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Both manufacturing and service industries deal with quality characteristics, which 

include not only variables but attributes as well. In the area of Quality Control there has 

been substantial research in the area of correlated variables (i.e. multivariate control 

charts); however, little work has been done in the area of correlated attributes. To control 

product or service quality of a multi-attribute process, several issues arise. A high number 

of false alarms (Type I error) occur and the probability of not detecting defects increases 

when the process is monitored by a set of uni-attribute control charts. Furthermore, 

plotting and monitoring several uni-attribute control charts makes additional work for 

quality personnel.  

To date, a standard method for constructing a multi-attribute control chart has not 

been fully evaluated. In this research, three different techniques for simultaneously 

monitoring correlated process attributes have been compared: the normal approximation, 

the multivariate np-chart (MNP chart), and a new proposed Neural Network technique. 

The normal approximation is a technique of approximating multivariate binomial and 



Poisson distributions as normal distributions. The multivariate np chart (MNP chart) is 

base on traditional Shewhart control charts designed for multiple attribute processes. 

Finally, a Backpropagation Neural Network technique has been developed for this 

research. Each technique should be capable of identifying an out-of-control process while 

considering all correlated attributes simultaneously.  

To compare the three techniques an experiment was designed for two correlated 

attributes. The experiment consisted of three levels of proportion nonconforming p, three 

values of the correlation matrix, three sample sizes, and three magnitudes of shift of 

proportion nonconforming in either the positive or negative direction. Each technique 

was evaluated based on average run length and the number of replications of correctly 

identified given the direction of shifts (positive or negative). The resulting performances 

for all three techniques at their varied process conditions were presented and compared.  

From this study, it has observed that no one technique outperforms the other two 

techniques for all process conditions. In order to select a suitable technique, a user must 

be knowledgeable about the nature of their process and understand the risks associated 

with committing Type I and II errors. Guidelines for how to best select and use multi-

attribute process control techniques are provided.  
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1.0 INTRODUCTION 

Quality has been a concern in the manufacturing industry since 1700
1
. In present 

day, not only manufacturing but also service industries focus on product and service 

quality as main factors for customer satisfaction. To be competitive in the market, 

organizations must improve or at least maintain their product and service quality.  

Control charts, which are effective tools to monitor final product and process quality 

characteristics, were initially developed in 1924
2
. Since then, several kinds of control 

charts have been developed for different applications.  

This research focuses on a relatively new area in quality control, namely that of 

the development and evaluation of multi-attribute control charts. 

1.1 Quality Control Chart Applications 

Quality control charts can be applied to almost any area within a company or 

organization, including manufacturing, process development, engineering design, finance 

and accounting, marketing and field service.  Shewhart X , S and R control charts are 

extensively used to monitor continuous process variables. For example, a steel sheet 

manufacturer considers sheet thickness as a major quality characteristic and monitors it 

via Shewhart control charts. However, there are many situations in which more than one 

variable is considered simultaneously. For instance, a bearing has inner and outer 

diameters to determine the part quality.  As a second example, the operating temperature 
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and pressure of a distillation column both affect the process yield.  As an additional 

example, Jackson
3
 presented the application of multivariate quality control in ballistic 

missile and photographic film examples.  

In addition to the continuous type of quality characteristics mentioned, there is 

another data type of quality characteristic commonly referred to as discrete (or attribute 

data). For example, a rod diameter is measured as “go” or “no-go” (i.e. the diameter 

specification is given a “pass” or “do not pass”).  Control charts constructed for discrete 

data are called attribute control charts. Examples of processes that apply attribute control 

charts include order taking (an example from the service sector) and integrated circuit 

board fabrication (an example from manufacturing). For the order taking example, the 

number of wrong orders taken is the attribute of interest, while in the integrated circuit 

board fabrication example the number of defects on a wafer is monitored.  Similar to 

variable processes, attribute processes may involve more than one attribute.  Many 

service industries work with multiple attributes to describe their quality characteristics. 

For instance, an airline company measures customer satisfaction as a function of the 

mannerisms of the flight attendants and the overall flight time. A healthcare provider may 

evaluate its performance by the number of service errors, and the number of negative 

comments received about doctors, nurses, and overall service. 

1.2 Benefits of Multivariate/Multi-Attribute Process Control versus 

Univariate/Uni-Attribute Process Control 

When a process involves more than one variable, two different types of control 

chart approaches can be selected, a single multivariate control chart or a set of univariate 

control charts. A multivariate control chart is more sensitive and economical than a set of 
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univariate control charts. The number of false alarms (Type I error) decreases when a 

multivariate control chart replaces a set of univariate control charts. In addition, a 

multivariate chart shows out-of-control signals due to the joint effect of two or more 

correlated variables; however, a set of univariate control charts may not show any such 

signal because their individual effect may not be out-of-control. Lowry and Montgomery
4
 

have shown that, in general, a multivariate control chart has better sensitivity than a set of 

univariate control charts in monitoring multivariate quality processes. A multivariate 

control chart is easier to use than maintaining numerous univariate control charts since 

identifying an out-of-control sample in a multivariate control chart requires only one 

observation versus many in univariate control charts. Equivalently, monitoring 

simultaneous attributes via multi-attribute charts has similar benefits over monitoring 

several single attributes at one time.  

1.3 Multi-Attribute Process Quality Control Approaches 

When developing a control chart technique for multi-attributes, the following 

questions/statements should be considered.  These questions/statements are adapted from 

multivariate quality control goals given by Jackson
5
.  

1. A single answer should be available to answer the question: “Is the process in 

control?” 

2. An overall Type I error should be specified. 

3. Techniques should take into account the relationships among the attributes. 

4. Techniques should be available to answer the question: “If the process is out-

of-control, what is the problem attribute?”. 
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As service industries, which most often involve the use of attribute data, 

implement or improve upon quality programs, it has been found that control charts are 

the most common tools utilized
6
. As a result, the demand for effective techniques to 

monitor a process with multiple attributes simultaneously is increasing. However, little 

research has been done in this area. From the literature only three studies have been 

conducted; the first two studies focus on the statistical design of multi-attribute charts, 

and the third study focuses on the economic design. The two statistical design techniques 

are authored by Patel
7
 and Lu et al.

8
. Patel suggests a multivariate normal approximation 

technique for multivariate binomial and Poisson distributed data. Lu et al. develop a 

multivariate np-chart (MNP chart) based on a Shewhart-type control chart to deal with 

multiple attribute processes. The economic design study is conducted by Jolayemi
9
. In his 

work, Jolayemi develops a J approximation technique to approximate the sum of 

independent binomial distributions, which have different proportion nonconforming.  

The multi-attribute research mentioned specifies the probability of falsely 

identifying an in-control sample; however, neither author discusses how fast the control 

charts can detect an out-of-control sample. Lu et al. show that multivariate np-chart is 

more sensitive than a set of uni-attribute control charts but their conclusion is based on 

only a single numerical example. The literature lacks any discussion about how well the 

current multi-attribute process control techniques work on various values of proportion 

nonconforming, different magnitudes of mean(s) shift (shift of proportion 

nonconforming), and different values of the correlation matrix.   
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1.4 Research Objectives 

The objective of this research is two-fold. The first objective is to develop a 

technique for monitoring a multi-attribute process. The proposed technique meets the 

objectives of stated in section 1.3, as well as requires smaller sample sizes than the 

current techniques described. This new technique is based on the use of backpropagation 

neural networks (BPNN), which has had many successes in the quality control arena. The 

second objective of this research is to conduct a comparison study among the two current 

statistical approaches (normal approximation and MNP chart) and the proposed neural 

network technique given different conditions of proportion nonconforming p, sample size 

n, correlation matrix, and direction and magnitude of mean(s) shift (shift of process’s 

proportion nonconforming). Out-of-control average run length (ARL) and in-control 

ARL will be used as performance measures for the three comparisons. The number of 

replications of correctly identified directions of shifts (positive or negative) will be also 

considered in the performance comparison. 

As a result of this research, guidelines have been developed for quality control 

engineers and administrators who intend to monitor their multiple attribute processes. 

Based on the guidelines, users can more easily select the most promising technique to 

satisfy their particular process conditions. 

1.5 Research Contributions 

From this research, a new technique using backpropagation neural network 

(BPNN) for monitoring multi-attribute processes has been developed and successfully 

evaluated. This technique is preferable for processes with small sample size.  In addition, 
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the new technique is able to identify the directions of shifts and this quality narrows 

down causes of the shifts.  This research also presents how the current and proposed 

multi-attribute process control techniques perform in different process conditions. 

Finally, guidelines and benefits of using a particular technique versus the others are 

provided for particular users.  

This document is organized in the following manner. Chapter 2 includes the 

literature review. Chapter 3 explains the various multi-attribute methodologies that were 

investigated.  These include the above mentioned techniques as well as an investigation 

of other possible techniques. Chapter 4 provides an overview of the experimental design 

used to compare the three techniques and Chapter 5 discusses the performance measures 

used in the experiment.  Chapter 6 describes how the code used to test the three 

techniques was verified and how the data generated for the experiment were validated.  

Chapter 7 provides the results of the experiment. Chapter 8 recommends how one might 

determine the best technique to employ given particular process conditions.  Finally, 

Chapter 9 gives conclusions and contributions, and suggests directions for future research 

in the area of multi-attribute control charts. 
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2.0 LITERATURE REVIEW 

Control charts have been used as tools for monitoring industrial and service 

related processes for decades. In general, control charts can be categorized into two 

groups by the type of quality characteristic. A quality characteristic, which is measured 

on a numerical scale, is called a variable. X , S and R charts are broadly used to monitor 

the mean and variability of variables. However, not all quality characteristics can be 

measured numerically. This type of quality characteristic classifies an inspected item as 

either conforming or nonconforming to a particular specification. The latter quality 

characteristic is called an attribute. In the same manner, p, np, c and u-charts are 

extensively used to observe attribute means.  

Depending on the nature of the process, either variable or attribute control charts 

may be used. Based on the needs of the customer, engineers select the type of control 

chart. Montgomery
10

 suggests criteria for choosing the proper type of control chart. 

Advantages and disadvantages of attributes vs. variable control chart are also 

recommended
11

. Below are some advantages for using attributes control charts. 

 Attribute control charts can provide joint quality characteristics, e.g. height, 

length and width, in one chart. Products are defined as nonconforming when any 

one characteristic fails to meet specifications. On the other hand, three separate 

variable control charts are needed if we consider the quality characteristics as 

variables.  
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 Attributes control charts consume less time and cost in inspection than variable 

control charts. 

Disadvantages of attribute control charts include, but are not limited to, the following. 

 Variable control charts can forewarn operators when the process is about to go 

out-of-control so that actions can be taken before any nonconforming products are 

actually produced. In contrast, attribute control charts will not indicate any such 

signal until the nonconforming products are produced. 

 Attribute control charts require larger sample sizes than do variable controls 

charts to indicate a process shift.  

 Attribute information does not provide potential causes; therefore remedial 

actions cannot be identified. 

This literature review discusses various types of uni-attribute, multivariate control 

charts and current multi-attribute process control techniques. The last section of this 

Chapter presents neural network applications for control charts. 

2.1 Uni-Attribute Control Charts 

In addition to applications of attribute control charts in manufacturing processes, 

attribute control charts are very useful in service industries. One reason for the wide use 

of attribute control charts in service industries is that most of the quality characteristics 

are measured on a quality scale such as satisfied or unsatisfied. Palm et al. discussed 

control chart applications in relatively new areas such as the service industry
12

. Health 

care providers have applied attribute control charts to measure service quality and 

expense. Educational institutions are also one of latest areas in which attribute control 
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charts are being implemented.
13

 Several types of attribute control charts will be discussed 

next. 

2.1.1 Control Chart for Proportion Nonconforming (p-chart) 

The p-chart is used to monitor the proportion nonconforming. The proportion 

nonconforming is the ratio of number of nonconforming items in a population to the total 

number of items in the population. In service industries, the proportion nonconforming 

may be the ratio of number of unsatisfied customers to the total number of customers. 

The upper and lower control limits and centerline are calculated as follows. 

   )/)1((3 npppitsControlLim −±=  ,   (2-1) 

pCenterline = ,      (2-2) 

where p and n are the proportion nonconforming and sample size respectively. The 

statistic p  estimates p when p is unknown.   

2.1.2 Control Chart for Number of Nonconforming Items (np-chart) 

For the p-chart, operators convert the number of nonconforming items in the 

sample to proportion nonconforming. The conversion process can be discarded by 

switching to np-charts since numbers of nonconforming items from samples are plotted 

instead of the proportion nonconforming. There is one drawback in the np-chart. The 

control limits and centerline will change when the sample size varies. Control limits and 

centerline formulas are given below. 

)1(3 pnpnpitsControlLim −±= ,    (2-3) 
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npCenterline = ,      (2-4) 

where p and n are the proportion nonconforming and sample size respectively. 

2.1.3 Control Chart for the Number of Nonconformities (c-chart) 

A c-chart is used when the number of defects or nonconformity in an item is of 

particular concern, such as the number of defective welds in 10 meters of oil pipeline, the 

number of defects in 100 m
2
 of fabric, etc. In constructing a c-chart, the size of sample is 

called the area of opportunity. The area of opportunity may consist of a single unit or 

multiple units of an item. A constant size area of opportunity is required when c-chart is 

constructed. This control chart assumes that the underlying distribution of the occurrence 

of the nonconformities in a sample of constant size is Poisson. The centerline and control 

limits are given below. 

ccitsControlLim 3±= ,     (2-5) 

cCenterline = ,      (2-6) 

where c is the average number of nonconformity in an area of opportunity. 

2.1.4 Control Chart for the Number of Nonconformities Per Unit (u-chart) 

A c-chart is used when the sample size is constant. If the sample size changes 

from one sample to another, a u-chart is the proper tool. Even though the u-chart control 

limits change when sample size varies, the centerline remains constant. The centerline is 

the average number of nonconformities per unit.  

   
∑
∑==

i

i

n

c
uCenterline ,     (2-7) 
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where ci and ni are the number of nonconformities and sample size of the i
th

 sample. 

The control limits are given by the following equation. 

   )/(3 nuuitsControlLim ±=     (2-8) 

2.1.5 Current Research Issues in Uni-Attribute Control Charts 

A primary issue of discussion in attribute control charts is the appropriate sample 

size. The sample size should be selected to ensure that the normality assumption is not 

violated.
14

 In the p and np-charts, when the proportion nonconforming is very small, 

sample size must be large. However, too large of a sample size causes a problem for a 

process with limited resources. Schwertman and Ryan suggest an alternative procedure 

called dual np-charts.
15

 Dual np-charts are composed of two charts. One chart provides an 

early warning of quality deterioration and the other, a cumulative control chart, uses 

approximate normal theory properties. The first chart has a smaller sample size than the 

second chart. As a result, the control limits for the two charts are different.  

Chen also discusses the use of large sample sizes, but adds information about the 

speed of detecting a shift in the mean.
16

 In the p-chart, the lower control limit is always 

close to “0”, which makes the probability of detecting decreases in p small. In order to 

have effective lower control limits, large samples sizes are required. Chen suggests two 

alternative charts, which are based on discrete probability integral transformations and 

arcsine transformations, respectively. He compared the alternative charts with the 

classical p-chart using three criteria: (1) the minimum sample size for effective lower 

control limits, (2) the closeness of the false alarm probabilities to the nominal values for 
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both upper and lower control limits, and (3) the ability to detect a change in p right after 

the change occurs.  

How fast a control chart detects the p shift, especially when the p shift is small, is 

another issue that has been discussed by several authors. The CUSUM chart is an 

alternative to the classical Shewhart p-chart. Reynolds and Stoumbos
17

 developed two 

CUSUM charts. One chart is based on the binomial distribution in which variables are 

counted from the number of defective items in n sample size. The second chart is based 

on Bernoulli variables resulting from inspections of the individual items. Both CUSUM 

charts are faster in detecting small shifts in p than traditional Shewhart p-charts. Further, 

CUSUM charts are better than p-charts for detecting large shifts in p. In addition, 

Reynolds and Stoumbos provide the Sequential Probability Ratio Test (SPRT) chart, 

which provides faster detection of changes in p than CUSUM and classical p-charts; and 

the SPRT chart requires smaller sample sizes than CUSUM and classical p-charts in 

order to detect changes.
18

 For processes where p is very small, such as parts-per-million, 

Nelson
19

 introduces a new control chart as an alternative to the traditional p and c-charts 

in order to avoid a large sample size. The number of conforming items between two 

consecutive nonconforming items is counted, and is assumed to have an exponential 

distribution. A transformation is then applied to the exponential distribution to 

approximate a normal distribution.  

For the c-chart, one of the interesting issues discussed in the literature is that the 

distribution is assumed Poisson. There are situations in which the occurrence of defects in 

an item of a process does not follow the Poisson distribution. For example, defects in 

integrated circuit board fabrication are often clustered such that they do not follow a 
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Poisson distribution. Therefore, using a c-chart results in more false alarms. Two 

methods, a Neyman-based control chart (a control chart on the Neyman-type A 

distribution) and fuzzy ART, are suggested by Su and Tong
20

. The Neyman-type A 

distribution is a member of the family of compound Poisson distributions. One drawback 

of the Neyman-based control chart is that it cannot be applied to large sample sizes. 

2.2 Multivariate Control Charts 

In most processes, more than one quality characteristic can affect the final product 

quality. In another words, multiple quality characteristics are monitored simultaneously. 

In such cases, engineers develop and monitor either several univariate control charts or a 

single multivariate control chart. The practice is similar for attribute control charts. One 

drawback of using several univariate control charts is that the probability of a Type I 

error (plotting the sample outside control limits when it is really in control) increases. An 

increased Type I error will result in a higher number of false alarms to occur. For 

example, consider a process that consists of two independent quality characteristics, x1 

and x2, each plotted on separate control charts. Each individual chart has Type I error of 

0.0027 given three sigma control limits. Assuming independence, the joint probability of 

plotting the sample in control limits when it is actually in control is (1-.0027)(1-.0027) = 

0.9946. The overall Type I error of the two univariate control charts is 1- 0.9946 = 

0.0054, which is two times larger than the 0.0027 Type I error of a single multivariate 

control chart. Therefore, if we have two independent quality characteristics and would 

like to maintain an overall Type I error of 0.0027, each individual chart Type I error 

needs to be adjusted to 0.001351. Consider the example where 10 variables are 
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investigated instead of two. Type I error will increase to 0.026 (roughly a 10 times 

increase). As the number of quality characteristics increases the Type I error distortion 

becomes more severe.  

If the quality characteristics are not independent, a more complex process must be 

employed to obtain the overall Type I error. Aparisi
21

 provides control limits when the 

two variables, x1 and x2, follow a bivariate normal distribution. Using a multivariate 

control chart reduces the operating personnel’s work by plotting only one chart instead of 

multiple charts. In addition, monitoring the process status in multivariate control charts is 

easier than univariate control charts. However, assignable causes of an out-of-control 

process are more easily defined by set of univariate control charts. 

There are several standard statistical process control methods that can be used to 

monitor the processes with multiple variables, such as the Hotelling T
2
 control chart, 

Principal Component Analysis (PCA), Partial Least Square (PLS), to name a few. The 

three techniques mentioned will be discussed. 

2.2.1 Hotelling T
2
 Control Chart 

Hotelling
22

 conducted the original work in multivariate control charts. The 

Hotelling T
2
 control chart was developed to monitor process variables simultaneously and 

overcome the drawbacks associated with using several univariate control charts when 

variables are correlated. The underlying distribution of the quality characteristics for 

which the Hotelling T
2
 is appropriate is multivariate normal; however, a small deviation 

from multivariate normal distribution will not affect the results severely. The procedure 

for constructing the control chart is similar in nature to other types of control charts. The 
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procedure is composed of two phases. The objective of phase I is to obtain an in-control 

set of observations so that control limits can be established for phase II.  Phase II uses the 

control chart derived in phase I to monitor whether the future process is in-control or not. 

