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ABSTRACT The amount of biomedical literature is vast and growing quickly, and accurate text mining

techniques could help researchers to efficiently extract useful information from the literature. However,

existing named entity recognition models used by text mining tools such as tmTool and ezTag are not

effective enough, and cannot accurately discover new entities. Also, the traditional text mining tools do

not consider overlapping entities, which are frequently observed in multi-type named entity recognition

results. We propose a neural biomedical named entity recognition and multi-type normalization tool called

BERN. The BERN uses high-performance BioBERT named entity recognition models which recognize

known entities and discover new entities. Also, probability-based decision rules are developed to identify

the types of overlapping entities. Furthermore, various named entity normalization models are integrated

into BERN for assigning a distinct identifier to each recognized entity. The BERN provides a Web service

for tagging entities in PubMed articles or raw text. Researchers can use the BERNWeb service for their text

mining tasks, such as new named entity discovery, information retrieval, question answering, and relation

extraction. The application programming interfaces and demonstrations of BERN are publicly available at

https://bern.korea.ac.kr.

INDEX TERMS Biomedical text mining, decision rules, multi-type, named entity recognition, neural

networks, normalization, Web service.

I. INTRODUCTION

There are over 29 million articles in PubMed as of May 2019,

and the amount of biomedical literature has been growing

rapidly in recent years. Fast and precise text mining tools

can reduce the amount of effort and time it takes researchers

to find and extract useful information from the vast amount

of biomedical literature. Researchers have used named entity

recognition (NER) and named entity normalization (NEN)

models to develop effective biomedical text mining tools

for information retrieval [1], question answering [2], relation

extraction [3], and so on.

Existing Web-based text mining tools such as tmTool [4],

ezTag [5], and PubTerm [6] have obtained excellent NER
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performance on various types of biomedical entities. How-

ever, they have a few limitations. First, the Web-based text

mining tools use older NER models which obtain lower

performance than recent NER models. Moreover, pre-trained

NER models such as tmChem [7] and DNorm [8] used by

Web-based text mining tools cannot effectively discover new

entities. Second, the Web-based text mining tools do not

consider the different types of entities that frequently overlap

in NER results [9].1 For instance, in ‘‘The androgen is syn-

thesized from . . . ,’’ NERmodels can tag ‘‘androgen’’ as both

a gene/protein and a drug/chemical because an androgen is a

natural or synthetic steroid hormone. The correct entity type

should be determined based the context of the sentence; in

1In the GENIA corpus, the percentage of nested named entities among all
entities is 18.1%.
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FIGURE 1. Overview of the RESTful Web service of BERN.

other words, if ‘‘androgen’’ refers to the synthetic hormone,

NERmodels should tag ‘‘androgen’’ only as a drug/chemical.

However, existing text mining tools have no pre-defined rules

for such overlapping entities.

After NER, text mining tools need to normalize recog-

nized entities since an entity can have multiple names (i.e.,

synonyms) and a name can be associated with multiple enti-

ties (i.e., polysemy). However, as normalization models vary

greatly depending on the type of entity, it is difficult to build

a text mining tool that performs normalization for multiple

entity types. Generally, there are NER models for various

types of biomedical entities in biomedical texts. However,

it takes a considerable amount of time and effort to obtain

computing resources and set up models for tagging entities.

We propose a neural biomedical named entity recognition

and multi-type normalization (BERN) tool that recognizes

known entities and discovers new entities, and identifies

the types of overlapping entities. The overview of the

BERN Web service is shown in Fig. 1. When a PMID is

inputted into BERN, it uses tmTool APIs to fetch texts

annotated with mutations for the PMID. When raw text

is inputted into BERN, it tags mutations in the text using

tmVar 2.0 [10]. Next, BERN uses the BioBERT NER

models of Lee et al. [11] to tag genes/proteins, diseases,

drugs/chemicals, and species. After the multi-type NER,

probability-based decision rules are applied to identify over-

lapping entities. Finally, normalization is performed for each

entity type and the result is returned.

The BioBERT NER models obtained the highest F1-score

in recognizing genes/proteins, diseases, and drugs/chemicals

as shown in Table 1. Due to the lack of a high-quality

public training set of mutations, BERN uses tmVar 2.0 as a

pre-trained mutation NER model. Furthermore, BERN uses

probability-based decision rules to determine whether to

include all the overlapping entities or only the overlapping

entities that are most likely to be entities predicted by the

BioBERT NER models.

