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A Neural Network Approach for
High-Dimensional Optimal Control
Applied to Multi-Agent Path Finding

Derek Onken, Levon Nurbekyan, Xingjian Li, Samy Wu Fung, Stanley Osher, and Lars Ruthotto

Abstract— We propose a neural network approach that
yields approximate solutions for high-dimensional optimal
control problems and demonstrate its effectiveness us-
ing examples from multi-agent path finding. Our approach
yields controls in a feedback form, where the policy func-
tion is given by a neural network (NN). Specifically, we
fuse the Hamilton-Jacobi-Bellman (HJB) and Pontryagin
Maximum Principle (PMP) approaches by parameterizing
the value function with an NN. Our approach enables us to
obtain approximately optimal controls in real-time without
having to solve an optimization problem. Once the policy
function is trained, generating a control at a given space-
time location takes milliseconds; in contrast, efficient non-
linear programming methods typically perform the same
task in seconds. We train the NN offline using the objective
function of the control problem and penalty terms that en-
force the HJB equations. Therefore, our training algorithm
does not involve data generated by another algorithm. By
training on a distribution of initial states, we ensure the
controls’ optimality on a large portion of the state-space.
Our grid-free approach scales efficiently to dimensions
where grids become impractical or infeasible. We apply our
approach to several multi-agent collision-avoidance prob-
lems in up to 150 dimensions. Furthermore, we empirically
observe that the number of parameters in our approach
scales linearly with the dimension of the control problem,
thereby mitigating the curse of dimensionality.

Index Terms— collision avoidance, Hamilton-Jacobi-
Bellman equation, high-dimensional control, multi-agent,
neural networks, optimal control

[. INTRODUCTION

Decision-making for complex systems using optimal control
(OC) has become increasingly relevant yet remains challeng-
ing, especially when the state dimension is high and decisions
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are needed in real-time. Examples include controlling a swarm
of quadcopters [1] with collision-avoidance and controlling
an unmanned aerial vehicle [2]-[5] while reacting to possible
wind interference during flight.

We consider real-time OC applications that lead to deter-
ministic, finite time-horizon control problems. The speed of
generating new controls is critical in these real-time problems
where unexpected situations occur during deployment, e.g.,
wind interference [6]-[10]. While nonlinear programming
(NLP) methods can provide optimal controls for fixed ini-
tial states [11], computation may be too slow for real-time
applications: seconds vs milliseconds. We provide controls
in a feedback form, where the policy is given by a neural
network (NN). Hence, we generate approximately optimal
controls in milliseconds (real-time) without having to solve
an optimization problem.

Two of the most common frameworks to solve OC prob-
lems are the Pontryagin Maximum Principle (PMP) [12] and
Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE) [13]. The PMP is often suitable for high-dimensional
problems (Sec. [[TI-C)). A local solution method, the PMP finds
the optimal policy for a single initial state, so deviations of the
system from the optimal trajectory require re-computation of
the solution. In contrast, the HIJB approach is a global solution
method suitable for real-time applications. It is based on
solving the HIB PDE to obtain the value function (Sec. [[II-DJ.
However, state-of-the-art HIB solvers, e.g., ENO/WENO [14],
are grid-based and can suffer from the curse of dimensionality
(CoD) [13], i.e., costs increase exponentially with dimension.
For OC problems with a state-space dimension exceeding four,
the CoD renders using grid-based HJB solvers infeasible.

We fuse the principles of the PMP and HJB methods to
formulate an NN approach that is semi-global while mitigating
CoD. In particular, we begin by parameterizing the value func-
tion with an NN, which circumvents CoD by approximating
the solution to the HIB PDE in the underlying parameter
space. Thus, our method is grid-free and suitable for high-
dimensional problems. Using the PMP, we express the control
in feedback form. We train the NN approximation of the value
function by minimizing the expected cost on a distribution of
initial states. As we minimize the cost function directly, our
approach does not require generating solutions via an existing
algorithm for training—i.e., it is not supervised. Training the
NN on a distribution of initial states ensures the controls’



optimality on a large portion of the state-space; hence, our
approach is semi-global. As we demonstrate, the controls are
robust to moderate perturbations or shocks to the system, such
as wind interference (Sec. [V-B.4). The controls are obtained
in a feedback form via prior offline training, so the feedback
form can be applied efficiently during deployment. Lastly, we
improve the NN training by adding residual penalty terms
derived from the HIB PDE, similar to [15]-[17].

This paper extends a preliminary conference version of the
approach [18] with more extensive and thorough experiments.
Specifically, we add experiments where agents swap posi-
tions with each other and one involving a nonlinear control-
affine quadcopter with complicated dynamics. Additionally,
we include experiments that investigate the sensitivity of NN
hyperparameters, thoroughly compare the semi-global nature
of the NN model against thousands of baseline solutions,
demonstrate the efficient deployment timings of the NN, and
test the influence of CoD on the NN.

Our formulation is applicable to OC problems for which
the underlying Hamiltonian can be computed efficiently, e.g.,
affine controls with convex Lagrangians. Real-world applica-
tions that fall within this scope arise in centrally controlled
multi-agent systems, which are the focus of this work. These
also lead to challenging high-dimensional OC problems. In-
deed, for n agents in a g-dimensional space, we obtain a
d=n - g-dimensional OC problem. Therefore, even moderate
n, q yield problems out of reach for traditional HIB solvers.

In our experiments, we solve a series of multi-agent
OC problems whose state-space dimensions range from four
(n=2, g=2) to 150 (n=>50, g=3). First, we solve a two-agent
corridor problem with a smooth obstacle terrain (Sec. [V-B).
Second, we investigate a two-agent problem where agents
swap positions while avoiding hard obstacles and a 12-agent
unobstructed version found in [19] (Sec. [V-C). Third, we
experiment with a 50-agent swarm of three-dimensional agents
obstructed by rectangular prisms inspired by [1] (Sec. [V-D).
Finally, we solve a 12-dimensional single-agent quadcopter
problem with complicated dynamics from [20] (Sec. [V-E).
Accompanying videos of our NN’s solutions to these problems
reside at https://imgur.com/a/eWr6sUb.

Using the corridor problem, we test our model’s robustness
to external shocks (random additive perturbations) that occur
during deployment. We perform an example shock (Fig.
and compare the NN’s response against a baseline method
(Sec. E]) Furthermore, we compare the solutions from
the NN approach and the baseline on thousands of initial
points (Fig. [). In this example, the NN reacts approximately
optimally to moderate shocks (in terms of solution quality).
For large shocks, the NN learns a suboptimal control but still
drives the agents towards the targets. However, the NN (trained
offline) demonstrates quick online speed (Table [II).

As one indicator that our approach effectively mitigates the
CoD, we demonstrate empirically that increasing the state-
space dimension does not lead to an exponential growth in
computational costs. Specifically, we obtain approximately
optimal controls by increasing the number of NN parameters
linearly while keeping all other settings, including the batch
size and number of optimization steps, fixed (Fig. 0). We also

show that we are able to solve a 150-dimensional problem in
less than one hour on a single graphics processing unit (GPU).

[I. RELATED WORK

In recent years, many new numerical methods and machine
learning approaches have been developed for solving high-
dimensional OC problems. We discuss deterministic (Sec.
[A) and stochastic (Sec. settings separately because they
differ considerably. In Sec. we survey the state-of-the-art
in the application domain that motivates our experiments.

A. High-Dimensional Deterministic Optimal Control

A common difficulty in solving high-dimensional OC prob-
lems is the CoD. Exceptions are convex OC problems for
which high-dimensional solvers can be devised via primal-dual
methods and Hopf-Lax representation formulae [20]-[27].