Historical or new data (preliminary) collected from the process is used to generate a 

phase I control chart. A sample mean and variance are estimated. Samples that are shown 

to be out-of-control are investigated and deleted from the data set if assignable causes are 

found. A new control chart without these points is then developed. The estimated mean 

vector and covariance matrix are:             

  ∑
=

=
m

k

jkj X
m

X
1

1
 j = 1, 2, …, υ and  k = 1, 2, …, m  (2-9) 

  ∑
=

=
n

i

ijkjk X
n

X
1

1
 i = 1, 2, …, n     (2-10) 

  ∑
=

=
m

k

jkj S
m

S
1

22 1
 j = 1, 2, …, υ and  k = 1, 2, …, m  (2-11) 

  ∑
=

=
m

k

jhkjh S
m

S
1

1
 j≠ h      (2-12) 

where m is the number of samples collected for preliminary data, υ is the number of 

monitored variables and n is the sample size. The test statistic is given as  

  )()'( 12 xxSxxnT −−= − .      (2-13) 

In phase I, control limits for T
2
 control chart are  
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where α is a specified significance level and F is F distribution. Once the chart is used 

for monitoring future observations (Phase II), the control limits are 
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The Chi-square distribution with υ degrees of freedom, where υ is the number of 

variables, and a significance level of α can be used as the upper control limits for both 

phase I and II when the mean vector, variance and covariance matrix are estimated from a 

large number of preliminary samples.
23

  

2.2.2 Principal Component Analysis (PCA) 

Principal Component Analysis is a useful technique for multivariate statistical 

process control, particularly with large size data and correlated variables. The general 

concept of PCA is to reduce a data matrix’s dimension from m to k (k<m). The reduced 

dimensional matrix accounts for the majority of variability in the original data. Principal 

Component Analysis calculates a vector, called the first principal component, which is a 

linear combination of the m measure variables. This line is the direction of maximum 

variance and is defined so as to minimize the orthogonal deviation from each data point. 

A unit vector, which defines the direction of a principal component, is called an 

eigenvector. The distance of each original data point, which is projected along i
th

 

principal component, is called a z-score (zi). The second component is obtained in the 

same way as the first principal component but it is fitted through the residual variation of 

the first component. Both the first and second components are orthogonal. This approach 

is continued until m principal components, which are orthogonal, are obtained. For large 
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data sets, it is often found that the first k components (k << m) explain the majority of the 

variation in the data matrix. 

According to Jackson
24

, Principal Component Analysis (PCA) can be useful in 

multivariate process quality control because it transforms a set of correlated variables to a 

new set of uncorrelated variables. Quality engineers can then plot individual control 

charts from the sets of uncorrelated variables. However, Type I error is increased when 

variables are monitored individually. Techniques, such as Hotelling T
2
, can take care of 

this increased Type I error. From Jackson
25

, 
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where zi is projected distance along i
th

 principal component of each original data point. 

The variance of zi is eigenvalue li. A process is out of control if T
2
 is larger than upper 

control limit where 
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and F is the F distribution. 

If the process
 
is out of control, yi must be examined to provide the root causes of 

the out-of-control condition. One advantage of using PCA is that quality engineers only 

have to work with k instead of m variables (k<m). 
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2.2.3 Partial Least Squares (PLS) 

Often one group of variables, Y, is of great importance, such as product quality, 

and should be included in the monitoring process. Unfortunately, these variables are 

measured much less frequently and accurately than the normal process variables, such as 

X. Therefore, a technique using process variables, X, to detect and predict the change of 

product quality variables, Y, is used. This technique, Partial Least Squares (PLS), is a 

regression method based on projecting a high dimensional space (X,Y) onto a lower 

dimensional space defined by two sets of latent variables from both X and Y. Wold
26

 

provides details on the use of PLS. 

2.3 Multi-Attribute Control Charts 

Multi-attribute control charts can be used to simultaneously monitor many 

attribute quality characteristics of a process. The objectives of multi-attribute control 

charts are the same as multivariate control charts. Examples of industries that can 

capitalize on the multi-attribute control charts are the airline, healthcare, and food service 

industries. An airline company may measure customer satisfaction as a function of the 

mannerisms of the stewards/stewardesses and the overall flight time. For a restaurant, the 

food quality and the waiter’s behaviors are possible quality attributes.  

Even though multi-attribute control charts can be as useful as multivariate control 

charts, little research has been published. Patel conducted one of the earliest multi-

attribute control charts studies
27

. Patel developed quality control methods for multivariate 

binomial and multivariate Poisson distribution observations. The correlated attributes 

were monitored simultaneously. In addition, his work considered time-dependent 
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samples. Two assumptions, normality and equal process variance, are drawbacks of 

Patel’s method. Lu et al.
28

 addressed the statistical design of multi-attribute control 

charts. This paper discussed a mechanism for developing a Shewhart-based control chart 

to deal with multiple attribute processes. The chart is called multivariate np-chart (MNP 

chart). The MNP chart is easy to implement and interpret. An X statistic, which is the 

weighted sum of the counts of nonconforming units for each quality characteristic in a 

sample, is introduced. Control limits are derived based on this X statistic and traditional 

Shewhart-based control charts. Naturally occurring correlations between attributes are 

also considered in the model. A comparison of MNP and individual np-charts in a 

numerical example (see Lu et al.) shows that MNP chart has less Type II errors than the 

individual np-charts since the correlation of attributes is taken into account by MNP 

chart. However, there is no discussion about the average run length of MNP charts in this 

work. In addition, MNP chart has not been compared to other multi-attribute process 

monitoring techniques. 

Jolayemi
29

 developed a model for an optimal design of multi-attribute control 

charts for processes with multiple assignable causes. The model addresses the economic 

design, which is a departure from the above two models. This model is based on a J 

approximation
30,31

 and Gibra’s model
32,33

 for the design of np-charts. J approximation is 

applied to the model instead of the direct convolution method (sum of independent 

binomial variables with different values of proportion nonconforming) in order to reduce 

the model complexity. The model yields the optimal sample size, the sampling interval 

and the control limits of the control charts. By applying latent structure analysis, all 

attributes are considered locally independent within an assignable cause. All assignable 
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causes are assumed to occur independently and non-overlapping. From J approximation, 

the distribution of the sum of m independent binomial distributions, b(n, p1), b(n, p2),…, 

b(n, pm), is well approximated by a single binomial distribution, b(mn, p ), where  
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m
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Here pi is the proportion of defects corresponding to the i
th

 binomial variable and 

n is the sample size. As a result, the distribution of the sum of the number of defective 

items is approximated by b(mn, p ) for a sample of size n from the process with respect to 

all m attributes. The upper and lower control limits are then calculated as shown below. 
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where 0
p is the average in-control proportion nonconforming of all attributes and k is 

constant value (normally k = 3 is used). 

No calculation of average run length is provided for this method since the author 

focused on the economic design of the multi-attribute control chart. Because some 

assignable causes may not result in locally independent attributes, a possible drawback of 

the above formula to monitor a multi-attribute process is the assumption of local 

independence within an assignable cause.

2.4 Neural Networks and Control Charts 

Neural networks have been applied to statistical process control (SPC) since late 

1980s. A principal reason for applying neural networks to SPC is to automate SPC chart 
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interpretation. To date, the application of neural networks to SPC chart has focused 

primarily on univariate control charts.  

2.4.1 Neural Networks for Univariate Control Charts 

Zorriassatine and Tannock
34

 categorized the literature into two problem classes: 

identification of structure change (change in process mean or variance) and pattern 

recognition. The problem of structure change has been researched by Pugh
35,36

, Guo and 

Dooley
37

, Smith
38

, Stutzle
39

, Cheng
40

, Chang and Aw
41

.  

Pugh
42

 developed a back propagation neural network with four layers to identify 

the structure change of SPC charts. The unnatural pattern of concern in this study is a 

sudden mean shift. The trained data is composed of non-shifted and shifted means either 

plus or minus k standard deviations. Results showed that the average run length for both 

the neural network and the X  control chart with two standard deviation limits are 

roughly the same. Pugh
43

 extended his work by including mean shifts from three different 

populations: a fixed shift, several uniform distributions, and a parabolic distribution. The 

network was improved by training with multiple shifts (known as contouring), which 

decreases the mean square error and training time. In addition, the model was trained 

with noise to increase the robustness of the neural network. The performance of the 

neural network was the same as and better than a X  control chart with two standard 

deviation control limits in terms of Type I and Type II errors, respectively.  

Cheng
44

 studied performance comparisons between artificial neural networks and 

Shewhart-CUSUM schemes in detecting unnatural patterns of a process. Both sudden and 

gradual shifts in the process mean were considered. The average run length (ARL) was 
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used as a performance measure. The results showed that the neural network approach 

provided better performance than the Shewhart-CUSUM chart in detecting abrupt shifts 

as well as trend patterns.  

Chang and Aw
45

 proposed a neural network with fuzzy logic called NF, to detect 

and classify mean shifts. The average run length and percent correct classification were 

used as the performance measures to compare NF with Shewhart X and CUSUM charts. 

Results indicated that the NF approach outperforms conventional X and CUSUM charts 

in terms of the ARL. The NF approach also has advantage over the X chart in identifying 

the magnitude of a shift.  

Neural networks have also been used to study pattern recognition problems. For 

example, Hwarng and Hubele
46

 developed back propagation networks to identify 

unnatural patterns on Shewhart X  control charts. Analyses were performed to determine 

the best training patterns and network parameters (such as number of hidden layers). To 

do this, a 3
2
 factorial experiment was conducted. Once the best network configuration 

was found, the capability of the back propagation network was determined. Instead of 

using a single neural network, Cheng
47

 developed two different neural networks, a 

multilayer perceptron trained by back propagation and a modular neural network, to 

identify the unnatural patterns of control charts. The modular neural network consists of 

two to five local expert multilayer perceptron networks. The networks were presented 

with several unnatural patterns to include trend, cycle, systematic variation, mixture and 

sudden shift. A set of performance measures such as rate of target and an average run 

length index compared the two neural network approaches. The results showed that the 
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modular neural network provides better recognition accuracy than back-propagation 

when there are strong interference effects.  

The use of neural networks has been demonstrated as a successful tool for 

statistical process control pattern recognition. However, only one pattern at a time, such 

as mean shifts, cyclic and trend patterns, has been considered. Guh and Tannock
48

 

proposed a back propagation neural network model that investigates all patterns 

simultaneously. In addition to identifying an out of control pattern, a major function of 

SPC charts is to notify the parameters of the out-of-control patterns. Guh and Hsieh
49

 

conducted a study which concerned not only the recognition of abnormal patterns but 

also the parameters of the abnormal patterns, such as shift magnitude, trend slope and 

cycle length. Their proposed method is composed of two modules. The first module has a 

back propagation network for categorizing the patterns into normal, shift, trend and cycle. 

The second module includes three networks for estimating the parameters of the shift, 

trend and cycle. Chang and Ho
50

 developed a combined neural networks control scheme 

for monitoring mean and variance shifts at the same time. This monitoring scheme is 

composed of two neural networks, one for detecting mean shift and the other for 

detecting variance shifts. A comparative study between the neural network approach and 

traditional SPC charts was conducted and performance measures used were average run 

length (ARL) and percent correct classification. The result of the study showed that the 

proposed neural network control scheme outperforms other SPC charts in the majority of 

situations for individual observations and subgroups with sample sizes of five.  

There are several factors that affect the performance of a neural network model in 

detecting unnatural patterns. In the literature review of Zorriassatine and Tannock
51

, they 
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summarized the factors into two levels, neural network model construction and training. 

Significant factors in constructing a neural network model for SPC are: 

- Neural network paradigm: Neural networks architectures such as multi-layer 

perceptron (MLP), radial basis function (RBF), learning vector quantization 

(LVQ), adaptive resonance theory (ART), auto-associative neural networks, and 

Kohonen self-organizing maps (SOM) have been implemented. 

- Type of connection: Full or partial connection. 

- Number of hidden layers: Guo and Dooley
52

 concluded that there is no standard 

way to determine the number of hidden layers and recommended that either one 

or two hidden layers should be sufficient for almost any classification problem. 

- Number of nodes: Input layer, hidden layer and output layer nodes. 

o Hidden layer nodes: Hwarng and Hubele
53

 ran a 3
2
 factorial experiment 

and concluded that the number of hidden layer nodes in a neural network 

statistical process control with back propagation architecture had no 

significant effect on either Type I or Type II errors of the network.  

o Output layer nodes: Normally, the number of output nodes is the same as 

the number of different classes that a neural network is trained to 

recognize. However, this is not always the case. For instance, it is possible 

to train a network with various magnitudes of shifts ( )σσσ 32,1 ±±± and , 

but the output pattern can be represented as a single node.  

- Transfer or activation function: is a function that transforms the net input to a 

neuron into its activation. A transfer function can be linear or nonlinear. 
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Significant factors in training a neural network model for SPC pattern recognition are the 

following. 

- Preprocessing data: The trained network should be able to recognize patterns with 

new process mean and standard deviation only if the training data are 

standardized. Subtracting the data by the mean and dividing the result with the 

standard deviation provides standardized data. Upon discovery and removal of an 

unnatural cause, the process must be reset and new mean and standard deviation 

calculated. Therefore, if standardization is not used new sets of training patterns 

need to be generated after every reset. 

- Number of training examples: Cheng
54

 recommended equal number of training 

examples for each unnatural pattern. Through experimentation, he showed that 

using small training and testing data sets produced undesirable results. On the 

contrary, too large a range can bias the network in detecting large process 

changes, thus making the network more complex. Large training data may be 

separated into several networks in order to reduce the size of training data per 

neural network. For instance, in the modular neural network (MNN) of Cheng
55

 

the training was organized into three-separated ‘specialists’ (known as local 

expert networks) each responsible for only a subset of the training cases.  

- Presentation frequency of training examples to NN: In using neural networks, one 

should be aware of overtraining and undertraining if back propagation neural 

network is used. According to Hetch-Nelson
56

 some networks such as self-

organizing map (SOM) do not suffer from overtraining phenomena while others 

such as back propagation neural networks do. 
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- Presentation order of training patterns: There are two types of presentation order. 

The first is to randomly present all patterns and the second is present one pattern 

after another. Guo and Dooley
57

 and Hwarng and Hubele
58

 concluded that random 

selection of training data within each pattern classes produces faster convergence. 

2.4.2 Neural Networks for Multivariate Statistical Process Control 

Martin and Morris
59

 proposed a fuzzy neural network as an alternative approach 

for identifying out-of-control causes in a multivariate process. Cause detection capability 

of a fuzzy neural network and principal component analysis were compared in a 

multivariate process of a Continuous Stirred Tank Reactor (CSTR). Eleven on-line 

process measurements and three controller outputs were monitored as input variables. 

Each variable was classified into three fuzzy sets: increased, steady and decreased. 

Output nodes included eleven fault types or causes of the process out-of-control.  

Neural networks have also been applied to traditional multivariate statistical 

process control techniques. Wilson, Irwin and Lightbody
60

 applied Radial Basis Function 

(RBF) networks to Partial Least Squares (PLS), an algorithm to monitor a multivariate 

process, in order to extend a linear to a nonlinear algorithm. Radial Basis Function (RBF) 

networks have also been used with Principal Component Analysis (PCA) for nonlinear 

correlated data.
61

  

2.4.3 Neural Networks for Uni-Attribute Control Charts 

In integrated circuit (IC) manufacturing processes, a c-chart is used to monitor the 

number of defects on each product item (wafer). A wafer’s defects are assumed to occur 
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independently and with equal chance in all locations if a c-chart is used. However, as a 

wafer size increases, defects on the wafer are no longer randomly distributed, but will 

tend to cluster. Monitoring clustered defects via a c-chart, which is based on Poisson 

distribution, results in a high number of false alarms. Su and Tong
62

propose a neural 

network-based procedure for monitoring clustered defects in IC fabrication. They apply 

fuzzy ART to find the number of clusters treating all defects in a particular cluster as one 

defect. As a result, the numbers of defects is reduced; and are distributed randomly. A c-

chart is then constructed for monitoring the randomly distributed defects.  

2.4.4 Neural Networks for Multi-Attribute Control Charts 

As described above, there are numerous neural network papers in recognition of 

univariate control chart patterns and detection of multivariate process faults. There are 

also a few studies using neural networks for uni-attribute control charts. However, no 

research has been found to date that applies neural networks to the recognition of multi-

attribute control chart mean shifts. 

2.5 Interpretation of Out-of-Control Signals for Multivariate Control Charts 

One of the major issues in multivariate control charts is the identification of 

assignable cause(s) of the out-of-control signals.  Once a signal is generated, process 

variables, which contribute to the out-of-control process, need to be identified and 

adjusted to bring the process back to in-control status. Several techniques have been 

developed for interpreting out-of-control signals for multivariate processes. One of the 

simplest techniques is to view the corresponding univariate charts of a multivariate 
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process to determine which variable is producing the assignable cause. However, some 

concerns arise in implementing this technique. First, when a process includes several 

variables, there are many univariate control charts to interpret. Second, the univariate 

control charts may not show any signal when the multivariate control chart detected a 

signal since the signal may be a function of several correlated variables. Third, the overall 

significance level of the simultaneous use of p univariate control charts is difficult to 

determine
63, ,64 65

.     

Principal component analysis (PCA) is an approach proposed by Jackson
66

 to 

interpret out-of-control signals. Once the multivariate Shewhart chart (T
2
-chart) identifies 

an out-of-control signal, T
2 

statistic is decomposed into the sum of squares of independent 

principal components, linear combinations of the original variables. These components 

can be examined to understand why the process is out-of-control. However, it may be 

difficult to interpret these components meaningfully. Mason et al.
67

 developed a series of 

orthogonal decompositions of the T
2 

statistic. The orthogonal components can be easily 

interpreted. There are two types of components: unconditional and conditional. The 

unconditional component measures whether a variable is out-of-control. A signal from 

this component does not consider the relationship between the specified variable and the 

other variables. The conditional component explains that the out-of-control signal is a 

function of the relationship of various variables. For large amount of variables, the 

number of possible decompositions is large, but a suggested computing scheme can 

greatly reduce this computational effort.  

Fuchs and Benjamini
68

 proposed a control chart that presents univariate and 

multivariate statistics simultaneously. This chart is based on the T
2
 control chart, but a 
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sample plotted on the chart, which represents T
2
 statistic, is replaced by a small bar chart. 

The bar chart contains the values of several univariate statistics.  

Runger et al.
69

 suggested decomposing the T
2
 statistic into components that reflect 

the contribution of each individual variable. A contribution of the i
th

 variable is calculated 

by the deviation of the T
2

(i) (the value of T
2
 statistic for all process variables except the i

th
 

variable) from the current T
2
 (the value of T

2
 statistic for all process variables). When an 

out-of-control process is indicated, the authors recommended focusing on the variables 

that have large deviations.  
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3.0 MULTI-ATTRIBUTE METHODOLOGIES  

This Chapter presents, in detail, the various techniques for detecting out-of-

control multi-attribute processes. The two current techniques the normal approximation 

of multivariate binomial distribution and the multivariate np-chart (MNP chart) are 

provided first. The proposed neural network approach is then discussed.  Finally, several 

other possible techniques were investigated with regards to their feasibility and use in 

multi-attribute control charts.  A critical review of these techniques is also provided.     

3.1 Current Methods In Literature 

3.1.1 Normal Approximation of Multivariate Binomial Distribution 

Patel
70

 proposed quality control techniques for multivariate binomial and Poisson 

distributions. His work included both time independent and time dependent 

(autocorrelation) samples. However, only the time independent technique was considered 

in this research since the generated data had weak autocorrelation (less than 0.20).  

From Patel, when sample size n is large, the following statistic provides the basis 

for the control chart. 

( ) ( )xXSxXG −
′

−= −1     (3-1) 
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G has an approximate Chi-square distribution with υ  degrees of freedom where X 

is a random vector from a population of interest, υ  is the number of attribute in the 

process, and S is an estimator of the population covariance matrix, Σ, which is assumed to 

remain unchanged from process to process. 

The upper control limit of the control chart is the value of  with 2

αχ υ  degrees of 

freedom where α  is a specified significance level. The lower control limit is “0”. One 

can use this chart to monitor future observation vectors X, such that 2χ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡

=

υX

X

X

X
i

:

1

,     (3-2) 

where υ  is the number of attributes.  is the number of nonconforming units for the iiX
th

 

attribute and has binomial distribution. If G has value greater than the upper control limit 

then the sample indicates an out-of-control process. 

Patel stated that the estimated covariance matrix S may be singular or near 

singular (this might happen even when the number of samples exceeds the number of 

attributes). He also proposed a technique based on factor analysis to ensure that the 

estimated covariance matrix S is a non-singular matrix. However, he did not indicate 

whether the technique was only used for the singular estimated covariance matrix, or for 

all cases (both singular and non-singular S).  

