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Abstract: This paper presents a neural network adaptive controller for autonomous diving 
control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In 
general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the 
hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori be-
cause of variations of these coefficients with different operating conditions. In this paper, the 
smooth unknown dynamics of a vehicle is approximated by a neural network, and the re-
maining unstructured uncertainties, such as disturbances and unmodeled dynamics, are as-
sumed to be unbounded, although they still satisfy certain growth conditions characterized by 
‘bounding functions’ composed of known functions multiplied by unknown constants. Under 
certain relaxed assumptions pertaining to the control gain functions, the proposed control 
scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly 
ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the 
proposed control scheme, and some practical features of the control laws are also discussed. 

 
Keywords: Adaptive backstepping method, AUV, neural networks, nonlinear uncertain systems, 
URVs. 
 

1. INTRODUCTION 
 
Because of the highly nonlinear dynamics and the 

unpredictable operating environments of URVs, con-
ventional control schemes such as the PID controller 
may not be able to provide satisfactory outcomes in 
relation to the control problems experienced by un-
derwater vehicles. Therefore, high performance con-
trol systems of URVs need to have the capacities of 
learning and adapting to the variations of dynamics 
and hydrodynamic coefficients of vehicles in order to 
provide desired performance [1]. 

So far, various control strategies have been pre-
sented for the motion control of URVs. Goheen and 
Jefferys [2] proposed an adaptive control scheme for 
autopilots of autonomous and remotely operated un-
derwater vehicles, where the uncertainties composed 
of certain unknown constant parameters multiplied by 
known functions. To deal with the unstructured 
uncertainties, such as disturbances and unmodeled 
dynamics, many researchers concentrated their in-

terests on the applications of sliding mode control 
methodology [3-6]. In these literatures, the bounds of 
uncertainties were often assumed to be known a priori, 
and this was a somewhat strong restricting condition 
in the practice, because of the high nonlinearities and 
unpredictable operating environments of target plants. 
This kind of restriction was relaxed so that the 
uncertainties were bounded by unknown constants, 
and certain adaptation schemes for these constants 
were introduced in [1,7]. However, according to the 
features of the adaptation laws introduced in the above 
two literatures, nonzero tracking errors could cause 
divergence of estimations of unknown constants, and 
further cause the closed-loop systems to be unstable. 
In practice, the tracking errors will always be non-
zero due to some neglected factors. 

Almost independently from above nonlinear control 
researches, due to the approximation capacities of neural 
networks for nonlinear mappings [8,9] and their learning 
characteristics, considerable interests have been taken 
in the applications of neural networks to the control 
problems associated with URVs [10-14]. The common 
feature of these neural network control schemes was just 
to approximate the smooth uncertainties of URVs’ 
dynamics using general multi-layer neural networks, and 
the networks’ weights values were updated by back 
propagation algorithms. The back propagation algorithm, 
which is one of the gradient descent methods, is a widely 
used weights’ adjustment method for neural networks 
and has been proven to be quite effective in practice. 
However, it is difficult to obtain analytical results 
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concerning the stability of the networks [15]. In practice, 
while we can construct a neural network to approximate 
a given unknown function, we could not exactly 
determine the number of hidden neurons or the basis of a 
given unknown function a priori. Therefore, there 
always remains certain mismatching resulting in 
network’s reconstruction error. For this reason, 
robustness has become one of the most important issues 
related to neural network control problems. 

Recently, several neural network adaptive control 
schemes [16-19] have been presented for general 
nonlinear uncertain systems with various relaxed 
assumptions concerning the uncertainties. Known bound 
disturbances have been considered in [17]. Polycarpou 
[16] proposed a neural network adaptive control scheme 
for a class of strict-feedback nonlinear systems where the 
control gain functions were exactly known. Zhang et al. 
[18] expanded the above result to the general strict-
feedback nonlinear systems where the control gain 
functions were assumed to be unknown. In [19], 
unstructured uncertainties that satisfy certain growth 
conditions characterized by ‘bounding functions’ were 
considered and certain projection algorithms were used 
for the adaptation laws of networks’ weights values. 
However, there was no adaptation scheme for unknown 
bounds of networks’ weights values being introduced. 
Therefore, if the initial estimation values (certain design 
parameters) of these unknown bounds were chosen 
unsuitably (smaller than the exact values), then the 
proposed control scheme could somewhat lose the 
functional approximation capacities of the neural net-
works, even if the basis function vectors (or hidden 
layers) satisfy the persistency excitation conditions. 