We also combined multiple named entity normalization

models into one multi-type normalization model and inte-

grated it into BERN to assign IDs to recognized entities.

Themulti-type normalizationmodel uses a high-performance

normalization model for each entity type, and uses a dictio-

nary lookup such as SR4GN [23] for species. As a result,

researchers can use the RESTful Web service of BERN to

obtain NER and normalization results on PubMed articles or

their raw text.

To the best of our knowledge, BERN is the first

Web-based biomedical text mining tool that leverages neu-

ral network based NER models to recognize known enti-

ties and discover new entities. Our main contributions are

as follows:
• BERN is a biomedical text mining tool that uses neural

network based high-performance BioBERT NER mod-

els for recognizing known entities and discovering new

entities.

• We developed probability-based decision rules for iden-

tifying the types of overlapping entities after conducting

case studies.

• BERN uses the multi-type normalization model to

assign a specific ID to each recognized entity.
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TABLE 1. Performance comparison of NER models for genes/proteins, diseases, drugs/chemicals, species, and mutations at the entity mention level
(The highest scores are in bold, and the second highest scores are underlined).

• BERN provides a Web service for tagging and nor-

malizing entities in PubMed articles or raw text. The

RESTful Web service of BERN is freely available at

https://bern.korea.ac.kr.

II. RELATED WORK

A. NAMED ENTITY RECOGNITION FOR BIOMEDICAL

TEXT MINING

For biomedical text, the word embeddings of

Pyysalo et al. [29], which were trained on PubMed,

PubMed Central Open Access (PMC OA) Subset, and

English Wikipedia articles using word2vec [30], were widely

used [13], [15]–[18]. Existing biomedical NER models

[7], [10], [14], [23], [24] often use conditional random

fields (CRFs) [31] or semi-Markov linear classifiers [20]

with dictionaries to find entities in the biomedical literature.

A CRF is flexible in terms of feature selection; however, it is

computationally expensive.

In recent years, with the success of deep neural net-

works, Bi-LSTM with CRF [12], [13], [15]–[18] has been

widely used to extract word sequence features. However,

Bi-LSTM is limited to parallelization. The recently proposed

Transformer [32], which is more parallelizable, obtained

high-performance in natural language processing tasks

without using recurrent networks or convolutional networks.

The Transformer connects an encoder and a decoder through

self-attention to be more parallelizable and to reduce its

training time. Also, BERT (Bidirectional Encoder Repre-

sentations from Transformers) [33], which can be used to

understand deep contextual bidirectional language repre-

sentations, was proposed. BERT pre-trains its weights on

English Wikipedia and BooksCorpus, and then fine-tunes the

pre-trained weights for each task.

B. RESOLVING OVERLAPPING ENTITIES

Since entities in biomedical text can overlap, it is neces-

sary to decide which entities to select during or after NER.

In previous studies, NER models were used to recognize

entities in biomedical text even when the entities overlapped.

Zhou [34] found patterns of nested entity names in the

GENIA corpus, and proposed a pattern-based rule generation

method to resolve the nested entity names. In recent years,

Wang and Lu [35], and Katiyar and Cardie [36] proposed

models for learning time-efficient hypergraph representa-

tions of overlapping entity mentions. Greenberg et al. [37]

proposed a model which consists of Bi-LSTM and an

expectation-maximization (EM) marginal CRF, and recog-

nizes disjoint or partially overlapping sets of entity types.
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However, their model does not have rules for determining the

types of an entity mention if the mention belongs to different

entity type spans.

C. NAMED ENTITY NORMALIZATION MODELS FOR

BIOMEDICAL TEXT MINING

As mentioned in Section I, there are various types of entities

which are referred to as different names in biomedical text.

Thus, individual normalization models for each entity type

have been proposed rather than an integrated normalization

model. Lowercase conversion and abbreviation resolution are

the most commonly used for normalizing biomedical entities.

tmTool, PubTerm, ezTag, and BERN commonly use GNorm-

Plus [14] for gene normalization, SR4GN [23] for species

normalization (only dictionary lookup for BERN), and tmVar

[10], [24] for mutation normalization. GNormPlus uses exact

match and bag-of-words match to pair recognized names

with concepts in Entrez Gene [38]. Also, GNormPlus applies

Ab3P [39] to extract abbreviation pairs. SR4GN normalizes

recognized species entities to the most specific concept if

possible. Also, tmVar detects pairs of mutations and dbSNP

RSIDs [40] using pattern matching and dictionary lookup.

