) Evenly illuminated Mondrian. 

STIMULUS and ANCHORED LIGHTNESS panels show the configuration of an evenly illuminated Mondrian stimulus and the 

output of the model, respectively. (C-D) Unevenly illuminated Mondrian. The STIMULUS shows the differently illuminated 

target surfaces because of the illumination gradient. The gradient of illumination is made by a light source located at the bottom-

right corner. ANCHORED LIGHTNESS shows the final output of the model. See the text for details. 

 

3.3 Lightness Contrast. Figure 14 shows a simulation of lightness contrast. The two middle gray patches 

in Figure 14A have identical luminance. Small and medium scales calculate local ratio contrasts, and their 

contribution makes the light square on the dark background look lighter than the one on the bright 

background, even though they have identical luminance (Figure 14B). 

 

3.4 Contrast Constancy: Evenly and Unevenly Illuminated Mondrians. Figures 15A and 15B show an 

evenly illuminated Mondrian and the corresponding model percept, respectively. A part of the square on 

the upper left of each figure is cut and pasted into the square on the bottom right. Since both squares have 

the same luminance, Figure 15A shows no cut patch in the bottom right square. Figure 15B shows that the 

square on the top left is perceived to be lighter than the bottom right square, because the square on the 

right bottom is surrounded by lighter surfaces than the square on the left top. The square on the right 

bottom thus receives more surround suppression than the square on the upper left.  

Figures 15C and 15D show that the model generates the same result when a light source at the 

bottom right corner creates a gradient of illumination from bottom right to top left. The model output 

(Figure 15D) shows that the upper left square still looks lighter than the bottom right square despite the 

fact that the luminance at the bottom right is higher. This happens because the small and medium scales 

calculate the local contrasts and ignore the large scale illumination gradient. This “contrast constancy” 

calculation by the two smaller scales overrides the prediction by the big scale that picks up the gradient. 

Grossberg and Todorovic (1988) first simulated this effect with a single contrast scale. 

 

3.5 Craik-O’Brien-Cornsweet Effect. The Craik-O’Brien-Cornsweet effect (Cornsweet, 1970) is 

challenging because filtering alone cannot explain the percept. As with the percepts above, the model 

explains this illusion using a combination of illuminant-discounting filtering followed by boundary-gated  

(C) STIMULUS (D) ANCHORED LIGHTNESS (A) STIMULUS (B) ANCHORED LIGHTNESS 
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Figure 16. Craik-O’Brien-Cornsweet effect. (A) Two divided identical surfaces with a luminance cusp in the middle. (B) 

Simulated lightness of the model. The two surfaces are perceived differently. The boundary-gated homogenization of surface 

signals through a filling-in process makes the surface on the left look slightly lighter than the one on the right. (C) Boundary. (D) 

Small-scale contrast signals for the two surfaces. Left surface has more activities than the right one explaining the difference at 

the filled-in surface lightnesses in B. 

 

surface filling-in, as first simulated in Grossberg and Todorovic (1988). Figure 16A shows the stimulus 

with a uniform background luminance with a luminance cusp in the middle. Figure 16B shows the 

anchored lightness percept in which the left half of the image looks uniformly lighter than the right half. 

At the Surface Filling-In stage (Figure 8), the cusp-like inputs from the Contrast stage (Figure 16D) are 

smoothed within areas defined by Boundary stage signals (Figure 16C). This smoothing makes the 

surface on the left lighter than the one on the right because of the larger contrast activities within this 

region (Figure 16D). The area-defining boundaries play a critical role. When no boundaries surround the 

luminance cusp, the illusion is not seen because the contrasts can spread via filling-in around both sides of 

the cusp region and smooth one another; see Grossberg and Todorovic (1988).  

 

3.6 Double Brilliant Illusion. Bressan (2001) described a Double-Brilliant illusion wherein the diamond 

that has less contrast around it (Figure 17B) looks more brilliant than the one having more contrast around 

it (Figure 17A) even though both diamonds have the same luminance (Figure 17C). How this brilliant 

appearance gives rise to a judgment of “lightness” may depend on subtle stimulus matching properties in 

a particular experiment. Bressan (2001, p. 1042, caption of Figure 8) writes:  "Both diamonds are white, 

and mounted on luminance-ramp settings. But the diamond sitting on the dark end of the ramp (left) looks 

whiter than the one sitting on the light end of the ramp (right)." There do not seem to be any parametric 

psychophysical data, however, to characterize the nature of the judgment, which may include a variety of 

factors, including cognitive ones.  

 The model simulates the more brilliant appearance of  Figure 17B as a manifestation of spatial 

contrast adaptation, as in Figure 1D and 1E (see Appendix A, equations (A4)-(A8)), and  thereby raises 

the issue of what additional perceptual processes or criteria might lead to the claim that Figure 17A is 

lighter. In particular, the permeability of gap junctions in the horizontal cell (HC) syncytium decreases 

(D) SMALL-SCALE ON-CONTRAST (C) BOUNDARY (B) ANCHORED LIGHTNESS (A) STIMULUS 
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only where there is a sharp luminance edge in the input (Figure 9). The gradual change of luminance 

around the diamond in Figure 17B does not block the diffusion of signals across the HC syncytium. The 

luminance edges around the diamond in Figure 17A do block diffusion and segregate the diamond region 

from the rest of the figure. This gated-diffusion process is simulated in Figure 17E. The segregated large 

signals shown in the diamond region on the left of 17E suppress the corresponding region of 

photoreceptor outputs. This results in a less active diamond region on the left in Figure 18F compared to 

the diamond region on the right. The anchored lightness of the model in Figure 18D reflects this 

difference. The model interprets the contrast adaptation mechanism to be retinal, hence monocular. If this 

(C) STIMULUS LUMINANCE PROFILE (D) ANCHORED LIGHTNESS

(F) LIGHT ADAPTED (E) HC ACTIVITIES 

(A) STIMULUS (B) STIMULUS 

Figure 17. Double Brilliant Illusion. 

