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Abstract. Atmospheric aerosols play a crucial role in the
Earth’s system, but their role is not completely understood,
partly because of the large variability in their properties re-
sulting from a large number of possible aerosol sources. Re-
cently developed lidar-based techniques were able to retrieve
the height distributions of optical and microphysical proper-
ties of fine-mode and coarse-mode particles, providing the
types of the aerosols. One such technique is based on arti-
ficial neural networks (ANNs). In this article, a Neural Net-
work Aerosol Typing Algorithm Based on Lidar Data (NA-
TALI) was developed to estimate the most probable aerosol
type from a set of multispectral lidar data. The algorithm was
adjusted to run on the EARLINET 3β + 2α(+1δ) profiles.
The NATALI algorithm is based on the ability of special-
ized ANNs to resolve the overlapping values of the inten-
sive optical parameters, calculated for each identified layer
in the multiwavelength Raman lidar profiles. The ANNs were
trained using synthetic data, for which a new aerosol model
was developed. Two parallel typing schemes were imple-
mented in order to accommodate data sets containing (or not)
the measured linear particle depolarization ratios (LPDRs):
(a) identification of 14 aerosol mixtures (high-resolution typ-
ing) if the LPDR is available in the input data files, and
(b) identification of five predominant aerosol types (low-
resolution typing) if the LPDR is not provided. For each
scheme, three ANNs were run simultaneously, and a voting
procedure selects the most probable aerosol type. The whole
algorithm has been integrated into a Python application. The
limitation of NATALI is that the results are strongly depen-
dent on the input data, and thus the outputs should be un-
derstood accordingly. Additional applications of NATALI are
feasible, e.g. testing the quality of the optical data and iden-

tifying incorrect calibration or insufficient cloud screening.
Blind tests on EARLINET data samples showed the capa-
bility of NATALI to retrieve the aerosol type from a large
variety of data, with different levels of quality and physical
content.

1 Introduction

Aerosols represent an important component of the Earth’s
system with a significant impact on climate (e.g. Seinfeld
et al., 2016), weather (e.g. Fan et al., 2016; Gayatri et al.,
2017; Marinescu et al., 2017), air quality (e.g. Fuzzi et al.,
2015), biogeochemical cycles (e.g. Mahowald, 2011; Ma-
howald et al., 2017), and health (e.g. Trippetta et al., 2016). A
wide variety of aerosols are present in the atmosphere at any
time, originating from multiple natural (e.g. mineral dust, sea
spray, biogenic emissions, volcanic eruptions) and anthro-
pogenic sources (e.g. traffic, industrial activities, biomass
burning) and having a large variability in space and time (e.g.
Calvo et al., 2013, and their references therein). This large
variety and variability of the aerosols results in uncertain-
ties of their impact. For example, aerosols can influence the
microphysical properties of clouds and hence can have an
impact on the energy balance, precipitation, and the hydro-
logical cycle.

Aerosols have different scattering and absorption proper-
ties depending on their origin, with the largest radiative con-
tribution coming from aerosols with radii between 0.1 and
1 µm (Satheesh and Krishna, 2005). Seinfeld et al. (2016) in-
dicated that the uncertainties of the radiative forcing asso-
ciated with the aerosol–cloud interactions have not changed
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over the last four IPCC reports. Understanding the aerosol
sources should reduce the uncertainties of their impact. De-
tailed knowledge of the aerosol sources can also be used
to attribute their role to specific processes, evaluate aerosol
models, and design better evidence-based air-quality regula-
tions.

Global and local properties of atmospheric aerosols have
been extensively observed and measured using both space-
borne and ground-based instruments, especially during the
last decade. Satellite remote-sensing observations have been
exploited to characterize aerosol layers and to assess param-
eterizations for regional and global models (e.g. Amiridis
et al., 2010). Global networks of sun/sky radiometers, such
as AErosol RObotic NEtwork (AERONET, Holben et al.,
1998) measure the spectral aerosol optical depth (AOD)
(e.g. Dubovik et al., 2002; Cattrall et al., 2005; Hamill
et al., 2016). The magnitude of the AOD together with the
Ångström exponent (i.e. the AOD dependence on the wave-
length) can be used to infer the aerosol type, although in-
formation about the source is required (e.g. Boselli et al.,
2012; Giles et al., 2012). However, the measurements av-
eraged over the entire atmospheric column cannot provide
information regarding the vertical distribution of particles.

Active remote-sensing instruments, such as lidars, have
been used to distinguish between different aerosol types
by providing vertical profiles of aerosol optical properties
(Müller et al., 2005, 2007; Groß et al., 2013; Nemuc et al.,
2013; Samaras et al., 2015; Marmureanu et al., 2016, 2017),
as well to understand the three-dimensional structure and
variability in time of the aerosol field (e.g. Freudenthaler
et al., 2009; Ansmann et al., 2010; Mattis et al., 2010;
Gasteiger et al., 2011a, b). Even if detailed studies of aerosol
optical properties have been conducted (e.g. Brock et al.,
2016a, b; Palacios-Peña et al., 2018), there are no straight-
forward links between the optical properties and the aerosol
sources given that atmospheric aerosol occurs as a mixture
of types (e.g. David et al., 2013); thus they are difficult to
characterize.

Recent advances in atmospheric aerosol measurements
have helped to address some of these issues, in particular,
to separate different types of aerosols and their mixtures.
For example, Burton et al. (2012) analysed lidar measure-
ments of aerosol parameters (i.e. lidar ratio, depolarization,
backscatter colour ratio, spectral depolarization ratio) col-
lected by the NASA Langley Research Center airborne High
Spectral Resolution Lidar (HSRL, Hair et al., 2008) during
measurement campaigns over North America. They showed
that these parameters vary with location and with the aerosol
type and thus can help to distinguish between different types
of aerosols (e.g. HSRL measurements indicated lidar ratio
can be used to discriminate between ice and dust and spec-
tral particle depolarization to discriminate between urban and
biomass-burning aerosols). Another important advancement
in the remote sensing of aerosols was the development of
ground-based lidar networks, which provide quality-assured

optical profiles on a large temporal and spatial scale. One
such network is the European Aerosol Research Lidar Net-
work (EARLINET) (Pappalardo et al., 2014) established in
2000 with the goal of developing a continental database of
the temporal and spatial distribution of aerosols. The EAR-
LINET data are not only relevant for climatological studies,
but also for special events, with strong aerosol influence,
such as Saharan dust outbreaks, forest-fire smoke plumes
transported over large areas, photochemical smog, and vol-
cano eruptions (Tesche et al., 2009b; Mona et al., 2012;
Nicolae et al., 2013; Tesche et al., 2011; Ortiz-Amezcua
et al., 2017; Vaughan et al., 2018). Recent efforts have fo-
cused on making complementary use of different instruments
such as lidar and sun or sky photometry at combined EAR-
LINET and AERONET stations (e.g. Ansmann et al., 2002,
2010; Müller et al., 2010; Alados-Arboledas et al., 2011;
Mamouri et al., 2012; Granados-Muñoz et al., 2016; Per-
one and Bulizzi, 2016). Several other approaches have been
developed by using the combination of ground-based mea-
surements with airborne HSRLs lidars and satellite data (e.g.
Liu et al., 2002; Tesche et al., 2009b; Omar et al., 2009;
Kahn et al., 2010; Burton et al., 2012, 2013, 2014, 2015;
Groß et al., 2013; Kahn and Gaitley, 2015; Papagiannopou-
los et al., 2016).