On the other hand, text mining tools use different models

for disease and chemical normalization. ezTag uses Tag-

gerOne to normalize disease and chemical entities, and

TaggerOne jointly performs NER and normalization using

semi-Markov models. tmTool and PubTerm use DNorm [8],

which is based on pairwise learning to rank (pLTR), to nor-

malize disease entities. BERN uses the sieve-based entity

linking approach of D’Souza and Ng [41] to normalize

disease entities. Among the sieve based approaches, exact

match, abbreviation expansion, and partial match were par-

ticularly effective. tmChem [7], which is used by tmTool,

PubTerm and BERN, converts recognized chemical entity

names and chemical entity names in the lexicon of tmChem to

lowercase letters, and removes whitespace and punctuation.

The lexicon is collected from MeSH [42] and ChEBI [43].

A chemical name in short form that can be recognized by

Ab3P is assigned the same ID as the chemical name in long

form.

III. METHODS

First, we describe the BioBERT NER models used for rec-

ognizing named entities in biomedical text, review cases of

overlapping entities, and explain the decision rules developed

for determining which entities to choose when they overlap.

Next, we discuss the multi-type normalization model which

normalizes the remaining entities.

A. BIOBERT FOR NAMED ENTITY RECOGNITION

BioBERTNERmodels used by BERN recognize known enti-

ties and discover new entities using WordPiece [44] embed-

dings. Theword embeddings of Pyysalo et al. [29] suffer from

the out-of-vocabulary problem. If a word in a text is not in

the vocabulary of the embeddings, the embeddings cannot

provide a rich representation for the word. On the other hand,

the WordPiece embeddings are a way of dividing a word into

several units (i.e., sub-word units) and expressing each unit.

As a result, the WordPiece embeddings can be used to extract

features of rare or unknown words, which is very helpful in

discovering new entities.

BioBERT is initialized with the case-sensitive version of

BERT-Base. BioBERT additionally pre-trains its weights on

PubMed articles and PMC OA Subset articles, and fine-tunes

the pre-trained weights for downstream tasks. The BioBERT

NER models are fine-tuned as follows:

p(yi = k|Ti) = softmax(TiW
⊤+b)k , k = 0, 1, . . . , 6 (1)

where p denotes the label probability, and Ti ∈ R
H denotes

the final hidden representation for each token i. H is the

hidden size, W ∈ R
K×H is a classification layer, b is a bias,

and K is 7. The classification loss L is calculated as follows:

L(2) = −
1

N

N∑

i=1

log(p(yi|Ti; 2)) (2)

where 2 denotes trainable parameters, and N denotes

sequence length.

BioBERT NER models compute the probabilities of the

following seven tags: IOB2 tags (‘‘I’’nside, ‘‘O’’utside,

‘‘B’’egin) [45], ‘‘X’’ (a sub-token of WordPiece), ‘‘[CLS]’’

(the first token of every sequence for classification), ‘‘[SEP]’’

(a delimiter between sentences), and ‘‘PAD’’ (padding) of

each word in a sentence. Note that the BioBERTNERmodels

make predictions for ‘‘I,’’ ‘‘O,’’ and ‘‘B’’ tags but not for

the ‘‘X,’’ ‘‘[CLS],’’ ‘‘[SEP],’’ or ‘‘PAD’’ tags. Words in a

sentence are obtained using a tokenizer on a dataset with

labels in CoNLL format [46] and then the sub-words of each

word are obtained using the WordPiece tokenizer.

As a result, BERN can discover new entities using

BioBERT NER models. As shown in Table 1, the BioBERT

NER models used by BERN obtain the highest F1-scores on

the test sets for all types except species. The BioBERT NER

models of BERN outperform the NER models of tmTool,

PubTerm, and ezTag on test sets of genes/proteins (BC2GM

5.6%), diseases (NCBI disease 6.46%), drugs/chemicals

(BC4CHEMD 4.02%), and species (LINNAEUS 4.26%) in

terms of F1-score. Also, the BioBERT NER models outper-

form the Bi-LSTM-CRF based NER models [13], [16]–[18],

[21], themulti-task NERmodel [13], and the transfer learning

NER models [12], [15] in recent years, on all the test sets

except for the test set of species. Note that BioBERT NER

models can recognize all types of entities if there is training

data.