(A-B) Stimuli. A psychophysical 

experiment shows that the diamond 

part of the stimulus B looks lighter 

than that of the stimulus A. (C-D) 

Stimulus and the output of simulation, 

respectively. (E-F) Simulated 

activities of HCs and the steady 

outputs of photoreceptor inner 

segments, respectively. See the text 

for more details. The figures A and B 

are from Bressan (2001).  
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is a correct assumption, then dichoptic presentations of different stimulus parts to each eye may yield 

different lightness effects. Figure 1D-E and Section 4.1 around Figure 18 show how spatial contrast 

adaptation can greatly facilitate perception of scenes with large contrast differences. 

 

3.7 Anchoring Properties. In addition to simulating classical lightness effects, the model also simulates, 

for the first time, the four major effects of lightness anchoring (Articulation, Configuration, Insulation, 

Area Effect) that have been described by Gilchrist and his colleagues: 

 Articulation effect: The Articulation effect says that, as the display contains more gray surfaces, 

the range of perceived lightness widens (Figures 4A-4F). Even in the two-Mondrian case in Figure 4C, 

the reflectances of these patches range from black to white, covering the full span of reflectance. Adding 

more gray patches does not result in a wider range of reflectances. Figure 4G summarizes the model 

simulation. As the number of surface patches having different luminances increases, the image contains 

more high spatial frequencies. The medium and large spatial scale kernels thus have less chance to fully 

activate and suppress the homogeneous area of each patch. Figure 10 illustrates the situation: The divided 

square luminances on the right cause higher contrast signals in the medium and large scales compared to 

the corresponding contrast signals on the left column with a larger square stimulus. The loss of 

suppression by each spatial scale results from the mismatch between the size of the filters and of the 

scenic patches. Mismatch means less suppression, thus a more veridical representation for that scale, and 

thus a more veridical percept. The BHCAW process assures that the data remain anchored at white. 

 Configuration effect: The Configuration effect says that, when a display contains gray surfaces 

arranged in a Mondrian, a wider range of lightnesses is perceived than when the same gray surfaces are 

arranged in a luminance staircase. Figures 5E and 5F summarize model simulations. The model explains 

this effect much as it does the Articulation effect: In the Mondrian, the intermingled luminance patches 

are arranged in a more radially compact way. The round-shaped surround kernels in the Contrast stage are 

thus influenced by more luminances of surrounding surfaces compared with the staircase arrangement. 

This lets the surround kernels set the local means (surround activities) to be more different from the 

corresponding center activities, resulting in a bigger range of perceived reflectances. In other words, if all 

the adaptation and contrast stage surround activities were the same as their center activities, surround 

inhibition would drive them all to zero. The radially compact arrangement decreases the distance between 

different levels of gray patches, thereby inducing stronger lateral inhibition. The influence of the distance 

between an inducer and test surfaces has been observed in lightness (Newson, 1958) and brightness 

experiments (Cole & Diamond, 1971; Fry & Alpern, 1953; Leibowitz et al., 1953), where the darker test 

surface became lighter with increasing distance from the inducer due to surround inhibition. Again, 

BHCAW process anchors the perception of white. 

 Insulation effect: The Insulation effect of Figure 6 shows that, when the staircase display is 

insulated by a white surround, the range of its perceived reflectance widens. Figures 6D and 6E show the 

data and simulation results, respectively. Spatial contrast also helps to explain this effect: Insulation of 
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gray surfaces with a white surround results in an expansion of the range of lightness due to the newly 

added suppression on dark patches by the surround. Insulation by a black surround, however, may not 

cause much difference because the gray surfaces are illuminated 30 times more than the background. 

Since the gray patches are already not getting much background inhibition, introducing black insulation 

does not significantly change the amount of inhibition, thus hardly changing the percept. The BHCAW 

process again anchors the lightness.  

 Area effect: The Area effect in Figure 7 shows that, in a two-field Ganzfeld situation, as an area 

other than the area of highest luminance becomes larger than the half of the visual field, its lightness 

approaches white while the highest luminance area is pushed above white. Figure 8C shows the model 

simulation, which closely fits the data. Section 2.5 predicts how self-luminosity of a small highest 

luminance area may be explained by the BHCAW rule: When the highest luminance area is smaller than 

the blurring kernel at the anchoring stage, the blurred filled-in surface signals will have lower highest 

activities compared to the un-blurred image (Figures 3B). Since blurred signals anchor lightness, the 

highest luminance area will look lighter than white. Figure 3B corresponds to the increasing portions of 

curves in Figures 8B and 8C, whereas Figure 3A corresponds to the flat regions of these curves.  

 

4. Discussion 

The BHCAW model integrates known neuroanatomy, electrophysiology, and psychophysics (e.g., Table 

1) to clarify how the brain generates a representation of surface lightness. The following discussion 

analyzes the model’s assumptions and limitations.  

 

4.1 Retinal Adaptation. The model simulates retinal adaptation using two mechanisms; see Figure 9. 

First, at the outer-segment of the photoreceptors, the model realizes an intracellular mechanism of light 

adaptation whose sensitivity to light is controlled by concentrations of chemicals, such as Ca2+ ions, that 

temporally average visual stimuli (Koutalos & Yau 1996). Carpenter and Grossberg (1981) used such a 

mechanism to quantitatively simulate the Baylor, Hodgkin, & Lamb (1974a, 1974b) data about turtle cone 

adaptation. Second, at the inner-segment of the photoreceptors, the model simulates spatial contrast 

adaptation by modulating gap junction communication between horizontal cells (HCs) and thus how HCs 

influence glutamate release from the photoreceptor (Fahrenfort et al., 1999; Verweij et al., 1996) The 

permeability of HC gap junctions is affected by various mechanisms, including neurotransmitters 

(DeVries & Schwartz, 1989, 1992; McMahon, 1994; Xin & Bloomfield, 2000) and transjunctional 

voltage (Lu et al., 1999; Spray et al., 1979).  