Kang and Wilcox [28] alleviate the CoD by introducing
a sparse grid in the state-space and use the method of
characteristics to solve boundary value problems over each
sparse grid point. To approximate the feedback control at
arbitrary points, they interpolate the solutions of the grid
using high-order polynomials. The authors solve up to six-
dimensional control problems. Nakamura-Zimmerer et al. [29]
also attempt to alleviate CoD by learning a closed-form value
function. First, trajectories are generated in a similar manner as
in [28]. Using a supervised learning approach, the NN is then
trained to match the generated trajectories. The trajectories
(training data) are generated adaptively using information
about the adjoint and by combining progressive batching with
an efficient adaptive sampling technique.

Bansal and Tomlin [10] solve high-dimensional reachabil-
ity problems by combining the Hamilton-Jacobi-Isaacs (HJI)
framework with the Deep Galerkin Method in [30]. More
precisely, they approximate the value function with an NN and
minimize the empirical average of the HJI residual at randomly
drawn space-time points.

Our work stems from the same framework as [31], which
approximates the feedback control with an NN then opti-
mizes the control cost on a distribution of initial states. The
authors also provide a theoretical analysis of OC solutions
via NN approximations. We extend the framework to finite
horizon problems with non-quadratic costs and parameterize
the value function instead of the feedback function. This
extension enables penalization of the HJB conditions, which
empirically improves numerical performance for solving high-
dimensional mean-field games, mean-field control, and nor-
malizing flows [15]-[17]. We demonstrate similar advantages
for OC problems considered in this work, which make similar
use of NNs to parameterize the value function.

B. High-Dimensional Stochastic Optimal Control

In the seminal works [32], [33], the authors solve high-
dimensional semilinear parabolic PDE problems by the
method of (stochastic) characteristics. To overcome CoD, they
approximate the gradient of the solution at different times by
NN and introduce a loss function that measures the deviation
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from the correct terminal condition in the characteristic equa-
tions. In particular, they solve high-dimensional stochastic OC
problems by solving the corresponding viscous HIB equation.
This method recovers the gradient of the solution as a function
of space and time and can be considered a global method.
Nevertheless, loss functions employed in [32], [33] consider
only one initial point at a time, and the generalization depends
on how well the generated random trajectories fill the space.
The variance of the trajectories increases as time grows.
Finally, in the deterministic limit the method becomes local
as there is no diffusion to enforce the trajectories to explore
the whole space. Similar techniques are applied in [34], [35]
based on different loss functions.

In [36], the authors solve stochastic OC problems by directly
approximating controls and using the control objective as a
loss function. As in [32], [33], the loss function considers a
single initial point.

C. Multi-Agent Path-Finding

Multi-Agent Path-Finding (MAPF) [37]-[39] methods are
methods tailored for multi-agent control problems. These
methods tend to focus on collision avoidance rather than
optimality. Among these are Conflict-Based Search (CBS)
methods [40], [41], which are two-level algorithms. At the
low level, optimal paths are found for individual agents,
while at the high-level, a search is performed in a constraint
tree whose nodes include constraints on time and location
for a single agent. Decoupled optimization approaches [1],
[42] first compute independent paths and then try to avoid
collision afterwards. Other approaches phrase these as a
constrained optimization problem [43]-[46]. Such methods
are often combined with graph-based methods [47], sub-
dimensional expansions [48], and CBS approaches [49], [50].
Another approach phrases the MAPF problem as a differential
game [19]. Provided certain assumptions, this differential
game strategy guarantees that the agents reach their targets
while avoiding collisions. Machine learning approaches for
multi-agent control have also been successfully applied in [51]
where supervised learning is used to imitate non-machine-
learning solutions generated by [1]. Our approach differs from
these methods in that we do not have a data generation
and fitting/imitation phases; instead, we directly solve for
the control objective. Additionally, localization and interaction
modeling techniques such as in [52] can be incorporated in our
model in a straightforward manner.

I1l. MATHEMATICAL FORMULATION

We briefly discuss the general OC framework, derive the
multi-agent control problems with collision avoidance used in
the experiments, and review the theoretical foundations of the
NN approach, primarily following [53, Chapters I-1I].

A. Optimal Control Formulation

We consider deterministic, finite time-horizon OC problems.
For a fixed time-horizon [0, 7], we have system dynamics

O0s21,2(8) = f(8,20,0(8), Ut(s)), 2Ziz(t)=z, (1)

fort < s < T. Here, x € R? is the initial state, and ¢ € [0,T]
is the initial time of the system. Next, z;(s) € R? is the
state of the system at time s € [¢,7T] with initial data (¢, ),
and u »(s) € U C R® is the control applied at time s. The
function f: [0,7] x R? x U — R? models the evolution
of the state z;4: [t,7] — R? in response to the control
Utz [6,T] = U.

Next, we suppose that the control u; o : [¢t,7] — U and the
trajectory 2 o : [t,T] — R satisfying (I) yield a cost

T
/t L(s,zt7m(s),ut7m(s)) ds + G(zt@(T)), 2)

where L: [0,7] x R x U — R is the running cost or the
Lagrangian, and G : R? — R is the terminal cost. We assume
that f, L, G, U are sufficiently regular (see [53, Sec. 1.3, 1.8-9]
for a list of assumptions). The goal of the OC problem is to
find an optimal control uy; ,, that incurs the minimal cost, i.e,

B(t,x) = inf { /t " L5, 21.0(5), ura(s)) ds

o 3)
+G(zt,m(T))} s.t. (I,
where @ is called the value function. A solution wuy, of
(@) is called an optimal control. Accordingly, the z} , which
corresponds to u; ., is called an optimal trajectory.
We also define the Hamiltonian of the system by

H(t,z,p) =sup {—p- f(t,z,u) — L(t,z,u)}
uclU (4)
= sup H(t, z,p, u),

uclU
where p € R? is called the adjoint state. The Hamiltonian is
a key ingredient in the Pontryagin Maximum Principle [12]
(Sec. and also appears in the Hamilton-Jacobi-Bellman
PDE [13] (Sec. [l1I-D)), which together form the foundation of
our numerical solution approach.

B. Collision-Avoiding Multi-Agent Control Problems

While our NN approach is applicable to a broad range of OC
problems, our numerical examples are motivated by centrally
controlled multi-agent problems with collision avoidance. Op-
timal decision-making for this class of problems is compli-
cated due to the high-dimensionality of the control problem
and the interactions between the agents. These difficulties are
exacerbated in the presence of random shocks and other forms
of uncertainty. Here, we describe the generic set up of these
problems and refer to Section [V] for specific instances.

We seek to control a system of n agents with initial states
M ... z(™ € RI. We denote the initial joint-state of the
system by concatenating the agents’ initial states, i.e.,

T = (m(l),x(z), e ,:v(")) e R4 5)

Thus, the dimension of the joint-state of the system is d = g-n.
Similarly, we denote the joint-state of the system at time s by

Z1a(s) = (a(s), 22(), o 2R (5),  ©



where, for a fixed s € [t, 7], zt(;{( ) € RY is the state of the
ith agent. Also, we represent the control as

ura(s) = (u20s) u(s), o ws). @

Hence, both the dimension of the state and the control space
are proportional to the number of agents.

In the numerical experiments, the terminal costs depend on
the distance between the agents’ final positions and their given
target states. We denote the target joint-state of the system by
the vector y € R?, obtained by concatenating the target states
for all the agents as in @ and consider the terminal cost

G(210(T)) = G llzea(T) —yl” ®)
The Lagrangian can be written as
L(s,z,u) = E(u) + a2Q(z) + asW (), 9)

where the scalar weighting parameters ay,a9,a3 are problem-
specific and model the trade-off between the individual terms.