B. DECISION RULES FOR OVERLAPPING ENTITIES

1) CASE STUDIES

We performed comprehensive case studies on overlapping

entities. First, we found that 26.2% of entities in 18.6 mil-

lion PubMed articles2 overlap. Among the entities in the

2We excluded PubMed articles that have titles but no abstracts.
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TABLE 2. COMPLETE and PARTIAL overlap percentages of entity pairs
(The numbers in each cell indicate the percentages of overlaps of the
entity type pair in all COMPLETE (or all PARTIAL) overlaps. The
numbers in parentheses are PARTIAL overlap percentages).

articles, we also found 3.8 million cases where two or

more entities overlap completely (COMPLETE overlap), and

9.6 million cases where they partially overlap (PARTIAL

overlap). Table 2 shows the COMPLETE and PARTIAL

overlap percentages of entities. Genes/proteins, diseases,

and drugs/chemicals usually overlap. Genes/proteins and

drugs/chemicals completely overlap the most (12.55%) of all

entity types. Also, genes/proteins and drugs/chemicals have

the largest number of PARTIAL overlaps (32.59%). Species

usually overlap with genes/proteins (PARTIAL 12.83%)

or diseases (COMPLETE 11.65%, PARTIAL 8.93%), and

mutations generally overlap with genes/proteins (COM-

PLETE 0.43%, PARTIAL 1.49%). The proportion of species

overlapping partially with genes/proteins (12.83%) is much

greater than that of species overlapping completely with

genes/proteins (0.17%) because there are many cases where

genes/proteins are associated with Homo sapiens.

For a more detailed analysis, we calculate the PARTIAL

overlap percentages of each entity pair, which are shown

in Fig. 2. In our dataset, when genes/proteins and dis-

eases partially overlap, a gene/protein mention is a part

of a disease mention. And for each pair, a drug/chemical

or a species mention is a part of a gene/protein or a dis-

ease mention. The sum of overlap percentage of overlap

between the end of an entity and the beginning of another

entity is quite low (< 1% except for 〈drugs/chemicals and

species〉).

FIGURE 2. The percentages of partial overlapping entities of each
entity pair.

FIGURE 3. Decision rules for NER results.

2) DECISION RULES

After conducting the case studies above, we developed deci-

sion rules for overlapping entities in multi-type NER results.

Unlike the model of Greenberg et al. [37], BERN uses

decision rules for determining which entities to choose if

overlapping entities are found. Fig. 3 shows the decision rules

that BERN uses for the multi-type NER results. First, if the

entities do not overlap completely (71.3% in our dataset),

BERN tags all the entities. If entities overlap completely

and there is a mutation among the entities (0.5% (28.7%

× 1.9%)), BERN tags the mutation and entities that the

mentions are most likely to be entities predicted by BioBERT

NER models. Next, if entities completely overlap and all the

entities are non-mutations (28.2% (28.7% × 98.1%)), only

the entities with the highest probability of being an actual

entity are tagged; the probability is calculated by BioBERT

NERmodels. Because mutations in a text are typically in dis-

tinct formats, which makes it easier to more accurately recog-

nize them, mutation NER models such as tmVar 2.0 used by

BERN generally achieve much higher precision (over 97%)

on mutations than on other entity types. In our evaluation,

in most cases, if there is a mutation among the overlapping

entities, all the remaining overlapping entities are wrong and

the mutation is the correct answer.

We applied the decision rules to each test set, and the

results are shown in Table 3. Since each test set in Table 3 has

labels only for a particular entity type, there is no performance

change if the NER model for the entity type labeled in the

test set predicts that mentions are most likely to be entities of

the entity type (e.g., In NCBI disease corpus, a NER model

for diseases predicts that a mention is a disease.). If the NER

models for the other entity types make stronger predictions on
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TABLE 3. Examples of applying the decision rules of BERN to test sets.

TABLE 4. The multi-type normalization model and dictionaries of BERN.