In this research, and in particular for this experimental design, we know that the 

estimated covariance matrices are non-singular (determinant of S are > 0). As a result, the 

technique of factor analysis was not considered.  
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 3.1.2 Multivariate np-Chart (MNP chart)  

Lu et al.
71

 introduced an X statistic, which is the weighted sum of the counts of 

nonconforming units for each quality characteristic in a sample. Control limits are 

derived based on this X statistic and traditional Shewhart-based control charts. Naturally 

occurring correlations between attributes are also considered in the model. Control limits 

and centerline of the MNP chart are given by  

∑ ∑∑
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where  n is the sample size, is the number of demerits that indicate the severity of the 

nonconformance in the quality characteristic i, is the proportion nonconforming of the 

i

jd

jp

th
 quality characteristic and ijδ is the correlation coefficient between the quality 

characteristics i and j.  

The sample size n of the MNP chart should be selected based on the value of 

proportion nonconforming. If the proportion nonconforming is not small, the sample size 

of the MNP chart should be 

     

∑
≥

i

ip

m
n

3
.     (3-4) 

If the proportion nonconforming is small, the sample size is  
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where I = [1,1,…,1]mx1 is the unit vector, P is the fraction nonconforming vector and Σ  is 

the correlation matrix of the attributes. 

It should be noted that the degree of severity caused by each nonconformance is 

different from process to process. For instance, a nonconformance in one dimension may 

be more serious than in another dimension. A demerit system is therefore included in the 

model to remedy this potential problem. If all quality characteristics’ nonconformance 

have the same level of severity, then  = 1. When unknown, the proportion 

nonconforming  and the correlation matrix must first be estimated from observed data. 

As with establishing traditional control charts, preliminary samples of roughly 25 with 

individual samples of size n are recommended for estimating the unknown parameters 

and constructing trial control limits.  

jd

jp

The quality characteristic, which is the cause of the out-of-control signal, can be 

identified by a score statistic (Z), as shown 

iiiiDi pnpCdZ /][ −= ,    (3-6) 

where Ci is the count of nonconforming units with respect to quality characteristic i. 

The quality characteristic with the largest positive ZDi score is considered the 

major contributor to an upward shift in the process. Conversely, the smallest negative ZDi 

score is considered the major contributor to a downward shift in the process. 
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3.2 Backpropagation Neural Networks 

3.2.1 General Concept 

Backpropagation networks appear often in pattern recognition and classification 

problems.  The network is based on a gradient descent method that minimizes the total 

squared error of the output computed by the network. Given a set of historical (training) 

input data, the network produces output, which in turn is compared to the actual output.  

 The resulting error is then mapped back into the network through an adjustment 

of the network’s weights. The objective is to get the best possible set of weights so that 

the outputs are close to the actual results for both the training and new data. 

There are three stages in training a backpropagation network: (1) the forward feed 

of the input training pattern to the network, (2) the calculation of the associated error, and 

(3) the adjustments of the weights. After training, application of the net involves only the 

feed forward stage.  

3.2.1.1 Architecture 

A backpropagation neural network comprises of a multilayer neural network with 

one or two layers of hidden units. Figure 1 shows a sample architecture for a single 

hidden layer backpropagation neural network. 
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Figure 1 Backpropagation Neural Network with One Hidden Layer 

3.2.1.2 Algorithm 

As discussed, there are three stages involved in training a network by 

backpropagation. This section discusses the three-stage algorithm for a backpropagation 

neural network with one hidden layer.  

During the feed forward stage, each input unit (Xi) receives an input signal that is 

broadcasted to each of the hidden units Z1, Z2, …, Zp. Each hidden unit then computes its 

activation and sends its signal (zj) to each output unit. Each output unit (Yk) computes its 

own activation and sends its signal (yk) to form the final response of the net for the 

particular input pattern. 

At each hidden and output unit, net input is calculated from the summation of 

weights and input products of that unit. The output signal of a unit is computed from the 

net input to an activation function as follows.  For hidden unit Zj  
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where z_inj is the net input to hidden unit j, v0j is the bias on hidden unit j, and zj is the 

output signal of hidden unit j.  For output unit Yk  

    ∑+=
j

jkjkk wzwiny 0_  and    (3-9)

    )_( kk inyfy = ,     (3-10)

where y_ink is the net input to output unit k, w0k is the bias on output unit k, and yk is the 

output signal of output unit k. 

Common activation functions for backpropagation network include but are not 

limited to binary sigmoid, bipolar sigmoid, etc. The type of data, especially the target 

values or output values, is a crucial factor when selecting the appropriate function. 

During training, each output unit compares its activation yk with its target value tk 

to determine the associated error for that particular pattern. Based on this error, the factor 

kδ (k = 1, …, m) is computed. kδ  is used to distribute the error at output unit Yk to all 

units in the prior layer. It is also used to update the weights between the output and the 

hidden layer. In the same manner, the factor jδ  (j = 1, …, p) is computed for each hidden 

unit Zj. It is not necessary to propagate the error back to the input layer, but jδ  is used to 

update the weights between the hidden layer and the input layer. The following equations 

show the calculation of an error and adjusted weight.  For each output unit, 

   )_(')( kkkk inyfyt −=δ ,      (3-11)

   jkjkjk woldwneww ∆+= )()( , and    (3-12)

   jkjk zw αδ=∆ ,       (3-13)
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where kδ  is the error factor of output unit k; tk and yk are the target and output patterns, 

respectively. The weight between the output unit k and the hidden unit j is wjk.  The 

learning rate is α .  For each hidden unit, 

   ∑
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=
m

k

jkkj win
1

_ δδ ,      (3-14)
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   ijij xv αδ=∆ ,       (3-17) 

where jδ  is error factor of hidden unit j. The weight between the hidden unit j and input 

unit i is vij. 

3.2.2 Backpropagation Neural Network for Multi-Attribute Process Control 

3.2.2.1 Architecture and Algorithm 

A four-layer backpropagation network with two input nodes, two hidden layers 

each with ten nodes, and an output node was chosen for the architecture. The number of 

input nodes represents the number of attributes in a process; each node accepts a value 

from a particular attribute sample. Each input node is connected to the first layer of 

hidden nodes. Each node in the first hidden layer is connected to the second layer of 

hidden nodes, whereby each node is connected to the output node. The strength of each 

connection is stored as a weight. The network is trained by the trainbgf function using 

MATLAB version 6 release 12. This training function is an alternative to the gradient 
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descent methods that produce fast optimization
72

. The hidden nodes transfer the sum of 

their input and weight products by using hyperbolic tangent functions. The output node 

uses the sum of its input and weight products as the result. Figure 2 shows the network 

architecture. In order to clearly see the connections, only one hidden node from the 1
st
 

layer shows its connection to all the nodes in the 2
nd

 hidden layer. 

Input

Layer

1st Hidden

Layer

 2nd Hidden

Layer

Output

Layer

X1

X2

 

Figure 2 Back Propagation Neural Network Architecture 

3.2.2.2 Preprocessing Data 

Before training, inputs are scaled so that they always fall within a specified range. 

The function premnmx in MATLAB is used to scale the inputs to fall in a range [-1, 1]. 

The function stores minimum and maximum input values. Inputs are scaled by equation 

(3-18). 
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3.2.2.3 Training Data 

Three populations were used to train and validate the network.  The first 

population consisted of 100 samples of unshifted data.  The other two populations 

consisted of 100 samples each with the both process’s proportion nonconforming shifted 

to three standard deviations (one population in the positive direction and the other in the 

negative direction).  

( )
n

pp
iondardDeviatS

−
=

1
tan ,    (3-19) 

where p is the number of nonconforming items divided by sample size and n is 

the sample size.  

The later two populations represented data from an out-of-control process. Three-

fourths of the samples were used for training and one-fourth was used for validating the 

model. Each sample pattern consisted of an input vector and a corresponding output. The 

input vector comprised of two correlated binomial random variables drawn randomly 

from one of the three populations. The output was the process status. The output was set 

to one of three conditions.  It was zero if the mean was in control, one (1) if the sample 

came from a positive out-of-control population, and negative one (-1) if the sample came 

from a negative out-of-control population. Input patterns were presented to the network 

in random order. 

3.2.2.4 Cut-Value for In-Control and Out-of-Control Processes 

The process status predicted from the network resulted in a continuous value that 

ranged from -  to ∞ . In order to compare this to the actual process status (that of “0” in ∞
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control, “1” positive out-of-control, or “-1” negative out-of-control) cut-values were 

selected for the network outputs based on the specified in-control average run length 

(ARL). The in-control ARL for the backpropagation neural network (BPNN) technique 

was specified such that all the techniques (BPNN, MNP, and normal approximation) had 

similar in-control ARL.  Two cut-values were defined.  The first cut-value (CV1) was set 

to distinguish an out-of-control process with proportion nonconforming shifted in the 

positive direction, and the second cut-value (CV2) was set to differentiate an out-of-

control process with proportion nonconforming shifted in the negative direction. CV1 

was computed from the training data such that all three techniques result in an equivalent 

probability of indicating an out-of-control process in positive direction. By setting CV2 

equal to negative CV1, all techniques have similar in-control ARL.  

3.3 Other Techniques 

One of the main objectives of the research was to find a technique(s) capable of 

detecting out-of-control and in-control processes. In other words, a technique with an 

ability to classify conforming and nonconforming data was sought. Since there are a large 

number of classification techniques in the literature, a preliminary study was conducted 

to determine if any were promising in the use of multi-attribute control charts. The study 

included discriminant analysis (for discrete and normally distributed variables), logistic 

regression (binary and multinomial), and neural networks (backpropagation and 

probabilistic neural network). This section discusses the preliminary results for each 

technique. 
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3.3.1 Discriminant Analysis 

Discriminant analysis for discrete variables is used for classifying data that are 

multivariate dichotomous in nature. Solomon conducted a study entitled “Attitude 

Toward Science” on a sample of high school students, which comprised of 2 groups, high 

and low IQ scores
73

. His study included four dichotomous variables as follows: 

X1: The development of new ideas is the scientist’s greatest source of satisfaction, 

X2:  Scientists and engineering should be eliminated from the military, 

X3: The scientist will make his maximum contribution to society when he has 

freedom to work on problems that interest him, and  

X4:  The monetary compensation of a Nobel prized winner in physics should be at 

least equal to that given popular entertainers. 

Responses for each variable were either “1” (agree) or “0” (disagree). Individual 

student responses (independent variables) were presented in a binary form, for example 

1011 indicates “agree” for X1, X3, and X4, and “disagree” for X2. Discriminant analysis for 

discrete variables was applied to classify students into high and lower IQ based on the 

four dichotomous variables.  

The independent variables used in the discrete discriminant analysis are presented 

in the form that is different from the one generated for this research. The independent 

variables in the research are the number of nonconforming items from a sample size (not 

the individual sample). For instance, a hundred samples are drawn from a process with 

two attributes (A and B), independent variables are presented as [30, 25], which means 

out of a hundred samples there are 30 and 25 nonconforming items for attribute A and B 

respectively. Because of the varied form for presenting the independent variables, the 
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discrete discriminant analysis technique was not a suitable technique for this research and 

thus not further investigated.  

Discriminant analysis for normally distributed variables consists of two types of 

functions: linear and quadratic. Linear functions have the assumption of equal variance 

while quadratic functions do not. Both functions share the assumption that the variables 

are normally distributed.  

One of the objectives presented in this research is to reduce the sample size. 

Consequently, the data generated for some the subsets (with small sample sizes) in the 

experiment does not follow a normal distribution. As a result, discriminant analysis 

techniques for normally distributed variables are not appropriate. 

3.3.2 Logistic Regression 

Logistic regression is one of the most extensively applied classification 

techniques to determine relationships among variables, specifically between a binary or 

polytomous response (or dependent variable) and one or more independent (or predictor) 

variables.  The logistic function can be used with dichotomous independent variables or a 

combination of multivariate normal and dichotomous variables
74

.  James et al.
75

 

conducted two studies of non-normal classification problems whereby logistic regression 

and linear discriminant analysis were compared, and found logistic regression using 

maximum likelihood outperformed linear discriminant analysis in both cases, but not by a 

large amount. Also, two studies by Halperin et al.
76

 and Truett et al.
77

 confirmed that 

logistic regression outperformed linear discriminant analysis for problems involving non-

normal independent variables. Data (independent variables) generated in the research 
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included either normal (in the case of large sample sizes) or binomial (in the case of small 

sample sizes) distributions. As a result, logistic regression technique was investigated 

further for the purposes of this research. 

There are two major types of logistic regression: binary and multinomial (or 

polytomous). Binary logistic regression is appropriate for a dichotomous response while 

multinomial logistic regression is suitable for responses with more than two categories. 

The following equation describes the binary logistic function for responses “0” and “1”. 

P(Y=0/X) =  e
u
 / (1 + e

u
), P(Y=1/X) =  1 / (1 + e

u
),   (3-20)  

where P(Y=0/X) is the probability of predicting the response “0” given that X is the 

independent variable vector, and u is 

u = β0 + β1X1 + β2X2 + ... +βpXp.    (3-21) 

For this regression Xi is the i
th

 independent variable, β i is the i
th

 regression 

coefficient, β 0 is the intercept, and p is the number of independent variables. 

Instead of using the least squares method, model parameters are estimated by the 

maximum likelihood method.  The resulting estimated regression coefficients for the 

model can be interpreted in the same manner as ordinary least squares regression 

coefficients. However, difficulties arise when fitting a binary logistic regression if the 

conditional probability is not monotonic in the independent variables
78

. For example, if 

there is a high incidence for either low or high body weights, and there is a low incidence 

for intermediate body weights, the logistic function may not provide a good fit to the 

data. In this research, the probability of a process being out-of-control is high when the 

values of the independent variables (e.g. number of unsatisfied customers) are at either 

extremes (low or high); and the probability of a process being out-of-control is low 
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(hence, it is in-control) when the values of the independent variables are not at either 

extremes. Multinomial logistic regression with three categories for the dependent variable 

overcomes the drawback when the conditional probability is not monotonic in the 

independent variables; therefore, it is an alternative technique to binary logistic 

regression. 

Multinomial logistic regression is an extension of binary logistic regression for 

dependent variables with more than two categories. A nominal scaled dependent variable 

with three categories (0, 1, and 2) is discussed. In the three-category response model, 

there are two logit functions: one for Y = 1 versus Y = 0, and the other for Y = 2 versus Y 

= 0. In theory, any two pairwise logit comparisons of the responses can be used. The 

following equations depict the two logit functions. 
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For the equations presented, X is the vector that comprises the independent 

variables, Xi is the i
th

 independent variable (i = 1, 2,…, p), β ji is the j
th

 logit function 

regression coefficient for the i
th

 independent variables (j = 1, 2), β j0 is the j
th

 logit 

function intercept, and p is the number of independent variables. 

The conditional probabilities for the three responses are 
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For the conditional probabilities, P(Y=0/X), P(Y=1/X), P(Y=2/X)  are the 

probability of predicting response “0”, “1”, and “2”, respectively, given that X is the 

independent variable vector. 

To determine suitability in this research, a preliminary experiment was conducted 

comparing multinomial logistic regression, the MNP chart, and the normal approximation 

technique in monitoring multi-attribute processes.  A process with proportion 

nonconforming 0.3 for each quality characteristic, correlation coefficient 0.8, and sample 

size 50 was used in the experiment. 

The experiment included ten sets of data. Each data set comprised of training and 

test data. The dependent variable of the study was the process status, as measured by: (1) 

in-control, (2) out-of-control with process’s proportion nonconforming shifted in the 

positive direction, and (3) out-of-control with process’s proportion nonconforming 

shifted in the negative direction. The independent variables were multivariate binomial 

variables.  The training data were used to calculate mean vector (of nonconforming 

items) and covariance matrix for the normal approximation technique, mean vector (of 

proportion nonconforming) and correlation matrix for the MNP chart, and the coefficients 

for the multinomial logistic regression technique.  The in-control ARL of all techniques 

are calculated from the test data. 
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Table 1 shows in-control ARL for the three techniques where each training set 

consisted of 300 observations (i.e. 100 in-control, 100 out-of-control with process’s 

proportion nonconforming shifted three standard deviations in the positive direction, and 

100 out-of-control with process’s proportion nonconforming shifted three standard 

deviations in the negative direction. The standard deviation was calculated from eq.3-19).   

Table 1 In-control ARL of the MNP chart, the normal approximation, and the multinomial logistic 

regression techniques where the number of in-control and out-of-control observations in training set 

are equal 

Techniques  Training/Test Set No. In-control ARL 

Normal Approximation 1 521 

MNP chart  580 

Multinomial Logistic  2 

Normal Approximation 2 132 

MNP chart  37 

Multinomial Logistic  9 

Normal Approximation 3 >1000 

MNP chart  245 

Multinomial Logistic  9 

Normal Approximation 4 106 

MNP chart  106 

Multinomial Logistic  10 

Normal Approximation 5 3 

MNP chart  625 

Multinomial Logistic  3 

Normal Approximation 6 211 

MNP chart  483 

Multinomial Logistic  5 

Normal Approximation 7 773 

MNP chart  581 

Multinomial Logistic  2 

Normal Approximation 8 328 

MNP chart  310 

Multinomial Logistic  14 

Normal Approximation 9 176 

MNP chart  218 

Multinomial Logistic  7 

Normal Approximation 10 154 

MNP chart  154 

Multinomial Logistic  8 
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Table 1 shows that in-control average run length (ARL) for multinomial logistic 

regression is considerably less than the other techniques (statistically significant at p-

value = 0.000).  In another words, the multinomial logistic regression technique indicates 

a false alarm significantly more than the other two techniques. 

Hosmer and Lemeshow indicated “classification is sensitive to the relative sizes 

of the two component groups and will always favor classification into the large group”
79

. 

That is, if there are, say considerably more 1’s than 0’s among the Y values, one would 

expect most of the π̂ (x) (estimated conditional probability of Y given X independent 

variable vector) to be closer to 1 than to 0. To improve the in-control ARL of the 

multinomial logistic regression technique, additional in-control observations were added 

to the training data. A new set of training data was composed of 500 in-control 

observations and 200 out-of-control observations (100 each for positive and negative 

directional shifts).  The comparison of in-control ARL for the three techniques is shown 

in Table 2.  The table shows that the in-control ARL of the multinomial logistic 

regression technique improved after adding the additional in-control observations.  

However, they remained substantially less than the results from the other two techniques.  

This means the multinomial logistic regression technique has considerably higher false 

alarms than the other two techniques. 

Additional in-control observations were continually added to the training data 

until the in-control ARL for multinomial logistic regression was close to the other 

techniques.  Table 3 shows the in-control ARL of multinomial logistic regression, normal 

approximation, and the MNP chart when the training data consisted of 10,000 in-control 

observations and 200 out-of-control observations (100 each for positive and negative 
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direction of shifts).  In-control ARL for the three techniques are comparable (i.e. not 

significantly different at significance level of 0.05).  This means we have 95% confidence 

that all techniques have the same probabilities of indicating a false alarm. 

To ensure that the out-of-control ARL for the multinomial logistic regression does 

not increase when in-control ARL increases, a set of data with the proportion 

nonconforming of the process shifted three standard deviations in the positive direction 

were used as the test set. The results are shown in Table 4. 
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Table 2 In-control ARL of the MNP chart, the normal approximation, the multinomial logistic 

regression techniques when number of in-control and out-of-control observations in training set are 

unequal: 500 in-control observations and 200 out-of-control observations (100 each for positive and 

negative direction of shifts). 

Techniques  Training/Test Set No. In-control ARL 

Normal Approximation 1 521 

MNP chart  580 

Multinomial Logistic  15 

Normal Approximation 2 132 

MNP chart  37 

Multinomial Logistic  37 

Normal Approximation 3 410 

MNP chart  726 

Multinomial Logistic  56 

Normal Approximation 4 106 

MNP chart  106 

Multinomial Logistic  10 

Normal Approximation 5 332 

MNP chart  625 

Multinomial Logistic  3 

Normal Approximation 6 383 

MNP chart  383 

Multinomial Logistic  86 

Normal Approximation 7 773 

MNP chart  581 

Multinomial Logistic  37 

Normal Approximation 8 818 

MNP chart  310 

Multinomial Logistic  14 

Normal Approximation 9 176 

MNP chart  218 

Multinomial Logistic  7 

Normal Approximation 10 >1000 

MNP chart  154 

Multinomial Logistic  49 
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Table 3 In-control ARL of the MNP chart, the normal approximation, and the multinomial logistic 

regression techniques when number of in-control and out-of-control observations in training set are 

unequal: 10,000 in-control observations and 200 out-of-control observations (100 each for positive 

and negative direction of shifts). 