For example, for two HCs connected by a gap junction, the permeability of the junction decreases as the 

difference increases between the inputs that the HCs receive from the photoreceptors (Figure 9). Such a 

model retina can properly rescale inputs that have too much contrast, such as the one in Figure 18A. 

Figure 18D shows the steady-state HC activities; the dark and light image regions deliver different 
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Figure 18. Effect of gated diffusion for spatial contrast adaptation of the model. (A) Stimulus. (B) Illustration of retinal 

sensitivity curve with no contrast adaptation. The signals for the dark part (DARKER SIDE along the abscissa) have been 

mapped to the very low part of the response axis (DARKER SIDE along the ordinate). The signals for the light part (LIGHTER 

SIDE along the abscissa) have been mapped to the saturating portion of the curve (LIGHTER SIDE along the ordinate). (C) 

Illustration of contrast adaptation. With the two different sensitivity curves, the model retina has mapped the widely separated 

input signals (DARKER SIDE and LIGHTER SIDE along the abscissa) to quite “visible” portions of the response (DARKER 

SIDE and LIGHTER SIDE along the ordinate). (D) The steady-state activities of HCs at the input A. (E) Retinally adapted 

signals. Retinal adaptation with gated diffusion at the HC syncytium gives the properly rescaled steady-state output at the inner-

segment of the photoreceptor. (F) The final output of the model. (G-I) Simulation with free diffusion among connected HCs. (J-

L) Simulation with no diffusion among HCs. See the text for further details 

 

(A) STIMULUS 

(F) LIGHTNESS (E) RETINAL ADAPTED(D) HC ACTIVITIES 

(I) LIGHTNESS (H) RETINAL ADAPTED (G) HC ACTIVITIES 

(L) LIGHTNESS (K) RETINAL ADAPTED(J) HC ACTIVITIES 

(B) NO CONTRAST ADAPTATION (C) CONTRAST ADAPTED 
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suppressive feedback signals to the photoreceptors. Figure 18B shows how the retina would respond 

without spatial contrast adaptation; note that the responses at both the darker and lighter sides of the 

image are highly compressed, hence insensitive to input contrast differences. Figure 18C shows how 

spatial contrast adaptation generates two distinct sensitivity curves at photoreceptor inner-segments due to 

the two different negative feedback levels of the HC network. The network hereby rescales responses at 

the inner-segment of the photoreceptor to be more sensitive to input contrast differences at both darker 

and lighter image regions. The rescaled steady-state output of the photoreceptor inner-segments are 

shown in Figure 18E. The output of the model photoreceptor in Figure 18F shows visible dark and light 

image regions. Figures 18G-I show a simulation without the HC gating mechanism. The adapted signals 

in Figure 18H and the output in Figure 18I show signal distortion (a halo) along the border of the dark 

and light parts, and the dark part is less visible. Figures 18J-L show a simulation with no diffusion among 

HCs. The results show a prominent compression of signals.  

 In summary, in addition to the light adaptation at the outer-segment of the photoreceptor, which 

shifts its sensitivity curve, HC negative feedback further shifts photoreceptor sensitivity in response to the 

spatial context of input contrasts. See Appendix A, equations (A1)-(A8). 

Kamermans et al. (1996) discussed how negative feedback between the photoreceptor and the HC 

network might influence the length constant of the HCs. The present analysis does not need this 

refinement to quantitatively explain the targeted data. For the same reason, the model also does not 

simulate the cone-rod circuitry switch (Mills & Massey, 1995; Ribelayga, Wang & Mangel, 2002) and the 

pupillary light reflex (Dowling, 1987), which also influence adaptation. 

 

4.2 Luminance and Contrast: Multiple-Scale Filtering. The neuroanatomy of the retina already 

includes multiple-scale representations whereby center-surround processes shape the outputs of ganglion 

cells having diverse receptive field sizes (Masland, 2001; Roska et al., 2000; Werblin, 2001). The V1 map 

includes cells whose optimal spatial frequencies increase as their positions move away from blob centers 

(De Valois & De Valois, 1988; Edwards et al., 1995). Issa et al. (2000) also show gradual changes in cell 

spatial frequency preferences that conform to the hypercolumn cortical organization in V1. Data about 

cell responses in LGN, V1 and V2 to uniform surface luminance and color also support the existence of 

large spatial scales (Bartlett & Doty, 1974; Friedman et al., 2003; Komatsu, 2001; Marrocco, 1972; 

Papaioannou & White, 1972). The model hypothesis that achromatic cells in the blob stream pool their 

multiple-scale representations has not yet been directly tested. The pooling of ON and OFF signals, 

however, is consistent with the finding that the segregation of ON and OFF channels from the retina and 

LGN, and their projection to layer 4 in V1 is largely lost in the cortex of the ferret (Chapman & Gödecke, 

2002). See Schiller (1992) for a review.  

Multiple-scale filtering mechanism has also been proposed as part of a recent evolution of 

Retinex (Jobson et al., 1997a, 1997b; Rahman et al., 1996, 1997). Instead of using predetermined 

multiple-scale filters all the time and everywhere on the image, the current model reconfigures the shape 
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of the filters to meet the demanding contexts for a given image using the horizontal gating system (see 

Appendix A. Retinal adaptation). For example, when there is a bright spotlight like the one in Figure 2G, 

the HC filters around the edge of the spot light would shrink by disconnecting the communication 

between the light and the surrounding dark areas using the diffusion gating mechanism illustrated in 

Figure 2. The result of this dynamic control of the shape of the HC filters is a natural-looking 

compression of input signals as illustrated in Figure 18 where the two extreme input areas (Figure 18A, 

Figure 18 DARKER SIDE, LIGHTER SIDE) are pulled in to the visible area (Figure 18C, Figure 18E). 