TABLE 5. The performance of the multi-type normalization model (i.e., the combined normalization models) of BERN. The authors of tmChem did not
report the normalization performance of tmChem independently.

which mentions are most likely to be entities on wrong men-

tions than predictions of the NER model for the entity type

(e.g., In BC2GM, a NER model for drugs/chemicals predicts

that a non-gene/protein mention is a drug/chemical.), they

can avoid giving the wrong answer due to the decision rules,

which helps reduce the false positive rate. Conversely, if the

NER models for other entity types make stronger predictions

on correct mentions than predictions of the NER model for

the entity type (e.g., In BC4CHEMD, a NER model for

diseases predicts that a drug/chemical mention is a disease.),

the true positive rate is reduced. Therefore, the decision rules

improve the precision and lower the recall.

In the GENIA corpus, only protein entities are labeled

among the entity types of the NER models of BERN, making

it difficult to compare the probabilities of other types of enti-

ties overlapping. Also, the BC5CDR corpus does not contain

any labels for overlapping entities.

C. THE MULTI-TYPE NORMALIZATION MODEL

BERN uses the multi-type normalization model to more

clearly distinguish entities. Table 4 shows the statistics of

the normalization model used by BERN. We added the

disease names in the PolySearch2 dictionary (76,001 names

of 27,658 diseases) to the sieve-based entity linking dictio-

nary (76,237 names of 11,915 diseases) to increase the num-

ber of normalizable entities. We also added the drug names

in DrugBank [56] and US FDA to the tmChem dictionary.

Due to the lack of normalization models for species, BERN

normalizes species by dictionary lookup, asmentioned above.

Using tmVar 2.0, we made a dictionary of mutations with

normalized mutation names; a mutation with several names

was given one normalized name or ID.

According to the statistics, drugs/chemicals have the high-

est number of unique IDs (40% of the total), and species have

the most names per entity. If the normalization model fails to

normalize a recognized entity, the model returns a Concept

Unique Identifier-less (CUI-less) for the entity.

Table 5 shows the performance of the multi-type nor-

malization model (i.e., integrated normalization models) of

BERN. For genes/proteins, there are 75 kinds of species in the

BC3 Gene Normalization (BC3GN) test set, but GNormPlus

focuses on only 7 kinds of species. As a result, GNormPlus

obtains a much lower F1-score of 36.6% on the multispecies

test set (BC3GN) than F1-score on the human species test
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TABLE 6. Normalization results of recognized entities in 19.4 million PubMed articles.

TABLE 7. Runtime statistics for 10K PubMed articles (seconds per article,
STD: standard deviation).

set (BC2GN). For mutations, tmVar 2.0 achieved F1-scores

close to 90% on two corpora: OSIRISv1.2 and the Thomas

corpus.

Also, we tested the multi-type normalization model

on 19.4 million PubMed articles. The results are shown

in Table 6. Because we constructed a gene dictionary of

mostly Homo sapiens (i.e., human species), the percentage

of normalized genes is low (53.4%). The result obtained by

the sieve-based entity linking model had a high percentage

(90.2%) of normalized diseases. Also, the percentage of nor-

malized species was the highest (94.8%) and species were

mentioned in most of the sample articles (70%). Mutations

were mentioned the least in the articles (1.6%), but the

percentage of normalized mutations was 100% since tmVar

2.0 for mutations always provides the normalized names

of recognized entities. Although drugs/chemicals have the

highest number of IDs and the second largest number of

names in the dictionary as shown in Table 4, the percentage of

normalized drugs/chemicals is 83.0%, which may be because

Ab3P (abbreviation resolution), which is used by tmChem,

was not applied.

IV. IMPLEMENTATION

The RESTful Web service of BERN was implemented using

Python and Node.js. BERN run BioBERT NER models

which are pre-trained with TensorFlow3, on our server to

recognize incoming biomedical text such as PubMed articles

and raw text. The server specifications are as follows:

• Operating system: Ubuntu 18.04.2 LTS

• CPU: Intel Xeon E5-2687W v3

• RAM size: 128 gigabytes (GB)

• GPU: NVIDIA Titan X (Pascal) with 12 GB of memory

• Hard disk drive size: 2 terabytes

Four BioBERT NER models for genes/proteins, diseases,

drugs/chemicals, and species, use 2.4 GB (4×0.6 GB)

of GPU memory. We use 8 NVIDIA V100 GPUs for

3https://www.tensorflow.org

pre-training BioBERT, and we use a NVIDIA Titan X GPU

for making predictions. And, we use the following training

datasets to fine-tune each BioBERT NER model: BC2GM

for genes, NCBI disease for diseases, BC4CHEMD for

drugs/chemicals, and LINNAEUS for species. GNormPlus

uses 8 to 16 GB, and tmVar 2.0 uses 4 to 8 GB of memory.