Techniques  Training/Test Set No. In-control ARL 

Normal Approximation 1 924 

MNP chart  271 

Multinomial Logistic  271 

Normal Approximation 2 1134 

MNP chart  1256 

Multinomial Logistic  1256 

Normal Approximation 3 75 

MNP chart  877 

Multinomial Logistic  >2000 

Normal Approximation 4 365 

MNP chart  93 

Multinomial Logistic  93 

Normal Approximation 5 989 

MNP chart  419 

Multinomial Logistic  209 

Normal Approximation 6 221 

MNP chart  41 

Multinomial Logistic  41 

Normal Approximation 7 839 

MNP chart  839 

Multinomial Logistic  839 

Normal Approximation 8 3 

MNP chart  897 

Multinomial Logistic  346 

Normal Approximation 9 38 

MNP chart  104 

Multinomial Logistic  104 

Normal Approximation 10 375 

MNP chart  1407 

Multinomial Logistic  451 
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Table 4 Out-of-control ARL of the MNP chart, the normal approximation, and the multinomial 

logistic regression techniques when number of in-control and out-of-control observations in training 

set are unequal: 10,000 in-control observations and 200 out-of-control observations (100 each for 

positive and negative direction of shifts). 

Techniques Training/Test Set No. Out-of-control ARL 

Normal Approximation 1 4 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 2 3 

MNP chart  2 

Multinomial Logistic  2 

Normal Approximation 3 2 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 4 1 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 5 1 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 6 8 

MNP chart  1 

Multinomial Logistic  8 

Normal Approximation 7 6 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 8 2 

MNP chart  2 

Multinomial Logistic  2 

Normal Approximation 9 1 

MNP chart  1 

Multinomial Logistic  1 

Normal Approximation 10 5 

MNP chart  3 

Multinomial Logistic  3 

 

The out-of-control ARL for the all techniques are not significantly different at 

significance level of 0.05.   

From the preliminary results, multinomial logistic regression is a comparable 

technique to the MNP chart and the normal approximation technique when a large 

number of in-control observations are used for the coefficient estimation. However, the 

method of maximum likelihood used to estimate regression coefficients can produce poor 

results, or even fail to converge, for small data sets or data sets in which the average 

 51



values of Y (nonconforming proportion) is close to zero or one. Maximum likelihood, 

which is most commonly used in logistic regression, performs well for large sample 

sizes
80

.  

In this research (and in practice) processes in which Y (nonconforming 

proportion) are close to zero is likely (e.g. 0.1 and 0.01).  Therefore, the multinomial 

logistic regression method was not a suitable method for this research and thus excluded 

from further evaluation. However, further investigation using multinomial logistic 

regression for mutli-attribute processes in which the proportion nonconforming is not 

close to zero may be valuable. 

3.3.3. Probabilistic Neural Network 

Probabilistic neural network (PNN) is a feed forward neural network that uses 

statistical techniques as a foundation, that of Bayes decision strategy and nonparametric 

estimators of the data’s probability density function. Figure 3 provides a paradigm of 

PNN with two categories.  
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Figure 3 Probabilistic Neural Network Architecture For Two Categories 

 

PNN comprises of four layers: input, pattern, summation, and output. The input 

layer includes p units (neurons) where p is the number of independent variables. The 

input units are merely distributions that supply the same input values to all of the pattern 

units. For each pattern unit a dot product is produced that consists of the input pattern 

vector X (X = [X1, X2, …, Xi, …, Xp] where Xi is i
th

 independent variable) and a weight 

vector Wj (Wj is weight vector of the j
th

 pattern unit); and a nonlinear operation is then 

applied to the dot product. The resulting dot product from the pattern unit is Zj = X 
.
 Wj. 

The nonlinear operation used is  

   exp[( .     (3-25) ) ]/)1 2σ−jZ
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The summation units sum the outputs of the pattern units that correspond to the 

category from which the training pattern was selected. The outputs from the summation 

units are the estimated probability density functions. The output units have two inputs. 

These units produce binary outputs. They have a single variable weight, C,  

B

A

AA

BB

n

n

lh

lh
C *−= ,     (3-25)  

where nA and nB are the number of training patterns from categories A and B respectively, 

lA and lB are the loss functions of misclassification for categories A and B respectively, hA 

and hB are the priori probabilities for categories A and B respectively. 

The ratio of losses is determined based on the severity or importance of the 

decision. If there is no reason to bias the decision, C may be simplify to –1
81

. 

To determine if PNN was a suitable method for multi-attribute control charts, a 

pilot study was conducted.  This study included the dependent variable, process status, as 

measured by: (1) in-control, (2) out-of-control with both process’s proportion 

nonconforming shifted in positive direction, and (3) out-of-control with both process’s 

proportion nonconforming shifted in negative direction. The independent variables were 

the multivariate binomial variables (two correlated binomial distributed variables). To 

determine viability of the methodology on in-control and out-of-control ARLs, C was 

dissected into three ratios: number of training patterns (na/nb), priori probabilities (ha/hb), 

and loss functions (la/lb), for each category. When the three ratios equaled one, the 

probabilistic neural network resulted in a considerably (statistical significant at p-value 

0.000) smaller in-control ARL than the normal approximation technique and the MNP 

chart. In-control ARL of PNN can be improved by adjusting the three ratios.  However, 

caution should be exercised when increasing in-control ARL as it results in large out-of-
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control ARL. Also, the probability neural network uses the entire training set for each 

classification, which increases the time it takes to classify future observations.  If the 

training set is large, probabilistic neural network classification time becomes much longer 

than feed-forward networks
82

. Therefore, this technique was not further investigated for 

this research due to its inefficiency. 

3.3.4 Cumulative Sum Control Procedures 

Cumulative sum control procedures (CUSUM procedures) are alternatives to 

univariate ( X  chart), uni-attribute (p-, np-, c-, and u-charts), and multivariate (i.e. 

Hotelling T
2
) control charts when shifts in the process means are small. For univariate 

control charts, CUSUM procedures are far superior to the traditional X  chart in 

detecting small process mean shifts (≤ one standard deviation), whereas they are quite 

competitive in detecting large process mean shifts
83

. Similarly, CUSUM procedures for 

binomial and nonconformance data outperform uni-attribute (np- and c-) charts in 

detecting small shifts while being competitive in detecting large shifts. Binomial and 

nonconformance data are required to be normally distributed (or approximated to be 

normally distributed) to employ CUSUM procedures. Both normal approximation and 

transformation by function can be used. CUSUM procedures can also be applied to 

multivariate processes, called multivariate CUSUM (MCUSUM) procedures.  

Woodall and Ncube recommended using multiple univariate CUSUM charts for p 

variables
84

. It was shown that the CUSUM procedure is often preferred to Hotelling T
2
 

procedure for the case in which the quality characteristics are bivariate normal random 

variables.  Healy suggested CUSUM procedures for detecting a shift in the mean vector 
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and covariance matrix of the multivariate normal distribution
85

. However, his procedure 

is specific to the case that only mean shifts in a few known directions are to be expected. 

Crosier proposed two MCUSUM charts and compared them with the Hotelling T
2
 chart

86
. 

Both MCUSUM charts gave faster detection of small shifts in the mean vector than 

Hotelling T
2
 chart for multivariate normal distribution. Pignatiello and Runger proposed 

two more MCUSUM charts
87

. They compared the proposed CUSUM charts with 

Hotelling T
2
 and multiple univariate CUSUM charts developed by Woodall and Ncube

88
. 

From the literature, CUSUM procedures have been shown to be effective in 

detecting small process mean shifts for variables, which are either normally distributed or 

transformed to be approximately normally distributed (e.g. such as binomial data in 

CUSUM procedure with p chart). However, no research has been found to date that 

applies CUSUM procedures to the control charts for multiple attributes. CUSUM 

procedures may be an alternative method in detecting mean shifts for multiple attributes 

processes. One possible disadvantage to using CUSUM procedures is that the calculation 

is too complicated.  Because this research investigates shifts in the mean that are 

considered large (i.e.  1 standard deviation), MCUSUM charts for multi-attribute 

control charts were not investigated.  

≥
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 4.0 EVALUATION OF METHODOGIES: EXPERIMENTAL DESIGN 

To compare the two current multi-attribute methods and the neural network 

approach through a common set of performance measures, an experimental design was 

created.  This Chapter describes both the data used to compare the three methods and the 

experiment.  Specifically, the experiment involves two correlated attributes, with varying 

proportion nonconforming, sample sizes and levels of correlation, as well as varying 

levels of shift in the attribute means (proportion nonconforming).  In addition, an 

explanation about the number of replications needed and the assumptions made in the 

experiment are provided.  

4.1 Data Generation 

Data used in the overall experiment are generated based on algorithms suggested 

by Ong
89

. The algorithms generate bivariate binomial variables given marginal 

proportion nonconforming and correlation. The algorithms for generating positive and 

negative bivariate binomial variables are shown in Figure 4 and Figure 5, respectively. 
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Figure 4 Ong’s Algorithm for Positive Correlation (0 < xyρ  ≤  1) 
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Figure 5 Ong’s Algorithm for Negative Correlation ( )01 <≤− xyρ  

For each algorithm, x and y are bivariate binomial variables. In addition, 1δ  and 

2δ  are proportion nonconforming of x and y respectively, and xyρ  is the correlation 

coefficient of x and y.  

Both algorithms are used to generate both in-control and out-of-control data. To 

generate the in-control data for a particular set of parameters (sample size, level of 

correlation, etc.), the desired algorithm was applied to produce a set of data.  To generate 
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the out-of-control data for the same set of parameters, the same random number seed was 

applied, but a change in the proportion nonconforming. As a result, the out-of-control 

data is based on the in-control data, but has shifts in the attribute means (proportion 

nonconforming) reflected.  

Each pair of bivariate binomial variables has a defining status (in-control or out-

of-control). Status “0” is used for in-control sample while status “1” and “-1” are used for 

out-of-control samples with positive and negative shifts of attribute means, respectively.  

4.2 The Experimental Design 

Table 5 describes the experimental design of two positively correlated attributes. 

Three levels of proportion nonconforming (large, medium and small) are considered. 

Cut-off values among large, medium and small proportion nonconforming are not clearly 

defined in the quality control literature.  As a result, small proportion nonconforming is 

chosen based on cumulative binomial probability tables. Weintraub
90

 defines a small 

proportion nonconforming as values between 0.00001 and 0.01. A small p of 0.01 is 

selected for this experiment. For medium and large p, 0.1 and 0.3 were selected, 

respectively, as reasonable values to reflect proportion nonconforming in realistic 

processes.  

If two attributes have proportion nonconforming values are considerably different 

(e.g. 0.3 and 0.01), the algorithm is limited in generating bivariate binomial variables, 

particularly when there is a strong level of correlation between the two variables. 

Consequently, some combinations of proportion nonconforming at some levels of 

correlation are not included in the experiment (see shaded areas in Table 5).   
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For each condition shown in Table 5, the experimental design is further expanded 

to include degrees of shift in proportion nonconforming, which are provided in Appendix 

A.  There is a separate table for each condition represented in Table 5.  For positively 

correlated attributes, the experimental conditions included simultaneous shifts in both of 

the proportion nonconforming in the same direction, either positive or negative. Two 

variables, which are highly correlated, are not expected to have shifts in the means in 

opposite directions
91

. The chance of a shift in an attribute mean (proportion 

nonconforming) while the other mean (proportion nonconforming) remains unchanged is 

rare because the two attributes are correlated at a very significant level
92

. Therefore, the 

experiment excludes these two circumstances. 
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Table 5 Experimental Design of Two Positively Correlated Attributes 

    Proportion Nonconforming Test Data 
Correlation Coef. = 0.8 Correlation Coef. = 0.5 Correlation Coef. = 0.2

Attribute 1 Attribute 2 
Normal Sample 

Size 
MNP Chart 

Sample Size

Small 

Sample Size

Normal Sample 

Size

MNP Chart  
Sample Size 

Small 

Sample Size

Normal Sample 

Size

MNP Chart 

Sample Size

Small 

Sample Size

large (0.3) large (0.3) 50 10 10 50 10 10 50 10 10
large (0.3) medium (0.1) 100 15

large (0.3) small (0.01) 
medium (0.1) medium (0.1) 100 30 30 100 30 30 100 30 30

medium (0.1) small (0.01) 
small (0.01) small (0.01) 910 810 300 910 670 300 910 540 300  
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Two situations arose that further constrained the experimental design.  First, in 

situations where data could not be generated by the algorithm, such particular 

experimental conditions could not be included in the experiment.  In Appendix A, these 

situations are indicated on the tables with shaded regions. Second, a process mean shifted 

in a negative direction may result in a value less than “0” if one applies the normal 

approximation and uses a small sample size.  As a result, this value is replaced with a 

new value, which is close to “0” so that methods can be compared with small sample 

sizes.  In Appendix A, this situation is indicated on the tables with line-shaded regions. 

For in-control proportion nonconforming of 0.3, values of 0.01 are used when 

shifts in the proportion nonconforming have negative values. Proportion nonconforming 

of 0.001 are used instead of the negative proportion nonconforming when a small sample 

size is applied to in-control proportion nonconforming of 0.1 and 0.01.  

Values for the output are assigned as “0” if in-control, “1” for samples in which 

both attribute means have shifted in the positive direction, and “-1” for samples in which 

both attribute means have shifted in the negative direction. 

When attributes are negatively correlated, shifts in the means move in different 

directions. For example, one attribute mean shifts in the positive direction and the other 

in the negative direction. As a result, a value for the sample output cannot be defined as a 

positive or negative shift (“1” or “-1”). Therefore, the experiment for two negatively 

correlated attributes was not conducted.  

 

 62



4.3 Sample Sizes 

Three different sample sizes were used in this experiment.  The first sample size 

used is based on estimating a normal distribution from a binomial distribution. The 

second sample size used is the recommended sample size for the MNP chart. The third 

sample size used tests the robustness of the three techniques under the condition that the 

probability of finding at least one nonconforming unit per sample is at least 0.95
93

. 

4.3.1 Sample Size #1 - Estimating Multivariate Normally Distributed Variables from a 

Multivariate Binomial Distribution 

To approximate the normal distribution from the binomial distribution, Kenett and 

Zacks
94

 recommend 
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Given the varied values of proportion nonconforming p, different sample sizes 

resulted for the experiment.   

4.3.2 Sample Size #2 - Recommended Sample Size for the MNP Chart 

The sample sizes for the MNP chart are calculated based on the values of the 

proportion nonconforming.  If the proportion nonconforming is moderate to large, the 

sample size is 

∑
≥

i

ip

m
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3
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If the proportion nonconforming is small, the sample size is 
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where I = [1,1,…,1]mx1 is the unit vector, P is the fraction nonconforming vector and Σ  is 

the correlation matrix of attributes. 

4.3.3 Sample Size #3 - Satisfying the Condition of Finding at Least One Non-

Conforming Item in a Sample 

To be cost effective in maintaining control charts, it is common to pick the sample 

size to be small enough such that there is a high probability of finding at least one 

nonconforming item in a sample.  Otherwise, we might find that the control limits are 

such that the presence of only one nonconforming unit in the sample would indicate an 

out-of-control signal.  

To determine the sample size, the following calculation is used. 

{ } 95.1 ≥≥DefectsP  or    (4-4) 

{ } 95.1 ≥≥npP .     (4-5) 

Using the Poisson approximation to the binomial distribution, we find from the 

cumulative Poisson table that np=λ must exceed 3; therefore, n should be greater than 

or equal to 3/p.  As a result, for the experiment the sample sizes are 10, 30 and 300 for 

proportion nonconforming of 0.3, 0.1 and 0.01, respectively.  

In case that the two attributes have different proportion nonconforming, the 

sample size is based on the larger value calculated.  
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4.4 Level of correlation 

The level of correlation between two attributes varies in manufacturing and 

industry processes.  To date, no literature has been found that supports what should be 

considered the minimum level of correlation necessary to employ a multi-attribute 

control chart.  Preliminary analysis on the three multi-attribute chart techniques was 

conducted to observe the effects of correlation with regards to the performance measures. 

The results showed that different levels of correlation resulted in different in-control and 

out-of-control average run length.  For this research three different levels of correlation 

were employed: strong = 0.8, moderate = 0.5, and weak = 0.2
95

.   

4.5 Number of Replications 

Several replications must be performed for each experimental condition in order 

to obtain the specified precision of the performance measures. A relative error γ of 0.1 is 

used as a specified precision for each performance measure at a confidence level of 95 

percent. The number of replications is obtained from a sequential procedure
96

 as 

described in Figure 6.  
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Step 0: Make k0 replications of the experiment and set k0 = k,  

Step 1: Compute kX and ),( αδ k from kXXX ,...,, 21  where X is a  

performance measure from each replication. kXXX ,...,, 21  is a

sequence of IID random variables that need not be a normal.

kkStk k /)(),( 2

2/1,1 ααδ −−= (4-6)

Step 2: If '/),( γαδ ≤kXk , use k
X as the point estimate for  

µ and stop.

γ
γγ
+

=′
1

(4-7)

Equivalently,

)],(),,([),( αδαδγα kXkXI kk +−= (4-8)

is an approximate 100(1- )α percent confidence interval for µ with the desired

precision. Otherwise, replace k by k+1, make an additional replication of the

experiment, and go to step 1.

 

Figure 6 Procedure Used to Determine Number of Replications 

4.6 Assumptions 

To perform this experiment, the following assumptions were made. 

1) The process under consideration has only two attribute quality characteristics. 

2) Only changes in the attribute means are considered for this study. Correlation 

coefficients of attributes are assumed to be constant throughout the processes. 

3) The normal approximation method assumes process variance is constant when the 

attribute means have shifted. 

4) Changes in the attribute mean will remain until corrective actions have been 

taken. 
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5.0 PERFORMANCE MEASURES 

To compare the three multi-attribute control chart techniques, a set of 

performance measures, in particular average run length and percent of correct 

classification, is suggested. 

5.1 Average Run Length (ARL) 

Average run length (ARL) is the average number of samples that must be taken 

before a sample indicates an out-of-control condition. Montgomery states, “If the process 

observations are uncorrelated, then for any Shewhart control chart, the ARL can be 

calculated easily from  

p
ARL

1
= ,        (5-1) 

where p is the probability that any point exceeds the control limits.”
97

 There are two types 

of average run lengths: in-control and out-of-control. 

In this research, the ARL for each experimental condition is a function of the 

number of replications.  For each replication, the simulation run terminates when an out-

of-control sample is detected
98,99

.  
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5.1.1 In-Control Average Run Length 

An in-control average run length (ARL0) is the average number of samples that 

must be taken before a sample indicates an out-of-control condition when, in fact, the 

process is in control. For a Shewhart control chart with three-sigma control limits, the 

Type I error probability that a sample falls outside the control limits when the process is 

in control is 0.0027. Therefore, the in-control average run length is 

370
0027.

11
0 ===

p
ARL     (5-2)  

This means, on average, for every 370 samples an out-of-control signal will occur 

when the process is actually in-control.  

5.1.2 Out-Of-Control Average Run Length 

An out-of-control average run length (ARL1) is the average number of samples 

taken to detect a shift in the mean for a particular process, as described in Equation 5-3. 

β−
=

1

1
1ARL ,      (5-3) 

where β  is the probability of not detecting a shift on the first sample following the shift. 

5.2 Percentage of Correct Classification 

A classification table is used in addition to the ARL measures when the test data 

have the proportion nonconforming shifted. After an out-of-control sample is detected, a 

check is made to determine if the technique properly identified the direction of the shift. 
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6.0 MODEL VERIFICATION AND VALIDATION 

The simulation model for this research was developed using MATLAB. The 

program was divided into three sub-modules: (1) data generation, (2) calculation of 

outputs for each technique, and (3) calculation of ARL for each technique. All sub-

modules were verified and validated as discussed in the following sections.  

6.1 Model Verification 

The program was debugged in each sub-module. In addition, the second and third 

sub-module results were checked with hand calculations. In the second sub-module, only 

the outputs for the normal approximation and the MNP chart (the G-statistics for the 

normal approximation technique and the X-statistics for the MNP chart) were verified 

with the hand calculations. The BPNN technique outputs were not verified with the hand 

calculations since the network was large (i.e. doing a paper-pencil neural network was 

not feasible). All sub-modules were also verified by inputting different values of 

parameters (e.g. proportion nonconforming, level of correlation, and sample sizes) and 

observing if the outputs were reasonable. 
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 6.2 Model Validation 

 In order to ensure that the data generated (or the input data for all techniques) 

have the specified proportion nonconforming and level of correlation, the outputs from 

the first sub-module were tested.  