All these studies have revealed the existence of a wide
variety of aerosols that are difficult to classify due to a se-
ries of drawbacks (e.g. many aerosol types have similar op-
tical properties). Another issue in aerosol classification is
the difficulty in correlating their optical properties with their
sources. In reality, atmospheric aerosols are mixtures from
many sources, and data on pure aerosol types are sparse.
To address these issues, systematic measurements and in-
tensive measurement campaigns have been performed us-
ing different methods for aerosol typing (e.g. Tesche et al.,
2009a; Burton et al., 2014) and complementary information
such as trajectory and dispersion models analysis to estimate
the origin of aerosols (e.g. Stohl et al., 2003; Stein et al.,
2016). Since 2000, EARLINET network has systematically
measured the properties of aerosols from different sources
over Europe. Intense campaigns, like ACE-Asia (Asian Pa-
cific Regional Aerosol Characterization Experiment, Mu-
rayama et al., 2003), SAMUM-1 (Saharan Mineral Dust Ex-
periment, Morocco, Tesche et al., 2009b), SAMUM-2 (Sa-
haran Mineral Dust Experiment, Cabo Verde, Groß et al.,
2011), SALTRACE (Saharan Aerosol Long-range Trans-
port and Aerosol–Cloud-Interaction Experiment, Groß et al.,
2015), ChArMEx/EMEP (Chemistry-Aerosol Mediterranean
Experiment, Granados-Muñoz et al., 2016) have helped to
understand the optical properties of aerosols (pure dust and
mixtures) or anthropogenic aerosols from industrial areas.
Furthermore, recent events, like the eruptions of Eyjafjalla-
jökull in 2010 and Grimsvötn in 2011 offered a rare opportu-
nity to perform studies on the optical properties of volcanic
aerosols (e.g. Sicard et al., 2012; Mona et al., 2012; Tesche
et al., 2012).
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The multitude of instruments and retrievals resulted in an
increasing amount of data on aerosol properties that had to
be processed and classified. One possible way of process-
ing large amounts of data, with the aim of distinguishing
between different aerosol types, is to exploit artificial neu-
ral networks (ANNs). Starting from the premise that the best
way to distinguish between certain data (e.g. image recog-
nition, speech recognition, medical diagnosis) is the human
experience based on learning and education, the ANNs were
developed to solve problems in the same way that a human
brain might. An ANN represents a mathematical projection
of the brain in which the information propagates as a neural
influx and it is analysed. The ANN contain tens to hundreds
of neurons divided into multiple layers depending on the data
to be classified. The output of the first layer of neurons repre-
sents the input to the next layer. The data for analysis must be
constrained to a pattern and the ANNs need to learn to iden-
tify this pattern. During the learning process, some weights
of the connections between neurons are established. Learning
in the case ANNs means changing these weights each time
that training data are presented to the network. The change is
based on the amount of error in the output compared to the
expected result. A comprehensive description of the ANNs
theory can be found in Bishop (2000), Picton (2000), and
Nielsen (2015).

The capability of ANNs in classifying data has been
widely proven in many areas of research (e.g. Jain et al.,
2000). Over the last decades, ANNs were used for remote-
sensing applications such as radars (e.g. Orlandini and Mor-
lini, 2000), microwave radiometers (e.g. Roberts et al.,
2010), satellite retrievals (e.g. Ali et al., 2012), multi-angle
spectropolarimeters (e.g. Di Noia et al., 2015), nephelome-
ters (e.g. Berdnik and Loikov, 2016), or multiple sources
data sets (Gupta and Christopher, 2009; Taylor et al., 2014).
In this article, an in-house-developed ANN algorithm for
aerosol typing is introduced. The algorithm relies on a set of
ANNs which are trained to recognize the aerosol type based
on typical lidar data products from EARLINET, i.e. three
backscatter coefficients (β) at 1064, 532, and 355 nm, two
extinction coefficients (α) at 532 and 355 nm, and, optional,
one linear particle depolarization (δ) at 532 nm. To distin-
guish between different aerosol types and their mixtures, the
optical data presented to the ANNs have to be characteris-
tic (i.e. to be independent on the density of the particles).
Therefore the 3β + 2α(+1δ) lidar data are at first used to
compute the intensive properties such as Ångström exponent
(AE), colour ratios (CR), colour indexes (CI), and lidar ratios
(LR).

The ability of the ANNs to retrieve the aerosol type de-
pends strongly on the physical content and the uncertainty of
the optical inputs as well as on the structure of the ANN and
the training process, including the extent of the data set used
for this purpose. To create a consistent picture of the aerosol
types, an aerosol model representing the optical properties
of different aerosol was developed. This model is capable of

reproducing the observed aerosol properties and thus can be
used to construct a representative and statistically relevant
synthetic database. This synthetic data set is needed due to
sparse observational data sets that are statistically relevant,
well characterized, and representative of the whole spectrum
of the aerosol types. The aerosol model was constructed to
simulate a large number of lidar measurements (i.e. syn-
thetic data set) which were then used as input data to train
the ANNs. The output data from ANNs consists of the most
probable aerosol type within the identified layers.

This article is organized as follows. The aerosol model
that was used to generate the synthetic data set of lidar
measurements is described in Sect. 2.1. The synthetic data
set is then used as input for the ANNs, the core of the
aerosol-typing algorithm, presented in Sect. 2.2. Section 2.3
and 2.4 describe the Neural Network Aerosol Typing Algo-
rithm Based on Lidar Data (NATALI). The comparison be-
tween the aerosol model output and the lidar measurements
from previous studies is discussed in Sect. 3.1. Section 3.2
describes the performance of the ANNs. The comparison be-
tween the EARLINET-CALIPSO classification and NATALI
is presented in Sect. 3.3. Finally, Sect. 4 summarizes this ar-
ticle.

2 Methodology

2.1 The aerosol model

An aerosol model was developed to calculate the opti-
cal properties of pure aerosols which are generated by
a single source (e.g. dust produced by the deserts, ma-
rine particles produces by the oceans). In this article, six
classes of pure aerosol are considered: continental, conti-
nental polluted, dust, marine, smoke, and volcanic (Table 1).
The aerosol model combines the Global Aerosol Data Set
(GADS, Koepke et al., 1997) along with the T-matrix numer-
ical method (Waterman, 1971; Mishchenko et al., 1996) to
iteratively compute the intensive optical properties of each
aerosol type. The chemical composition of each pure aerosol
type was picked up from the OPAC (Optical Properties of
Aerosols and Clouds) software package (Hess et al., 1998).
The chemical composition of each aerosol type was varied
in certain limits (the limits are detailed in Table 2 and refer
to particle number density mixing ratios) in order to repro-
duce the large variety of particles present in the atmosphere.
The synthetic database developed using the aerosol model
is built for 350, 550, and 1000 nm sounding wavelengths.
These wavelengths were selected from the 61 wavelengths
(0.25–40 µm) of OPAC for which the microphysical charac-
teristics of the aerosols are available from GADS. The se-
lected wavelengths are then rescaled to the usual lidar wave-
lengths (i.e. 355, 532, and 1064 nm) using an Ångström ex-
ponent equal to 1. This was considered a valid assumption
for all aerosol types, taking into account the small difference
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Table 1. Conventional names of the aerosol types.

Aerosol type Source Particle characteristics

Continental Land surfaces Medium size, medium spherical, medium absorbing
Dust Desert surfaces Karge, non-spherical, medium absorbing
Continental polluted Industrial sites Small, spherical, highly absorbing
Marine Sea surface Large, aspherical, non-absorbing
Smoke Vegetation fires Small, spherical, highly absorbing
Volcanic Volcanoes Large, non-spherical, highly absorbing
Mixtures Mixed Combinations of the above

Table 2. Pure aerosol types and components.

Aerosol types Basic component types
Range variation of the number density

Aspect ratiomixing ratios for aerosol components
(limits are consistent with OPAC and literature)

Continental
Water soluble 0.4914–0.5914

1.100Insoluble 0.0086–0.0086
Soot 0.4000–0.5000

Continental polluted

Water soluble 0.1998–0.2998

1.040
Insoluble 1.8E-4–1.8E-4
Soot 0.6000–0.7000
Sulfate 0.1000–0.1000

Smoke
Water soluble 0.3900–0.4900

1.150Soot 0.5000–0.6000
Sulfate 0.0100–0.0100

Dust

Water soluble 0.1949–0.2949

0.870

Mineral
Nucleation mode 0.1170–0.1170
Accumulation mode 0.0880–0.0880
Coarse mode 0.6e-04–0.6e-04

Soot 0.5000–0.6000

Marine

Water soluble 0.1652–0.1662

1.007
Sea salt

Accumulation mode 0.8320–0.8320
Coarse mode 0.0e+00–0.1e-06

Insoluble 0.5000–0.6000

Volcanic

Mineral

0.850

Nucleation mode 0.0915–0.1070
Accumulation mode 0.1470–0.1719
Coarse mode 0.4e-04–0.5e-04

Sulfate 0.0391–0.0457
Soot 0.6753–0.7224

between the lidar and the model wavelengths. If required, the
aerosol model can be extended to other wavelengths.