The first term in ), E: U — R, is the energy term, which
is the total consumption cost comprised of individual ones

= > m(uh)

In our experiments, we use E;(u)=3||u||* + £ with a problem-
dependent constant x € R, which simplifies the Hamiltonian
computation in (). Unlike the other terms, this first term
depends explicitly on the control.

The second term in @]), Q: RY — R, models obstacles by
penalizing agents at certain spatial locations (e.g., a terrain
function) and decouples into

(10)

utm

“Sa()

where (0;: R? — R models the ith agent’s spatial preferences.
The third term in @]) W: RY — R, models interactions

among the individual agents. For example, this term can

penalize proximity among agents to avoid collisions, i.e,

W(zie) = Z w (zE D zt(];)
J#i
for function w: R? x R? — R,

’LU(Z(,L) Z(J)> o {eXp (_ ||Z(i);rz(j)\|§) , ||Z(2)_Z(j)||2 < 2,,“7

0, otherwise.

Y

th

(12)

(13)
Here, » > 0 is the radius of an agent’s safety region or space
bubble. While not guaranteed, this w term can in practice
prevent the overlapping of the agents’ space bubbles, thus
avoiding collisions, when aj is sufficiently large. Our ap-
proach straightforwardly extends to non-symmetric interaction
costs and heterogeneous agents.

We note that the presence of the terrain function ) and
the interaction potential W render the objective function non-
convex in z. However, in our experiments, the function is
strongly convex (in fact, quadratic) in w, which simplifies
evaluations of the Hamiltonian (@) under certain assumptions
on f. Our framework can be directly applied to other choices
of G, F, ), and W as long as H can be computed efficiently.

C. The Pontryagin Maximum Principle

The Pontryagin Maximum Principle (PMP) provides a set
of necessary first-order optimality conditions for the optimal
control u} ,(-) and trajectory z;,(-) originating from fixed
initial data (¢, ). Since a new instance of the problem needs
to be solved when the initial data change or the system’s state
deviates from the optimal curve, the PMP can be considered
a local solution method.

Theorem 1 (Theorem 1.6.3 [53]): Assume that (2}, u; )
is a pair of an optimal trajectory and optimal control that
solve (I). Furthermore, assume that p, ,: [t,T] — R? is the
solution of the adjoint equation

aspt,m(s) = VZH(S, Z;w (8)7 pt,w (8)7 u;w(s))? (14)
pt,a:(T) = VzG(Z;,:c(T))v
for t < s <7T. Then
u:,m( ) € argrrlljax H(S 2y, m( )7pt,m($)7u) (15)
ue
for almost all s € [t, T1. o

Theorem [I] provides necessary conditions, and hence does not
guarantee that the computed solutions are optimal.

In general, finding w; ., 2} ., P ,, that satisfy the PMP is
difficult. Simultaneously/solving the initial value problem (TJ)
and the terminal value problem (I4) gives the system a
particularly challenging forward-backward structure [28], [54].

As we show below, the PMP can be applied more readily
when the value function ® is differentiable at (¢, x). First,
in this case, the conditions in Theorem [I] are sufficient [55,
Theorem 7.3.9]. [55, Theorems 7.3.10, 7.4.20] provide a
similar result with slightly weaker assumptions. Second, as we
outline below, the solution of can be obtained from ®.
The following is a standing assumption throughout the paper.

Assumption 1: Assume that (I5) admits a unique continu-
ous closed-form solution

u*(s,z,p) = argmax H(s,z,p,u) (16)
uelU
for every s € [t,T] and z,p € R o

A closed-form solution for the optimal control exists in a wide
variety of OC problems [7]-[10], [31]. Importantly, the PMP
can also be applied efficiently when (I6) does not admit a
closed-form solution but can be computed efficiently.

The next theorem states that the value function ® contains
complete information about the optimal control and we can
easily recover u; ., and p, ,, from ¢ when AssumptionE]holds.

Theorem 2 (Theorem 1.6.2 [53]): Assume that u; , is a
right-continuous optimal control and @ is differentiable at
(5,27 z(s)) for t < s <T. Then

pmc(s) = qu)(& z:m(s)) 17
solves (T4). Also, simplifies to
u:m(s) =u* (87zj’m(s),vsz(&z;‘,m(s))) (18)

for almost all s € [t, T1. o
Note that enforcing or computationally verifying the differen-
tiability condition is virtually impossible. However, in many
cases including our applications, the value function is expected



to be differentiable almost everywhere. Even if & is not
differentiable at (¢,«) and the optimal control is not unique,
D; , can be recovered from the super differential 0 ® [55,
Theorem 7.3.10, 7.4.20].

Theorem 2] characterizes optimal controls in a feedback form
(T8). This means that no further optimization is necessary to
find the optimal controls when the value function is known.
Feedback form representations are valuable in real-world ap-
plications. If V® can be quickly calculated, optimal controls
are readily available at any point in space and time. As such,
the feedback form avoids recomputing the optimal controls at
new points in scenarios when sudden changes to the initial
data or the system’s state occur.

We can also use Assumption [I]to simplify the computation
of the trajectories. Using the envelope formula [56, Sec. 3.1,
Theorem 1], we see that

VZH(t7 Z, P, U*(tv va)) = vzH(t7 Zap)
V,,H(t, z,p,u*(t, z,p)) =V,pH(t,z,p).

Hence, assuming the value function is known, we can express
the optimal trajectory as

8Sz;5k,:c(s> = _VPH(Sv Z;k,:c(s)’ qu)(s7 z;m(s))),
zz,ac(t) =,

19)

(20)
for s € (¢,T]. These dynamics do not explicitly contain the
control, which reduces the problem to the state variables only.
Recall the optimal control can be computed via (I8).

The above derivation outlines how to obtain the optimal
control and trajectory from the value function under some
smoothness assumptions. Once the value function ® is known,
this procedure can be applied for any initial data and also adapt
the trajectory when the system is perturbed. Therefore, if ® is
computed, we have a global solution method. The key issue
that we address next is the computation of ®.

D. Hamilton-Jacobi-Bellman PDE

In the previous section, we reviewed that the solution to the
the OC problem for all initial data can be inferred from
the value function ®. In our approach, we exploit the fact
that the value function satisfies the Hamilton-Jacobi-Bellman
(HJB) PDE to help train our NN approximation of ®.

Theorem 3 (Theorems 1.5.1, 1.6.1 [53]): Assume that the
value function ® € C'([0, 7] x R?). Then ® satisfies the HIB
equations (also called the dynamic programming equations)

—0:,0(s,2) + H(s,2,V.®(s,2)) =0, ®(T,z) =G(z2)
(2D
for all (s,z) € [t,T) x R? Conversely, assume that ¥ €
C([0,T] x R?) is a solution of (2T) and w; , is such that

Uy ,(s) € argmax ’H(s, z; 2(5), VZ\I/(S, z;"m(s)),u) (22)
uelU
for almost all s € [t,T]. Then ¥ = ®, and wu; ,, is an optimal
control. o
The differentiability of ® can be relaxed to differentiability
almost everywhere in the framework of viscosity solutions [53,
Chap. II].

The HIB PDE admits robust existence, uniqueness,
and stability theory in the framework of viscosity solutions
because (21)) is a convex constraint on ® [57]. Well-established
numerical methods, such as ENO/WENO [14], benefit from
convergence guarantees when solving (2I). However, these
methods rely on grids and therefore are affected by the CoD.
Mitigating this limitation motivates our NN approach.