And, the load time of the GNormPlus gene dictionary is about

5 seconds and the load time of the tmVar 2.0 part-of-speech

tagger is about 1 second. To reduce their load time, we run

GNormPlus and tmVar 2.0 processes in the background on

the server.

Table 7 shows the runtime statistics of BERN. The statistics

show that tmTool API calls and the NER models used by

BERN have the longest time (98.6%) in each run. If there

is no recognized entity, the multi-type normalization model

is not used. In this experiment, only one article was assigned

to each batch.

A. DEMONSTRATIONS

In the ‘‘Text’’ tab of BERN Web service, researchers can

obtain NER+NEN results of submitted raw text in PubAn-

notation JSON format, and see the visualized results under

the text window. Also, as the BERN demonstration shows,

entities are highlighted in their entity type color. When the

mouse cursor is placed on an entity name, its entity type and

entity ID are displayed in a tooltip.

Fig. 4 shows a BERN demonstration which uses the title

and abstract of PMID:30429607 article. Also, in the ‘‘PMID’’

tab of BERNWeb service, researchers can enter one or more

PMIDs to obtain results in PubAnnotation JSON or PubTator

format.

B. APPLICATION PROGRAMMING INTERFACES

BERN application programming interfaces (APIs) return

NER+NEN results for PMIDs and a raw text. For PMIDs,

the Uniform Resource Locator (URL) form used by BERN

APIs is https://bern.korea.ac.kr/pubmed/<PMID(s)>[/pubtator].

In this URL form, the PMID parameter is required but the for-

mat parameter, ‘‘/pubtator’’, is optional. For the convenience

of researchers, we made it possible to obtain NER+NEN

results by simply including one or more PMIDs in the URL.

For the ‘‘Single PMID’’ URL of Table 8, BERN returns

an NER+NEN result for a PubMed article with the fol-

lowing PMID:29446767. In addition, researchers can enter

multiple comma-separated PMIDs to obtain NER+NEN
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FIGURE 4. BERN demonstration of PMID:30429607 (best viewed in color mode).

TABLE 8. BERN APIs and URL examples (PMID: PubMed ID).

results for multiple PubMed articles at the same time.4 For

example, Table 8 shows the ‘‘PMIDs’’ URL for two PMIDs

(PMID:29446767, PMID:25681199).

PubAnnotation JSON is the default format of the result

of the APIs, which is also the format of the result of the

demonstrations. Also, researchers can obtain results in Pub-

Tator format by adding ‘‘/pubtator’’ to the end of a URL.

The ‘‘In PubTator format’’ URL of Table 8 is an example

of the result in PubTator format. In the PubTator format result,

the title is included in the first line, the abstract is included

in the second line, and then the NER+NEN result 〈PMID,

start offset, end offset, entity name, entity type, entity ID〉

of BERN is in each line. Furthermore, BERN uses a HTTPS

POST method where researchers must include their raw texts

and the ‘‘Raw texts’’ URL in Table 8 in their code. For ease

of use, we provide a sample Python code for API calls at

https://bern.korea.ac.kr.

V. DISCUSSION

A. USE CASES

There are many use cases where BERN can be used.

4Note that BERN allows up to 10 PMIDs at a time.

• Discovery of new named entities: As mentioned earlier,

BioBERT NER models can be used to discover new

entities from the latest biomedical literature. Table 9

shows new entity examples of each type discovered

by the BioBERT NER models. Although the new enti-

ties are not in the dictionaries of BERN, the BioBERT

NERmodels can discover the new entities. For instance,

the chemical compound ‘‘pentandricine’’ is not included

in the dictionaries of BERN, but the BioBERT NER

models used by BERN accurately recognize the entity

as a new chemical compound. Note that BioBERT NER

models usually discovers new entities when sufficient

contextual information (i.e., a complete sentence) is

given (e.g., the chemical compound ‘‘osimertinib’’ with-

out enough context may not be recognized by BERN).