Each pure aerosol type is built as an internal mixture of
basic components which do not interact physically or chem-
ically, having different mixing ratios. The basic components
are picked up from OPAC: water soluble, insoluble, soot,
mineral (nucleation, accumulation, coarse), sulfates, and sea
salt (accumulation, coarse). The GADS database is used for

the microphysical properties of each component (Koepke
et al., 1997). However, with the current values of the com-
plex refractive index of soot in GADS, values greater than 1.2
for the Ångström exponent (550/350 nm) cannot be achieved
for smoke and continental-polluted types. Based on the find-
ings of Schnaiter et al. (2003) and Henriksen et al. (2007), a
typical value of 1.41 was considered for the real part of the
refractive index, instead of 1.75 as it is currently in GADS.
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In the aerosol model, particles were considered to be
spheroids with different aspect ratios (i.e. the ratio of the po-
lar to equatorial lengths) to simulate the aerosol anisotropy
(Table 2). Dust and volcanic aerosols were considered oblate
(i.e. aspect ratio < 1). Also, the proportion of soot was in-
creased to counterbalance for the low hematite (iron oxide)
content, consistent with Dubovik et al. (2002) and Gasteiger
et al. (2011b).

Starting from the microphysical properties (i.e. mode ra-
dius, width of the log-normal distribution, number density,
density, and mass concentration) of each component, the mi-
crophysical properties of the pure aerosol were calculated by
varying the critical component in certain limits (i.e. its num-
ber density mixing ratio), while the total mixture is normal-
ized to 1 (Table 2). The mixing ratio of the aerosol compo-
nents is given by

µj =
Nj

Nt
; j = 1,NC, (1)

where NC represents the number of components, Nt is the
total number of particles, Nj is the number of particles for
component j , and the boundary condition is given by
∑

j

µj = 1; j = 1,NC. (2)

For each wavelength selected in the aerosol model, the real
and the imaginary parts of the complex refractive index were
determined with the Lorentz–Lorentz model:

m2
p − 1

m2
p + 2

=
∑

j

µj ·
m2

j − 1

m2
j + 2

; j = 1,NC, (3)

where mp and mj represent the complex refractive index for
the particle and for the j components of the aerosol mixture.
The aerosol radius (rp) is calculated with the following equa-
tion

rp = 3

√

∑

j

µj ·
(

rmod
j

)3
; j = 1,NC, (4)

where rmod
j is the radius of the component j with respect to

relative humidity (RH). The aerosol size distribution (n(r))
as a function of aerosol radius (r) assuming mono-modal log-
normal distribution is given by

n(r) =
1

√
2 · π · ln

(

σp

)

· r
· e

[

−
(

ln(r)−ln(rp)√
2·ln(σ )

)2
]

, (5)

j = 1,NC

where σp =
∑

jµj · σj represents the width of the distribu-
tion for aerosols, and σj is the width of the distribution for
component j (computed as the standard deviation of the log
of the distribution with rmod

j mod radius).

Using the calculated microphysical properties with the T-
matrix code (Mishchenko and Travis, 1994), the effective
cross section for the particle scattering (Csca) and extinction
(Cext) as well as the scattering matrix elements (phase func-
tions) were obtained. These parameters are further used to
determine (for a single particle) the aerosol optical parame-
ters. The extinction coefficient (α) is determined from Eq. (6)
and the backscatter coefficient (β) from Eq. (7), where F11 is
the first element of the scattering matrix (phase function).

α =
Rmax
∫

Rmin

Cext · n(r)dr (6)

β =
Rmax
∫

Rmin

Csca ·
F11 (180◦)

4 · π
· n(r)dr (7)

The integration domain (Rmin : Rmax), for which the effec-
tive radius, the extinction coefficient, and scattering coeffi-
cient are calculated, covers medium-size particles with a ra-
dius between 0.1 and 5.0 µm that contribute to the scattering
and extinction of light. The radius was not increased further
due to computing time limitations and model design limi-
tations (i.e. the code used for the calculation of the optical
parameters for spheroids does not achieve the convergence
for non-spherical particles). However, the latter limitation is
not considered critical for the range of lidar wavelengths.

The single-scattering albedo (ω) is yielded as the ratio of
the scattering and extinction effective cross sections:

ω =
Csca

Cext
. (8)

The lidar ratio (LR) is determined by the following relation-
ship,

LR =
4 · π

ω · F11 (180◦)
, (9)

while the particle linear depolarization (δ) is calculated based
on the elements of the scattering matrix,

δ =
F11 − F22

F11 + F22
. (10)

The algorithm is iterated for each composition, wavelength,
and RH value until the entire selected domain is covered.
The domain represents the range in which the parameters
are varied (e.g. the domain for the wavelength is [350, 500,
1000 nm]; the domain for RH is [50 %, 70 %, 80 %, 90 %];
the domain for the number density mixing ratios for each
component of each pure aerosol type is listed in Table 2).
The algorithm generates the properties and mixing ratio of
each component, the optical and microphysical properties of
the aerosol, for each wavelength, each RH value, and each
composition.
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Four classes of RH (i.e., 50 %, 70 %, 80 %, 90 %) are con-
sidered, out of the eight classes in OPAC. The high RH values
(i.e. above 90 %) were excluded in order to avoid ambiguous
results related to activation of the hygroscopic particles. Dry
particles, those with 0 % RH, considered too rarely present
in the ambient atmosphere. For a better representation of the
particle growth, the OPAC RH classes were linearly interpo-
lated with a 1 % step for pure types and 5 % for mixed types
and linearly extrapolated down to 40 %. Thus, within a 40 %–
90 % range the hygroscopic growth is considered linear for
all pure aerosols included in the model.

Even while considering a certain variation of the aerosol
composition and of RH, the simulated optical parameters are
not covering the whole range of measured values. This is
partly due to the limitations of the model itself and partly
due to the various uncertainties associated with the mea-
surements, either due to the instrument (e.g. biases, cali-
bration) or due to the data treatment (e.g. algorithms ap-
plied in preprocessing to correct or average raw signals, al-
gorithms used to calculate data products). Optical parameters
calculated from lidar measurements are reported in the EAR-
LINET database as the mean value (xmed) and associated un-
certainty (absolute error, 1x). Optical parameters calculated
from synthetic data do not carry this uncertainty; therefore
a fixed relative error was considered, which was multiplied
with the value to obtain the absolute error (uncertainty). For
the actual retrieval of the aerosol type, any value between
(xmed − uncertainty) and (xmed + uncertainty) was possible;
therefore the algorithm was applied for all these values with
a certain step (i.e. the finesse). The output is a “bundle” of
possible aerosol types, with a dimension equal to the finesse.
A compromise should be made between the finesse and com-
puting time.

Based on the values reported in the literature (e.g. Ans-
mann et al., 2002; Freudenthaler et al., 2009), a large un-
certainty is associated with the extinction coefficient derived
with the Raman method, mainly due to noisy Raman lidar
signals (i.e. the relative error reported in the lidar measure-
ments is 30 %–150 % and the fixed relative error considered
in the synthetic data is 50 %). Particle depolarization is very
sensitive to the calibration, both for the raw signals of the two
channels and for the backscattering. Thus, the values for par-
ticle depolarization also have a significant uncertainty (i.e.
the relative error reported in the lidar measurements is 2 %–
50 % and the fixed relative error considered in the synthetic
data is 30 %). The backscatter coefficient calculated from the
combination of Raman-elastic channels is less sensitive (i.e.
the relative error reported in the lidar measurements is 10 %–
50 % and the fixed relative error considered in the synthetic
data is 20 %). Even in the case of HSRL, for which the ex-
tinction and the backscattering are independently calculated,
the cross-talk between the Mie and the Rayleigh channels
still introduces systematic errors, which are larger for the ex-
tinction than for the backscattering.

The relative errors considered here are 50 % for the ex-
tinction, 20 % for the backscattering and 30 % for the depo-
larization. Note that these values were assumed to be inclu-
sive to mimic high-precision but also moderate-precision re-
trieved parameters. Although for the microphysical inversion
the recommended maximum value for the uncertainty of the
optical parameters is 20 % (Müller et al., 1999a, b), this is not
critical for aerosol classification, as long as a relevant num-
ber of parameters is provided (e.g. measured lidar ratios and
Ångström exponent are required).