The competence of this mechanism has been demonstrated and compared with Retinex in Hong & 

Grossberg (2004, Section 3.5), where enhanced visibility is demonstrated without sacrificing a natural 

appearance. 

 

4.3 Boundary Representation. The model’s Boundary System stage does not, for simplicity, implement 

the boundary completion property whereby the visual system forms perceptual groupings from disjoint 

image inducers (Field, Hayes & Hess, 1993; Grossberg & Mingolla, 1985a, 1985b; Grossberg & Raizada, 

2000; Kellman, & Shipley, 1991; Raizada & Grossberg, 2001; von der Heydt, Peterhans & Baumgartner 

1984). Incorporation of this property would explain more psychophysical data about such properties as 

illusory contours (Gove, Grossberg & Mingolla, 1995; Grossberg & Mingolla, 1985a), 3-D figure-ground 

separation (Grossberg, 1994; Kelly & Grossberg, 2000), and surface noise suppression in response to 

noisy images (Grossberg et al., 1995; Mingolla et al., 1999). Surface noise suppression in response to 

noisy images is necessary because visual signals that reach the retina are distorted and occluded by the 

retinal layers, blind spot, and veins. Boundary completion by bipole cells can group pixels from such 

noisy images into coherent boundaries that define object contours. Surface filling-in smoothes pixel 

values that are surrounded by the same boundaries and thus allows the brain to distinguish between noisy 

signals due to preprocessing artifacts and those that represent object properties. For figures that do not 

require significant boundary completion, surface noise suppression can be achieved by the present 

model’s simplified boundary and surface filling-in properties, as illustrated by Figure 19D. Figure 19C 

uses a smaller boundary-gating parameter than Figure 19D, hence smoothes the Lena image less. 

 

4.4 Surface Filling-In. A new mechanism of surface filling-in, called Gated Blurring, uses propagation 

via long-range horizontal connections that are predicted to be within cortical layer 2/3 of V2, among other 

places. Previous models used nearest-neighbor diffusion for filling-in. Both types of model predict that 

filling-in is gated by boundary signals that block signal propagation across positions at which luminance 

contrasts are registered (Figure 11). This prediction of the model is consistent with the known horizontal 

connections in the visual cortices (Angelucci et al., 2002; Gilbert & Wiesel, 1979; Rockland & Lund, 

1982; Stettler et al., 2002; Yabuta & Callaway, 1998). Long-range horizontal connections have previously 

been predicted to carry out boundary completion via cells in layer 2/3 of cortical areas V1 and V2 

(Grossberg, 1999; Grossberg & Mingolla, 1985a, 1985b; Grossberg and Raizada, 2000; Grossberg & 
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Figure 19. Noise suppression property of the model. (A) Input with Gaussian noise of signal-to-noise ratio of 10 dB. (B) 

Boundary signals at input A. Despite the disruptive noises, boundary signals still show coherent representation of the edge 

signals. (C) Output of the model without parameter change. The model does not show much of noise suppression property. (D) 

Output of the model with a smaller gating parameter (ε = 20). With a smaller gating parameter, the model shows noise 

suppression property. See the text for further discussion. 

 

Swaminathan, 2004; Raizada & Grossberg, 2003). The new proposal implies that both boundary 

completion and surface filling-in may be accomplished by long-range connections, presumably within the 

parallel boundary and surface processing streams that are projections of interblobs and blobs, 

respectively. The boundary-gating mechanism, by selectively allowing communication between only 

certain connections, dynamically restructures cell receptive fields. One possible mechanism is axo-axonal 

gating mechanism of horizontal connections, which is consistent with the report by Kobayashi et al. 

(2000) of norepinephrine-mediated suppression of horizontal propagation in V1. The new model 

mechanism runs at least 1000 times faster than previous nearest-neighbor-based diffusion models, and 

thus clarifies how filling-in can occur with realistic delays. For example, 10 iterations of the non-diffusive 

filling-in process were used to generate the filled-in image of the Craik-O’Brien-Cornsweet effect in 

Figure 16B. With nearest-neighbor diffusion, about 10,000 iterations were needed. A simulation using 

long-range diffusion with interactions beyond nearest-neighbors needed 100 iterations. 

A long-range filling-in mechanism has also been proposed by Sepp and Neumann (1999). 

However, instead of the inter-scale competition used in their model, where different scales compete to 

gain control to fill a given area, the current mechanism uses boundary signals to dynamically reconfigure 

the shape of the filling-in areas. Our current approach is intrinsically faster because it does not use inter-

scale competition, and eliminates the possibility of blurring caused by imperfect scale selection for a 

given area in the Sepp-Neumann model. Another approach to parallel filling-in was made by Fischl and 

Schwartz (1997) who used an approximate solution of a nonlinear convolution. The current mechanism 

distinguishes itself by combining convolution type filling-in with a direct gating mechanism by boundary 

signals. The parallel diffusion mechanism of the model is a generalization of the boundary-gated diffusive 

filling-in model of Grossberg and Todorovic (1988). 

 

(A) STIMULUS (B) BOUNDARY (D) LIGHTNESS II (C) LIGHTNESS I 
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Table 2 

 

Names Symbols Values  

Upper bound of gain control at photoreceptor Bz 
500 

Small-time scale input contribution rate for gain control CI 200 

Large-time scale input contribution rate for gain control CĪ 600 

HC feedback constant Bh 0.04 

Photoreceptor depolarization constant Bs (Bz/ CI) 

Saturation amplitude aH 6 

Half-way cut-off bH 0.1 

Shift of permeability of HC gap junction  βp 0.08 

Steepness of permeability of HC gap junction  λp 0.01 

Size of connected neighbor for horizontal cell εH 8 

Activation decay A 0.5 

Depolarization constant B 1 

Hyperpolarization constant D 1 

Center spatial scale for the center-surround stage α 0.2 

Surround spatial scales, small, medium β 3 (for small scale),  

14 (for medium scale) 