Data were generated for five process conditions with varied proportion 

nonconforming, correlation coefficients, and sample sizes. Each process condition had 

two data sets: training and testing. Each training and testing sets comprised of samples 

from the three process states: (1) in-control (2) out-of-control with proportion 

nonconforming shifted three standard deviations in the positive direction, and (3) out-of-

control with proportion nonconforming shifted three standard deviations in the negative 

direction. Ten replications each with different random number seeds were tested for each 

condition. For each condition, three null hypotheses were tested:   

� p1 = p10,  

� p2 = p20, and  

� correlation coefficient of samples = specified correlation coefficient. 

For the null hypotheses, p1 and p2 are the sample proportion nonconforming for 

attribute 1 and attribute 2 respectively; and p10 and p20 are the specified proportion 

nonconforming for attribute 1 and attribute 2.  A significance level of 0.05 was adjusted 

by three since three hypotheses were tested. Table B.1 through Table B.5 in Appendix B 

show the number of null hypothesis accepted for each process condition.  The results 

showed that the sample proportion nonconforming are not significantly different from the 

specified proportion nonconforming for all process conditions. The correlation 

coefficients for some of the replications are significantly different from the specified 
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correlation coefficients.  As shown in Table B.4, this process condition (proportion 

nonconforming of 0.3, correlation coefficient of 0.8, shifts of proportion nonconforming 

in the negative direction, and sample sizes of 10) indicates that only 4 and 7 of the ten 

replications (training and test sets, respectively) showed no significant difference to the 

specified correlation coefficients. The data generated for this process condition, in which 

the correlation coefficients does not statistically equal the specified values, may have a 

potential effect on the ARL results.  Chapter 7 discusses this issue in more detail for 

processes with small sample sizes (i.e. sample sizes #2 and #3). 
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7.0 RESULTS AND ANALYSES 

This chapter discusses results and analyses of the results. The results are 

presented in three primary sections based on the sample sizes used in the experiment.  

The first sample size (sample size #1) is based on estimating multivariate normally 

distributed variables from a multivariate binomial distribution.  The second sample size 

(sample size #2) is based on the recommended sample size necessary for the MNP Chart.  

The third sample size (sample size #3) is based on satisfying the condition of finding at 

least one non-conforming item in a sample.  Within each primary section, there are 

multiple sub-sections designated according to the proportion of nonconforming (i.e. p1 = 

0.3 and p2 = 0.3, p1 = 0.1 and p2 = 0.1, etc.).  Within each of these sub-sections 

comparison between the three techniques is presented. 

7.1 Sample Size #1 - Estimating Multivariate Normally Distributed Variables 

from a Multivariate Binomial Distribution  

The following four sub-sections present for varied proportion nonconforming the 

pair-wise comparisons of the three techniques for large sample size. 

7.1.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 50 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 6 to Table 8 display the performances for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 
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(proportion nonconforming p1 = 0.3 and p2 = 0.3; a sample size #1 = 50; and levels of 

correlation = 0.80, 0.50, and 0.20, respectively). The tables (as well as Tables 9-14) 

present the number of replication runs in the simulation, the number of replications in 

which a particular technique detected a shift, the ARL and corresponding variance for 

each technique, and the performances of both the MNP chart and the BPNN techniques in 

correctly classifying the direction of the shifts (Note: the normal approximation technique 

does not have the quality of classifying the direction of the shifts). The number in 

parentheses in the upper half of the table presents the percentage of shifts detected 

(number of replication that detected shifts / number of replication run which is 2000 

replications in this process condition). The number in parentheses shown in the lower half 

of the table presents the percentage of correct classification of shift direction (number of 

replication that correctly identify shift direction / number of replication run which is 2000 

replications in this process condition). 

Table 6 Performance of the Three Techniques for Experimantal Subset: p1=0.3, p2=0.3, Sample 

Sizes=50, Correlation Coefficient=0.8 

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 1000 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 2000 2000 1971

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (98.55%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 1999 2000 2000 1999 2000

(%) (100%) (100%) (100%) (100%) (100%) (99.95%) (100%) (100%) (99.95%) (100%)

ARL

Normal Approx. 2.29 2.56 7.57 6.37 49.44 369.74 3.20 26.88 13.60 228.71

MNP chart 1.79 2.78 5.01 11.14 31.14 410.07 1.62 7.26 22.61 81.66

BPNN 1.81 2.83 5.11 11.74 32.49 430.60 1.58 6.94 21.78 77.62

ARL variance

Normal Approx. 3.20 4.82 70.80 40.71 3950.00 244910.00 12.17 2299.90 350.21 79619.00

MNP chart 1.49 5.30 21.11 120.23 1195.10 182290.00 1.00 46.80 565.03 7875.90

BPNN 1.59 6.28 22.98 162.72 1483.70 348700.00 1.07 64.05 768.04 12715.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 n/a 2000 2000 2000 1996

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.80%)

BPNN 2000 2000 2000 2000 1999 n/a 2000 2000 1999 1996

(%) (100%) (100%) (100%) (100%) (99.95%) (100%) (100%) (99.95%) (99.80%)
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Table 7 Performance of the Three Techniques for Experimental Subset: p1=0.3,p2=0.3, Sample 

Sizes=50, Correlation Coefficient=0.5 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 1999 2000 2000 2000 2000 2000 1982

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (100%) (100%) (100%) (100%) (100%) (99.10%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 1998 2000 2000 2000 2000 2000 1997

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (100%) (100%) (100%) (100%) (100%) (99.85%)

ARL

Normal Approx. 1.83 2.57 2.57 5.93 9.27 40.41 395.03 2.03 3.54 3.48 15.01 28.24 198.53

MNP chart 1.49 2.23 3.98 3.88 8.71 25.52 379.91 1.30 2.26 5.30 5.11 15.76 57.88

BPNN 1.51 2.23 4.07 3.83 8.76 26.91 435.68 1.32 2.26 5.70 5.09 16.37 61.96

ARL variance

Normal Approx. 1.73 4.37 4.32 38.37 122.34 2180.20 253630.00 2.99 13.29 16.33 532.95 1811.70 79401.00

MNP chart 0.78 2.86 12.68 11.83 74.84 693.88 187200.00 0.41 3.09 26.76 24.86 298.16 4232.50

BPNN 0.84 3.11 15.70 13.50 89.34 1254.70 560590.00 0.51 3.36 47.99 28.03 550.94 9318.20
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 2000 1996

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.80%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 1999 1997

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99.85%)

 

Table 8 Performance of the Three Techniques for Experimental Subset: p1=0.3, p2=0.3, Sample 

Sizes=50, Correlation Coefficient=0.2 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1995

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.75%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

ARL

Normal Approx. 1.51 2.10 2.78 4.15 8.05 31.49 415.22 1.38 2.40 3.63 7.70 22.41 137.02

MNP chart 1.32 1.76 2.92 2.88 6.39 20.32 385.28 1.12 1.62 3.38 3.37 10.32 41.30

BPNN 1.32 1.77 3.10 2.97 6.79 21.51 450.88 1.16 1.74 3.85 3.81 12.36 52.03

ARL variance

Normal Approx. 0.81 2.70 5.84 17.07 77.70 1473.60 290200.00 0.67 6.62 18.04 92.77 1268.50 39285.19

MNP chart 0.43 1.46 6.25 5.81 42.33 485.92 204730.00 0.14 1.12 9.44 9.16 135.71 2298.46

BPNN 0.43 1.53 7.53 6.50 55.59 507.30 290840.00 0.20 1.43 14.41 12.59 231.57 4021.02
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 1999 1998 n/a 2000 2000 2000 2000 2000 1999

(%) (100%) (100%) (100%) (100%) (99.95%) (99.90%) (100%) (100%) (100%) (100%) (100%) (99.95%)

BPNN 2000 2000 2000 2000 1999 1999 n/a 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (99.95%) (99.95%) (100%) (100%) (100%) (100%) (100%) (100%)

 

7.1.1.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 6 to Table 8 show for all the three correlation coefficients (0.8, 0.5, and 0.2) 

that the BPNN technique outperformed the normal approximation technique when the 

process is in-control. In general, the BPNN technique will indicate a false alarm much 

later than the normal approximation technique (e.g. 35 to 61 samples later). 
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When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations), the BPNN and normal approximation techniques 

performed equally for shifts in the positive direction. However, when both proportion 

nonconforming shifted in the negative direction, the performance of the BPNN technique 

compared to the normal approximation technique depended on the level of correlation. 

The stronger the level of correlation, the better the BPNN performed in comparison to the 

normal approximation technique.  The BPNN technique outperformed the normal 

approximation for strongly correlated processes while the two techniques performed 

equally for moderately and weakly correlated processes. For medium (two standard 

deviations) and small (one standard deviation) shifts, the BPNN technique outperformed 

the normal approximation technique in both positive and negative shift directions. Also, 

the higher the level of correlation, the better the BPNN technique performed than the 

normal approximation technique. 

When the magnitudes of the shifts were different and both proportion 

nonconforming shifted in the same direction (i.e. the proportion nonconforming of the 

first attribute shifted two standard deviations and the proportion nonconforming of the 

second attribute shifted one standard deviation) the normal approximation technique 

performed either better than or equally to BPNN for both positive and negative directions 

of shifts for strongly correlated processes. Figure 7 explains how the normal 

approximation technique detects the shifts. The shaded ellipse is the 99.7% confidence 

region of the two binomial distributed variables that are approximated by normal 
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distributed variables for strongly correlated process while the non-shaded ellipse is the 

99.7% confidence region for a weakly correlated process. Point A is the location where 

the process’s proportion nonconforming shift with the same magnitude (in this case both 

proportion nonconforming shifted two standard deviations). Point B is the coordinate 

where the process’s proportion nonconforming shift with different magnitudes (the 

proportion nonconforming of the first attribute shifted two standard deviations and the 

proportion nonconforming of the second attribute shifted one standard deviation). For the 

situation where the correlation between the two attributes is strong, the confidence region 

is narrow so the normal approximation technique detects Point B faster than the BPNN 

technique. In contrast, the BPNN technique detects point A earlier than the normal 

approximation technique. Processes in which the correlation between attributes is 

moderate (~0.50) and proportion nonconforming shifted in the positive direction similar 

results are produced but are not as obvious as the strongly correlated processes. The 

differences between the magnitudes of shifts for moderately correlated processes need to 

be higher than the ones for the strongly correlated processes in order to have this 

consequence (i.e. the proportion nonconforming of the first attribute shifted three 

standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation). For moderately correlated processes with proportion nonconforming 

shifted in the negative direction, the normal approximation technique outperformed the 

BPNN technique when the proportion nonconforming of the first attribute shifted with 

three standard deviations and the proportion nonconforming of the second attribute 

shifted with one standard deviation. The BPNN technique outperformed the normal 

approximation technique for the other magnitudes of shifts. Weakly correlated processes, 
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however, did not have the same results. BPNN performed the same or better than the 

normal approximation technique even though the magnitudes of shifts were different.  

 

Attribute 1 

A 

B 

Corr. = 0.8

Corr. = 0.2

Attribute 2

 

Figure 7 Confidence Regions of Normal Approximated Variables 

7.1.1.2 Comparing the BPNN Technique to the MNP Chart 

Table 6 through Table 8 show for the three correlation coefficients that BPNN 

technique outperformed the MNP chart when the process is in-control. In general the 

BPNN technique indicates a false alarm later than the MNP chart (i.e. 20 to 65 samples). 

For all levels of correlation, the MNP chart and the BPNN technique performed 

similarly in detecting shifts when the process’s proportion nonconforming shifted two to 

three standard deviations in either the positive or negative directions (i.e. both proportion 

nonconforming shifted in the same direction).  The MNP chart was able to detect a shift 

only one sample faster than the BPNN technique when both proportion nonconforming 

shifted in the positive direction and the magnitudes were small (one standard deviation).  

When the shifts were small and in the negative direction, the level of correlation appeared 

to affect the results. The BPNN technique outperforms the MNP chart for strongly 

correlated processes. The MNP chart detected shifts faster than the BPNN technique 

given weak and moderate correlation; however, the BPNN technique identified the 
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directions of shifts more correctly than the MNP chart one replication. These differences 

were considered negligible. 

When the magnitudes of the shifts were different and both proportion 

nonconforming shifted in the positive direction, the BPNN technique and the MNP chart 

performed equally for all levels of correlation coefficient. When both proportion 

nonconforming shifted in the negative direction, both techniques performed equally for 

strongly and moderately correlated processes. For weakly correlated processes, the MNP 

chart outperformed the BPNN technique when the proportion nonconforming of the first 

attribute shifted with two standard deviations and the proportion nonconforming of the 

second attribute shifted with one standard deviation. Both techniques performed equally 

for the other magnitudes of shifts. 

7.1.1.3 Comparing the MNP Chart to the Normal Approximation Technique 

The MNP chart indicated a false alarm signal 41 samples later than the normal 

approximation technique when processes were strongly correlated. However, the normal 

approximation technique specified false alarms 16 and 30 samples later than the MNP 

chart when the processes were moderately and weakly correlated, respectively.  

When processes were out-of-control, the performance of normal approximation 

technique compared to the MNP chart was similar to that of the comparison between the 

normal approximation technique and the BPNN. 
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7.1.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 100 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 9 through Table 11 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

(proportion nonconforming p1 = 0.1 and p2 = 0.1; a sample size #1 = 100; and levels of 

correlation = 0.80, 0.50, and 0.20, respectively). 

Table 9 Performance of the Three Techniques for Experimental Subset: p1=0.1, p2=0.1, Sample 

Sizes=100, Correlation Coefficient=0.8 

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 500 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000

Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 1111 1200 1544

(%) (100%) (100%) (100%) (100%) (100%) (100%) (55.55%) (60%) (77.20%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 1991

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.55%)

BPNN 2000 2000 2000 2000 2000 2000 1998 1998 1974

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (99.90%) (98.70%)

ARL

Normal Approx. 2.19 2.38 5.60 5.28 26.84 272.30 9.63 74.93 571.97

MNP chart 1.87 2.62 4.52 8.81 21.11 332.53 1.38 14.46 286.49

BPNN 1.89 2.77 4.62 9.55 22.66 362.26 1.28 11.86 185.72

ARL variance

Normal Approx. 2.86 3.86 30.92 24.46 954.95 129350.00 2143.00 9745.00 260800.00

MNP chart 1.56 4.26 16.81 71.24 534.34 129900.00 0.56 254.24 101910.00

BPNN 1.65 5.60 20.70 115.19 701.16 260670.00 0.41 347.25 63950.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 n/a 2000 2000 1966

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (98.30%)

BPNN 2000 2000 2000 2000 2000 n/a 1998 1998 1964

(%) (100%) (100%) (100%) (100%) (100%) (99.90%) (99.90%) (98.20%)
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Table 10 Performance of the Three Techniques for Experimental Subset: p1=0.1, p2=0.1, Sample 

Sizes=100, Correlation Coefficient=0.5 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 1828 1761 1932 1490

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (91.40%) (88.05%) (96.60%) (74.50%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1999

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%)

BPNN 2000 2000 2000 2000 2000 2000 1997 1999 1999 1996 1979

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.85%) (99.95%) (99.95%) (99.80%) (98.95%)

ARL

Normal Approx. 1.82 2.41 2.59 4.57 6.61 23.86 314.66 2.66 56.54 132.56 537.16

MNP chart 1.58 2.18 3.76 3.59 7.20 18.23 336.69 1.12 7.44 36.04 180.43

BPNN 1.63 2.29 3.93 3.84 7.88 19.99 400.77 1.15 8.89 48.25 201.13

ARL variance

Normal Approx. 1.60 4.00 4.59 20.37 46.64 767.38 158640.00 179.33 7637.40 30648.00 258030.00

MNP chart 0.88 2.61 10.98 10.26 51.48 348.70 150240.00 0.13 55.77 1866.30 48734.00

BPNN 0.99 3.37 12.66 13.31 76.82 522.37 281070.00 0.23 152.41 5147.50 74155.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 1994

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.70%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 1999 1999 1996 1973

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99.95%) (99.80%) (98.65%)

 

Table 11 Performance of the Three Techniques for Experimental Subset: p1=0.1, p2=0.1, Sample 

Sizes=100, Correlation Coefficient=0.2 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 1999 1999 2000 1983 1942 1710

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99.95%) (100%) (99.15%) (97.10%) (85.50%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1998 1994

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (99.70%)

ARL

Normal Approx. 1.55 2.02 2.57 3.52 6.06 19.98 266.76 1.28 4.95 15.70 24.58 106.70 420.59

MNP chart 1.37 1.81 2.91 2.92 5.54 15.05 306.32 1.02 1.49 4.15 3.97 16.54 103.80

BPNN 1.36 1.81 2.95 2.84 5.50 14.73 320.78 1.03 1.68 5.37 4.84 23.43 132.36

ARL variance

Normal Approx. 0.84 2.08 5.30 9.74 35.38 541.08 117960.00 0.68 248.45 1384.10 2430.30 26331.00 212660.00

MNP chart 0.50 1.49 5.92 6.20 28.05 257.81 120570.00 0.02 0.82 17.09 15.49 382.31 22944.00

BPNN 0.48 1.57 6.47 5.70 29.53 251.30 232180.00 0.03 2.06 127.97 71.90 1498.30 32468.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 2000 1998

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 1998 1990

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (99.50%)

 

7.1.2.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 9 through Table 11 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed normal approximation when the process 
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is in-control. In general, the BPNN technique will indicate a false alarm much later than 

the normal approximation technique (e.g. 54 to 90 samples later).  

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large (i.e. 

three standard deviations) and medium (i.e. two standard deviations) shifts, the BPNN 

and normal approximation techniques performed equally for shifts in the positive 

direction. However, when both proportion nonconforming shifted in the negative 

direction and with large magnitude, the BPNN technique outperformed the normal 

approximation technique for strongly and moderately correlated processes. Both 

techniques performed equally for weakly correlated processes. The BPNN technique 

outperformed the normal approximation technique for all levels of correlation coefficient 

when the proportion nonconforming shifted with medium magnitude and in the negative 

direction. For small (one standard deviation) shifts, the BPNN technique outperformed 

the normal approximation technique in both the positive and negative shift directions. 

When both proportion nonconforming shifted in the negative direction and with any 

magnitude, the performance of the BPNN technique compared to the normal 

approximation technique depended on the level of correlation. The higher the level of 

correlation, the better the BPNN technique performed in comparison to the normal 

approximation technique. 

When the magnitudes of the shifts were different, the results were similar to the 

processes with large proportion nonconforming (p1 = 0.3 and p2 = 0.3); that is the normal 

approximation technique performed either better than or equally to the BPNN technique 
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for positive direction of shifts for strongly and moderately correlated processes.  Further, 

the BPNN technique performed the same as the normal approximation technique for 

weakly correlated processes. However, for shifts in the negative direction, the results 

were different from those of large proportion nonconforming.  The BPNN technique 

outperformed the normal approximation technique for all magnitudes of shift.  

Kramer and Jensen
100,101

 and Jackson
102,103

 discussed that chart is directionally 

invariant.  That is, the ARL performance of the technique is determined solely by the 

distance of the off-target mean from the on-target mean and not by the particular 

direction (or, location) of the mean.  The directional invariant property is shown below. 

2χ

)()()( 0

1

0

2 µµµµµλ −Σ−= −      (7-1) 

where )(µλ  is the square root of the non-centrality parameter, µ  is process mean 

vector at any time t, and 0µ  is in-control process mean vector. The normal approximation 

technique, which has G-square statistic approximated to statistic, therefore, has the 

directional invariant property. 

2χ

There is an assumption of equal covariance matrix in the invariant directional 

property. However, the assumption does not hold for the normal approximation technique 

in this research. The covariance matrix of processes with means (proportion 

nonconforming) shifted in negative direction was smaller than the covariance matrix of 

in-control processes. (The proportion nonconforming were close to zero when they were 

shifted in negative direction; therefore, the data could not be generated below zero 

values. As a result, the data generated had a small covariance matrix.) Consequently, the 

inverse matrix of the covariance of negatively shifted processes was larger than the 

inverse matrix of the covariance of in-control processes. The G-square statistic for the 
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normal approximation technique was calculated based on the inverse covariance matrix 

of the in-control processes (due to the equal covariance matrix assumption). Therefore, 

the G-square statistics for processes with the negative direction of shift were smaller than 

what they should be. As a result, the processes with negatively shifted proportion 

nonconforming had larger ARLs than the processes with positively shifted proportion 

nonconforming.  