Table 4 shows the aerosol types considered in this study:
six pure aerosols, seven mixtures of two pure aerosols, and
two mixtures of three pure aerosols. The mixtures were ob-
tained by linear combination of pure aerosol properties. The
mixtures composed of only two pure types were consid-
ered not sufficient. For example, transcontinental transport
involves at least three types of pure aerosols (e.g. trans-
port from Africa to Europe can result in a mixture of conti-
nental, dust, and marine aerosols). Adding marine aerosols
drastically changes the optical properties of the mixtures
of two pure aerosols. Thus, mixtures of three aerosol types
were considered, especially those containing marine types.
From the total number of possible mixtures of two and three
aerosols (i.e. 35 mixtures), only those that are most fre-
quently observed and can still be distinguished were selected
(i.e. 9 mixtures; see Table 4). This selection of mixtures was
also a compromise between the time performance of the al-
gorithm and the minimum number of output aerosol types
considered significant in atmosphere.

The generated optical properties of pure aerosols and mix-
tures serve as a basis for the determination of the extinction
Ångström exponent (κext) and the backscatter Ångström ex-
ponent (κbsca), also referred to as a colour ratio, for each
wavelength combination (Fig. 1). Thus, the Ångström expo-
nent is given by the relationship

κext = −
ln

(

αλ1/αλ2

)

ln(λ1/λ2)
. (11)

Similarly, the backscatter Ångström coefficient (colour in-
dex) can be determined using the equation

κbsca = −
ln

(

βλ1/βλ2

)

ln(λ1/λ2)
. (12)

After the calculation of the spectral parameters for pure and
mixed aerosols, the synthetic data are used as an input for the
artificial neural networks.

2.2 The architecture artificial neural networks

The ANNs can be calibrated or “trained” for a specific pur-
pose. Here, ANNs are trained to classify aerosols using
solely the lidar intensive properties as input data, without any
complementary information. The ANNs used here to clas-
sify aerosols were developed using NeuroSolutions a neu-

Atmos. Chem. Phys., 18, 14511–14537, 2018 www.atmos-chem-phys.net/18/14511/2018/



D. Nicolae et al.: A neural network aerosol-typing algorithm based on lidar data 14517

Figure 1. The generation chain of the synthetic data for the NATALI algorithm.

ral network development environment. Several ANNs archi-
tectures have been explored: Multilayer Perceptron (MLP),
Jordan/Elman Network (JE), Generalized Feed Forward Net-
work (GFF), Self-Organizing Feature Maps (SOFM), Recur-
rent Neural Network (RNN). Each ANN architecture con-
tains several hidden layers and different learning rules. Each
layer is composed of a vector of processing elements of iden-
tical parameters (e.g. TanhAxon, SigmoidAxon, LinearTan-
hAxon) with an associated learning rule and learning param-
eters.

No significant improvement in the classification of the
aerosols has been achieved for different types of processing
elements on the ANN structure. Thus, TanhAxon were subse-
quently used. The TanhAxon applies a bias and a hyperbolic
tangent function (i.e. tanh) to each neuron in the layer and re-
places a part of the tanh by a line with a slope β. The values
of each neuron are forced to be in the interval −1 and 1. For
TanhAxon the activation function is defined as

f (xi,wi) = tanh
[

xlin
i

]

, (13)

where xlin
i = βxi and wi is the bias vector.

Supervised training has been used to train ANNs. Thus,
sets of input and output parameters have been being succes-
sively presented to the networks for around 1000 epochs (i.e.

one forward pass and one backward pass of all the training
examples) per training cycle. Backpropagation is the most
common form for training ANNs with more than one hidden
layer. In the case of backpropagation, the weights on input el-
ements are changed based on their previous value and a cor-
rection term. This training approach has been used also for
the design of the NATALI ANN: the input data being contin-
uously presented to the ANN and the output compared with
the known aerosol type from synthetic database in order to
adjust the weights until the desired result is achieved. The op-
timal values of weights and the minimum errors were taken
into account for the testing process. The minimum classifi-
cation errors were 75 % for more than 80 % of the measured
data and 75 % for more than 90 % of the synthetic data.

Several learning rules have been tested: momentum, con-
jugate gradient descent, step, and Levenberg–Marquardt. The
momentum learning rule is a simple and efficient approach in
comparison with a standard gradient. It provides the gradient
descent with some inertia, depending on the momentum pa-
rameter, which gives the smoothness of the gradient estima-
tion. The momentum parameter is the same for all processing
elements on a layer. The conjugate gradient has no parame-
ters that need to be adjusted (e.g. learning rates, momentum
parameter) and is faster and more accurate with respect to the
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Table 3. Selected types of artificial neural networks and their structures.

ANN type ANN architecture Advantages Disadvantages

JE1

6 hidden layers
Momentum learning rule
Processing elements Good percentage of training

50 for the first four layers per aerosol class. Slow training/time consuming.
45 for the fifth layer Stable performances and Reach the training limit rapidly.
37 for the sixth layer approximatively constant for

Tanh axons all aerosols classes.
Trained for at least five cycles
of 1000 epochs

JE2

8 hidden layers
Conjugate gradient learning rule
Processing elements

50 for the first four layers Good percentage of training Only few training cycles can be done.
45 for the fifth layer per aerosol class. Limited performance improvement
37 for the sixth layer Rapid training. after training.
32 for the seventh layer
28 for the eight layer

Tanh axons
Trained for at least five cycles
of 1000 epochs

GFF

10 hidden layers
Momentum learning rule It trains efficiently only
Processing elements several cycles a further improvement

50 for the first four layers Low error of training after of weights cannot be considered.
45 for the fifth layer two training cycles. Stable active performances per aerosol
37 for the sixth layer Rapid training. type overall but lower values

Tanh axons for several classes.
Trained for at least five cycles
of 1000 epochs

Table 4. Correspondence between the aerosol types defined in the algorithm, as they can be retrieved by NATALI in high resolution and low
resolution.

Aerosol types
High-resolution type Low-resolution typing Low-resolution typing
(AH) with depolarization (AL) without depolarization (BL)

Continental Continental Continental Continental
Continental polluted Continental polluted Continental polluted Continental polluted
Smoke Smoke Smoke Smoke
Dust Dust Dust Dust
Marine Marine Marine Marine
Volcanic Volcanic Volcanic Dust or continental

Continental and dust Continental dust Continental or dust Continental or dust
Dust and marine Marine mineral Dust or marine Dust or marine
Volcanic and marine Marine mineral Dust or marine Dust or marine
Continental and smoke Continental smoke Continental polluted or smoke Continental polluted or smoke
Dust and smoke Dust polluted Dust or smoke Dust or smoke
Continental and marine Coastal Continental or marine Continental or marine
Continental polluted and marine Coastal polluted Continental polluted or marine Continental polluted or marine

Continental and dust and marine Mixed dust Continental or dust Continental or dust
Continental and smoke and marine mixed smoke Continental polluted or smoke Continental polluted or smoke
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Figure 2. Artificial neural network logical scheme for the NATALI
algorithm.

standard backpropagation. The other two rules, the step rule
– a type of standard gradient descent algorithm that allows
the user to set a default step size for all weights within the
activation component – and the Levenberg–Marquardt rule,
which gives a numerical solution to the problem of minimiz-
ing a non-linear function, were found inadequate for aerosol-
typing purpose. The step rule recognized all aerosol types
after the first training cycle, but its active performance was
low. The Levenberg–Marquardt algorithm was blocked after
several epochs.

The cross-validation and test set methods have been used
to stop the learning process and to assess the performances.
Cross-validation monitors the error for a set of data and stops
training when this error begins to increase. After a full pro-
cess of training, in our case 5–10 training cycles, a testing
set of data is presented to the ANN and the network output is
compared with the known aerosol type from the synthetic
database. In total 68 ANN structures have been explored,
starting from the simplest (reduced number of hidden layers)
to the most complex ones in order to compromise between
the minimum possible time of training and testing, and avoid-
ing saturation effects. Examples of six pure, seven double-
component mixtures, and two triple-component mixtures ob-
tained within the 68 explored ANN are presented in Table 4.
For the selection of the ANNs, the synthetic database has
been split randomly into data used to train the ANN (70 %
of all synthetic data sets), data used to test ANN (20 % of all
synthetic data sets), and data used for validation (10 % of all
synthetic data sets). In the training process, data sets are pre-
sented to the ANN with the correct answer. The training is
performed iteratively until the testing and validation classifi-
cation errors are below 25 % (Fig. 2). A finer adjustment of

the weighting coefficients is done during the testing process.
The last 10 % of the data are presented to the ANN without
the known result in order to validate the optimum training
process and the capability of the network to classify new data
inputs.