In this paper, we present a semi-globally stable neural 
network adaptive control scheme for autonomous diving 
control of an AUV, where the unstructured uncertainties 
are assumed to be unbounded, although they still satisfy 
certain growth conditions characterized by ‘bounding 
functions’. All adaptation laws for the unknown bounds 
of the uncertainties are derived from the Lypunov-based 
method as well as the update laws of the networks’ 
weights values. Furthermore, we do not approximate the 
unknown control gain functions directly using neural 
networks and therefore avoid the possible controller 
singularity problem. Under certain relaxed assumptions 
on the control gain functions, the presented control 
scheme can guarantee that all the signals in the closed-
loop system are UUB. Simulation studies are included to 
illustrate the effectiveness of the presented control 
scheme and some practical features of the control law are 
also discussed. 

 
 2. PROBLEM STATEMENTS 

 
Dynamical behavior of an AUV can be described in 

a common way through 6 degree-of-freedom (DOF) 
nonlinear equations in the two coordinate frames as 

 
Fig. 1. Inertia, Earth-fixed frame and body-fixed 

frame for AUV. 
 

indicated in Fig. 1 [20] 

( ) ( ) ( ) ,
( ) ,
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where [ , , , , , ]Tx y zη φ θ ψ=  is the position and 
orientation vector in the earth-fixed frame, 

[ , , , , , ]Tu v w p q rν =  is the velocity and the angular 
rate vector in the body-fixed frame, ( )J η  is the 

transformation matrix, 6 6( )M ν ×∈ℜ  is the inertia 

matrix (including added mass), 6 6( )DC ν ×∈ℜ  is the 
matrix of Coriolis, a centripetal and damping term, 

6( )g η ∈ℜ  is the gravitational forces and moments 
vector, d  denotes the unstructured uncertainty 
vector, such as exogenous input terms and unmodeled 
dynamics, and τ  is the input torque vector. 

The diving equations of AUVs should include the 
heave velocity w , the angular velocity q  in pitch 
motion, the pitch angleθ , the depth z  and the stern 
plane deflection and/or thrust force of the propellers. 
Restrictions are placed on the vehicle in the constant 
forward motion and, for simplicity; it is assumed that 
the heave velocity during diving is small and neg-
ligible. This is quite realistic since most small un-
derwater vehicles are designed to have neutral buoy-
ancies and move slowly in the vertical direction. 
Further, in general, underwater vehicles are designed 
to have symmetric structures, so, it is reasonable to 
assume that the body fixed coordinate is located at the 
center of gravity with the gravity force equal to the 
buoyancy force of the vehicle. Consequently, the pitch 
and depth motion of the vehicle during diving can be 
expressed as the following, which is a certain 
modified expression from [20] 
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q q q
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where 0u  is a known constant forward speed, z∆ , 
which could be expressed as ( , , , , , )z zf u v w tφ θ∆∆ = , 
denotes the unmodeled dynamics and disturbance 
term, qf  and b  could be defined as 1: ( ,qf Mζ=  

, )DC g , 2: ( )b Mζ=  with 1( )ζ ⋅  and 2 ( )ζ ⋅  smooth 
functions. 

Due to the highly nonlinear characteristic of AUVs’ 
dynamics and the unpredictable operating 
environments of the vehicles, in most applications of 
AUVs, it is hard to determine the exact values of M  
and DC  in the (1) a priori. For this reason, we make 
the following assumptions on (2). 

Assumption 1: qf  and b  are smooth unknown 
functions, and b  is nonzero with known sign. With-
out any loss of generality, we assume that 0 0b b≥ >  
with 0b  being an unknown constant. Furthermore, 

we assume that 1| ( ) / | b bd b dt c ϕ− ≤ , where bϕ  is a 
known function and bc  is the smallest among the 
unknown positive constants that satisfy the above 
inequality. 