When proportion nonconforming for in-control processes were smaller the 

covariance matrix of the processes with proportion nonconforming shifted in negative 

direction was also smaller. Therefore, for processes which have medium proportion 

nonconforming and shifts in negative direction, the ARLs resulted from the normal 

approximation technique were large compared to the BPNN technique. 

7.1.2.2 Comparing the BPNN Technique to the MNP Chart 

Table 9 through Table 11 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed the MNP chart when the process is in-

control. In general, the BPNN technique will indicate a false alarm much later than the 

MNP chart (e.g. 14 to 64 samples later). 

When process’s proportion nonconforming shifted with two to three standard 

deviations in the positive direction, the BPNN technique and the MNP chart performed 

the same for all levels of correlation. For processes with small magnitude of shifts in 

positive direction, the MNP chart only detected one sample faster than the BPNN 

technique for strongly and moderately correlated processes. Their performances were the 

same for weakly correlated processes.  
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When both proportion nonconforming shifted with three standard deviations in 

the negative direction, both techniques performed equally. For processes with both 

proportion nonconforming shifted two standard deviations and in the negative direction 

(Table 9), the BPNN detected shifts 3 ARL samples faster than the MNP chart (15 and 12 

for the MNP chart and the BPNN technique respectively). However, the MNP chart could 

indicate shifts 2 additional replications over the BPNN technique. If one assumed that the 

BPNN technique detected the shifts for those 2 replications, the ARL for each of those 

replications would be at least 500 (since there were 500 samples for each replication). 

This would result in a new ARL equal to 12.3 for the BPNN technique.  Given this 

supposition, the BPNN technique would outperform the MNP chart as its ARL is smaller.  

Furthermore, processes with both proportion nonconforming shifted one standard 

deviation and in the negative direction, the BPNN technique indicated shifts 101 ARL 

samples faster than the MNP chart for strongly correlated processes (287 and 186 for the 

MNP chart and the BPNN technique respectively), as shown in Table 9. However, the 

MNP chart could indicate shifts 17 additional replications over the BPNN technique. If 

one assumed that the BPNN technique detected the shifts for those 17 replications, the 

new ARL would be at least 201 for the BPNN technique. Therefore, the BPNN still 

outperformed the MNP chart.   

The MNP chart outperformed the BPNN technique for moderately and weakly 

correlated processes for shifts of one and two standard deviations in the negative 

direction as shown in Table 10 and Table 11. 

When the magnitudes of the shifts of proportion nonconforming were different 

and both proportion nonconforming shifted in the positive direction, the BPNN technique 
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and the MNP chart performed equally for all levels of correlation coefficient. When the 

proportion nonconforming of the first attribute shifted three standard deviations and the 

proportion nonconforming of the second attribute shifted two standard deviation and both 

proportion nonconforming shifted in the negative direction, both techniques performed 

equally. For the other magnitudes of shifts in the negative direction, the MNP chart 

outperformed the BPNN technique. 

7.1.2.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 9 through Table 11 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the MNP chart outperformed the normal approximation technique when the 

process is in-control. In general, the MNP chart will indicate a false alarm much later 

than the normal approximation technique (e.g. 12 to 40 samples later). 

When processes were out-of-control, the performance of normal approximation 

technique compared to the MNP chart was similar to that of the comparison between the 

normal approximation technique and the BPNN.  

7.1.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 910 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 12 through Table 14 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

(proportion nonconforming p1 = 0.01 and p2 = 0.01; a sample size #1 = 910; and levels of 

correlation = 0.80, 0.50, and 0.20, respectively). 
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Table 12 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=910, Correlation Coefficient=0.8 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 225 339 1141

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (11.25%) (16.95%) (57.05%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 1821

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (91.05%)

BPNN 2000 2000 2000 2000 2000 2000 1999 1980 1980 1936

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99%) (99%) (96.80%)

ARL

Normal Approx. 2.17 2.40 1.71 5.24 4.88 24.26 252.02 1.27 97.13 725.14

MNP chart 1.92 2.69 4.20 4.33 8.17 19.93 295.92 1.09 25.36 501.88

BPNN 1.91 2.69 4.40 4.33 8.35 20.00 303.27 1.05 13.58 272.29

ARL variance

Normal Approx. 2.90 4.01 1.34 24.82 22.16 778.44 105120.00 4.96 17069.00 302800.00

MNP chart 1.90 4.66 13.61 14.45 64.92 375.32 120720.00 0.10 901.96 207880.00

BPNN 1.94 4.91 20.94 16.27 72.83 449.16 178610.00 0.06 299.05 102760.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 1776

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (88.80%)

BPNN 2000 2000 2000 2000 2000 1999 n/a 1980 1980 1910

(%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99%) (99%) (95.50%)

 

Table 13 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=910, Correlation Coefficient=0.5 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 1009 1011 1768 1015

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (50.45%) (50.55%) (88.40%) (50.75%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 1999 1962

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (98.10%)

BPNN 2000 2000 2000 2000 2000 2000 2000 1997 1997 1986 1936

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.85%) (99.85%) (99.30%) (96.80%)

ARL

Normal Approx. 1.86 2.34 2.37 4.24 6.14 19.83 271.08 1.09 58.28 222.76 681.77

MNP chart 1.61 2.20 3.51 3.49 6.76 16.83 279.19 1.01 10.50 62.22 307.29

BPNN 1.61 2.19 3.59 3.44 6.84 16.55 299.53 1.01 10.85 64.04 269.17

ARL variance

Normal Approx. 1.74 3.70 3.93 15.94 35.43 471.73 114020.00 0.11 6107.50 54981.00 306610.00

MNP chart 1.03 2.99 10.00 9.85 42.64 305.45 103620.00 0.01 153.72 7701.50 112670.00

BPNN 1.11 3.13 11.98 10.21 47.28 371.11 215730.00 0.01 358.26 10216.00 106960.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 1999 1945

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (97.25%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 1997 1997 1986 1927

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.85%) (99.85%) (99.30%) (96.35%)
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Table 14 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=910, Correlation Coefficient=0.2 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 1894 1848 1755 1344

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (94.70%) (92.40%) (87.75%) (67.20%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1991

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.55%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 1998 1958

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (97.90%)

ARL

Normal Approx. 1.53 2.01 2.48 3.26 5.61 16.44 255.56 1.03 44.56 166.67 547.68

MNP chart 1.37 1.81 2.85 2.68 5.41 13.55 286.13 1.00 4.54 23.97 153.51

BPNN 1.39 1.85 2.91 2.77 5.69 14.00 308.73 1.00 6.90 38.33 251.05

ARL variance

Normal Approx. 0.92 2.24 3.98 8.24 30.84 330.25 127780.00 0.04 6827.90 47338.00 279840.00

MNP chart 0.52 1.50 5.58 4.79 23.93 217.80 113840.00 0.00 20.35 1215.10 42363.00

BPNN 0.56 1.76 6.58 5.16 29.70 229.43 181170.00 0.00 238.05 3718.60 95495.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 1990

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.50%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 2000 2000 1998 1953

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.90%) (97.65%)

 

7.1.3.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 12 through Table 14 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed the normal approximation technique 

when the process is in-control. In general, the BPNN technique will indicate a false alarm 

much later than the normal approximation technique (e.g. 28 to 53 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations) and medium shifts (i.e. two standard deviations), the 

BPNN and the normal approximation techniques performed equally for shifts in the 

positive direction. However, when both proportion nonconforming shifted in the negative 

direction, the BPNN technique outperformed the normal approximation technique. For 

small (one standard deviation) shifts, the BPNN technique outperformed the normal 
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approximation technique in both the positive and negative shift directions. When both 

proportion nonconforming shifted in the negative direction and with any magnitude, the 

performance of the BPNN technique compared to the normal approximation technique 

depended on the level of correlation. The higher the level of correlation, the better the 

BPNN technique performed in comparison to the normal approximation technique. 

When the magnitudes of the shifts were different, the results were similar to the 

processes with large proportion nonconforming (p1 = 0.3 and p2 = 0.3); that is the normal 

approximation technique performed either better than or equally to the BPNN for positive 

direction of shifts for strongly and moderately correlated processes.  Further, BPNN 

performed the same as the normal approximation technique for weakly correlated 

processes. However, for shifts in the negative direction, the results were different from 

those of large proportion nonconforming.  The BPNN technique outperformed the normal 

approximation technique for all magnitudes of shift. 

7.1.3.2 Comparing the BPNN Technique to the MNP Chart 

Table 12 through Table 14 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed the MNP chart when the process is in-

control. In general, the BPNN technique will indicate a false alarm much later than the 

MNP chart (e.g. 8 to 22 samples later). 

When both proportion nonconforming shifted in positive direction, the BPNN 

technique and the MNP chart performed the same for all levels of correlation coefficient.  

When both proportion nonconforming shifted with three standard deviations in 

negative direction, the level of correlation appeared to affect the results. For strongly 
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correlated processes (Table 12), both techniques had the same ARL (~1.0), but the MNP 

chart could correctly indicate shifts in the means 20 additional replications over the 

BPNN technique. If one assumed that the BPNN technique detected the shifts for those 

20 replications, the ARL for each of those replications would be at least 500 (since there 

were 500 samples for each replication). This would result in a new ARL equal to 6 for the 

BPNN technique.  Given this supposition, the MNP chart would outperform the BPNN 

technique as its ARL is smaller. For moderately correlated processes (Table 13), both 

techniques had the same ARL (~1.0). But, again, the BPNN technique could not indicate 

shifts for three of the 2000 replications while the MNP chart indicated shifts for all 

replications. If one assumed that the BPNN technique detected the shifts for those three 

replications, the new ARL would be at least 1.76 for the BPNN technique. Therefore, one 

might conclude that the MNP chart performed equal to or better than the BPNN 

technique. For weakly correlated processes, the two techniques performed equally.  

When both proportion nonconforming shifted with two standard deviations in 

negative direction, the level of correlation appeared to affect the results. For strongly 

correlated processes (Table 12), the BPNN technique detected shifts 12 ARL samples 

faster than the MNP chart (26 and 14 for the MNP chart and the BPNN technique 

respectively). However, the MNP chart could correctly indicate shifts in the mean 20 

additional replications over the BPNN technique. If one assumed that the BPNN 

technique detected the shifts for those 20 replications, the new ARL would be at least 18 

for the BPNN technique. Therefore, the BPNN technique still outperformed the MNP 

chart. For moderately correlated processes (Table 13), both techniques had the same ARL 

(~11). But the BPNN technique could not indicate the shifts for three of the 2000 
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replications while the MNP chart indicated shifts for all replications. If one assumed that 

the BPNN technique detected the shifts for those three replications, the new ARL would 

be at least 11.5 for the BPNN technique. Therefore, one might conclude that the MNP 

chart performed equal to or better than the BPNN technique. For weakly correlated 

processes, the MNP chart outperformed the BPNN technique. 

Furthermore, processes with both proportion nonconforming shifted one standard 

deviation and in the negative direction, the BPNN outperformed the MNP chart for 

strongly correlated processes. For moderately correlated process (Table 13), the BPNN 

technique detected shifts 38 ARL samples faster than the MNP chart (308 and 270 for the 

MNP chart and the BPNN technique respectively). However, the MNP chart could 

indicate shifts 26 additional replications over the BPNN technique. If one assumed that 

the BPNN technique detected the shifts for those 26 replications, the new ARL would be 

at least 293 for the BPNN technique. Therefore, the BPNN technique still outperformed 

the MNP chart. The MNP chart outperformed the BPNN technique for weakly correlated 

processes. 

When the magnitudes of the shifts of proportion nonconforming were different 

and both proportion nonconforming shifted in the negative direction, the MNP chart 

outperformed the BPNN technique. 

7.1.3.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 12 through Table 14 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the MNP chart outperformed the normal approximation technique when the 
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process is in-control. In general, the MNP chart will indicate a false alarm much later 

than the normal approximation technique (e.g. 8 to 43 samples later). 

When processes were out-of-control, the performance of normal approximation 

technique compared to the MNP chart was similar to that of the comparison between the 

normal approximation technique and the BPNN, but the numbers of samples to ARL are 

different. 

7.1.4 p1 = 0.3, p2 = 0.1, Sample Sizes = 100 (Levels of Correlation: 0.2) 

Table 15 presents the ARLs for the normal approximation technique, the MNP 

chart, and the BPNN technique for an experimental subset (proportion nonconforming p1 

= 0.3 and p2 = 0.1; a sample size #1 = 100; and levels of correlation = 0.20). 

Table 15 Performance of the Three Techniques for Experimental Subset: p1=0.3, p2=0.1, Sample 

Sizes=100, Correlation Coefficient=0.2 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +3s2 +2s1, +2s2 +2s1, +1s2 +1s1, +3s2 +1s1, +2s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2

samples/replication 500 500 500 500 500 500 500 500 500 10000 500 500 1000 500 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

ARL

Normal Approx. 1.52 2.12 2.63 2.10 4.02 7.83 2.58 6.77 25.02 337.63 1.38 2.37 3.42 9.22 18.01

MNP chart 1.31 1.82 3.10 1.75 2.98 6.66 2.65 5.68 17.27 349.46 1.08 1.66 3.84 3.48 11.06

BPNN 1.30 1.77 2.97 1.73 2.87 6.39 2.63 5.46 16.82 353.82 1.09 1.73 4.02 3.65 12.58

ARL variance

Normal Approx. 0.86 2.59 4.80 2.55 14.16 71.85 4.73 52.20 886.77 189110.00 0.64 4.24 11.93 175.54 660.09

MNP chart 0.45 1.52 6.49 1.30 6.43 43.47 5.12 30.99 324.85 162130.00 0.08 1.10 12.42 9.87 150.32

BPNN 0.42 1.42 6.51 1.28 5.87 47.37 4.90 29.54 397.69 260470.00 0.10 1.46 18.29 15.08 341.18
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

-1s1, -2s2 -1s1, -1s2

2000 2000

2000 2000

2000 1994

(100%) (99.70%)

2000 2000

(100%) (100%)

2000 1998

(100%) (99.90%)

50.21 174.83

11.41 50.22

13.21 58.40

9200.40 60192.00

148.76 3654.50

275.92 9017.80

2000 1996

(100%) (99.80%)

2000 1995

(100%) (99.75%)

 

7.1.4.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 15 shows the process with correlation coefficient of 0.2 that BPNN 

outperformed normal approximation when the process is in-control. In general, the 

 91



BPNN technique will indicate a false alarm much later than the normal approximation 

technique (e.g. 16 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent of the shifts.  Specifically, for large shifts (i.e. three 

standard deviations), the BPNN and the normal approximation techniques performed 

equally for shifts in both the positive and negative directions. The BPNN technique also 

detected small and medium shifts faster than the normal approximation technique in both 

positive and negative shift directions.  

When the magnitude of the shifts were different and the magnitude of a shift was 

large and the other shift’s magnitude was either medium or small (i.e. the proportion 

nonconforming of the first attribute shifted three standard deviations and the proportion 

nonconforming of the second attribute shifted either one or two standard deviations, or 

vice versa), the BPNN and the normal approximation techniques performed equally.  In 

cases that the magnitudes of the shifts were different and the proportion nonconforming 

shifted with the magnitude of medium and small (i.e. the proportion nonconforming of 

the first attribute shifted two standard deviations and the proportion nonconforming of the 

second attribute shifted one standard deviation, or vice versa), the BPNN technique 

indicated an out-of-control process faster than the normal approximation technique.  

Above performances applied to both the positive and negative directions of shifts. Only 

weakly correlated processes were included in this particular experiment; therefore, the 

analyses excluded the strongly and moderately correlated processes. 
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7.1.4.2 Comparing the BPNN Technique to the MNP Chart 

Table 15 shows the process with correlation coefficient of 0.2 that the BPNN 

technique outperformed the MNP chart when the process is in-control. In general, the 

BPNN technique will indicate a false alarm later than the MNP chart (e.g. 4 samples 

later). 

When both proportion nonconforming shifted in positive direction and both shifts 

have either the same or different magnitudes, the BPNN technique and the MNP chart 

performed equally.   

When both proportion nonconforming shifted in the negative direction and the 

first proportion nonconforming shifted three standard deviations and the second 

proportion nonconforming shifted from one to three standard deviations, the BPNN 

technique and the MNP chart performed equally. However, when both proportion 

nonconforming shifted one or two standard deviations, the MNP chart outperformed 

BPNN technique.  

7.1.4.3 Comparing the MNP Chart to the Normal Approximation Technique  

Table 15 shows that the MNP chart outperformed the normal approximation 

technique when the process is in-control. In general, the MNP chart will indicate a false 

alarm later than the normal approximation technique (e.g. 12 samples later). 

When the process is out of control and when both proportion nonconforming 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent of the shifts.  Specifically, for large shifts (i.e. three 

standard deviations), the MNP chart and the normal approximation technique performed 
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equally for shifts in both the positive and negative directions. The MNP chart also 

detected small and medium shifts faster than the normal approximation technique in both 

positive and negative shift directions. 

When the magnitude of the shifts of proportion nonconforming were different and 

a shift magnitude was large and the other shift magnitude was either medium or small 

(i.e. the proportion nonconforming of the first attribute shifted three standard deviations 

and the proportion nonconforming of the second attribute shifted either one or two 

standard deviations, or vice versa), the MNP chart and the normal approximation 

technique performed equally.  In cases where the magnitudes of the shift were different 

and they were medium and small (i.e. the proportion nonconforming of the first attribute 

shifted two standard deviations and the proportion nonconforming of the second attribute 

shifted one standard deviation, or vice versa), the MNP chart indicated an out-of-control 

process faster than the normal approximation technique. Above performances applied to 

both the positive and negative directions of shifts. Only weakly correlated processes were 

included in the experiment; therefore, the analyses excluded the strongly and moderately 

correlated processes. 

7.2 Recommended Sample Size for the MNP Chart  

The following three sub-sections presented for varied proportion nonconforming 

the pair-wise comparisons of the three techniques for sample size recommended for the 

MNP chart. 
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7.2.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 10 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 16 through Table 21 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

(proportion nonconforming p1 = 0.3 and p2 = 0.3; a sample size #2 = 10; and levels of 

correlation = 0.80, 0.50, and 0.20, respectively).  

The results indicate that the in-control ARL for the normal approximation 

technique and the MNP chart are substantially different. To compare the BPNN 

technique to the normal approximation technique and the MNP chart, two different cut-

off values were used for the BPNN technique in order to have the in-control ARL 

comparable to the ARL for each technique. As a result, there are two tables for an 

experimental subset.  The first table (i.e. Table 16, Table 18, or Table 20)shows the 

comparison between the BPNN technique and the normal approximation technique and 

the second table (i.e. Table 17, Table 19, or  Table 21)shows the comparison between the 

BPNN technique and the MNP chart. 