Three basic ANNs (adjusted to accommodate all data)
have been chosen as appropriate to classify the multiwave-
length lidar data in parallel, for both high- and low-resolution
classification: the Jordan–Elman with 6 or 8 hidden layers,
and the generalized feedforward with 10 hidden layers (Ta-
ble 3). The selected types of ANNs classify the aerosols
based on the response with higher confidence (i.e. the prob-
ability of having one of the aerosol types). The ANNs
have been trained using 3500 samples for each aerosol type
and successive training sessions until the best weights are
reached (i.e. the classification process is ended, and the clas-
sification errors are low).

2.3 The typing algorithm

Following the methodology described in Sect. 2.1 and tak-
ing into account the uncertainty threshold of each optical pa-
rameter, a bundle of inputs for each measured or simulated
aerosol layer was generated. Answers with low confidence
are filtered out (e.g. by using a threshold of minimum 0.7
confidence). The correct answer is selected based on a statis-
tical approach considering two criteria: (a) which answer has
a higher confidence; (b) which answer is more stable over the
uncertainty range.

The input parameters for NATALI are typical data prod-
ucts from EARLINET database: backscatter coefficient (β)
profiles at 1064, 532 and 355 nm, extinction coefficient (α)
profiles at 532 and 355 nm, and, optionally, linear particle
depolarization (δ) profile at 532 nm. The identification of
aerosol types is not always possible due to its dependence
on the physical content (i.e. with or without δ) and the qual-
ity of the optical data (i.e. calibration, uncertainty). For these
reasons three classification schemes are used with different
aerosol type resolutions (Table 4). First, when particle depo-
larization is available and all optical parameters are provided
with a high-quality (uncertainty of the aerosol extinction co-
efficient ≤ 50 %, uncertainty of the aerosol backscatter co-
efficient ≤ 20 %, uncertainty of the particle linear depolar-
ization ration ≤ 30 %), the typing is performed in high reso-
lution (AH). This means that the mixtures can be resolved
and the number of outputs is 14 (i.e. pure with minimum
90 %, mixtures of two, and mixtures of three pure aerosol
types). Second, when particle depolarization is available and
the optical parameters have a high uncertainty (uncertainty
of the aerosol extinction coefficient > 50 %, uncertainty of
the aerosol backscatter coefficient > 20 %, uncertainty of the
particle linear depolarization ration > 30 %), the typing is
performed in low resolution (AL). In this case, the number of
outputs is six (i.e. pure with maximum 30 % traces of other
types). Third, when the particle depolarization is not avail-
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Figure 3. Schematics of the NATALI algorithm for aerosol typing.

able, the typing is performed in low resolution, again mean-
ing that the mixtures cannot be resolved. In this case, the
predominant aerosol type is retrieved for four outputs (pure
with maximum 30 % traces of other types), whereby if only
spectral parameters are provided, the volcanic type cannot
be distinguished from dust nor continental pollution and are
therefore excluded as output.

The three ANNs (Table 3) were developed for three clas-
sification schemes (Table 4) to increase the confidence of the
aerosol typing. A voting procedure selects the most proba-
ble answer out of the three (possibly different) individual re-
turns. The selection is made based on the confidence level of
the ANN outputs and stability over the uncertainty range (i.e.
the percentage of agreement for values between error limits).

2.4 The NATALI code

The Neural Network Aerosol Typing Algorithm based on LI-
dar data (NATALI) developed in the Python programming
language is built on three modules: (a) an input module to

prepare the inputs in the specific format of the ANNs, (b) a
typing module to run the ANNs and decide on the most prob-
able aerosol type and (c) an output module to save the results
and logs. The input module reads the lidar files in EAR-
LINET NetCDF format, checks for the availability of all
required parameters (β1064, β532, β355, α532, α355, and
optionally δ532 nm), identifies the layer geometrical bound-
aries and calculates within each layer the mean intensive
optical parameters (i.e. Ångström exponent, colour indexes
colour ratios, lidar ratios, particle linear depolarization ratio)
and their associated uncertainty) (Fig. 3).

The layer boundaries are calculated by applying the gra-
dient method on the 1064 nm backscatter coefficient profile
(Belegante et al., 2014). The inflexion points of the second
derivative of the profile data, computed with the Savitzky-
Golay filter, give the top and the bottom of the layers. The
window size of the cubic Savitzky–Golay filter, which is
modified by the user, has a default value of 700 m. The filter
was applied twice to obtain the second derivative. A signal-
to-noise ratio filter is applied at this point, making sure the
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Table 5. Acceptable limits for the layer average intensive optical
parameters.

Intensive Minimum Maximum
parameter acceptable acceptable

value value

Ångström exponent −1 ± 1 3 ± 3
Colour ratio −1 ± 1 3 ± 3
Colour index −1 ± 1 3 ± 3
Lidar ratio 2.5 ± 2.5 100 ± 100
Linear particle 0 ± 0 30 ± 25
Depolarization ratio (%)

ratio is at least 5. The layer boundaries are moved towards
the median height until the SNR criteria is met; if the criteria
cannot be satisfied with a layer height greater than 300 m, the
layer is discarded. A coarse or fine structure of the aerosol
layers is revealed by a higher or lower value of the ad-
justable smoothing parameter (FINESSE). The layers with
thicknesses of more than 300 m are considered, whereby the
intensive optical properties and their uncertainties are com-
puted for the middle of each layer in the range of at least
200 m thickness to exclude the margins likely affected by the
smoothing

Several filters are applied to the data, and only layers
which pass the following criteria are further considered for
typing:

– availability of all necessary intensive optical parame-
ters,

– values of the intensive optical parameters are between
acceptable limits (Table 5),

– the relative error of each intensive optical parameter is
lower than 50 %.

For each layer and for each intensive optical parameter,
the input module generates an adjustable number N of values
x with uncertainties (1x) in the range x − 1x and x + 1x.
Data are than scrambled considering that any combination
has a similar probability to describe the reality. The cluster
of possible combinations of intensive optical parameters is
then converted into the ANN input format.

The typing module runs parallel to the ANNs for each
data set representing a layer, and applies the voting proce-
dure to identify the most probable aerosol type. In the case
that the depolarization is available, the module runs in six
parallel ANNs, three for high resolution (i.e. A1H, A2H,
A3H) and three for low-resolution typing (i.e. A1L, A2L,
A3L). The probable aerosol type is provided by the high-
resolution ANNs, while the predominant type is provided by
the low-resolution ANNs. As such, if typing in high reso-
lution fails due the data quality, the user still has access to
information in low resolution. If the depolarization is not

available, the module runs three ANNs (i.e. B1L, B2L, B3L)
in parallel and returns only the most probable predominant
aerosol type (volcanic overlaps, in all existing parameters,
completely with dust or continental-polluted type and cannot
be retrieved in low resolution). The output module prepares
and saves the files in two formats, csv and human-readable
(telegrams) files, and writes a log. The csv files and the tele-
grams contain the identification of the data sets for which
typing is performed and provide the following parameters:

– identification of the data sets for which the typing was
performed;

– for each identified layer

– the geometrical top and bottom,

– the intensive optical parameters and associated un-
certainties,

– the aerosol type retrieved by each ANN, and the
number of agreements,

– the most probable type selected with the voting pro-
cedure (in low and high resolution separately if so),

– the type of the ANN delivering the result (i.e. 1, 2,
or 3),

– comments generally referring to situations in which
optical data did not pass the quality criteria or errors
in the retrieval procedure.

The NATALI code additional information (e.g. run time,
run parameters, network error messages) is included in the
telegrams. The software structure resembles the three module
approach described earlier: an input module (nt_input.py),
a typing module (nt_typing.py), and an output module
(nt_output.py). The three modules are coordinated by the na-

tali.py script, which contains the high-level algorithm and
calls the required module routines/codes.

3 Results

The performances of the algorithm were tested in three
steps. Firstly, the outputs of the aerosol model were com-
pared with the literature for the values of the intensive op-
tical parameters for each aerosol type considered in this
study (Sect. 3.1). Secondly, the ANNs were selected based
on their performances during the learning phase and also
by comparison with a known reference (i.e. synthetic data)
(Sect. 3.2). Thirdly, the complete NATALI algorithm was
tested by comparing the retrieved aerosol types with the
EARLINET-CALIPSO classification (Sect. 3.3).