Remark 1: In general, most AUVs are designed to 
move slowly in the deep-sea environment. Further-
more, the vehicles are desired to maintain constant 
forward speeds while in diving motions. In this case, 
the control gain function b  varies slowly, and this 
causes Assumption 1 to be reasonable. 

Assumption 2: | |z z zc ϕ∆∆ ≤ , where zϕ∆  is a 
known function and zc  is the smallest among the 
unknown positive constants that satisfy the above 
inequality. 

For a given desired trajectory ( )dz t , the control 
objective is to design a neural network adaptive con-
troller for the system described by (2) such that all the 
signals in the closed-loop system are guaranteed to be 
UUB. 

Here we define the following new error variables as 
1 0 2 1 3 2, ( , ), ( , , )d dx z x z z x q z zα θ α α θ= − = − = − , 

where 0 ( )dz tα =  and 1( , )dz zα , 2 ( , , )dz zα θ  are 
stabilizing functions [21]. Then, in combination with 
Assumption 1, (2) can be expressed as 

1 0 0

2 1
1 1 1

3 2

,
,

( ) .

z

q q q

x u
x q

b x b f b

α θ
α

α τ− − −

= − − + ∆

= − +

= − + + ∆

       (3) 

In (3), 0 dzα =  is known and 1 2,α α  are also 
known design functions. However, because of the 
unknown uncertainty of term z∆ , 1 2,α α  include 
certain unknown uncertainties, too. For this reason, 
(3) can be expanded as follows 

1 0 0

2 1 1 0 1
1 1

3 2 2 0

1
2 2

,
[( / ) ( / ) ] ( / ) ,

{ [( / ) ( / )

( / ) ]} [ ( / ) ].

z

d d z

q d d

q q z

x u
x z z z u q z

b x b f z z z u

q b z

α θ
α α θ α

α α θ

α θ τ α

− −

−

= − − + ∆

= − ∂ ∂ − ∂ ∂ + − ∂ ∂ ∆

= − ∂ ∂ − ∂ ∂

+ ∂ ∂ + + ∆ − ∂ ∂ ∆

 (4) 

 
According to Assumption 1, the first term of the right 
side of the third equation in (4), denoted by F , is an 
unknown smooth function. Here we want to 
approximate this unknown smooth function F  using 
a neural network. A given unknown function F  can 
always be written in the following parametric form [9] 

* *TF W= Φ ,                        (5) 

where * *NW ∈ℜ  is an unknown constant vector, 
and * *

3( , , ) Nbν νΦ ∈ℜ  with 3 2( / )d db z zα= ∂ ∂ −  

2 0 2( / ) ( / )z u qα θ α θ∂ ∂ + ∂ ∂  is the basis function 
vector of F . If the basis of a function is exactly 
known, then the functional approximation problem 
can be converted to the well-known parameter 
estimation problem. However, in practice, we could 
not exactly know the basis of an unknown function a 
priori. Therefore, there always remains certain 
mismatching resulting in network’s reconstruction 
error. Consequently, (5) can be expressed as 

TF W ε= Φ + ,                      (6) 

where NW ∈ℜ  is the optimal weight vector of the 
constructed network, 3( , , ) Nbν νΦ ∈ℜ  is the 
constructed basis function vector, and 3( , , )bε ν ν  is 
the network’s reconstruction error. 

The optimal weight vector W  in (6) is an 
“artificial” quantity required only for analytical 
purposes. Typically, W  is chosen as the value of 

'W  that minimizes ε  for all 3, ,bν ν ∈Ω , where 
6Ω⊂ℜ  is a compact region, i.e., 

3' , ,
: arg min sup | ' |

N
T

W b
W F W

ν ν∈ℜ ∈Ω

  = − Φ 
  

.  (7) 

Substituting (6) into (4), we have 

1 0 0

2 1 1 0 1
1 1

3 2

,
[( / ) ( / ) ] ( / ) ,

[ ( / ) ].

z

d d z
T

q q z

x u
x z z z u q z

b x W b z

α θ
α α θ α

τ ε α− −

= − − + ∆

= − ∂ ∂ − ∂ ∂ + − ∂ ∂ ∆

= Φ + + + ∆ − ∂ ∂ ∆

(8) 
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Now, the previous tracking control problem for  
(2) is converted to the regulation problem of (8). Here 
we make the following assumption on the network’s 
reconstruction error and the unstructured uncertainties. 