Table 16 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.3, p2=0.3, Sample Sizes=10, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +2s1, +2s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 2 2 1 2710

(%) (100%) (100%) (100%) (100%) (0.05%) (0.05%) (0.025%) (67.75%)

BPNN 4000 4000 4000 3997 2868 2868 2868 2893

(%) (100%) (100%) (100%) (99.93%) (71.70%) (71.70%) (71.70%) (72.33%)

ARL

Normal Approx. 2.44 8.16 40.54 248.66 255.00 255.00 81.00 589.65

BPNN 1.82 5.54 32.88 286.19 1.13 1.13 1.13 16.52

ARL variance

Normal Approx. 5.11 95.51 3074.30 124840.00 60552.00 60552.00 0.00 278880.00

BPNN 1.64 32.51 1634.70 468180.00 0.15 0.15 0.15 12590.00
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Table 17 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.3, 

p2=0.3, Sample Sizes=10, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +2s1, +2s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 3876 3876 3876 3878

(%) (100%) (100%) (100%) (100%) (96.90%) (96.90%) (96.90%) (96.95%)

ARL

MNP chart 1.75 5.18 29.02 57.50 1.13 1.13 1.13 7.23

BPNN 1.46 3.52 16.45 60.06 1.12 1.12 1.12 7.73

ARL variance

MNP chart 1.41 24.09 1061.80 3223.70 0.14 0.14 0.14 45.63

BPNN 0.75 10.88 455.53 23245.00 0.13 0.13 0.13 1805.90
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4000 3998 3854 n/a 4000 4000 4000 4000

(%) (100%) (99.95%) (96.35%) (100%) (100%) (100%) (100%)

BPNN 4000 3999 3914 n/a 3876 3876 3876 3875

(%) (100%) (99.98%) (97.85%) (96.90%) (96.90%) (96.90%) (96.88%)

 

 

Table 18 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.3, p2=0.3, Sample Sizes=10, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 4000 3999 3999 0 0 0 1229

(%) (100%) (100%) (100%) (100%) (100%) (99.98%) (99.98%) (0%) (0%) (0%) (30.73%)

BPNN 4000 4000 4000 4000 4000 4000 3979 3334 3334 3334 3335

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.48%) (83.35%) (83.35%) (83.35%) (83.38%)

ARL

Normal Approx. 1.82 2.60 2.61 6.10 9.38 35.60 394.41 No detection No detection No detection 879.48

BPNN 1.74 2.89 6.40 5.63 14.46 43.59 395.92 1.15 1.15 1.15 12.19

ARL variance

Normal Approx. 1.79 5.48 5.39 56.88 132.77 2121.20 354160.00 No detection No detection No detection 321880.00

BPNN 1.43 6.69 52.03 32.88 294.19 3094.50 884590.00 0.17 0.17 0.17 527.31
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Table 19 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.3, 

p2=0.3, Sample Sizes=10, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 4000 4000 3997 3873 3873 3873 3873

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.93%) (96.83%) (96.83%) (96.83%) (96.83%)

ARL

MNP chart 1.44 2.15 4.03 3.84 8.92 24.03 124.00 1.16 1.16 1.16 11.91

BPNN 1.46 2.16 4.13 3.85 8.77 23.93 153.38 1.14 1.14 1.15 11.00

ARL variance

MNP chart 0.64 2.69 14.70 12.92 84.88 787.96 15544.00 0.17 0.17 0.18 129.25

BPNN 0.71 2.97 19.77 15.74 96.35 931.23 166940.00 0.16 0.16 0.16 119.19
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 3981 n/a 4000 4000 4000 3999

(%) (100%) (100%) (100%) (100%) (100%) (99.53%) (100%) (100%) (100%) (99.98%)

BPNN 4000 4000 4000 4000 4000 3969 n/a 3873 3873 3873 3873

(%) (100%) (100%) (100%) (100%) (100%) (99.23%) (96.83%) (96.83%) (96.83%) (96.83%)

 

 

Table 20 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.3, p2=0.3, Sample Sizes=10, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 4000 4000 3998 2 2 882 2 893 582

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.95%) (0.05%) (0.05%) (22.05%) (0.05%) (22.33%) (14.55%)

BPNN 4000 4000 4000 4000 4000 3998 3925 3778 3778 3778 3778 3778 3778

(%) (100%) (100%) (100%) (100%) (100%) (99.95%) (98.13%) (94.45%) (94.45%) (94.45%) (94.45%) (94.45%) (94.45%)

ARL

Normal Approx. 1.45 2.06 2.65 4.24 8.20 28.45 461.98 2.00 2.00 433.65 2.50 435.09 962.69

BPNN 1.55 2.50 5.83 5.35 15.59 53.90 518.30 1.18 1.19 5.34 1.20 5.38 20.20

ARL variance

Normal Approx. 0.80 2.88 5.70 18.73 85.43 1380.20 484180.00 0.00 0.00 81662.00 0.50 81530.00 340830.00

BPNN 1.01 4.65 45.07 36.64 421.42 5496.50 876140.00 0.22 0.23 23.41 0.23 24.25 421.54

 

 

Table 21 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.3, 

p2=0.3, Sample Sizes=10, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

Shifts Detected 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 4000 4000 3997 3974 3974 3974 3974 3974 3974

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.93%) (99.35%) (99.35%) (99.35%) (99.35%) (99.35%) (99.35%)

ARL

MNP chart 1.23 1.70 3.03 2.93 6.43 18.26 237.87 1.19 1.20 5.47 1.20 5.52 20.86

BPNN 1.32 1.90 3.68 3.47 8.54 25.93 263.88 1.16 1.17 4.79 1.17 4.84 16.94

ARL variance

MNP chart 0.31 1.35 7.79 6.43 46.07 466.14 70593.00 0.23 0.24 23.48 0.24 24.50 427.96

BPNN 0.48 1.94 13.23 10.25 116.68 1179.10 150690.00 0.18 0.19 21.29 0.20 22.20 354.39
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 3991 n/a 4000 4000 4000 4000 4000 3998

(%) (100%) (100%) (100%) (100%) (100%) (99.78%) (100%) (100%) (100%) (100%) (100%) (99.95%)

BPNN 4000 4000 4000 4000 4000 3988 n/a 3974 3974 3974 3974 3974 3974

(%) (100%) (100%) (100%) (100%) (100%) (99.70%) (99.35%) (99.35%) (99.35%) (99.35%) (99.35%) (99.35%)
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7.2.1.1 Comparing the BPNN to the Normal Approximation Techniques  

Table 16, Table 18, and Table 20 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2, respectively) that the BPNN technique outperformed normal 

approximation when the process is in-control. In general, the BPNN technique will 

indicate a false alarm much later than the normal approximation technique (e.g. 1 to 57 

samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations), the BPNN and normal approximation techniques 

performed equally for shifts in the positive direction. However, when both proportion 

nonconforming shifted in the negative direction, the normal approximation technique 

could not detect any shifts; therefore, one may be able to conclude that the BPNN 

outperformed the normal approximation technique. When both proportion 

nonconforming had shifted two standard deviations (medium shifts) and in the positive 

direction, the BPNN technique outperformed the normal approximation technique for 

strongly correlated processes (i.e. 0.80). Both techniques performed equally for 

moderately correlated processes (i.e. 0.50). The normal approximation outperformed the 

BPNN technique for weakly correlated processes (i.e. 0.20).  

When both proportion nonconforming had shifted two standard deviations 

(medium shifts) and in the negative direction, the normal approximation technique could 

not detect any shifts; therefore, the BPNN technique outperformed the normal 

approximation technique. When both proportion nonconforming had shifted one standard 
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deviation (small shifts) and in the positive direction, BPNN technique outperformed the 

normal approximation technique for strongly correlated processes. The normal 

approximation technique outperformed the BPNN technique for moderately and weakly 

correlated processes. When both proportion nonconforming had shifted one standard 

deviation and in the negative direction, the BPNN technique outperformed the normal 

approximation technique.  

When the shifts had different magnitudes and were in the same direction, the 

performance of the two techniques depends on the magnitude and direction of the shifts. 

The normal approximation technique outperformed the BPNN technique for the positive 

direction of shifts for all levels of correlation when the proportion nonconforming of the 

first attribute shifted three or two standard deviations and the proportion nonconforming 

of the second attribute shifted one standard deviation. However, when the proportion 

nonconforming of the first attribute shifted three standard deviations and the proportion 

nonconforming of the second attribute shifted two standard deviations and both 

proportion nonconforming shifted in the positive direction, the BPNN and the normal 

approximation techniques performed equally. When both proportion nonconforming 

shifted with different magnitudes and in the negative direction, the BPNN technique 

outperformed the normal approximation technique for all levels of correlation. 

In summary, the BPNN technique outperformed the normal approximation 

technique when both proportion nonconforming shifted in the negative direction for any 

magnitude of shift.  It is mentioned in section 7.1.2.1 that the normal approximation 

technique has an assumption that the covariance matrix remains the same when the 

process’s proportion nonconforming shift.  However, this assumption does not hold for 

 99



this particular situation.  As a result, the normal approximation technique does not 

operate as intended for shifts in the negative direction.  

To provide further explanation, for processes with shifts in the negative direction 

and in which smaller samples sizes were applied, the covariance matrix was substantial 

smaller than the covariance matrix for in-control processes. (The proportion 

nonconforming were close to zero when they shifted in the negative direction; obviously, 

the data could not be generated for proportion non-conforming values less than zero. As a 

result, the data generated had a smaller covariance matrix.) Consequently, the inverse 

matrix of the covariance of negatively shifted processes was larger than the inverse 

matrix of the covariance of in-control processes. The G-square statistic for the normal 

approximation technique was calculated based on the inverse covariance matrix of the in-

control processes (due to the equal covariance matrix assumption). Therefore, the G-

square statistics for processes with shifts in the negative direction were smaller than what 

they should be. As a result, the normal approximation technique could not detect (or 

could detect for only a few replications) processes with negatively shifted proportion 

nonconforming.  

Finally, as the correlation coefficient increased, the number of replications in 

which the BPNN technique detected negatively directed shifts decreased. This may be 

due to the limitations associated with generating data for smaller sample sizes. As 

discussed in Chapter 6, given strongly correlated processes with small sample sizes, the 

generated correlated coefficients for processes with both proportion nonconforming 

shifted in the negative direction were inconsistent with the desired correlation 

coefficients. As a result, the 100 samples used to train the network may not represent a 
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sufficient number of patterns (or relationships of the two attributes) to adequately predict 

the test set data.  

7.2.1.2 Comparing the BPNN Technique to the MNP Chart 

Table 17, Table 19, and Table 21 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2, respectively) that the BPNN technique outperformed the MNP chart 

when the process is in-control. In general, the BPNN technique will indicate a false alarm 

much later than the MNP chart (e.g. 3 to 30 samples later).  

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations), the BPNN technique and the MNP chart performed 

equally for shifts in the positive direction. When both proportion nonconforming had 

shifted two standard deviations (medium shifts) and in the positive direction, the BPNN 

technique outperformed the MNP chart for strongly correlated processes. Both techniques 

performed equally for moderately and weakly correlated processes. When both 

proportion nonconforming had shifted one standard deviation (small shifts) and in the 

positive direction, the BPNN technique outperformed the MNP chart for strongly 

correlated processes. Both techniques resulted in the same average run length for 

moderately correlated processes; however, the MNP chart identified the direction of 

shifts more correctly than the BPNN technique. This difference was considered 

negligible. The MNP chart outperformed the BPNN technique for weakly correlated 

processes. When both proportion nonconforming had shifted in the negative direction 
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regardless of the magnitude, the MNP chart outperformed the BPNN technique. The 

BPNN technique could not indicate shifts for all the 4000 replications while the MNP 

chart could. The differences of the replications were considered significant. 

When the shifts had different magnitudes and were in the positive direction, the 

BPNN technique and the MNP chart performed equally for moderately correlated 

processes. For weakly correlated processes, the MNP chart outperformed the BPNN 

technique when the proportion nonconforming of the first attribute shifted two standard 

deviations and the proportion nonconforming of the second attribute shifted one standard 

deviation. Both techniques performed equally for the other magnitudes of shift. When 

both proportion nonconforming shifted with different magnitudes and in the negative 

direction, the MNP chart outperformed the BPNN technique for all levels of correlation. 

The BPNN technique could not indicate shifts for all the 4000 replications while the 

MNP chart could. The differences of the replications were considered significant. 

7.2.1.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 16 through Table 21 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the normal approximation technique outperformed the MNP chart when the 

process is in-control. In general, the normal approximation technique will indicate a false 

alarm much later than the MNP chart (e.g. 191 to 224 samples later). The stronger the 

correlation coefficient, the smaller the in-control ARL for the MNP chart and the normal 

approximation technique. 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 
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depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations), the MNP chart and the normal approximation technique 

performed equally for shifts in the positive direction. However, when both proportion 

nonconforming shifted in the negative direction, the normal approximation technique 

could not detect any shifts; therefore, the MNP chart outperformed the normal 

approximation technique. When both proportion nonconforming had shifted two standard 

deviations (medium shifts) and in the positive direction, the MNP chart outperformed the 

normal approximation technique for all levels of correlation. When both proportion 

nonconforming had shifted two standard deviations (medium shifts) and in the negative 

direction, the normal approximation technique could not detect any shifts; therefore, the 

MNP chart outperformed the normal approximation technique. When both proportion 

nonconforming had shifted one standard deviation (small shifts) and in the positive 

direction, the MNP chart outperformed the normal approximation technique for all levels 

of correlation. When both proportion nonconforming had shifted one standard deviation 

and in the negative direction, the MNP chart outperformed the normal approximation 

technique.  

When the magnitudes of the shifts were different, the level of correlation affected 

the results. For moderately correlated processes, the normal approximation technique 

outperformed the MNP chart when the proportion nonconforming of the first attribute 

shifted three standard deviations and the proportion nonconforming of the second 

attribute shifted one standard deviation and both proportion nonconforming shifted in the 

positive direction. Both techniques performed equally for other magnitudes of shifts. For 

weakly correlated processes, the MNP chart outperformed the normal approximation 
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technique when the proportion nonconforming of the first attribute shifted two standard 

deviations and the proportion nonconforming of the second attribute shifted one standard 

deviation and both proportion nonconforming shifted in the positive direction. Both 

techniques performed equally for other magnitudes of shifts. When both proportion 

nonconforming shifted with different magnitudes and in the negative direction, the MNP 

chart outperformed the normal approximation technique for all levels of correlation. 

7.2.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 30 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 22 through Table 27 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

(proportion nonconforming p1 = 0.1 and p2 = 0.1; a sample size #2 = 30; and level of 

correlation = 0.80, 0.50, and 0.20, respectively).  

The results showed that the in-control ARL for the normal approximation 

technique and the MNP chart were substantial different. To compare the BPNN technique 

to the normal approximation technique and the MNP chart, two different cut-off values 

were used for the BPNN technique in order to have the in-control ARL comparable to the 

ARL for each technique. As a result, there were two tables for an experimental subset.  

The first table (i.e. Table 22, Table 24, or Table 26) showed the comparison between the 

BPNN technique and the normal approximation technique and the second table (i.e. Table 

23, Table 25, or Table 27) showed the comparison between the BPNN technique and the 

MNP chart. 
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Table 22 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.1, p2=0.1, Sample Sizes=30, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 4000 4000 0 0 0 1586

(%) (100%) (100%) (100%) (100%) (100%) (100%) (0%) (0%) (0%) (39.65%)

BPNN 4000 4000 4000 4000 4000 3995 2637 2637 2637 2670

(%) (100%) (100%) (100%) (100%) (100%) (99.88%) (65.93%) (65.93%) (65.93%) (66.75%)

ARL

Normal Approx. 2.13 2.28 4.66 4.49 18.23 158.59 No detection No detection No detection 851.97

BPNN 1.97 2.66 4.15 7.97 18.09 179.70 1.04 1.04 1.04 16.29

ARL variance

Normal Approx. 2.58 3.17 22.05 17.02 430.96 38347.63 No detection No detection No detection 344660.00

BPNN 2.28 5.41 18.48 98.23 575.52 242420.00 0.04 0.04 0.04 13067.00

 

Table 23 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.1, 

p2=0.1, Sample Sizes=30, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 500 500 2000

Replication 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

Shifts Detected 

(Reps.)

MNP chart 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 5000 5000 5000 5000 5000 5000 4502 4502 4502 4524

(%) (100%) (100%) (100%) (100%) (100%) (100%) (90.04%) (90.04%) (90.04%) (90.48%)

ARL

MNP chart 1.91 2.57 4.03 7.55 16.34 36.19 1.04 1.04 1.04 5.36

BPNN 1.67 2.18 3.15 5.72 11.52 55.99 1.03 1.03 1.03 10.27

ARL variance

MNP chart 1.84 4.31 13.60 54.76 276.79 1276.80 0.04 0.04 0.04 23.84

BPNN 1.29 2.80 7.99 36.11 177.00 30733.00 0.04 0.04 0.04 6204.60
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4999 4997 4993 4977 4797 n/a 5000 5000 5000 5000

(%) (99.98%) (99.94%) (99.86%) (99.54%) (95.94%) (100%) (100%) (100%) (100%)

BPNN 4999 4997 4994 4980 4875 n/a 4502 4502 4502 4501

(%) (99.98%) (99.94%) (99.88%) (99.60%) (97.50%) (90.04%) (90.04%) (90.04%) (90.02%)

 

Table 24 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.1, p2=0.1, Sample Sizes=30, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 4000 4000 4000 0 0 0 603

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (0%) (0%) (0%) (15.08%)

BPNN 4000 4000 4000 4000 4000 4000 3993 3073 3073 3073 3077

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.83%) (76.83%) (76.83%) (76.83%) (76.93%)

ARL

Normal Approx. 1.83 2.29 2.39 3.81 5.45 16.40 189.52 No detection No detection No detection 964.34

BPNN 1.84 2.56 4.36 4.09 8.29 19.59 225.97 1.04 1.04 1.04 9.31

ARL variance

Normal Approx. 1.77 3.46 3.88 12.17 30.53 352.54 58980.00 No detection No detection No detection 342070.00

BPNN 1.71 4.93 25.44 14.88 115.37 548.03 321600.00 0.04 0.04 0.04 1484.30
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Table 25 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.1, 

p2=0.1, Sample Sizes=30, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000
Shifts Detected 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 4000 4000 4000 3798 3798 3798 3800

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (94.95%) (94.95%) (94.95%) (95%)

ARL

MNP chart 1.65 2.23 3.45 3.40 6.31 14.48 72.76 1.04 1.04 1.04 8.02

BPNN 1.61 2.16 3.27 3.22 5.82 12.76 84.62 1.04 1.04 1.04 8.25

ARL variance

MNP chart 1.13 3.00 10.60 8.52 40.88 233.35 5483.70 0.05 0.05 0.05 53.69

BPNN 1.12 3.01 9.23 7.66 36.88 190.24 34337.00 0.05 0.05 0.05 824.35
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4000 4000 4000 3999 3997 3960 n/a 4000 4000 4000 4000

(%) (100%) (100%) (100%) (99.98%) (99.93%) (99%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 3999 3998 3958 n/a 3798 3798 3798 3797

(%) (100%) (100%) (100%) (99.98%) (99.95%) (98.95%) (94.95%) (94.95%) (94.95%) (94.93%)

 

 

Table 26 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.1, p2=0.1, Sample Sizes=30, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

Shifts Detected 

(Reps.)

Normal Approx. 4000 4000 4000 4000 4000 4000 4000 0 0 0 369

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (0%) (0%) (0%) (9.23%)

BPNN 4000 4000 4000 4000 4000 3999 3997 3851 3851 3851 3852

(%) (100%) (100%) (100%) (100%) (100%) (99.98%) (99.93%) (96.28%) (96.28%) (96.28%) (96.30%)

ARL

Normal Approx. 1.54 1.98 2.42 3.24 5.16 13.92 194.31 No detection No detection No detection 976.94

BPNN 1.55 2.13 3.40 3.35 6.74 17.38 198.61 1.06 1.06 1.06 12.10

ARL variance

Normal Approx. 0.93 2.21 3.64 8.15 25.06 236.79 56485.23 No detection No detection No detection 318910.00

BPNN 1.00 3.05 10.24 9.95 93.28 495.13 243160.00 0.06 0.06 0.06 143.19

 

Table 27 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: p1=0.1, 

p2=0.1, Sample Sizes=30, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 2000

Replication 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

Shifts Detected 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 4000 4000 4000 3958 3958 3958 3958

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (98.95%) (98.95%) (98.95%) (98.95%)

ARL

MNP chart 1.40 1.84 2.83 2.78 5.16 12.65 124.22 1.06 1.06 1.06 12.31

BPNN 1.45 1.93 2.99 2.96 5.58 13.34 137.15 1.05 1.05 1.05 11.43

ARL variance

MNP chart 0.57 1.66 5.50 5.12 23.55 190.19 17205.77 0.06 0.06 0.06 138.06

BPNN 0.74 2.23 7.20 6.60 33.51 225.72 70087.76 0.05 0.05 0.05 130.56
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 4000 4000 4000 4000 4000 3991 n/a 4000 4000 4000 4000

(%) (100%) (100%) (100%) (100%) (100%) (99.78%) (100%) (100%) (100%) (100%)

BPNN 4000 4000 4000 4000 4000 3990 n/a 3958 3958 3958 3958

(%) (100%) (100%) (100%) (100%) (100%) (99.75%) (98.95%) (98.95%) (98.95%) (98.95%)
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7.2.2.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 22, Table 24, and Table 26 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2, respectively) that BPNN technique outperformed the normal 

approximation technique when the process is in-control. In general, the BPNN technique 

will indicate a false alarm much later than the normal approximation technique (e.g. 4 to 

36 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large and 

medium shifts (i.e. three or two standard deviations), BPNN and normal approximation 

techniques performed equally for shifts in the positive direction. However, when both 

proportion nonconforming shifted in the negative direction, the normal approximation 

technique could not detect any shifts; therefore, the BPNN outperformed the normal 

approximation technique. When both proportion nonconforming had shifted one standard 

deviation (small shifts) and in the positive direction, the BPNN and the normal 

approximation technique performed equally for strongly correlated processes. The normal 

approximation technique outperformed the BPNN technique for moderately and weakly 

correlated processes. When both proportion nonconforming had shifted one standard 

deviation and in the negative direction, the BPNN technique outperformed the normal 

approximation technique.  