We note that the PMP is the method of characteristics [56,
Sec. 3.2] for the HIB equation (ZI). To be precise, we can
compute P along the trajectory z: , from (20) by solving

as¢t,m(5) = H<57 z;m(s)vpt,m(s))
_pt,w(s) : VPH(Sv Z?,m(s)vpt,m(s))
bra(T) = G(z] 4(T)).

We then have that ¢ 2 (s) = ®(s, 2} ,(s)).

IV. NEURAL NETWORK APPROACH

Our approach seeks to minimize subject to (1) for initial
states sampled from a probability distribution in R? whose
density we denote by p. Hence, it aims at solving the problem
for all states along the optimal trajectories originating from
those points. Since the optimal trajectories given by the PMP
are characteristics of the HJB equation, our method blends
these two approaches. To enable high-dimensional scalability,
our method parameterizes the value function with an NN and
computes the controls using (I8) and (20). The NN is trained
in an unsupervised fashion by minimizing the sum of the
expected cost that results from the trajectories and penalty
terms that enforce the HJB equations along the trajectories
and at the final-time.

A. Main Formulation

We consider the semi-global version of the control problem
and seek an approximately optimal control for initial states
x ~ p. We do so by approximating the value function ®(-)
with an NN with parameters 6, which we denote by ®(-;8).
Thus, we can write the controls in feedback form and the loss
in terms of the parameters. In particular, we solve

H&n Eww/) {éw(T) + G(zo,w(T)) + BlCHJt,w (T) 23)
+BQCHJﬁn,m + BSCHJgrad,w}v

subject to

20,2(8) —VpH(s,202(5), V2P(s,20,2(5);0))
Oy La(8) = Ly(s)

cHisz () Prje 2 (s)

(24)

where £,(0) = cuyi2(0) = 0 and s € [0,7]. Here, ¢
accumulates the Lagrangian cost L along the trajectories, the
terms CHjt,z» CHIfin,x» CHJgrad,z+ L HJt,« penalize violations of
the HIB, and the scalar penalty weights (1,082,85 > 0 are
assumed to be fixed. The remainder of this section defines
and discusses these terms in more detail.



TABLE [: Variables and hyperparameters inherent to the problem itself (shared for NN and baseline) and the hyperparameters
tuned for the NN approach. All « values are determined relative to the a-less E term in the problem definition. The [

hyperparameters are tuned relative to the « values.

Problem Definition

NN-specific Hyperparameters

n d ai a2 as m B1 B2 B3 ng ng NN
#agents dim. onG on@Q onW width onHJt onHJfin on HJgrad training validation # Params
Corridor 2 4 100 104 300 32 0.02 0.02 0.02 20 50 1,311
Swap 2 [19] 2 4 300 106 105 16 1 1 3 20 50 415
Swap 12 [19] 12 24 300 - 10° 32 5 2 5 20 50 2,196
Swarm [1] 50 150 900 107 25000 512 2 1 3 26 80 342,654
Quadcopter [20] 1 12 5000 - 128 0.1 0 0 26 50 18,576

TABLE II: NN Statistics. Training times are approximate
from running on a shared NVIDIA Quadro RTX 8000 GPU.
Deployment times are from running on a single 2.6 GHz
Intel(R) Xeon(R) CPU E5-4627 v3 core (Sec. @)

Training Deploy Time (ms)

Batch ms Time NN Baseline

# Tters Size  Tter (min) Step  Estimate
Corridor 1800 1024 320 10 44 2899
Swap 2 [19] 4000 1024 560 37 4.5 2571
Swap 12 [19] 4000 2048 260 17 3.6 1730
Swarm [1] 6000 1024 570 57 9.6 4026
Quadcopter [20] 6000 1024 720 72 5.2 3110

The term ¢(T') corresponds to the time integral in (2). To
compute L at a given time, we use (@) and and reformulate
the Lagrangian in terms of the NN parameters 6 as

L.(s) = —H(s, 20.2(5), V2 P(s, 20.2(5); 0)) (25)

+ qu)(s, 20,2(5); 9) . V,,H(s, 20,2(5), V2P(s,20.2(5); 0))

We use HIB penalty terms cj¢,z, CHIfin,x> aNd CHJIgrad,x
derived from the HIB PDE (21) as follows:

PHJt,ac (3) =

|8S<I>(s,zoym(s); 0) — H(s, 20,2(5), V2P(s,20.2(5); 0))|

ctifing = | Y(T, 20,2(T);0) — G(20,2(T)) |

CHJgrad,z :| vzq)(Ta ZO@(T)§ 0) - VzG(ZO@(T)) | (26)
The HJ; penalizer arises from the first equation in (2I),
whereas HJg, and HJgaq are direct results of the final-time
condition in (I) and its gradient, respectively. Penalizers
prove helpful in problems similar to (23) [15]-[17], [58].
These penalizers improve the training convergence (Sec.
without altering the solution of (23). The Pyt ., penalizer
is accumulated along the trajectory similar to L. The scalar
terms [31,032,33 weight the importance of each HIB penalizer

and are hyperparameters of the NN (Sec. Sec. [V-C4).

B. Value Function Approximation

To enable scalability to high dimensions, we approximate
the value function ® with an NN. While our formulation
supports a wide range of NNs, we design a specific model
that enables efficient computation.

We parameterize the value function as

1
D(s;0) =w' N(s;0y) + §sT(ATA)s +b's+ec,
where 6 = (w,0y,A,b,c).

27)

Here, s=(x,t) € R%*! are the inputs corresponding to space-
time, N(s;0y): R¥T! — R™ is an NN, and 6 contains
the trainable weights: w € R™, Oy € R?, A € RY*(d+1),
b € R, c€ R, where rank y=min(10, d) limits the number
of parameters in AT A, Here, A, b, and ¢ model quadratic po-
tentials, i.e., linear dynamics; N models nonlinear dynamics.

In our experiments, for N, we use a simple two-layer
residual neural network (ResNet) [59]

ag = O‘(K()S + bo)
N(S,ON) = Qg + O'(Klao + bl),
for On=(Ko, K1,bg,b;) where Ko € R™*(+) K, ¢
R™*™ and by, by € R™. We use the element-wise nonlinear-

ity o(x) = log(exp(x)+exp(—x)), which is the antiderivative
of the hyperbolic tangent, i.e., o’(x) = tanh(x) [15], [17].

(28)

C. Numerical Implementation

We solve the ODE-constrained optimization problem (23)
using the discretize-then-optimize approach [60], [61], in
which we define a discretization of the ODE, then optimize
on that discretization. The forward pass of the model uses a
Runge-Kutta (RK) 4 integrator with n; time steps to eliminate
the constraints (24). The objective function is then computed,
and automatic differentiation [62] calculates the gradient of the
objective function with respect to 8. We use the ADAM opti-
mizer [63], a stochastic subgradient method with momentum,
to update the parameters 6. We iterate this process a selected
maximum number of times. For the learning rate (step size)
provided to ADAM, we follow a piece-wise constant decay
schedule. For instance, in the experiment in Fig. 2] we divide
the learning rate by 10 every 800 iterations.

To produce an NN that generalizes to the state-space, we
must define initial points in a manner to promote model
generalizability. We assume the initial points are drawn from
a distribution with density p. We train the NN on one batch
at a time of independent and identically distributed samples
from the distribution. After training a number of iterations on
that batch, we resample the distribution to define a new batch
and train additional iterations on that batch. We repeat this
process until we hit the maximum number of iterations. We
commonly choose batches of 1024 or 2048 samples which are
re-sampled every 25-100 iterations. We found no noticeable
empirical difference in solution quality across those ranges.
Through this process, the model uses few data points at each
iteration, but does not overfit to a specific set of data points.
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(b) For initial state oo (depicted), the NN learns a similar solution as the baseline. The NN approach is solved for multiple initial states.