Assumption 3: 1
2| [ ( / ) ] |q zb zε α−+ ∆ − ∂ ∂ ∆ ≤  

q qc ϕ∆ , with qϕ∆  a known function and qc  the 
smallest among the unknown positive constants that 
satisfy the above inequality. 

 
3. NEURAL NETWORK ADAPTIVE 

CONTROL DESIGN 
 
In this section, we develop a neural network 

adaptive control scheme for autonomous diving 
control of an AUV, whose dynamics can be expressed 
as (2), or the equivalent as (8), using adaptive 
backstepping method [21]. 

Step 1: 

Consider the first equation in (8) 

1 0 0 .zx uα θ= − − + ∆                  (9) 

By substituting 0 2 1,dz xα θ α= = +  into (9), we 
have 

1 0 2 0 1 .d zx z u x u α= − − − + ∆          (10) 

The first stabilizing function 1α  is chosen as follows 

1
1 0 1 1 1ˆ[( ) tanh( / )]d z z z zu z k x c xα ϕ ϕ σ−

∆ ∆= − − − ,(11) 

where 1 0k >  is a design parameter, ˆzc  is the 
estimation of zc , 0zσ >  is a design parameter, and 
tanh( )⋅  denotes hyperbolic function. Substituting (11) 
into (10) yields 

1 0 2 1 1 1ˆ tanh( / )z z z z zx u x k x c xϕ ϕ σ∆ ∆= − − + ∆ − .(12) 

Consider the following Lyapunov function candidate 

2 1 2
1 11/ 2( )z zV x cγ −= + ,              (13) 

where 0zγ >  is a weighting factor and ˆz z zc c c= −  
is the estimation error for zc . Differentiating (13) and 
substituting (12) into it, we have 

1
1 1 1

2
0 1 2 1 1 1 1 1

1

2
0 1 2 1 1 1

ˆ tanh( / )

| |

z z z

z z z z z

z z z

z z

V x x c c

u x x k x x c x x

c c

u x x k x c x

γ

ϕ ϕ σ

γ

ϕ

−

∆ ∆
−

∆

= +

= − − + ∆ −

+

≤ − − +
1

1 1ˆ tanh( / )z z z z z z zc x x c cϕ ϕ σ γ −
∆ ∆− + .      

(14) 
 

Here we use the following Lemma. 
Lemma 1: The following inequality holds for any 

0σ >  and x∀ ∈ℜ  

0 | | tanh( / )x x x σ κσ≤ − ≤ ,           (15) 

where κ  is a constant that satisfies ( 1)e κκ − −= . 
Proof: Refer to Polycarpou (1996).   

Using Lemma 1, (14) can be rewritten as 

2
1 0 1 2 1 1 1 1 1

1
1 1

| | tanh(

/ ) tanh( / )
z z z z z

z z z z z z z z

V u x x k x c x c x x

c x x c c

ϕ ϕ ϕ

σ ϕ ϕ σ γ
∆ ∆ ∆

−
∆ ∆

≤ − − + −

+ +
2

0 1 2 1 1 1 1tanh( / )z z z z z zu x x k x c c x xκ σ ϕ ϕ σ∆ ∆≤ − − + +
1

z z zc cγ −+ .                            (16) 
 

Choose the parameter update laws as follows 

[ ]1 1 0ˆ ˆtanh( / ) ( )z z z z z z z zc x x a c cγ ϕ ϕ σ∆ ∆= − − , (17) 

where 0za ≥  is a certain weighting factor, and 0zc  
is a certain design parameter. Substituting (17) into 
(16), we have 

2
1 0 1 2 1 1 0ˆ( )z z z z z zV u x x k x c a c c cκ σ≤ − − + + − . (18) 

Step 2: 
Consider the equation 

2 1 1 0

1

[( / ) ( / ) ]
( / ) .

d d

z

x z z z u
q z
α α θ

α
= − ∂ ∂ − ∂ ∂

+ − ∂ ∂ ∆
     (19) 