Amplitude of Gaussian kernel κ 4 

Vertical, horizontal widths of the ON, OFF elliptic simple 

cell receptive fields 

γv, γh 0.1, 5γv, 

The shift of the centers of the ON, OFF elliptic simple cell 

receptive fields 

Shift(L), 

Shift(R) 

-γv, γv 

Amplitude of activation function aB 0.7 

Half-way cut-off of activation function bB 0.15 

Vertical/horizontal width of the complex cell’s gating field γcv, γch 0.3, 0.7 

Small, Medium, Large Scale Weight ws , wm, wl 0.25, 0.25, 0.5 

Baseline bias of multiple-scale input bM 0.01 

Spatial constant of the cable of the filling-in unit σ 30 (non-diffusive 

propagation), 11.2 (long-

range diffusion) 

Gating constant ε 100 (non-diffusive 

propagation), 200 (long-

range diffusion) 

Amplitude of conductance δ given in equation A43 

(non-diffusive 

propagation), 0.6 (long-

range diffusion) 
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4.5 Lightness Anchoring. The model assumes that lightness anchoring happens after surface filling-in 

occurs in V2 or V4. Within the larger FACADE theory of 3D vision and figure-ground separation 

(Grossberg, 1994), this allows surface representations at different depths to have their own anchors. 

Within FACADE, V4 is the area where modal, or visible, 3D surfaces are represented, whereas V2 can 

fill-in amodal surface representations. The electrophysiological experiment by MacEvoy and Paradiso 

(2001) reported lightness constancy in V1. However, their experiment does not provide unequivocal 

evidence that V1 is the place where anchoring occurs. It demonstrates just one aspect of lightness 

perception; namely, discounting the illuminant, or input normalization, which can be initiated at the 

earlier model Retinal Adaptation and Contrast stages. Another factor suggesting that anchoring occurs no 

earlier than V2 is that long-range perceptual grouping, or boundary completion, takes place in V2 (von 

der Heydt, Peterhans & Baumgartner 1984; Peterhans & von der Heydt, 1989), and influences what 

surfaces get filled-in; see Gilchrist et. al. (1999) and Grossberg (1994) for further discussion. Extrastriate 

involvement in lightness anchoring is also suggested by the fact that global integration of information, 

which is needed for the BHCAW rule, needs a bigger scale of interaction than that supported by 

horizontal connections in V1 (Angelucci et al., 2002). V2 provides a rich environment for the boundary 

system (interstripes) and luminance and contrast signals (thin stripes) to interact (Roe and Ts'o, 1995) to 

begin to form surface percepts. The data of Hung et al. (2001) showing a prominent Craik-O’Brien-

Cornsweet effect in V2 are also compatible with this assumption.  

 

4.6 Area Effect in Natural Images. The area effect is limited to simple Ganzfeld configurations. 

Gilchrist et al. (1999. p. 802) note: “Strictly speaking, the rule applies to visual fields composed of only 

two regions of nonzero luminance. Application of the rule to more complex images remains to be 

studied.” In the model, it is assumed that when this Ganzfeld configuration was tested, the visual system 

of the subject adapted its multiple scales to compensate for the unusually sparse visual cues. Sections 2.2 

and 4.2 noted that the model incorporates multiple spatial scales which suppress signals that are uniform 

with respect to each scale. Hence, given the sparse contrasts in the Ganzfeld display, the model would 

suppress small scales. Multiple scales were not used in the anchoring module, for simplicity. Instead, two 

different parameter sets were used to explain the area rule: For simple images having just two regions of 

non-zero luminance (Figure 7), a bigger Gaussian kernel was used. For the other, more complex, images 

with smaller regions, a smaller kernel was applied. See Table 2 for parameters. The two anchoring kernel 

sizes were chosen that best fit the data suggested in the Anchoring theory by Gilchrist et al. (1999). 

Automatic rescaling of anchoring will be incorporated when the model fully exploits its multiple scales 

for purposes of 3D vision and figure-ground perception, in an extension of how multiple scales have 

already been used to explain related data in FACADE theory (Grossberg, 1994, 1997; Kelly & Grossberg, 

2000). 
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APPENDIX A: MODEL EQUATIONS 

The model implements 2-D simulations on a 200 x 200 grid to represents the visual field. 

  

Retinal adaptation  

The potential sij at position (i, j) of the outer segment of the retinal photoreceptor is simulated by the 

equation: 

(A1)                                                                                                    ,)()( tzIts ijijij ⋅=
 

where Iij is the input and zij(t) is an automatic gain control term simulating negative feedback mediated by 

Ca2+ ions, among others: 

( ) (A2)                                                                            ,)( ICICzzB
dt

dz
IijIijijz

ij +−−=
 

(cf., Carpenter and Grossberg, 1981; Grossberg 1980). In (A2), parameter Bz is the asymptote which zij(t) 

approaches in the absence of input, and term –zij(CIIij + CĪĪij) describes the inactivation of zij by the present 

input Iij and a spatial average Ī of all inputs that approximates the effect of recent image scanning by 

sequences of eye movements. The equilibrium response sij directly follows from (A1) and (A2):  
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The inner segment of the photoreceptor receives the signal sij from the outer segment and also gets 

feedback Hij from the horizontal cell (HC) at position (i, j), as in Figure 10. HC modulation of the output 

of the inner segment of the photoreceptor is modeled by the equation: 

( ) ( ) )4(A                                                                            ,
1exp +−⋅
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ij

ij
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s
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where Bh is a small constant, and Bs is a constant close to the value (Bz / CI). When Bs equals the value of 

(Bz/CI), perfect shifts of log(Iij) - Sij curve occur with varying Hij (Figure A1A). When Bs deviates from 

(Bz/ CI), compression occurs when Bs > (Bz/ CI) (Figure A1C). Expansion occurs when Bs < (Bz/ CI) in 

addition to the shift. Thus to prevent expansion, which would mean excitation by the HC negative 

feedback, Bs needs to be bigger or equal to (Bz/ CI). Figure A2 shows the 10-Mondrian Articulation 

situation (see Figure 5) with two values for Bs, one equals to (Bz/ CI), and the other to 1.2(Bz/ CI). This 

simulation demonstrates that the model is robust under this variation. Compare Figure A2 with the graph 

in Figure 5G.  