Fig. 1: Solutions for the two-agent corridor problem where two agents (orange and blue) pass in between two smooth hills.
Taking the terrain into account, the agents seek shortest paths from the initial joint-state x( to target y (marked with red
crosses) while avoiding collision with each other’s space bubble (indicated by circles with radius 7).

TABLE [ll: Comparison of solution values for the two-agent
corridor problem and single instance xy shown in Fig. E

Method L+ G y4 G
Baseline 61.33 61.02 031
NN 62.19 6198 0.21

D. Hyperparameters

In contrast to the model parameters 0 learned from the
data, NN hyperparameters are values selected a priori to
training. These include the number of time steps ny, the
ResNet width m, ResNet depth (the number of layers, tuned to
equal 2), and the multipliers 31, 82, 83. Additionally, each OC
problem has defined o, o, a3, which both the baseline and
NN use; changing these values alters the problem (Table[l). For
reproducibility, we include all hyperparameters and settings
with a publicly available Python implementation at https:
//github.com/donken/NeuralOC. Training on a sin-
gle NVIDIA Quadro RTX 8000 GPU requires between 10
and 72 minutes for the considered OC problems (Table [II).

V. NUMERICAL EXPERIMENTS

We solve and analyze five OC problems and compare the
NN against a baseline method described in Sec. [V-A] In
Sec. [V-B] to [V-D] we present four centrally controlled multi-
agent examples with dimensionality ranging from 4 to 150. In
Sec.[V-E] we consider a quadcopter experiment to demonstrate
the NN’s ability to solve problems with complicated dynamics.

A. Baseline: Optimization for a Single Initial State

For comparison with the NN approach, we provide a local
solution method that solves the OC problem for a fixed initial

104 [ HJfin Hfin & Hlgrag  —— Weight Decay
—— Hlgraa =— HJt, HJin, Hlgraa —— No Penalization
G}
+
=2
103
1000
—— Hlfin Hlfin & Hlgraa ~ —— Weight Decay
—— Hlgraa =— HJx, Hfin, Hlgraa —— No Penalization
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~
S
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O
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Iteration

Fig. 2: For the corridor problem (Sec. , we train the
same model architecture six times using different combinations
of the penalty terms. Using all three HIB penalizers leads
to quick convergence and a low G value. Each curve is the
average of three training instances.

state . We consider the baseline approach’s solution as the
ground truth optimal solution and compute the suboptimality
of the semi-global NN approach’s solution evaluated for the
initial state relative to the baseline’s solution.

For the baseline, we obtain an optimization problem by
applying forward Euler to the state equation and a midpoint
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Fig. 3: The NN handles a shock £ at time s=0.1 (depicted with red arrows) along the trajectory for the depicted corridor
problem (Sec. [V-B). The initial states used during training are depicted as blue and orange point clouds. It can be seen that
the major shock causes the system to leave the state-space used during training.
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Fig. 4: We solve the corridor problem with an NN trained
without HJB penalizers or weight decay. Comparable to Fig.
we see that the penalizers do not alter the solution.

rule to the integrals, i.e., the “direct transcription method” [11],

ng—1
min G (zp,)+h L (s, 2z5,u
min, (2n,) ];) (sk, 2k, uk) 29)
st zpy1 =z + A f(sk, 28 uk), 20 = @0,

where h=T/n,. Here, we use zj, to denote 2z g, (sk), where
time point s, = hk. We use T'=1 and n,=50 and solve
using ADAM with initialization of the controls set as straight
paths from x( to y with small added Gaussian noise.

We arrived at these training decisions empirically. First,
when solving in our experiments, ADAM finds slightly
more optimal solutions (1—2% more optimal) in practice than
L-BFGS. Second, the initialization of the controls substantially
influences the solution. As a particular example, the baseline
solution depicted in Fig. [3c| learns to send agent 2 around the
left side of the left obstacle, resulting in the lowest value of the
objective function. If initialized with controls that pass through
the right of that obstacle or through the corridor, the baseline
struggles to learn this optimal trajectory. As a response, we
initialize the controls uniformly that lead to a straight path
from xo to y. Third, we add random Gaussian noise to the

initialization because doing so empirically helps avoid local
minima and overall achieves better results.

B. Two-Agent Corridor Example

We design a d=4-dimensional problem in which two agents
attempt to reach fixed targets on the other side of two hills
(Fig. [T). We design the hills in such a manner that one agent
must pass through the corridor between the two hills while
the other agent waits. For this example, the hills use a smooth
terrain, and we assess the resilience of the control to shocks.

1) Set-up: Suppose two homogeneous agents with safety
radius r=0.5 start at 2(1)=[-2, —2] T and 2(?=[2, —2]T with
respective targets y(V=[2,2]" and y(»=[-2,2]". Thus, the
initial and target joint-states are xo=[—2,—2,2,—2]" and
y=[2,2,-2,2]". We sample from p, which is a Gaussian
centered at xy with an identity covariance. These sampled
initial positions form the training set X.

The running costs depend on the spatio-temporal cost func-
tion (Q;. Throughout, obstacles are defined using the Gaussian
density function with mean p € R? and covariance ¥ € R4*¢

exp (320 — W=D — )
(2m)ddet 2

(=" p, B) =

In this experiment, we define obstacles as
a6) (4 [ t) o0 o 5] )
(. |—1.5 @y . |15
+n (z ; { 0 },0.2I)+77(z ; {0.0 ,0.21 ).

The energy terms are given by

) 1 .
E; <u(z)) = [, (30)
2
and the dynamics are given by f(s,z,u) = u.
We compute the Hamiltonian (@) as
H(s,z,p) = sup { —plu— L(s,z,u)}
uclU (31)

= sup
uelU

{ —plu— E(u) — agQ(z) — a3W(z)}.



We then can solve for the first-order necessary condition

0=-p—V.E(u)

= p=-Vu (Z 2““(2)||2> =-u

=1

(32)

Using the closed-form solution for the controls (32)), we
rewrite the Hamiltonian as

1
H(s, z.p) = [pl* = 5lIpl* — 22Q(2) — asW (2)
' (33)
= §||pH2 — aQQ(z) — oz;;W(z),
where the characteristics are given by
Os2t,2(s) = —VpH (5, 2t,2(5), Pro(5) = —Pra(s). (39

2) Results: The baseline and the NN learn to wait for one
agent to pass through the corridor first, followed by the second
agent (Fig.[I). The NN performs marginally worse in L values
(Table [I), which can be seen in the early stages of the
trajectories of agent 1 (Fig. [Ib). The NN achieves a slightly
better G value than the baseline. Although we solve the NN
by optimizing the expectation value of a set of points in the
region, the NN achieves a near-optimal solution for x.

3) Effect of the HJB Penalizers: We experimentally assess
the effectiveness of the penalizers cujt, CHIfin, CHIgrad N @
To this end, we define six models (various combinations of the
three HIB penalizers and one model with weight decay) and
train three instances of each on the corridor problem. Using
the HIB penalizers results in a quicker model convergence on
a hold-out validation set (Fig. [2).

HJ:;: We enforce the PDE (2I) describing the time
derivative of ® along the trajectories. Including this penalizer
improves regularity and reduces the necessary number of time
steps when solving the dynamics [15]-[17], [64].