Similar to Step 1, here we choose the second 
stabilizing function 2α  as 

2 1 1 0 2 2 0 1[( / ) ( / ) ]d dz z z u k x u xα α α θ= ∂ ∂ − ∂ ∂ − +  

2 1 2 1 2ˆ ( / ) tanh[ ( / ) / ]z z z zc z x zα ϕ α ϕ σ∆ ∆− ∂ ∂ ∂ ∂ .(20) 
 

where 2 0k >  is a design parameter and 2ˆzc  is 
another estimation of zc , and 2 0zσ >  is a design 
parameter. Substituting (20) into (19) yields 
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2 2 2 3 0 1 2 1ˆ ( / )z zx k x x u x c zα ϕ∆= − + + − ∂ ∂  

2 1 2 1tanh[ ( / ) / ] ( / )z z zx z zα ϕ σ α∆× ∂ ∂ − ∂ ∂ ∆ .(21) 
 

Consider the following Lyapunov function candidate 

2 1 2
2 1 2 2 21/ 2( )z zV V x cγ −= + + ,         (22) 

where 2 0zγ >  is a certain weighting factor and 

2 2ˆz z zc c c= − . 
Differentiating (22) and substituting (21) into it, we 

have 

1
2 1 2 2 2 2 2

2
1 0 1 2 2 2 2 3 2 1

2 2 1 2 1 2

( / )
ˆ ( / ) tanh[ ( / ) / ]

z z z

z

z z z z

V V x x c c

V u x x k x x x x z
c x z x z

γ

α
α ϕ α ϕ σ

−

∆ ∆

= + +

= + − + − ∂ ∂ ∆

− ∂ ∂ ∂ ∂

  1
2 2 2z z zc cγ −+ .                      (23) 

According to Assumption 2 and (15) and (18), the 
above (23) can be rewritten as 

2 2
2 1 1 2 2 0 2 3

2 1 2 2 1
1

2 1 2 2 2 2
2 2

1 1 2 2 2 0

2 3 2 2 1 2 1

ˆ( )
ˆ( / ) ( / )

tanh[ ( / ) / ]

ˆ( ) ( )
( / ) tanh[ ( / )

z z z z z z

z z z z

z z z z z

z z z z z z z

z z

V k x k x c a c c c x x
c x z c x z

x z c c

k x k x c a c c c
x x c x z x z

κ σ
α ϕ α ϕ

α ϕ σ γ

κ σ σ
α ϕ α

∆ ∆
−

∆

∆

≤ − − + + − +

+ ∂ ∂ − ∂ ∂

× ∂ ∂ +

= − − + + + −

+ + ∂ ∂ ∂ ∂
1

2 2 2 2/ ]z z z z zc cϕ σ γ −
∆⋅ + .              (24) 

Choose the parameter update laws as follows 

2 2 2 1 2 1 2ˆ [ ( / ) tanh[ ( / ) / ]z z z z zc x z x zγ α ϕ α ϕ σ∆ ∆= ∂ ∂ ∂ ∂

2 2 0ˆ( )]z z za c c− − ,                (25) 

where 2 0za ≥  is a certain weighting factor. 
Substituting (25) into (24), we have 

2 2
2 1 1 2 2 2 0ˆ( ) ( )z z z z z z zV k x k x c a c c cκ σ σ≤ − − + + + −

2 2 2 0 2 3ˆ( )z z z za c c c x x+ − + .            (26) 

Step 3: 

This is the final step and the actual control input 
would be derived in this step. Consider the final 
equation in (8) 

1 1
3 2[ ( / ) ]T

q q zb x W b zτ ε α− −= Φ + + + ∆ − ∂ ∂ ∆ . (27) 

Similar to the previous step, the actual control input 
qτ  is selected as 

2
3 3 2 3 3

ˆ ˆ1/ 2 tanh( / )T
q b b b bk x x W c x xτ ϕ ϕ σ= − − − Φ −

3ˆ tanh( / )q q q qc xϕ ϕ σ∆ ∆− ,              (28) 

where 3 0k >  is a design parameter, ˆbc  and ˆqc are 

the estimation of bc , qc  defined in Assumptions 1 

and 3, and 0bσ >  and 0qσ >  are certain design 
parameters. Substituting (28) into (27) yields 

1 1
3 3 3 2 1

2
3 3

[ ( / ) ]

ˆ1/ 2 tanh( / )

T
q z

b b b b

b x k x x W b z

c x x

ε α

ϕ ϕ σ

− −= − − + Φ + + ∆ − ∂ ∂ ∆

−

3ˆ tanh( / )q q q qc xϕ ϕ σ∆ ∆− ,          (29) 

where ˆW W W= −  is the network’s weight estima-
tion error vector. 