The equation (A4) can be generalized as follows. 

( ) )'4(A                                                                                 .  
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ij
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s
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Many increasing functions f(Hij) will generate the shift property of Sij as a function of log(Iij). Function f(Hij) = 

Bhexp(Hij) was chosen because exp(Hij) makes the sensitivity curve shift in an accelerating 
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 Figure A1. Shift property of spatial contrast adaptation. (A) Shift property of spatial contrast adaptation of the model. The graph 

shows an example where the log(Iij) - Sij curve smoothly accelerates initially and later decelerates with growing hij. These curves 

are generated using the equation A4. These curves and all the following curves in B-D have the same average luminance Ī = 102. 

The curves from the left to right have hij values of 0 to 0.5 with increment 0.1. The same is true for C and D. (B) Shift property 

with Hij = hij in placed of the equation A5. The curves show no deceleration. The curves from the left to right have hij values of 0 

to 10 with increment 1. (C) Shift property with no (Bs – sij) term in equation A4. The curves show a prominent compression. (D) 

Shift property with f(Hij) = Hij in equation A4'. The curves do not have the smooth acceleration shown in graph A.  

 

 

Figure A2. The curves show ten-Mondrian Articulation situation with two 

values for Bs, one (Bz/ CI), the other 1.2(Bz/ CI). While the deviation of 

20% from the optimal value shows a bit of compression, the overall 

quality of Articulation effect remains robust. This demonstrates that the 

model tolerates a fair amount of fluctuation in the value of the parameter. 

 

 

 

 

 

 

manner with increasing Hij, where Hij is the sigmoid output of the HC at (i, j) in response to its potential 

hij: 
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ijH

ij
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where aH and bH are constants. This bounded function causes the amount of shift to decrease as hij 

becomes large. The combination of the initial acceleration by the exponential function in the equation  

(C) 

Sij 

log(Iij) 

(A) 

Sij 

log(Iij) 

(D) (B) 

log(Iij) 

Sij 

 

log(Iij) 

Sij 

Bs = 1.2·(Bz/ CI) 

Bs = (Bz/ CI) 
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(A4) and the later saturation by the equation (A5) causes the Sij curve to accelerate initially and later 

decelerate with increasing hij. Figure (A1A) shows an example of this shift property. The leftmost curve 

represents the Sij curve with hij = 0; the other curves have hij values of 0.1, 0.2,… , 0.5, respectively. All 

these curves have the same average luminance Ī = 102. The shift property is generated at any average 

luminance Ī. Note that the leftmost curve in Figure (A1A) is the same as the curve with Ī = 102 in Figure 

2C. Figure (A1B) shows what happens when Hij = hij is used in stead of equation (A5), with all other 

equations the same; it shows no deceleration. Here, hij values of 0 to 10 were used with increments of 1. 

Figure (A1C) shows a situation where the term (Bs – sij) in equation A4 has been replaced by 1; it shows a 

prominent compression. For this simulation, hij values of 0 to 0.5 with increments of 0.1 were used. 

Figure (A1D) shows a situation with f(Hij) = Hij in equation A4'; it does not have the smooth acceleration 

shown in Figure (A1A). The same hij values as for Figure (A1C) were used for this simulation. 

 The potential of an HC connected to its neighbors through gap junctions is defined as follows. 
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where Ppqij is the permeability between cells at (i, j) and (p, q); namely,  
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Terms βp and λp in (A7) are constants, and NH
ij in (A6) is the neighborhood of size εH to which the model 

HC at (i, j) is connected:  
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Center - Surround Stage 

The retinally adapted signal Sij is then processed by small-scale and medium-scale on-center off-surround 

and off-center on-surround networks. In the following, scale subscripts (e.g., xs and xm for small and 

medium scales, respectively) are omitted for simplicity. An on-center off-surround (ON) network of cell 

activities x+
ij that obey membrane equations is defined as follows: 
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where A, B and D are constants. The on-center input obeys: 
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and the off-surround input obeys: 
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with the excitatory Gaussian on-center kernel: 
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and the inhibitory Gaussian off-surround kernel: 
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Coefficients C and E in (A12) and (A13), which normalize and make the sums of the center and surround 

kernels the same, are defined by:  
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Terms α, β, WC and WE are constants. NC
ij in equation (A10) is the on-center neighborhood to which the 

cell at (i, j) is connected:  
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where εC is a constant defining the size of the neighbor. NC in equation (A14) is the neighbor for the 

standard center kernel defined as follows.  
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The only difference between NC
ij and NC is that NC

ij is constrained by the boundary of the image 

(200x200), which may cut kernels along the borders, while NC, which defines the whole kernel, is not. For 

brevity, the same convention between NC
ij and NC is used for other equations as well. For example, NE

ij in 

equation (A11) is the neighborhood for the surround kernel with a size εE with the same form of definition 

as equation (A16), and its corresponding standard neighbor is NE with the same form of definition as 

equation (A17). See Table 1 for parameters.  

 For each position, the normalizing factors WC / ΣCpqij and WE / ΣEpqij in (A10) and (A11) are 

constants, mostly just 1, except for the positions along the border of the image. Normalization eliminates 

unwanted boundary effects created by filters with a fixed kernel size. In case of a center-surround filter, 

for example, without normalization, halos along the border of the image can occur because of the 

disinhibition caused by cut kernels there.  