3.1 Comparison of the aerosol model with the

literature

Synthetic aerosol optical properties, i.e. Ångström exponent
(AE550_350), colour ratios (CR550_350 and, CR1000_550)), lidar
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Table 6. Optical properties of aerosols from the synthetic data set and measurements.

Aerosol type Parameter Synthetic Measured Reference

Continental (rural)

AE550_350 1.17–1.29 2.2 ± 0.5 Giannakaki et al. (2010)
CR550_350 1.56–2.07 – –
CR1000_550 1.37–1.85 – –
LR350 (sr) 43–54 29 ± 7 Giannakaki et al. (2010)
LR550 (sr) 52–53 – –
DEP550 (%) 7.23–10.7 – –

AE550_350 1.17–1.34
1.4 ± 1.0 Giannakaki et al. (2010)
≈ 1.1–1.6 Perone and Bulizzi (2016)
1.17–1.19 Stachlewska et al. (2017)

CR550_350 1.34–2.29 0.68–0.85 Vlăduţescu et al. (2007)

CR1000_550 1.33–1.65
1.7–2.1 Burton et al. (2013)

2.43 ± 0.27 Groß et al. (2013)

LR350 (sr) 55–75

58 ± 12 Müller et al. (2007)
Continental polluted/ 65–100 Vlăduţescu et al. (2007)
industrial 56 ± 23 Giannakaki et al. (2010)

56 ± 1 Perone and Bulizzi (2016)

LR550 (sr) 62–74

71 ± 10 Cattrall et al. (2005)
53±11 Müller et al. (2007)
53–70 Burton et al. (2013)
56±6 Groß et al. (2013)

55 ± 1 Perone and Bulizzi (2016)
57 ± 7 Wang et al. (2016)

DEP550 (%) 2.47–4.97
< 5 Müller et al. (2007)

6 ± 1 Groß et al. (2013)
3–7 Burton et al. (2013)

Smoke

AE550_350 1.15–1.31

1.0 ± 0.5 Müller et al. (2007)
1.7 ± 0.7 Giannakaki et al. (2010)

0.9 ± 0.26 Tesche et al. (2011)
0.3–0.7 Janicka et al. (2017)
1.0–1.5 Stachlewska et al. (2018)

CR550_350 1.90–2.59 – –

CR1000_550 1.52–1.61
2.1–2.5 Burton et al. (2013)

1.63 ± 0.13 Groß et al. (2013)
4.70 ± 0.30 Groß et al. (2013)

LR350 (sr) 56–72

37.9 ± 13.1 Müller et al. (2005)
46 ± 13 Müller et al. (2007)
69 ± 17 Giannakaki et al. (2010)
87 ± 17 Tesche et al. (2011)
60 ± 20 Janicka et al. (2017)

55–70 Stachlewska et al. (2018)
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Table 6. Continued.

Aerosol type Parameter Synthetic Measured Reference

Smoke

LR550 (sr) 81–92

40–80 Wandinger et al. (2002)
26–87 Müller et al. (2005)

53 ± 11 Müller et al. (2007)
63 ± 7 Noh et al. (2007)
60–65 Alados-Arboledas et al. (2011)

79 ± 17 Tesche et al. (2011)
63 ± 7 Groß et al. (2013)

69 ± 17 Groß et al. (2013)
33–46 Burton et al. (2013)

100 ± 30 Janicka et al. (2017)
50–62 Stachlewska et al. (2018)

DEP550 (%) 5.04–7.12

5–8 Murayama et al. (2004)
2–3 Müller et al. (2005)

< 2–5 Burton et al. (2013)
14 ± 2 Groß et al. (2013)
7 ± 2 Groß et al. (2013)

3–6 Burton et al. (2013)
0.93 ± 0.01 Burton et al. (2015)

Dust

AE550_350 0.88–0.92

0.19 ± 0.20 Tesche et al. (2009b)
0.62 ± 0.15 Veselovskii et al. (2010)

1.5 ± 1.0 Giannakaki et al. (2010)
0.06 ± 0.21 Groß et al. (2011)
0.22 ± 0.27 Groß et al. (2011)

0.9–0.5 Janicka et al. (2017)
0.0–0.3 Janicka et al. (2017)

0.01–0.18 Fernández et al. (2018)

CR550_350 1.51–1.55 – –

CR1000_550 1.1–1.14
1.4–1.6 Burton et al. (2013)

1.30 ± 0.15 Groß et al. (2013)

LR350 (sr) 43–46

55 ± 6 Müller et al. (2007)
30–80 Papayannis et al. (2008)
53 ± 7 Tesche et al. (2009b)

52 ± 18 Giannakaki et al. (2010)
65 ± 10 Veselovskii et al. (2010)

58 ± 7 Groß et al. (2011)
53 ± 5 Groß et al. (2016)

42 ± 10 Janicka et al. (2017)
40–55 Fernández et al. (2018)

LR550 (sr) 44–49

46 ± 5 Sakai et al. (2002)
42–55 Liu et al. (2002)
55 ± 5 Müller et al. (2007)
55 ± 7 Tesche et al. (2009b)
62 ± 9 Veselovskii et al. (2010)
62 ± 5 Groß et al. (2011)
49 ± 9 Burton et al. (2012)
45–51 Burton et al. (2013)
48 ± 5 Groß et al. (2013)

456 ± 7 Groß et al. (2015)
32 ± 10 Janicka et al. (2017)

38–61 Fernández et al. (2018)

www.atmos-chem-phys.net/18/14511/2018/ Atmos. Chem. Phys., 18, 14511–14537, 2018



14524 D. Nicolae et al.: A neural network aerosol-typing algorithm based on lidar data

Table 6. Continued.

Aerosol type Parameter Synthetic Measured Reference

Dust DEP550 (%) 27.22–30.97

10–35 Müller et al. (2007)
10–25 Papayannis et al. (2008)
32 ± 2 Freudenthaler et al. (2009)
31–33 Burton et al. (2013)
24–27 Groß et al. (2011)

31 ± 25 Groß et al. (2013)
26 ± 3 Groß et al. (2015)

32.7 ± 001 Burton et al. (2015)

Marine

AE550_350 −0.26–0.21 – –

CR550_350 0.77–1.35 – –

CR1000_550 0.7–2.91
1.3–1.6 Burton et al. (2013)

1.64 ± 0.10 Groß et al. (2013)

LR350 (sr) 13–32
18 ± 4 Groß et al. (2011)
20 ± 3 Groß et al. (2016)

LR550 (sr) 19–25

28 ± 5 Cattrall et al. (2005)
23 ± 3 Müller et al. (2007)
18 ± 2 Groß et al. (2011)
15–25 Burton et al. (2012)
17–27 Burton et al. (2013)
18 ± 5 Groß et al. (2013)
22 ± 5 Groß et al. (2016)

DEP550 (%) 1.9–3.73

2–3 Groß et al. (2011)
< 10 Burton et al. (2012)

4–9 Burton et al. (2013)
3 ± 1 Groß et al. (2013)
2 ± 1 Groß et al. (2016)

Volcanic

AE550_350 −0.21–1.07
0.03 ± 0.4 Ansmann et al. (2010)

−0.11 ± 0.4 Ansmann et al. (2010)
0.68 ± 0.63 Sicard et al. (2012)

CR550_350 0.82–1.29 – –

CR1000_550 0.74–2.57 – –

LR350 (sr) 50–54

60 ± 5 Ansmann et al. (2010)
30–60 Mattis et al. (2010)

39 ± 10 Sicard et al. (2012)
60 ± 11 Mona et al. (2012)

LR550 (sr) 41–49

60 ± 5 Ansmann et al. (2010)
30–45 Mattis et al. (2010)
32 ± 4 Sicard et al. (2012)

78 ± 12 Mona et al. (2012)

DEP550 (%) 37.27–41.8
0.33 ± 0.03 Ansmann et al. (2010)

16 ± 7 Mona et al. (2012)

ratios (LR350 and LR550), and linear particle depolarization
ratio at 550 nm (DEP550) generated by the developed aerosol
model have been compared with the measured intensive pa-
rameters for the six classes of pure aerosol. The comparison
with previous literature was only possible for pure types be-
cause the properties of mixed aerosols are computed based

on a linear progression of the corresponding optical proper-
ties for two pure types. As shown in Table 6, the synthetic
data are in general in very good agreement with the values
reported in previous studies (i.e. the range of synthetic val-
ues is between the minimum and maximum values reported
in the literature). Synthetic values lower than those observed
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are for continental-rural (AE550_350), continental-polluted
(CR1000_500), and dust (CR1000_500) types. Synthetic values
greater than those from the literature are for continental-rural
(LR350) and volcanic (DEP550) types. The reasons for these
discrepancies are many. In some cases, values reported in the
literature have high uncertainties because of natural variabil-
ity, improper calibration, and retrieval. The aerosol model
has also some limitations, e.g. due to spheroidal model and
mono-modal log-normal distribution.