Theorem: Consider the autonomous diving 
equation of an AUV expressed as (2) with 
Assumptions 1~3. Choose the control laws as (11), 
(20), and (28), and the parameters update laws are 
selected as (17) and (25) as follows 

3 0
ˆ ˆ[ ( )],WW x a W W= Γ Φ − −  

2 2
3 3

0

ˆ [1/ 2 tanh( / )
ˆ( )],

b b b b b

b b b

c x x
a c c

γ ϕ ϕ σ=

− −
        (30) 

3 3 0ˆ ˆ[ tanh( / ) ( )],q q q q q q q qc x x a c cγ ϕ ϕ σ= − −  

where Γ  is a strictly positive definite matrix, 
, 0b qγ γ >  are weighting factors, , , 0W b qa a a ≥  

and 0 0 0, ,b qW c c  are certain design parameters. Then, 
all the signals in the closed-loop system are 
guaranteed to be UUB. 

Proof: Consider the following Lyapunov function 
candidate 

1 2 1 1 2 1 2
3 2 31/ 2[ ]T

b b q qV V b x W W c cγ γ− − − −= + + Γ + + , 
 (31) 

where ˆb b bc c c= −  and ˆq q qc c c= −  are 
corresponding parameter estimation errors. 
 Differentiating (31) and substituting (29) into it, 
and combining this with Assumptions 1 and 3, we 
have 

2 1
3 2 3 3 2 3 3

2 2 2
3 3 3 3

1/ 2

ˆ1/ 2 tanh( / ) | |

T T
b

b b b b b q q

V V k x x x x W W W c

x c x x c xϕ ϕ ϕ σ ϕ

−≤ − − + Φ + Γ +

⋅ − +

( ) 1 1
3 3ˆ tanh / .q q q q b b b q q qc x x c c c cϕ ϕ σ γ γ− −− ⋅ + +

(32) 
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Substituting (30) into (32), we get 

2 2 2
3 1 1 2 2 3 3 2

0 2 2 2 0

0

( ) 1/ 2
ˆ ˆ( ) ( )

ˆ( )

z z z b b

q q z z z z z z z z
T

W

V k x k x k x c c
c a c c c a c c c

a W W W

κ σ σ κ σ
κ σ

≤ − − − + + +

+ + − + −

+ −
2 2 2 2

1 1 2 2 3 3
2 2 2

2 2 2

2
0 2

2 2 2
0 2 2 0 0

1/ 2(

) ( )

1/ 2 1/ 2[ || ||

( ) ( ) ( )

T
W z z

z z b b q q z z z

b b q q W

z z z z z z b b b

k x k x k x a W W a c

a c a c a c c

c c a W W

a c c a c c a c c

κ σ σ

κ σ κ σ

≤ − − − − +

+ + + + +

+ + + −

+ − + − + −
2

0 0
ˆ( ) ] ( )T

q q q Wa c c a W W W+ − + −  

3Vλ ρ≤ − + ,                           (33) 

where λ  and ρ  are positive constants defined by 

{ 1
1 2 3 min 2 2: min 2 , 2 , 2 , / ( ), , ,W z z z zk k bk a a aλ λ γ γ−= Γ

       },b b q qa aγ γ ,  (34) 

2
2 2 2

0 2 0 2 2 0

: ( ) 1/ 2 1/ 2[

|| || ( ) ( )

z z z b b q q W

z z z z z z

c c c a

W W a c c a c c

ρ κ σ σ κ σ κ σ= + + + +

⋅ − + − + −
 

2 2
0 0( ) ( ) ]b b b q q qa c c a c c+ − + − .(35) 

Let : /µ ρ λ= , then (33) satisfies 

[ ]3 30 (0) tV V e λµ µ −≤ ≤ + − .             (36) 

Therefore, 1 2 3 2
ˆ ˆ ˆ ˆ ˆ, , , , , , ,z z b qx x x W c c c c  are all UUB. 