The equilibrium activities of (A9) are: 
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The corresponding equilibrium activities of the off-center on-surround (OFF) network are:  
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In (A19), 
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and 
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 (Grossberg, Mingolla, and Williamson, 1995). The output signals are rectified versions of  
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and 
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Luminance signals Lij, which constitute the large-scale of the center-surround process, are defined by: 

(A24)                                                                                                                 ijij SL =
 

Through these processes, the initial stage of the model achieves automatic gain control in all its small, 

medium and large scales. 

 

 

Boundary System 

Simple cell activities are simulated using a network of units having polarized and oriented receptive fields 

around a gird of pixel units. Figure (A3A) shows pixel units at (i, j) denoted as small filled circles, and 

eight surrounding numbered positions at (i', j') where pairs of model simple cells with the same 

orientation but opposite contrast polarity are located. Each simple cell is represented by a half-filled and 

half-hollow oriented ellipse (Figure A3B). The eight positions are as follows: (i + 0.5, j), (i + 0.5, j + 0.5), 

(i, j + 0.5), (i − 0.5, j + 0.5), (i − 0.5, j),                      (i − 0.5, j − 0.5), (i, j − 0.5), (i + 0.5, j − 0.5). A pair 

of simulated simple cells has one of 4 orientations: (0, π/4, π/2, 3π/4). The even numbered positions have 

only two (0, π/2) orientations; positions 3 and 7 have three orientations (0, π/4, 3π/4); and positions 1 and 

5 have three orientations (π/4, π/2, 3π/4). The responses of simple cells are modeled using medium-scale 

contrast signals. This simplification was chosen because it gives relative clean edge signals. The outputs 

from simple cells having light-dark and dark-light luminance polarities in their receptive fields are 

simulated as follows: 
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where the superscripts LD and DL indicate light-dark and dark-light luminance polarities of the model 

simple cell receptive fields, respectively, and k denotes the orientation. Activation of a model simple cell 

left and right sub-receptive fields from ON and OFF channels is modeled as follows: 
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and 
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Subscripts L and R indicate the two sub-receptive fields for the simple cell with L indicating the left part 

(to the anticlockwise) of the sub-receptive field, and the R the right part (to the clockwise) of the sub-

receptive field along the axis of the orientation. Constant WB is the sum of the standard kernel weights of 

the simple cell: 
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At each position, the normalization factor WB / ΣGpqi'j'k is constant, mostly just 1, except for positions 

along the border of the image where the Gaussian kernel is incomplete. To see the size of the simple cell 

kernel neighbor, NB, see εB in Table 1. 

 A pair of oriented Gaussian kernels, indicated as L and R, simulates receptive fields for the simple 

cell:  
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where Shift(L) and Shift(R), which shift the sub-fields orthogonal to the axis of orientation, are constants -γv 
and γv, respectively; κ is a constant. k is one of the four numbers (1, 2, 3, 4) that sets the orientation; and γh 
and γv are constants that define the widths of the kernel along and across the axis of orientation, 

respectively.  

 The model complex cells are also located at the eight (i', j') positions, and have oriented receptive 

fields, as illustrated in Figure (A3C). The model complex cell of orientation k at (i', j') pools the outputs 

of a pair of simple cells as follows: 
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This cell potential goes through an activation function: 

)34A(                                                                                                 , )( '''' kjikji zfZ =
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The parameter 1.7 of the power of x was in (A35) used that gave the optimal strength of the boundary 

signals across simulations. A gradual degradation of image quality occurs as the parameter deviates from 

the optimal value (data not shown). The complex cell gates any horizontal connections that cross its 

gating field. The effective gating strength at a point (x, y) along a passing horizontal connection is the 

product of the gating weight (Gc
xyi'j'k) at the point and the activation of the gating complex cell at (i', j') 

(Zi'j'k): 
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where x, y are continuous variables. The Gaussian kernel of the gating field, which represents the spatial 

spread of gating weight of complex cell axons at points (x, y) along the line (i, j) - (p, q), is defined as 

follows:  
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Figures (A3D) and (A3E) show an example of the complex cell gating mechanism for a given input. For a 

given complex gating field, it is assumed that the gating occurs at just one point for each crossing 

connection. The gating point (x, y), which lies along the line (i, j) - (p, q), is chosen that gives the 

maximum value of equation (A37). In the simulation, 10 equidistance points along the cross-section 

between the ellipse and the crossing line (i, j) - (p, q) were examined to find the approximate inflection 

(maximum) point as shown in Figure (A3F). The size of each dot in the figure represents the value Gc
xyi'j'k 

of equation (A37) for each examined point. 

 

Filling-in 

Cortical filling-in is driven by the inputs Mij which are the pooled luminance and contrast signals as 

follows:  
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where ws, wm, wl, are weighting constants, and bM is a tonic bias term. Either of two versions of the filling-

in process yield equivalent simulations of the targeted data. A long-range diffusion process, much as in 

the retinal HC diffusion in (A6), works well with activities Fij instead of the activities hij in (A6), and 

inputs Mij instead of the inputs Sij in (A6). This long-range diffusion runs 100 times faster than previous 

nearest-neighbor diffusions for filling-in. In addition, the conductance Ppqij are divisively gated by 

activated complex cells along its path. They are defined by: 
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Figure A3. Model boundary system and gating mechanism. (A) Relative positions of model simple and complex cells to pixel 

points. The model simple and complex cells are poisoned between the pixel points. For example, for a given pixel in the middle 

(the small gray filled circle in the middle), there are eight surrounding positions (1 through 8) where simple and complex cells are 

placed. (B) Configuration of simple cell network around a pixel unit in the middle. (C) Gating field of complex cells around the 

pixel unit. Just one set of pixel-complex and simple cell relationship is shown for clarity. The same pixel-complex and simple cell 

relationship applies to other pixels. (D) Example of a stimulus. (E) Illustration of gating mechanism for stimulus D. It illustrates 

the resulting activations of gating components with the input in figure D. The activated complex cells that surround the disk area 

gate any connections crossing their gating fields represented as ellipses. The connection between (i, j) and (p, q) is gated (the 

doted line) by a gating signal at (x, y) in the gating field of the complex cell centered at (i', j'). The other connections are not 

gated, being allowed to have high conductances (solid lines). For the purpose of illustration, more orientations are shown than the 

four orientations used for the simulations. (F) Position of the gating point. The figure shows the blown up part of the gated part of 

the connection in the figure E. In the simulation, 10 equidistance points (5 of them are shown for clarity) along the cross-section 

between the ellipse and the crossing line (i, j) - (p, q) were examined to find the approximate inflection (maximum) point. The 

size of each dot represents the value Gc
xyi'j'k of equation (A37) for each examined point. 