• Information retrieval: BERN can serve as a fundamen-

tal NER+NEN model for various text mining tools.

In the field of information retrieval, entity-based search

engines such as LitVar [1] and BEST [62] can use

BERN to find entities in queries and documents. BERN

can greatly improve the performance of entity search

engines in finding co-occurring entities in queries and

documents.

• Question answering: BERN can recognize biomedical

named entities in questions and passages in question

answering tasks such as BioASQ Task B [63], [64], and

help improve performance, especially on ‘‘what’’ and

‘‘which’’ questions by classifying whether a span in a

passage is an entity or not.

• Relation extraction: BERN can generate rich datasets

for downstream biomedical text mining tasks such as

73736 VOLUME 7, 2019



D. Kim et al.: Neural Named Entity Recognition and Multi-Type Normalization Tool

TABLE 9. Discovered new entity examples of each entity type (discovered new entities (bold) and known entities (underlined)).

relation extraction [65]. For instance, BERN can easily

extract sentences with two or more recognized named

entities from a biomedical corpus. Such sentences can be

annotated, and the relationship of the recognized entities

can be extracted from an existing database to generate a

training dataset.

• A useful text mining tool: Using APIs, researchers can

obtain NER+NEN results for texts from highly accessi-

ble Web services. Researchers can use commonly used

entity IDs (e.g., HGNC IDs for genes, andMeSH IDs for

diseases) [66] in the results of BERN more effectively

for their text mining tasks.

B. ADVANTAGES AND LIMITATIONS OF HAVING A

SEPARATE NER MODEL FOR EACH ENTITY TYPE

Using a separate NER model for each entity type has the

following advantages. First, the best performing model can

be used for each entity type. In BERN, we can substitute

the BioBERT NER models with new state-of-the-art models.

Second, adding a new NER model for a different entity type

to existing NER models is relatively easy. On the other hand,

a single NERmodel that recognizes multiple entity types may

need to be trained again on the dataset due to the changes in

the architecture of the model.

However, having a separate NER model for each entity

type can lower the efficiency. Multithreading can be per-

formed to reduce the processing time, but it requires a

larger number of computing resources. Also, it is possible

to improve NER performance by multi-task learning which

trains a NER model to multiple tasks. A multi-task NER

model can show higher performance than single-task models

for various tasks with relatively few computing resources.

C. ADDITIONAL DEPENDENCIES OF BERN

As mentioned in the Section I, since BioBERT does not have

a mutation NER model, BERN uses tmVar 2.0 and tmTool

APIs for mutations. If we can obtain a high-quality training

set and build a mutation NER model that achieves higher

performance than tmVar 2.0, BERN would not have to use

tmVar 2.0 and tmTool APIs.

D. OVERCOMING THE NETWORK DISTANCE BETWEEN

A SERVER AND A CLIENT

The network delay tends to increase with the distance

between a server and a client. In such cases, cloud computing

can be used. Researchers can run a cloud machine in the

region closest to the server to reduce the distance between

the server and the client. For example, a researcher can launch

Elastic Compute Cloud (EC2) instances or Lambda functions

of AmazonWeb Services in the same region or near the region

of the server.

VI. CONCLUSION

Our proposed tool BERN recognizes known entities and

discovers new entities using BioBERT NER models. The

BioBERT models outperform NER models of existing

Web-based text mining tools in terms of F1-score on

genes/proteins, diseases, drugs/chemicals, and species. After

reviewing a vast number of cases of overlapping entities,

we developed and used the decision rules on identifying the

entity types of overlapping entities which occur frequently in

multi-type NER results. For assigning a specific ID to each

recognized entity, multiple normalization models are com-

bined and integrated into BERN. The RESTful Web service

of BERN is freely available and can be used for various types

of input. Researchers can use BERN for text mining tasks

such as new named entity discovery, information retrieval,

question answering, and relation extraction.

For future work, we plan to use a multi-task NER model

for higher NER performance. Also, we will develop a

novel entity type decision model that uses transfer learning

to consider not only the entity types and probabilities of

overlapping entities but also the deeper contextual meaning

of a text.
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