Furthermore, since 1 2, ,dz α α  are bounded, it is 
obvious that ,z θ  and q are also bounded. 
Consequently, all the signals in the closed-loop are 
guaranteed to be UUB.   

Rewrite (33) as the following form 
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(37) 
Since 1 0k > , if 

1 1| | /x kζ≥ ,                      (38) 

then, 3 0V ≤  regardless of the values taken by other 
signals, where the strictly positive definite constant 
ζ  is defined by 
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)(||||[4/1
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ccc
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2 2 2

2 0 0 0( ) ( ) ( ) ]z z b b b q q qc c a c c a c c⋅ − + − + − .(39) 

From (38) and (39), it is easily seen that depth 
tracking error 1 dx z z= −  could be made as small as 
desired through the suitable selection of design 
parameters. 

Remark 2: In many practical applications, given a 
control plant, the constructed neural network’s op-
timal weight vector W  and the bounding parameter 

, ,z b qc c c  may not be completely unknown. Instead, 
we may have rough estimations of them through off-
line identification or other useful schemes. In this case, 
the design parameters 0 0 0, ,z bW c c  and 0qc  are 
considered as the initial estimation values of 

, ,z bW c c  and qc . From (38) and (39), we can see 
that the accurate initial estimations of these 
parameters may result in smaller tracking errors. 
 Remark 3: From (33), we can see that large 

1 2 3, ,k k k  or small 2, ,z z bσ σ σ  and qσ  may 
result in smaller tracking errors. However, increasing 

1 2 3, ,k k k  may cause certain high-gain control pro-
blems and the small values of 2, ,z z bσ σ σ  and qσ  
could result in certain infinite frequency efforts. 
Therefore, these design parameters should be chosen 
carefully in practice. 

Remark 4: Design parameters 2, , ,W z z ba a a a  
and qa  present a certain trade-off between the 
tracking performance and the robustness of the 
proposed control scheme. In particular, if the basis 
function vectors 3( , , )bν νΦ  satisfy the persistency 
excitation conditions, then 2W z za a a= =  

0b qa a= = = could result in the exact estimation of 
W . However, the persistency excitation conditions 
are difficult to satisfy in many practical applications. 
In this case, 2, , , , 0W z z b qa a a a a >  could keep the 
parameter estimations from being divergent. 

 
4. SIMULATION STUDIES 

 
The 6 degree-of-freedom dynamical model of 
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Fig. 2. Effective stern plane angle of attack. 

 

ASUM AUV, which is under development in KRISO 
[22], is employed in this simulation. The auto-diving 
equation of ASUM AUV can be expressed as follows 

0 ,

,
,

z

q q s q

z u

q
q f b

θ

θ
δ

= − + ∆

=
= + + ∆

                      (40) 

where 
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b I M M uδ

θ

θ φ

−

−

= − − + + +
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⋅ + − − + −

+ − − − −

⋅

= −

 
with sδ  stern plane angle depicted in Fig. 2. 
 

4.1. Construction of neural network 
In general, there are two types of neural networks 

usually applied in the control practice. One of them is 
the general multi-layer neural network, where the 
network’s weights values are updated by using back 
propagation algorithms, and has been proved to be the 
quite effective in practice. However, it is hard to 
obtain analytical results concerning the stability of the 
control system using this method. The other one is the 
linearly parameterized neural network (LPNN) where 
the basis function vector could be derived according 
to the physical properties of the target plants [17]. 

In this simulation, we will construct a LPNN to 
approximate the nonlinear smooth function F  de-
scribed by (4). According to the physical properties of 
AUVs [20], we construct the basis function vector of 
the neural network as follows 

3 3( , , ) [ , , ( ) , , ( ) , ]T T T T T Tb G G G bν ν ν ν ν νΦ = ⊗ ⊗ , 
(41) 

where [sin sin cos cos ]TG φ θ φ θ=  and ⊗  denotes 
Kronecker product. For more details, refer to [23]. 