HJg,: We enforce the final-time condition of the
PDE (21). The inclusion of this penalizer helps the network
achieve the target [15]. Experimentally, using HJg, correlates
with a slightly lower G value (Fig. [2).

HJgroa: We enforce the transversality condition
V.®(T, 2(T))=V.G(2(T)) ¥z, a consequence of the
final-time HJB condition @ Numerically, all conditions
are enforced on a finite sample set. Therefore, higher-order
regularization may help the generalization; i.e., achieving a
better match of ®(7,-) and G for samples not used during
training (the hold-out validation set). We observe the latter
experimentally; HJgraq impacts G more than HJg, (Fig. |Z[)
Nakamura-Zimmerer et al. [29] similarly enforce V& values.

4) Shocks: We use this experiment to demonstrate how our
approach is robust to shocks to the system’s state (Fig. [3).
Consider solving the control problem for s € [0, T] as always.
Then for T = 1, we consider a shock & (implemented as a
random shift) to the system at time s = 0.1. Our method
is designed to handle minor shocks that stay within the
space of trajectories of the initial distribution about xy. Our
model computes a trajectory to y for many initial points.
Therefore, for point £ € X, the model provides dynamics
f(s,zz(s), uz(s)) before the shock. After the shock, the state
picks up the trajectory of some other point £ € X and

61 l1€1I=5
lIEll=4 0
lI€11=3

[1€]]=2 X target
l€l=1 * I
44 o

(a) The initial points &g + & for the corridor problem sampled from
the hyperspheres of radius ||£]|.
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of two circular agents.
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(d) For initial points at each magnitude, we present the percentage of
those resulting in a collision of any severity when run with the NN.

Fig. 5: We compare one NN model with 10,001 baseline mod-
els for 1000 initial points (0, ¢ + &) at each magnitude ||£||.
Confidence intervals are computed via 10,000 sub-samplings
of size 500 from each set of 1000 points.
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Fig. 6: Numerical results of the 12-agent swap experiment (Sec. [V-C.2). The agents’ targets are indicated by red crosses,
and the space bubble or safety region around each agent is depicted with a circle. The agents aim to pairwise exchange their
positions while avoiding each other and minimizing the length of their trajectories.
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Fig. 7: Numerical results of swap experiment with hard-
boundary obstacles (Sec. [V-C.I). The agents seek to exchange
their positions while keeping a safe distance (indicated by
circle) and avoiding the obstacles (white circles). The close-up
on the right shows agents at the time of minimal distance.

follows that trajectory to y (Fig. Ba). In this scenario, the
total trajectory contains two portions: before the shock and
after the shock. That is,

0.1
20,%(0.1) :/0 f(s7z0’fz(s),u0)5(s)) ds, and

1
zoa(l) = /Olf(s,z07@(s),u07i(s)) ds, where
20.6(0.1) = 29 5(0.1) + £,

respectively. We view a minor shock then as moving from one
trajectory to another (Fig. [3a). The NN and baseline achieve
similar results for the problem along s=[0.1, 1] (Fig. [3d).
Interestingly, our model extends outside the training re-
gion (Fig. Bb). Although the vast majority of NNs cannot
extrapolate, our NN still solves the control problem after a
major shock, demonstrating some extrapolation capabilities.
We note that the NN solves the original problem for xg to
near optimality. After a large shock, the NN still drives the
agents to their targets, although suboptimally. In our example,
we compare the NN’s solution (Fig. [3b) with the baseline for
5=[0.1,1] (Fig. Bc). The NN learns a solution where agent
2 passes through the corridor followed by agent 1. After the
major shock, the NN still applies these dynamics (Fig. |’5_5|)
while the baseline finds a more optimal solution (Fig.[3c). The
NN is roughly 100% less optimal in this example (Fig. [3d).
We attribute the shock robustness to the NN’s semi-global
nature. Experimentally, the shock robustness of our model
(Fig. B) does not noticeably differ from a model trained
without penalization (Fig. ). Since the NN is trained offline
prior to deployment, it handles shocks in real-time. In contrast,

methods that solve for a single trajectory—e.g., the baseline—
must pause to recompute following a shock.

5) Semi-Global Capabilities of NN model: For thorough anal-
ysis of the NN, we assess one NN’s performance for many
different initial conditions (0, zo+&). We sample 1000 random
& for each magnitude ||£]|=0.5, 1.0, ..., 5.0. For each (0, zo+
&), we train a baseline model and compute the suboptimality
of the trained NN (Fig. [5). This experiment equivalently
compares the NN and baseline on samples from concentric
hyperspheres. Since a shock can be phrased as picking up a
trajectory from an initial condition, testing the NN’s semi-
global capabilities and shock-robustness are synonymous.

We observe that the NN suboptimality grows as ||£|| in-
creases (Fig. [3). Specifically, for the corridor experiment, the
NN performs near optimality within ||£| < 2. Since the
NN was trained on p which was a Gaussian about xg with
covariance I. The bound ||£]| < 2 then equates to being within
two standard deviations of x.

C. Multi-Agent Swap Examples

We present experiments inspired by [19], where agents
swap positions while avoiding each other. All agents are
two-dimensional, and the formulation mostly matches that
presented in the corridor example (Sec. [V-B). Specifically, we
only alter =g, y, and @) for the swap experiments.

1) 2-Agent Swap: We begin with two agents that swap
positions with each other while passing through a corridor with
hard edges. To enforce these hard edges, we enforce a space
bubble around obstacles similar to how we implement multi-
agent interactions (13). Therefore, we train with this space
bubble but evaluate and plot the results without it. The actual
obstacles (two circles with radius 2) are formulated as follows.
Let Qops = {2z | ||z —pll <2 or |z— pyll <2}, then

Qi (z(i)) _ {(1):

0 0 .
{ 4] and py = {_3'5} However, for training,

if 200 € Qope,
otherwise,

where p; =
we encode this as

Q’ ¢ (z(z)) — 25:1 n (Z(l) 5 ll’ij) ’ if Z(Z) € Qobs,trna
Lo 0, otherwise,

where Qobstrn = {2 | ||z — 1]l < 22 or ||z — pso <
2.2}. By training with Gaussian repulsion—which has gradient



information within the obstacles—we incentivize the model to
learn trajectories avoiding the obstacles. Additionally, Qobs trn
contains an obstacle radial bound ten percent more than in
Qops because we found this additional training buffer allevi-
ates collisions during validation. We use the same obstacle
definitions for the baseline and NN approaches.

For initial and target states, we choose xo=[10,0, —10,0] "
and y=[-10,0,10,0]T. These values are a scaled down
version of those in [19] for ease of visualization. For the two-
agent problem, the agents successfully switch positions while
avoiding each other (Fig. [7). In validation, the obstacle () and
interaction costs W are exactly 0, so we can confirm that
the agents avoid collisions. Qualitatively, our method learns
trajectories with shorter arclength than those in [19].

2) 12-Agent Swap: We also replicate the 12-agent case in
[19]. For this experiment, six pairs of agents swap positions.
Since there are no obstacles, (Q=0. In our setup, the problem
is slightly adjusted as our semi-global approach solves for a
fixed y but with initial conditions in p, instead of just . We
display the solution for the single initial case xo (Fig. [6).