When comparing the aerosol model with the results from
the previous studies, the changes in OPAC concerning the
hygroscopic growth need to be considered (e.g. Zieger et al.,
2013). These changes have not been implemented here, be-
cause when this study was conducted the new OPAC hygro-
scopicity was not available. However, the changes in OPAC
are not expected to produce major changes in the aerosol
model, considering the large uncertainties introduced to the
model to simulate the observations.

In Fig. 4 comparisons between the synthetic data for pure
aerosol obtained from the model and the measurements ob-
tained by Groß et al. (2013) are provided. Based on the
Airborne High Spectral Resolution Lidar (HSRL) data and
in situ measurements of aerosol microphysical and optical
properties collected during a series of measurement cam-
paigns in 1998 (Lindenberg Aerosol Characterization Exper-
iment, LACE), 2006 (The Saharan Mineral Dust Experiment,
Morocco, SAMUM-1), and 2008 (The Saharan Mineral Dust
Experiment, Cabo Verde islands, SAMUM-2 and European
integrated project on Aerosol Cloud Climate, EUCAARI),
Groß et al. (2013) developed an aerosol classification scheme
for six aerosol types and aerosol mixtures (i.e. Saharan min-
eral dust, Saharan dust mixtures, Canadian biomass burn-
ing aerosol, African biomass burning mixture, anthropogenic
pollution aerosol, and marine aerosol). The aerosol typing
based on the lidar ratio and the linear depolarization ratio at
550 nm, show, in general, good agreement between the syn-
thetic data and the observations at 532 nm from Groß et al.
(2013) (Fig. 4a and d), especially for smoke/biomass burn-
ing, industrial and marine types. The continental and vol-
canic aerosols are not represented in the measurements, so
were not compared. Dust presents lower values for depolar-
ization for the synthetic data (Fig. 4b and e) but similar val-
ues for the lidar ratio (Fig. 4c and f). Clusters were identified
both in synthetic and observational data, which means that
for pure aerosols the combination of extinction, backscatter,
and depolarization at one wavelength could be sufficient for
the ANN training.

Wandinger et al. (2016) provided a synthesis of ground-
based observations of lidar ratio and particle linear depo-
larization at 355 nm for different aerosol types (i.e. dust,
smoke, pollution, marine, aerosol, volcanic ash) and mix-
tures, collected during a series of measurement campaigns,
i.e. PollyXT measurements at Cabo Verde (Groß et al.,
2011), at EARLINET stations of Leipzig and Munich (Groß
et al., 2012), in the Amazon Basin (Baars et al., 2012), and

on board Polarstern over the North Atlantic (Kanitz et al.,
2013) (Fig. 5a). The synthetic data show a wider spread be-
cause of large uncertainty accepted for the input parameters.
Very high values for the linear depolarization for smoke in
the Aerosol CCI (European Space Agency Aerosol Climate
Change Initiative) could not be achieved in the aerosol model
(Fig. 5b).

When the entire output of the aerosol model is considered
(i.e. 14 aerosol types) there is a high overlap between clus-
ters, in particular for mixtures, due to the built-in uncertainty
(Fig. 6a). Smoke and continental pollution almost completely
overlap (Fig. 6a), which is consisted with measurements re-
ported in literature (Table 6). This makes the typing chal-
lenging. The importance of particle depolarization shown
relatively recently (e.g. Freudenthaler et al., 2009) can im-
prove the aerosol typing (Fig. 6b). Particle depolarization
contributes to the identification of complex mixtures and to
the differentiation between mineral and volcanic particles.
The main issue for particle depolarization is calibration, hav-
ing been recently addressed (e.g. McCullough et al., 2017;
Belegante et al., 2018) and thus few data sets satisfy the de-
polarization ratio quality criteria for aerosol typing. How-
ever, even without particle depolarization information, the
low-resolution typing can identify the predominant aerosol
types in a mixture.

3.2 ANN performance

Figure 7 shows the overall performances of the ANNs for
the high-resolution typing (i.e. A1H, A2H, A3H) and low-
resolution typing (i.e. A1L, A2L, A3L). In high-resolution
typing at least 70 % of the aerosol types defined (i.e. 10 out
of 14) should be correctly assessed in more than 75 % of the
cases with a confidence higher than 0.7. In low-resolution
typing at least 70 % of the predominant aerosol types (i.e. 4
out of 5) defined should be correctly assessed in more than
65 % of the cases with a confidence higher than 0.7.

The aerosol type is recognized in more than 96 % of all
cases in high-resolution typing (Fig. 7a). The missed cases
are, in general, due to the complete overlap between the input
parameters. For example, continental smoke is classified as
smoke in 22 % of the missed cases (i.e. 1.9 % of the total
number of cases); continental dust is classified as dust in 9 %
of the missed cases (i.e. 0.3 % of the total number of cases).
Note that 33 % of the missed cases (1.2 % of the total number
of cases) are classified as unknown.

The predominant aerosol is recognized in more than 91 %
of the cases in low-resolution typing (Fig. 7b). Most of
the missed cases are due to the ANNs not being able to
distinguish between continental aerosol and smoke, and
continental-polluted aerosol (i.e 36 % of the missed cases
representing 3.2 % of the total number of cases), and between
continental, smoke and marine aerosols, and continental-
polluted aerosols (i.e. 35 % of the missed cases, 3.1 % of all
cases). Continental-polluted and marine aerosols are some-
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Figure 4. Characteristic quantities of various atmospheric aerosol types form lidar measurements (a–c, adapted from Groß et al., 2013, their
Fig. 5) and from synthetic measurements (d–f). (a, d) Lidar ratio versus linear particle depolarization. (b, e) Linear particle depolarization
versus colour ratio. (c, f) Colour ratio versus lidar ratio.

times identified by the ANNs as continental (i.e. 27 % of all
missed cases, 2.4 % of the total number of cases).

A3H and A3L were the best-performing ANNs but did not
always have a high confidence level (Fig. 7). A2H and A2L
have the lowest performances, but they can help in certain
cases, for example in recognizing continental-dust aerosols.
The voting procedure does not always provide the right an-
swer, for example when A3H provides the correct typing but
its confidence level is low.

The dependence of the aerosol typing on RH shows that
the performances of the ANNs are decreased with an in-
crease in RH, only for continental-smoke and continental-
dust for high-resolution typing (Fig. 8) and for continental
smoke and mixed smoke for low-resolution typing (Fig. 8).
Pure aerosol types are recognized for all values of RH. For
coastal polluted, the relative humidity increase results in an
increase of typing performance. Overall, lower performances
are obtained in low-resolution typing.

3.3 Comparison with EARLINET-CALIPSO

classification

Observational data from EARLINET Data Base (https://
www.earlinet.org/index.php?id=earlinet_homepage, last ac-

cess: 18 September 2018), related to the CALIPSO (Cloud-
aerosol Lidar and Infrared Pathfinder Satellite Observation)
overpasses over different EARLINET observational sites,
were compared with the synthetic data obtained from the
aerosol model. The EARLINET-CALIPSO database (Pap-
palardo et al., 2010), covers the data of 2000–2018 and in-
cludes a total of 718 cases and 21 aerosol and cloud types.
Only 13 of these cases contained all of the necessary param-
eters (i.e. 3 backscatters, 2 extinctions and 1 depolarization).
In general, the missing parameter is the particle depolariza-
tion. To increase the number of cases, the particle depolariza-
tion was added assuming values reported in literature as typ-
ical for the corresponding aerosol type. This way, 105 cases
containing all needed parameters were obtained. The cases
for which all parameters were within 20 % of relative error
were selected (63 cases), whereby 57 corresponded to known
aerosol types.