So far, literatures focused on the applications of 
underwater vehicles only consider up to second order 
velocity terms of vehicles’ dynamics, because the 
higher order components are negligible, and 
furthermore, their coefficients are hard to determine 
exactly in practice. The structure of the basis function 
vector, expressed in (41), may need to be modified in 
practice to satisfy suitable performance for various 
applications. 

 
4.2 Simulation results 

According to (28), the actual control input sδ  is 
taken as 

2 1
3 3 2 3

ˆ ˆ( ) [ 1/ 2
s

T
s uu b bM u k x x W c xδδ ϕ−= − − − Φ −  

2
3 3ˆtanh( / ) tanh( / )]b b q q q qx c xϕ σ ϕ ϕ σ∆ ∆× − , (42) 

where 1 2 1 3 2, ,dx z z x x qθ α α= − = − = − , with 1α  
and 2α  are taken as (11) and (20). In the process of 
simulation, according to the physical properties of 
underwater vehicles [20], unstructured uncertainties in 
(3) are taken as 0 sinz u uθ θ∆ = − , cos(10 )q q t∆ = ⋅  
and the corresponding bounding functions are chosen 
as 0 sinz u uϕ θ θ∆ = − , 21, ( / )b q zzϕ ϕ α ϕ∆= = ∂ ∂ . 
Desired trajectory is taken as 

5 sin(0.3 ) 2cos(0.1 )dz t t= + + , and other design 
parameters are taken as 

1 2 3

2

34 34

2

2

0.3, 0.5, 0.5,
1.0,

{20, ,20},
0.3, 0.005,

5.0.

z z b q

z z b q W

z z b q

k k k

diag
a a a a a

γ γ γ γ

σ σ σ σ

×

= = =

= = = =

Γ =
= = = = =

= = = =

   (43) 

Simulation results are depicted in Figs. 3~6. Fig. 3 
shows the comparison between the true value of 
nonlinear function F  expressed in (4) and its 
approximation by a constructed neural network. From 
Fig. 3, we can see that the constructed neural network 
has satisfactory approximation capacities under the 
above simulation conditions and clearly results in a 
superior tracking performance (Fig. 4). Fig. 5 pre-
sents the corresponding control input and some 
networks’ weights estimation values are shown in Fig. 
6. All these simulation results confirm the effect-
tiveness of the proposed neural network adaptive 
control scheme. 

In the simulation procedure, we find that various 
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desired trajectories could result in different tracking 
performances, even in the divergence of the closed-
loop system, under the same simulation conditions. 
The reason for this phenomenon can be explained as 
in this case, ,ν ν  and 3b  may slip out of the com-
pact set Ω  defined in (7) for the constructed basis 
function vector 3( , , )bν νΦ  expressed in (6), and 
therefore, Assumption 3 may not be satisfied. How to 
construct the neural network (typically the basis 
function vectors or hidden layers) for different 
situations and for different plants still remains open. 

 
5. CONCLUSIONS 

 
The dynamics of underwater vehicles are highly 

nonlinear and their operating environments are hard to 
predict accurately a priori. For this reason, the 
autonomous diving equation of an AUV, which is a 
certain simplification of 6 DOF nonlinear equations of 
URVs, may include various unbound uncertainties. In 
order to deal with these unbound uncertainties, in this 
paper, we propose a robust neural network adaptive 

control scheme for autonomous diving control of an 
AUV. Unstructured uncertainties are assumed to be 
unbounded, although they still satisfy certain growth 
conditions characterized by ‘bounding functions’. All 
adaptation laws for unknown bounds of uncertainties 
are derived from the Lypunov-based method as well 
as the update laws of the networks’ weights values. 
Furthermore, we do not approximate the unknown 
control gain functions directly using neural networks 
and therefore can avoid the possible controller 
singularity problem. Simulation studies are included 
to illustrate the effectiveness of the presented control 
scheme and some practical features of the control law 
are also discussed. Further investigations on how to 
construct the basis function vectors and somewhat 
simply the structure of the stabilizing functions may 
be needed in the future practical applications. 
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