3) Impact of ResNet Width: We demonstrate the influence
of the ResNet width m by observing the results of models
with varied width for the 12-agent swap experiment (Fig. [Sa).
We select several m values in the range 12—-64 and train three
model instances for each while controlling for the rest of the
architecture. We then compute the suboptimality of the NN
solution relative to the baseline (Sec. for objective func-
tion ([2) of a single initial point &, (Fig.[8a). We observe that,
for the 12-agent swap experiment, the underlying manifold
exists somewhere near dimension 32 as values m > 32 are
relatively stagnant. We note that smaller values of m perform
poorly. When m < d, we essentially ask the model to condense
the input to a lower dimensional manifold. For the 12-agent
swap problem, the d=24 dimensions, though coupled, present
no obvious method for reduction to a lower basis. Therefore,
we observe poor model performance for m < d.

Based on the experiment (Fig. , we use a width of m =
32 to balance between a small model and performance. We
prefer smaller models as a model with few parameters is easier
to evaluate. However, due to the GPU parallelization, different
model widths in our experiment (Fig. [8a) have negligible
influence on time per training iteration.

4) Hamilton-Jacobi-Bellman Penalty Hyperparameters: In
general, we tune hyperparameters relative to each other and set
optimizer settings based on architecture design and hyperpa-
rameter choices. Thus, in a nuanced response to the findings
of Fig. 2l we find that, by training longer with an adjusted
learning rate scheme, one can achieve a similar NN solution
without any HJB penalizers (cf. Fig. B4). This holds because
the HJB penalizers do not mathematically alter the problem.

We design experiments to demonstrate the sensitivity of the
NN solution with respect to the hyperparameters (31, 82, 33
(Fig. [8). We train NN to solve the 12-agent swap experiment
(Sec. [V-C). We check the sensitivity of the NN solution with
respect to changing one [ hyperparameter while keeping all
other tuned f3s and hyperparameters fixed (Table [I).

B1: We observe best performance when (; € (1,5)
(Fig. [8b). Since (; weights the HJ; term, setting 5; too high
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(b) Tuning the scalar hyperparameter $; on the HJ; term while
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(c) Tuning the scalar hyperparameter 52 on the HJg, term while
keeping all other settings fixed. The x-axis is log-scaled.
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Fig. 8: Tuned hyperparameters for the 12-agent swap experi-
ment (Sec. where suboptimality is computed relative to

the baseline method (Sec.[V-A). Each plotted point and bounds
are the mean and standard deviation of three model instances.
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Fig. 9: The NN’s number of parameters scales linearly with the
problem dimension as the computational cost remains mostly
unchanged, mitigating CoD. For each problem (subproblem of
the 12-agent swap experiment), we train the smallest NN that
achieves at least 10% suboptimality.

leads to model training that underprioritizes reaching the target
which can result in very suboptimal solutions.

B2: We observe best performance when (2 € (1,2)
(Fig. Bc). Since (3, weights the HJg, term, setting 3 too high
leads to NN training that overprioritizes fitting the ® value at
time 7'. Specifically, the training overprioritizes fitting ® rather
than V,®, which more directly relates to the dynamics.

B3: We observe best performance when 5 € (4,10)
(Fig. . Since 33 weights the HJzraq term, setting (s too
high leads to model training that overprioritizes the model
reaching the target with less leeway in altering the trajectory
for a more optimal L. Alternatively, setting 53 too small leads
to an increase in suboptimality as the model is less likely to
satisfactorily reach the target.

5) Mitigating the CoD: We expand the 12-agent swap ex-
periment to demonstrate how the NN approach mitigates the
CoD (Fig. [9). We design four additional similar problems by
removing agents from the original 12-agent version. Thus,
we arrive at problems containing 2, 3, 4, 5, and 6 pairs of
agents that swap positions. We then determine the smallest
NN that is at most 10% suboptimal. We only tune the width
m, which dictates the number of NN parameters, and keep all
other settings, including the number of training samples and
iterations, fixed. The resulting NNs follow a linear growth of
number of parameters relative to the problem dimension d
(Fig. [9). Due to the parallelization of the GPU, the training
times of these NNs remain comparable.

D. Swarm Trajectory Planning Example

We demonstrate the high-dimensional capabilities of our
NN approach by solving a 150-dimensional swarm trajectory
planning problem in the spirit of [1]. The swarm problem
contains 50 three-dimensional agents that fly from initial
to target positions while avoiding each other and obstacles.

12

Flight Path

Fig. 10: The NN solution for the swarm with 50 agents in
R3 (Sec.|[V-D). The agents avoid the prism obstacles and each
other as they travel from one side of the obstacles to the other.

We construct  to model two rectangular prism obstacles
[—2,2] x [-0.5,0.5] x [0,7] and [2,4] x [—1,1] x [0,4]. We
train with Gaussian repulsion inside the obstacles similar to the
swap experiment (Sec. and use the same dynamics (34).
Due to the complexity of the collision avoidance, we find it
beneficial to switch the weights on the HIB penalizers during
training—recall that the penalizers do not alter the solution
(Sec.[V=B.3). For the first portion of training, we choose 31 =2,
B2=1, and B3=3 (Table [I); for the rest of training, we use
B1=P2=L3=0. This set-up focuses the model on solving the
control problem in the first portion of training as the final-time
penalizers help the agents reach their destinations. We then
reduce the weights of the penalizers for optimal fine-tuning.
In validation, we observe that the values for terrain () and
interaction W are exactly 0. Thus, the NN learns to guide all
agents around the obstacles and avoid collisions (Fig. [10).

E. Quadcopter Trajectory Planning Example

In this experiment from [20], a quadcopter, i.e., a multirotor
helicopter, utilizes its four rotors to propel itself across space
from an initial state in the vicinity of x to target state y.
We choose values zo=[—1.5,—1.5,—1.5,0,...,0]T € R'?
and y=[2,2,2,0,...,0]" € R'2. Denoting gravity as g, the
acceleration of a quadcopter with mass m is given by

& = 2 (sin(¢) sin(p) + cos(1) sin(6) cos(y))

= %( — cos() sin(g) + sin(¢) sin(0) cos(@))
é': L cos(f) cos(p) — g

y )

=Ty
9:7'9
P =Ty

(35
where (z,y,z) is the spatial position of the quadcopter,
(1,0, ) is the angular orientation with corresponding torques
Tys To» Ty, and wu is the main thrust directed out of the



bottom of the aircraft [65]. The dynamics can be written as
the following first-order system

T = vy
Y = vy
Z =,
Y =vy
92’[}9
© =y

z2=f(s,z,u) = (36)

0o = A fr(0,0,0)
by = %fS(qﬁaea@)
U, = %f9(0,90) -9

’l.}w = Tw
’1.19 =Ty
where
fr(,0,0) = sin(¢) sin(p) + cos(¢)) sin(f) cos(p)
fa(1,0,0) = —cos(¥)sin(p) + sin(y)) sin(8) cos(p) -
fo(0,) = cos() cos(p)

(37

Here, z = [z y 2 ¥ 0 ¢ vy vy v, vy Vg v¢]T € R'? is the
state with velocities v, and u = [u 7y 79 7] € R* is the
control. For the energy term, we consider

B(u(s)) = 2+ [lu(s)]*

38
:2+u2(s)—|—73,(s)—|—7'92(s)—|—7'£(8). %8)

For this problem, we have no obstacles nor other agents, so
L(s,z,u) = E(u).

We consider the Hamiltonian in (@) where p =
[p1 p2 ... p12]| € R'2. Noting the optimality conditions
of for the quadcopter problem are obtained by

~VuE(u) =p' Vuf =0

-
p7 Jr/m 0 0 0
U D8 fs/m 0 0 O
. T o Po fg/m 0 0 O .
=20, D10 o 10009
To P11 0 01 0 (39)
P12 0 0 0 1]
u L (frp7 + fsps + fopo)]
—~ o || _ P1o —0
To P11 ’
Te P12 ]
we can derive an expression for the controls as
-1
u = T(f7p7 + fsps + fopo),
m (40)

_ ~Pu _ —h12
T 277’9—2,7'@—2.