Additionally, profiles available at the EARLINET site in
Bucharest/Măgurele, established by the Romanian National
Institute for Research and Development of Optoelectronics
(INOE), were used to increase the validation measurement
sample. The INOE database contains 464 measurement sets
performed with the multiwavelength Raman depolarization
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Lidar (RALI, Belegante et al., 2011) between June 2012 and
September 2014. About 44.6 % of measurements were con-
ducted at night-time (including the Raman-derived extinction
coefficient profiles). Out of these, 871 processed layers con-
taining backscattering, extinction and particle depolarization
profiles averaged over 1 h. Only layers with significant loads
(i.e. layers for which the uncertainty of the retrieved opti-
cal parameters is below the limits accepted by the algorithm)
were selected, for which all intensive parameters were re-
trieved with accuracies higher than 20 %. Mean values within
each layer were computed, excluding the edges of the layers,
where the smoothing introduces large errors due to the high
gradients. For each layer, the Ångström exponent, colour ra-
tio, colour index, lidar ratio, and linear particle depolariza-
tion ratio were computed. Thresholds were then used to es-
timate the type of aerosol at first glance, which resulted in a
data set with 311 layers accepted by the algorithm, of which
for only 182 layers of auxiliary data were available. Auxil-
iary data were used to compare the results of the typing.

The time series of lidar measurements (532 nm volume
depolarization and 355, 532, and 1064 nm range corrected
signals) were used to identify the aerosol layers. The iden-
tification of the aerosol source was based on 96 h backward
trajectories using HYSPLIT (Stein et al., 2016). The source
was assumed to originate at the region where the trajectory

was closest to the ground, providing guidance for identify-
ing possible emission sources. The rainfall along the tra-
jectory was used as an indicator of likely wet deposition.
A synoptic diagnosis of the main meteorological file (e.g.
pressure, geopotential height, temperature, relative humid-
ity, wind), based on NCEP/NCAR Reanalysis (Kalnay et al.,
1996), was used to confirm the aerosol trajectories and to de-
termine the type of atmospheric circulation, weather regimes,
and weather phenomena along the trajectories.

Figure 9 shows the comparison between the aerosol typ-
ing based on the aerosol model (synthetic data) and the
EARLINET-CALIPSO and INOE database (observed data).
The large spread of the measured parameters is caused by the
mixtures of three components, incorrect calibration, or inap-
propriate estimation of aerosol type. On the other hand, the
sparse observational data led to apparently incomplete clus-
ters. No conclusions can be drawn for marine aerosols, as
they are not represented in the observational data.

Low values are observed in the Ångström exponent for
several cases of dust polluted and smoke categories, as well
as low values for the 532 nm lidar ratio are seen for several
cases of continental and continental-dust types, indicating a
small portion of marine particles. This is most likely due to
the fact that particles are transported over a short distance
above the sea before reaching the target and thus are mis-
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Figure 6. Synthetic data set with (a) colour ratio versus lidar ratio, and (b) lidar ratio versus linear particle depolarization ratio using the
NATALI classification.

classified. The high values for the Ångström exponent for
some of the marine mineral aerosols indicate a mixture with
smoke. Values of the Ångström exponent greater than 1.8,
measured for smoke and continental-polluted aerosols, failed
to be simulated. Actually, in general, the agreement of clas-
sification of the simulated data and the real observations is
very good, given all limitations discussed.

4 Conclusions

The NATALI algorithm is based on the ability of specialized
ANNs to resolve the overlapping values of the intensive opti-
cal parameters calculated for each identified layer in the mul-
tiwavelength Raman lidar profiles. The ANNs were trained

using synthetic data, for which a new aerosol model was de-
veloped. Aerosols were considered spheroids and built up us-
ing OPAC-defined internal mixtures, with the associated mi-
crophysical properties retrieved from GADS. The intensive
optical properties obtained from this model were compared
to the literature and found to be consistent with the obser-
vations. Variability in the optical properties was achieved by
considering different numbers of mixing ratios and relative
humidities. In addition, the uncertainty of the observations
was included as a prerequisite hypothesis in order to match
the lidar data. These requirements have added to the com-
plexity of the ANNs selected to make the retrieval because
of the significant overlap of the input values for the intensive
optical parameters. Although the linear particle depolariza-
tion ratio is a crucial parameter in separating aerosol types,

Atmos. Chem. Phys., 18, 14511–14537, 2018 www.atmos-chem-phys.net/18/14511/2018/



D. Nicolae et al.: A neural network aerosol-typing algorithm based on lidar data 14529

Mixed smoke

Mixed dust

Coastal polluted

Coastal

Dust polluted

Continental smoke

Marine mineral

Continental dust

Volcanic

Marine

Dust

Smoke

Continental polluted

Continental

A1H A2H A3H Vote

% 20

40

60

80

100

A1H A2H A3H Vote

(a) (b)

Mixed smoke

Mixed dust

Coastal polluted

Coastal

Dust polluted

Continental smoke

Marine mineral

Continental dust

Volcanic

Marine

Dust

Smoke

Continental polluted

Continental
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the depolarization methodology is still maturing and only a
few lidar stations provide this parameter with an acceptable
accuracy. Thus, two parallel typing schemes were developed:
(a) a high-resolution typing scheme that allows the identifi-
cation of 14 aerosol mixtures if the LPDR is available in the
input data files, and (b) a low-resolution typing scheme that
allows the identification of five predominant aerosol types
when LPDR is not provided. For each scheme, three ANNs
are run simultaneously. Then a voting procedure is applied
to select the most probable answer. The ANNs were selected
out of 68 tested structures as having the best performances
for the aerosol typing. The voting is based on the confidence
of the retrieval for each of the three ANNs and the stability
of the retrieval over the uncertainty range. A series of tests
showed that considering the variation with the RH from the
beginning helped to make the retrieval stable for different
atmospheric conditions. Also, considering the 50 % uncer-

tainty for the input data gave realistic retrievals or aerosols,
making possible the retrieval of aerosol types when using
medium-quality lidar data, which is currently the case for re-
search lidar networks. Without depolarization, the retrieval
is much less certain, especially for mixtures, and question-
able results were flagged. Spectral characteristics of volcanic
aerosols are very similar to those of mineral dust and/or con-
tinental polluted, and this type cannot be distinguished if the
LPDR is not provided.

The whole algorithm has been integrated into a Python
code, available as source code and executable on the NA-
TALI website (http://natali.inoe.ro/resources.html/software,
last access: 18 September 2018). The software accommo-
dates lidar profiles – 3β +2α(+1δ) – in the EARLINET data
format. The NATALI is user-friendly; a user guide is pro-
vided. However, it is important that the user understands the
outputs and the limitations of the algorithm; i.e. the results
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are strongly dependent on the quality input data, and the out-
puts should be understood accordingly. Although the neural
network is able to recognize the pattern of noisy data, the pat-
tern has to be present and correct, otherwise the result of the
retrieval will be incorrect. The NATALI algorithm was able
to

– recognize the aerosol types (high resolution, 14 types)
in more than 70 % of the cases for high-quality optical
data (i.e. the uncertainty of the intensive optical param-
eters of less than 20 %);

– recognize the predominant aerosol types (low resolu-
tion, 6 or 5 types) in more than 70 % of the cases
for medium and high-quality optical data (i.e. the un-
certainty of the intensive optical parameters less than
50 %);

– provide stable responses for RH up to 70 %, and even
higher for less hygroscopic aerosols;

– provide results that are comparable in high and low res-
olution, considering the correspondence of the types de-
fined.

Furthermore, the computing time of the algorithm is rela-
tively short due to the optimization of the Python code. The
algorithm has side applications; for example, it can be ap-
plied to test the quality of the optical data and to identify
incorrect calibration or incorrect cloud screening (e.g. Nico-
lae et al., 2018). Blind tests on EARLINET data samples
showed the capability of this tool to retrieve the aerosol type
from a large variety of data, with different levels of qual-
ity and physical content. More complex data sets (e.g. avail-
ability of LPDR at 355 and/or 1064 nm) will not produce
improvements with the current software because ANNs are
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specifically trained for 3β + 2α + 1δ data sets. However, the
ANNs can be trained with more complete data sets, which
can potentially lead to better scores, especially in the case
of mixtures. Moreover, a similar approach could be used for
any other optical instrument (e.g. photometry) as long as the
physical content of the input optical parameters is sufficiently
rich.
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