 

 

 

( ) ( )( )[ ]
( ) )A39(                                                          ,  
1

/exp

''

'

''

222

∏ +
−+−−

=

kji

kji

pqij
Z

qjpi
P

ε
σδ

 

where σ, δ and ε are constants. The numerator of (A39) describes the strengths of horizontal connections, 

assumed to have a Gaussian distribution, such that longer connections have smaller strengths. 
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 Alternatively, a long-range propagation process that does not require diffusion, but is normalized 

in a different way, generates essentially identical simulations, which are the ones that are shown in this 

article. This process runs 1000 times faster than nearest-neighbor diffusion processes. The first step of the 

filling-in is to activate the filling-in units with the pooled multiple-scale input signals Mij: 

 (A40)                                                                                                            . ijij MF =  

Here, the filling-in activity Fij (t+1) equals: 
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where the conductance Ppqij shares the same form of equation (A39) with different parameters (see Table 

2). The constant WF in (A41) is a sum of conductances defined as follows: 
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Since WF is constant, the constant δ for a fixed σ is calculated as follows: 
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The size of the filling-in neighborhood NF is determined by parameter εF in Table 1. Equation (A41) 

assumes that the filling-in unit can normalize its conductances. The normalizing factor WF/ΣPpqij affects 

the conductance in two ways. First, at the border of the image, the incomplete kernels get normalized to 

have the same size as WF. Second, normalization compensates for the overall lost conductance caused by 

gating (division by the denominator in equation (A39)). By this normalization process, the sum of the 

effective conductances equals:  
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For example, if half of the input connections were totally blocked by gating signals, the unit would try to 

increase the effective input flow by doubling the efficacy of the remaining connections, keeping the sum 

of all the incoming conductances the same. Ten iterations of equation (A41) gives satisfactory filled-in 

results. 

 

Lightness Anchoring 

At the anchoring stage, the filled-in surface activity Fij becomes anchored into the activity Aij using the 

following equation: 
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where BA and CA are constants. The tonic gain control signal Ψ, which modulates all the anchoring 

activities Aij, uses the following equation. 
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The term τΨ is a time constant that determines the speed of integration of equation (A46). The term –Ψ is 

a leakage component. The next term (BΨ –Ψ)TΨ is an excitatory component that drives the gain control 
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signal Ψ toward its maximum BΨ until the inhibitory component ΨH kicks in due to the activation of the 

suppressive signal H, which is defined as follows: 
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where τH is a time constant. Using the equation (A47), the suppressive signal H quickly becomes activated 

and suppresses the gain control activity Ψ whenever there is an activated output cell at the BHCAW 

module, which signals the anchoring of blurred “highest luminance” to white. The output of the BHCAW 

module Bij is defined as follows:  
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where the signal function fB(x) is a steep sigmoid: 

(A49)                                                                                              , )(
mm

m
B

x

x
xf

+
=
ϖ

 
where m and ϖ are constants; see Table 3. Function bij in (A48) is a blurred version of the anchoring 

signal Aij: 
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where the blurring Gaussian anchoring kernel is defined by: 
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where constant 
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and WA and ζA are constants. The size of the blurring neighborhood NA is determined by paramenter εA in 

Table 1. When m in equation (A49) is large, H approximates a step function  
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where φ is a constant. In the simulation, equation (A53) was used in place of equations (A47) to (A49).  
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Table 3 

 

 

APPENDIX B 

To generate the stimuli with different background luminance (Figure 2C), the following formula was 

used:  

)1B(                                                                                                           ,ijijij EI ρ=
 where Iij is the luminance at point (i, j), ρij is the reflectance at point (i, j), and Eij is the illumination on 

point (i, j) (Hurlbert, 1989). For a given stimulus, Eij was uniform across the image. For practical 

purposes, ρij in equation (B1) was replaced by the luminance at point (i, j) of the original image. This 

situation is roughly equivalent to a viewing situation where a picture is exposed to uniform background 

illumination. The range of ρij was chosen to be –4 to 5 in log-scale for a fixed illumination level to 

examine the full dynamic profile of the shift property. See Figure 2C for the values of illumination Eij 

used for the simulations. 

 

 

 

 

Names Symbols Values  

Decay rate for Anchoring BA 1 

Depolarization constant for Anchoring CA 10 

Time constant of modulatory unit of anchoring τΨ 0.01 

Depolarization constant of modulatory unit of anchoring BΨ 1.3 

Recharge rate of tonic activity  TΨ 1 

Power of BHCAW activation function m 100 

White ϖ 0.5 

Hyperpolarization constant for gain control φ 8 

Spatial scale for Anchoring ζA  100 (for the area rule),  

4 (for the others) 

Size of connection range for the center of center-surround 

unit  

εC 6 (for small scale),  

28 (for medium scale) 

Size of connection range for the surround of center-

surround unit  

εE 6 (for small scale),  

28 (for medium scale) 

Size of connection range for the half kernel of simple cell  εB 3 

Size of connection range for the blurring kernel of 

Anchoring 

εA 100 (for the area rule),  

4 (for the others) 

Size of connection range for the filling-in unit εF 8 

Sizes of various standard kernels WC, WE, 

WB, WA, WF 

0.6, 0.6, 4, 1, 1
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