We therefore can compute the Hamiltonian

P Pa
H(S,Z,p) = 7L(’U‘) - [Um Uy UZ] b2 | — [Uw Vo (Uap} D5
D3 Pe
1 2 1
+ ﬁ(mﬁ + psfs +pofa) + pog + 5(]0?0 + p2, 4+ ply).
41)

Finally, using and (@0), we compute the controls w using
the NN (Fig. with

-1 0P 0P 0P
u=—\fiz—+fsz—+ foz— |,
2m v, Ovy ov, 42)
_ 1o 19 102
™= 2 dvy,’ T T e T 20v,

The quadcopter contains highly coupled 12-dimensional dy-
namics, which lead to time-consuming model training despite
its dimension and lack of obstacles and interactions (Table [[I).
The HJB terminal conditions seem to offer little impact as no
obstacle or interaction costs interfere with the terminal cost.

The NN approach learns similar controls (Fig. [ITe) and
states (Fig. [I2) as the baseline method. Both methods learn a
similar flight path though the NN approach learns for many
initial conditions (Fig. [IT). As with the corridor problem,
the NN learned a solution with better terminal cost, but less
optimal ¢ than the baseline (Fig. [TTf).

F. Computational Cost

The offline-online paradigm of our NN approach is specif-
ically designed for efficient deployment in real-time applica-
tions. To demonstrate this, we compare the computation of
the control at time s, updating one time step to time s + 1
on a single CPU core for both methods. For the baseline,
we compute the cost of 100 function and gradient evaluations
with n; = 20 for all experiments. NLP algorithms typically
require sampling many initial conditions to solve these non-
convex problems. Thus, we believe 100 function-gradient
evaluations is a conservative estimate of the cost to generate a
trajectory with the baseline method. For the NN, we compute
the approximate cost of one RK4 step; this is computed by
dividing the total cost of the trajectory by the number time
steps n;. Naturally, the set-up of the real-time scenario requires
online control generation for a space-time s that may not lie
on the pre-computed trajectory. A local solution method, the
baseline approach must recompute the entire trajectory from
s to target space-time (y, 7). Evaluating the NN model to
obtain a control is 400x-600x faster than solving a control
problem with a baseline method (Table|[[I). To compute the full
NN trajectory for comparison against the baseline, one simply
multiplies the deployment timing of one NN step (Table
by the number of time steps n; (Table [I).

A thorough timing comparison may involve reducing the
NN approach to an RK1 scheme to match the baseline. This
would reduce the NN time cost in Table |lIf by more than a
factor of four. Additionally, the baseline timing used a fixed
number of time steps n;=20. In practice, when started later in
the time-horizon, the baseline may use n; < 20 and therefore
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Fig. 11: Quadcopter problem results and comparison.

perform faster. Conversely, timing the baseline with a finer
discretization (n; > 20) results in higher time cost.

VI. DiscussioN

Our experiments demonstrate the effectiveness of our NN
approach for solving several high-dimensional control prob-
lems arising in multi-agent collision avoidance. Problems with
more complex dynamics and Lagrangians in the finite time-
horizon setting are also within reach, as long as the underlying
Hamiltonian can be computed efficiently (see Assumption 1).
Future work will also involve experimentation with problems
that render H non-concave in u (see Eq. @) and extending our
framework to infinite time-horizon control problems such as
the ones in [66]—[68]. Future work will include extensions to
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Fig. 12: Quadcopter comparison of the additional states as a
supplement to Fig. [T}

situations where the terminal state is unknown or uncertain.
While the focus of this work is on numerical simulations and
validations, our positive results motivate the application of our
technique to real-world systems.

Our approach does not require first solving for sample
trajectories to generate training data and thus differs from the
supervised training approaches in [28], [29]. A more similar
approach to ours is deep reinforcement learning (RL) [69].
However, while RL approaches learn from observations of the
dynamics and reward functions (and are thus more general),
we assume known dynamics and rewards that satisfy Assump-
tion [T] We argue that these assumptions are not too restrictive
as demonstrated by our multi-agent examples with non-convex
interactions and many examples in the literature, e.g., [8].
We benefit from using the model because the solution’s
properties—e.g., the approximated value function must satisfy
the HIB equations and optimal actions can be obtained from a
feedback form—inform the training process. While this makes



our approach less general than RL (applicable in model-free
fashion), we expect that this prior knowledge contributes to
our approach’s effectiveness. As part of future work, we intend
to compare our method to RL approaches in terms of sample-
efficiency, network choice, and robustness to hyperparameters.
Among the many RL approaches that have been applied
to control problems, the perhaps closest to our method is
the actor-critic framework [70], [71], which employs two
neural networks to approximate the policy (actor) and the
value function (critic), respectively. Notably, the weights of
the two networks are not shared, and thus, we should not
expect them to generally satisfy the feedback form (I8). In our
approach, we parameterize the value function and compute the
optimal policy directly using the feedback form. In addition
to requiring only one network, this potentially simplifies the
training process, which we plan to investigate in future work.
In the CoD experiment, we observe linear scaling of the
NN’s parameters for problems of dimensions 8 to 24 (Fig. [9).
Recall that the number of parameters in a grid-based method
scales exponentially with the dimension, leading to prohibitive
computational complexity and memory costs. Since the NN
formulation leverages the GPU parallelization and we use the
same number of training samples and iterations regardless of
dimension, we observe little noticeable change in the time
cost across dimensions 8 to 24 (Fig. [9). Factors that influence
the training time stem more from the sequential nature of
solving the ODE constraints (24). In multi-agent problems,
the memory scales quadratically with the number of agents
due to the interaction costs WW. Eventually, for a large enough
dimension d, the memory costs of the model may exceed the
GPU RAM, and implementation changes become necessary.
In our experiments, we show how the semi-global nature of
the NN optimally solves the problem within the relevant state-
space (Fig. [5). As with most machine learning approaches,
our method may fail to generalize, i.e., extrapolate beyond the
selected training space. Specifically, the NN often solves the
control problem outside the training space, but has potential
to do so suboptimally (Fig. or cause collisions (Fig. [3).
The ability of the NN to avoid collisions and the time
needed to train the model depend most crucially on the number
of time steps n; selected (Sec. [[V-D). Large n; leads to high
computation and training time while reducing error; mean-
while, too small n; leads to overfitting to a refinement of the
time discretization of the trajectories. A coarsely discretized
approximation of the ODE constraints can result in the model
unrealistically jumping over obstacles or other agents. Thus,
we use large n; for the hold-out validation set (Table ) to
check for overfitting and that the agent movement is sensible.

VII. CONCLUSION

We formulate and demonstrate an NN approach for solving
high-dimensional OC problems arising in multi-agent optimal
control that consists of an offline and an online phase. In
the offline phase, we compute an NN approximation of the
control problem’s value function in the relevant subset of
the space-time domain. Our learning problem combines the
high-dimensional scalability from the PMP and the global

nature from the HJB approach. In the online phase, the
NN approximation is used to compute approximately opti-
mal controls using the feedback form in milliseconds. Our
numerical experiments show the effectiveness of our approach
for multi-agent problems with state dimension up to 150.
Our experiments show that the obtained controls are nearly
optimal relative to a baseline and that the network size and
computational costs grow only moderately with the dimension
of the problem. Moreover, our approach is robust to shocks
and can handle complicated interaction and obstacle terms.
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