When the shifts had different magnitudes and were in the positive direction, 

performance of the two techniques depended on the magnitude of the shifts. Specifically, 

for a process with the proportion nonconforming of the first attribute shifted three or two 
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standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation, the normal approximation technique outperformed the BPNN 

technique for all levels of correlation. However, when the proportion nonconforming of 

the first attribute shifted three standard deviations and the proportion nonconforming of 

the second attribute shifted two standard deviations, the BPNN and the normal 

approximation techniques performed equally. When both proportion nonconforming 

shifted with different magnitudes and in the negative direction, the BPNN technique 

outperformed the normal approximation technique for all levels of correlation. 

7.2.2.2 Comparing the BPNN Technique to the MNP Chart 

Table 23, Table 25, and Table 27 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2, respectively) that the BPNN technique outperformed the MNP chart 

when the process is in-control. In general, the BPNN technique will indicate a false alarm 

much later than the MNP chart (e.g. 12 to 19 samples later).  

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts 

(i.e. three standard deviations), the BPNN technique and the MNP chart performed 

equally for shifts in the positive direction. When both proportion nonconforming had 

shifted two standard deviations (medium shifts) and in the positive direction, both 

techniques had the same average run length (ARL) for all levels of correlation 

coefficient. However, the BPNN technique identified the direction of shifts more 

correctly than the MNP chart for strongly correlated processes. This difference was 
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considered insignificant. When both proportion nonconforming had shifted one standard 

deviation (small shifts) and in the positive direction, the BPNN technique outperformed 

the MNP chart for strongly correlated processes. The BPNN detected shifts faster than 

the MNP chart (the BPNN had smaller ARL than the MNP chart) for moderately 

correlated processes; however, the MNP chart identified the direction of shifts more 

correctly than the BPNN technique. This difference was considered insignificant. The 

two techniques had the same average run length for weakly correlated processes, but the 

MNP chart identified the direction of shifts more correctly than the BPNN technique. 

Again, this difference was considered insignificant. When both proportion 

nonconforming had shifted in the negative direction with any magnitudes, the MNP chart 

could indicate shifts additional replications over the BPNN technique. These differences 

were considered significant. 

When the shifts had different magnitudes and were in the positive direction, the 

performance depended on the magnitude of the shifts. For strongly correlated processes, 

the BPNN technique outperformed the MNP chart when the proportion nonconforming of 

the first attribute shifted two standard deviations and the proportion nonconforming of the 

second attribute shifted one standard deviation. Both techniques performed equally for 

the other magnitudes of shifts. For moderately and weakly correlated processes, both 

techniques performed equally. When both proportion nonconforming shifted with 

different magnitudes and in the negative direction, the MNP chart could indicate shifts 

additional replications over the BPNN technique for all levels of correlation. These 

differences were considered significant.  
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7.2.2.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 22 through Table 27 are all used to compare the MNP chart and the normal 

approximation techniques (Note: the MNP chart and the normal approximation 

techniques have different in-control ARL. To compare them with the BPNN technique, 

different cut-values are used for the BPNN technique) In general, the normal 

approximation technique will indicate a false alarm much later than the MNP chart (e.g. 

70 to 122 samples later). The stronger the correlation coefficient, the smaller the in-

control ARL for the MNP chart and the normal approximation technique. 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large and 

medium shifts, the MNP chart and the normal approximation technique performed 

equally for shifts in the positive direction. However, when both proportion 

nonconforming shifted in the negative direction, the normal approximation technique 

could not detect any shift; therefore, the MNP chart outperformed the normal 

approximation technique. When both proportion nonconforming had shifted one standard 

deviation (small shifts) and in the positive direction, the MNP chart outperformed the 

normal approximation technique for all levels of correlation. When both proportion 

nonconforming had shifted one standard deviation and in the negative direction, the MNP 

chart outperformed the normal approximation technique.  

When the magnitudes of the shifts were different, the level of correlation affected 

the results. For strongly correlated processes, the normal approximation technique 

outperformed the MNP chart when the proportion nonconforming of the first attribute 
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shifted two standard deviations and the proportion nonconforming of the second attribute 

shifted one standard deviation and both proportion nonconforming shifted in the positive 

direction. Both techniques performed equally for other magnitudes of shifts. For 

moderately correlated processes, the normal approximation technique outperformed the 

MNP chart when the proportion nonconforming of the first attribute shifted three 

standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation and both proportion nonconforming shifted in the positive direction. 

Both techniques performed equally for other magnitudes of shifts. For weakly correlated 

processes, both techniques performed equally when both proportion nonconforming 

shifted with different magnitudes and in the positive direction. When both proportion 

nonconforming shifted with different magnitudes and in the negative direction, the MNP 

chart outperformed the normal approximation technique for all levels of correlation. 

7.2.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 810, 670, and 540 (Levels of Correlation: 0.8, 

0.5, and 0.2) 

Table 28 through Table 30 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

(proportion nonconforming p1 = 0.01 and p2 = 0.01; a sample size #2 = 810, 670, and 540 

respectively; and levels of correlation = 0.80, 0.50, and 0.20, respectively). 
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Table 28 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=810, Correlation Coefficient=0.8 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 76 131 1098

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (3.80%) (6.55%) (54.90%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 1928

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (96.40%)

BPNN 2000 2000 2000 2000 2000 2000 2000 1996 1996 1996

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.80%) (99.80%) (99.80%)

ARL

Normal Approx. 2.23 2.31 1.68 5.08 4.93 23.24 234.89 38.33 130.07 758.79

MNP chart 1.94 2.67 4.31 4.29 8.25 19.80 287.45 2.61 18.17 495.58

BPNN 2.04 2.86 4.86 4.66 9.46 22.31 292.69 1.52 5.64 94.52

ARL variance

Normal Approx. 3.33 3.45 1.35 25.07 23.03 684.42 85589.00 11763.00 22568.00 326370.00

MNP chart 1.81 4.72 14.83 14.51 68.03 419.83 98453.00 4.34 315.31 187270.00

BPNN 2.17 6.08 22.22 18.74 105.34 622.81 141450.00 1.01 44.17 21310.00
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 1896

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (94.80%)

BPNN 2000 2000 2000 2000 2000 2000 n/a 1996 1996 1990

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.80%) (99.80%) (99.50%)

 

 

Table 29 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=670, Correlation Coefficient=0.5 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 44 51 46 1442 532

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (2.20%) (2.55%) (2.30%) (72.10%) (26.60%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 1967

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (98.35%)

BPNN 2000 2000 2000 2000 2000 2000 2000 1996 1996 1996 1996 1996

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.80%) (99.80%) (99.80%) (99.80%) (99.80%)

ARL

Normal Approx. 1.76 2.26 2.50 4.01 5.97 18.72 238.16 2.91 57.02 18.46 299.86 851.87

MNP chart 1.62 2.26 3.49 3.54 6.56 16.21 270.15 2.72 5.62 10.01 86.49 458.48

BPNN 1.71 2.43 3.94 3.97 7.48 19.68 286.33 1.37 1.98 2.93 13.32 56.71

ARL variance

Normal Approx. 1.29 3.02 4.22 12.38 37.36 430.14 96059.00 6.27 17526.22 2252.39 67841.92 314860.70

MNP chart 0.94 3.19 9.09 8.47 39.41 270.16 92361.00 4.80 25.68 86.20 6961.64 175513.90

BPNN 1.17 3.71 13.67 11.52 56.10 536.28 185050.00 0.64 2.58 8.66 369.94 7649.75
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 1952

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (97.60%)

BPNN 2000 2000 2000 2000 2000 1999 n/a 1996 1996 1996 1996 1995

(%) (100%) (100%) (100%) (100%) (100%) (99.95%) (99.80%) (99.80%) (99.80%) (99.80%) (99.75%)
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Table 30 Performance of the Three Techniques for Experimental Subset: p1=0.01, p2=0.01, Sample 

Sizes=540, Correlation Coefficient=0.2 

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 1000 500 1000 2000

Replication 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
Shifts Detected 

(Reps.)

Normal Approx. 2000 2000 2000 2000 2000 2000 2000 62 62 565 62 536 283

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (3.10%) (3.10%) (28.25%) (3.10%) (26.80%) (14.15%)

MNP chart 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

ARL

Normal Approx. 1.56 2.00 2.46 3.27 5.28 13.89 213.88 3.32 3.24 371.12 3.65 412.50 844.36

MNP chart 1.45 1.83 2.74 2.81 5.16 12.57 246.23 2.59 3.28 29.03 3.96 34.18 252.39

BPNN 1.54 2.05 3.36 3.28 6.44 16.19 272.74 1.27 1.42 5.16 1.53 6.14 29.56

ARL variance

Normal Approx. 0.88 2.12 4.23 8.44 28.96 204.15 79319.00 7.63 6.35 85343.12 8.13 90815.05 377905.66

MNP chart 0.68 1.57 4.93 5.19 24.05 171.97 91334.00 4.15 7.75 840.76 11.93 1183.90 66304.30

BPNN 0.90 2.48 11.38 8.24 49.43 311.52 167652.00 0.36 0.82 34.35 1.18 58.66 2016.18
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 2000 2000 2000 2000 2000 2000 n/a 2000 2000 2000 2000 2000 1988

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (99.40%)

BPNN 2000 2000 2000 2000 2000 1999 n/a 2000 2000 2000 2000 2000 1999

(%) (100%) (100%) (100%) (100%) (100%) (99.95%) (100%) (100%) (100%) (100%) (100%) (99.95%)

 

7.2.3.1 Comparing the BPNN to the Normal Approximation Techniques 

Table 28 through Table 30 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed the normal approximation technique 

when the process is in-control. In general, the BPNN technique will indicate a false alarm 

much later than the normal approximation technique (e.g. 48 to 59 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large or 

medium shifts (i.e. three or two standard deviations), BPNN and normal approximation 

techniques performed equally for shifts in the positive direction. However, when both 

proportion nonconforming shifted in the negative direction, the BPNN technique 

outperformed the normal approximation technique. When both proportion 

nonconforming had shifted one standard deviation (small shifts) and in the positive 

direction, both techniques performed equally for strongly correlated processes. The 
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normal approximation technique outperformed the BPNN technique for moderately and 

weakly correlated processes. When both proportion nonconforming had shifted one 

standard deviation and in the negative direction, the BPNN technique outperformed the 

normal approximation technique.  

When the shifts had different magnitudes and were in the positive direction, 

performance of the two techniques depended on the magnitude of the shifts. Specifically, 

for a process with the proportion nonconforming of the first attribute shifted three or two 

standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation, the normal approximation technique outperformed the BPNN 

technique for all levels of correlation. However, when the proportion nonconforming of 

the first attribute shifted three standard deviations and the proportion nonconforming of 

the second attribute shifted two standard deviations, the BPNN and the normal 

approximation techniques performed equally. When both proportion nonconforming 

shifted with different magnitudes and in the negative direction, the BPNN technique 

outperformed the normal approximation technique for all levels of correlation. 

7.2.3.2 Comparing the BPNN Technique to the MNP Chart 

Table 28 through Table 30 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the BPNN technique outperformed the MNP chart when the process is in-

control. In general, the BPNN technique will indicate a false alarm much later than the 

MNP chart (e.g. 5 to 26 samples later).  

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 
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depended largely on the extent and direction of the shifts.  Specifically, for large and 

medium shifts, the BPNN technique and the MNP chart performed equally for shifts in 

the positive direction. When both proportion nonconforming shifted in the negative 

direction with large magnitude, the BPNN technique detected shifts faster than the MNP 

chart (the BPNN technique had smaller ARL than the MNP chart) for all levels of 

correlation coefficient. However, for strongly and moderately correlated processes (Table 

28 and Table 29) the BPNN technique could not indicate the shifts for four of the 2000 

replications while the MNP chart indicated shifts for all replications. If one assumed that 

the BPNN technique detected the shifts for those four replications, one might conclude 

that the MNP chart performed either better than or equal to the BPNN technique.  

When both proportion nonconforming shifted in the negative direction with 

medium magnitude, the BPNN technique detected shifts faster than the MNP chart (the 

BPNN technique had smaller ARL than the MNP chart) for all levels of correlation 

coefficient. However, for strongly and moderately correlated processes the BPNN 

technique could not indicate the shifts for four of the 2000 replications while the MNP 

chart indicated shifts for all replications. If one assumed that the BPNN technique 

detected the shifts for those four replications, one would still conclude that the BPNN 

technique outperformed the MNP chart. When both proportion nonconforming had 

shifted one standard deviation (small shifts) and in the positive direction, the MNP chart 

outperformed the BPNN for all levels of correlation coefficients. In contrary, the BPNN 

technique outperformed the MNP chart when both proportion nonconforming had shifted 

in the negative direction. 
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When the shifts had different magnitudes and were in the positive direction, the 

performance depended on the level of correlation coefficient and the magnitudes of the 

shifts. For strongly and weakly correlated processes, the MNP chart outperformed the 

BPNN technique when the proportion nonconforming of the first attribute shifted two 

standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation. Both techniques performed equally for the other magnitudes of shifts. 

For moderately correlated processes, both techniques performed equally. When both 

proportion nonconforming shifted with different magnitudes and in the negative 

direction, the BPNN technique detected shifts faster than the MNP chart (the BPNN had 

smaller ARL than the MNP chart) for moderately correlated processes. However, the 

BPNN technique could not indicate the shifts for four of the 2000 replications while the 

MNP chart indicate shifts for all 2000 replications. If one assumed that the BPNN 

technique detected the shifts for those four replications, one would conclude that the 

BPNN technique outperformed the MNP chart.  For weakly correlated processes, the 

BPNN outperformed the MNP chart. 

7.2.3.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 28 through Table 30 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the MNP chart will indicate a false alarm much later than the normal 

approximation technique (e.g. 32 to 53 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large and 
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medium shifts, the MNP chart and the normal approximation technique performed 

equally for shifts in the positive direction. However, when both proportion 

nonconforming shifted in the negative direction, the MNP chart outperformed the normal 

approximation technique. When both proportion nonconforming had shifted one standard 

deviation (small shifts) and in the positive direction, the MNP chart outperformed the 

normal approximation technique for all levels of correlation. When both proportion 

nonconforming had shifted one standard deviation and in the negative direction, the MNP 

chart outperformed the normal approximation technique.  

When the shifts had different magnitudes and were in the positive direction, the 

level of correlation affected the results. For strongly correlated processes, the normal 

approximation technique outperformed the MNP chart when the proportion 

nonconforming of the first attribute shifted three or two standard deviations and the 

proportion nonconforming of the second attribute shifted one standard deviation. Both 

techniques performed equally for other magnitudes of shifts. For moderately correlated 

processes, the normal approximation technique outperformed the MNP chart when the 

proportion nonconforming of the first attribute shifted three standard deviations and the 

proportion nonconforming of the second attribute shifted one standard deviation. Both 

techniques performed equally for other magnitudes of shifts. For weakly correlated 

processes, the normal approximation technique and the MNP chart performed equally 

when both proportion nonconforming shifted with different magnitudes. When both 

proportion nonconforming shifted with different magnitudes and in the negative 

direction, the MNP chart detected shifts faster than the normal approximation technique 

for all levels of correlation. 
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7.3 Satisfying the Condition of Finding at Least One Nonconforming Item in a 

Sample  

The following three sub-sections presented for varied proportion nonconforming 

the pair-wise comparisons of the three techniques for the sample size that satisfies the 

condition of finding at least one nonconforming item in a sample. 

7.3.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 10 (Levels of Correlation: 0.8, 0.5, and 0.2) 

For a process with two attributes each with proportion non-conforming of 0.3, the 

sample size calculated to satisfy the condition of finding at least one nonconforming item 

in a sample was the same as the sample size recommended for the MNP chart. Thus, this 

sub-experiment is a duplication of the sub-experiment in section 7.2.1. See results in 

section 7.2.1.  

7.3.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 30 (Levels of Correlation: 0.8, 0.5, and 0.2) 

For a process with two attributes each with proportion nonconforming of 0.1, the 

sample size calculated to satisfy the condition of finding at least one nonconforming item 

in a sample was the same as the sample size recommended for the MNP chart. Thus, this 

sub-experiment is a duplication of the sub-experiment in section 7.2.2. See results in 

section 7.2.2. 

7.3.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 300 (Levels of Correlation: 0.8, 0.5, and 0.2) 

Table 31 through Table 36 present the ARLs for the normal approximation 

technique, the MNP chart, and the BPNN technique for three of the experimental subsets 

 118



(proportion nonconforming p1 = 0.01 and p2 = 0.01; a sample size #3 = 300; and levels of 

correlation = 0.80, 0.50, and 0.20, respectively).  

The results showed that the in-control ARL for the normal approximation 

technique and the MNP chart were substantially different. To compare the BPNN 

technique to the normal approximation technique and the MNP chart, two different cut-

off values were used for the BPNN technique in order to have the in-control ARL 

comparable to the ARL for each technique. As a result, there were two tables for an 

experimental subset; the first table showed the comparison between the BPNN technique 

and the normal approximation technique and the second table showed the comparison 

between the BPNN technique and the MNP chart. 

Table 31 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 500 500 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Shifts Detected 

(Reps.)

Normal Approx. 10000 10000 10000 10000 10000 10000 9 9 9 3

(%) (100%) (100%) (100%) (100%) (100%) (100%) (0.09%) (0.09%) (0.09%) (33.44%)

BPNN 10000 10000 10000 10000 9999 9987 6844 6844 6844 6921

(%) (100%) (100%) (100%) (100%) (99.99%) (99.87%) (68.44%) (68.44%) (68.44%) (69.21%)

ARL

344

Normal Approx. 2.06 2.26 4.19 4.18 14.72 135.62 271.78 271.78 271.78 894.43

BPNN 1.99 2.69 4.09 7.33 15.90 146.04 1.44 1.44 1.44 16.08

ARL variance

Normal Approx. 2.29 3.14 15.56 15.20 260.42 30108.41 18016.19 18016.19 18016.19 334974.31

BPNN 2.45 5.88 18.15 81.45 585.14 194096.79 0.63 0.63 0.63 14872.98
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Table 32 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: 

p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.8  

Shift

+3s1, +3s2 +3s1, +2s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 500 1000 1000 10000 500 500 500 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Shifts Detected 

(Reps.)

MNP chart 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 10000 10000 10000 10000 9999 9999 9625 9625 9625 9644

(%) (100%) (100%) (100%) (100%) (99.99%) (99.99%) (96.25%) (96.25%) (96.25%) (96.44%)

ARL

MNP chart 1.95 2.60 3.92 6.78 14.00 30.67 1.45 1.45 1.45 4.71

BPNN 1.58 2.00 2.72 4.40 7.88 34.32 1.42 1.42 1.42 6.77

ARL variance

MNP chart 1.95 4.26 12.28 40.82 213.99 902.68 0.63 0.63 0.63 17.57

BPNN 1.00 2.25 5.83 23.13 83.31 21711.67 0.60 0.60 0.60 3464.08
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 10000 9995 9979 9919 9506 n/a 10000 10000 10000 10000

(%) (100%) (99.95%) (99.79%) (99.19%) (95.06%) (100%) (100%) (100%) (100%)

BPNN 10000 9996 9974 9928 9661 n/a 9625 9625 9625 9618

(%) (100%) (99.96%) (99.74%) (99.28%) (96.61%) (96.25%) (96.25%) (96.25%) (96.18%)

 

 

Table 33 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 500 1000 1000 10000 500 500 500 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Shifts Detected 

(Reps.)

Normal Approx. 10000 10000 10000 10000 10000 10000 10000 0 0 0 1108

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (0%) (0%) (0%) (11.08%)

BPNN 10000 10000 10000 10000 10000 10000 9993 8051 8051 8051 8064

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.93%) (80.51%) (80.51%) (80.51%) (80.64%)

ARL

Normal Approx. 1.81 2.25 2.36 3.64 5.09 13.53 158.68 No detection No detection No detection 927.89

BPNN 1.89 2.68 4.16 4.11 7.79 18.03 169.25 1.60 1.60 1.60 7.99

ARL variance

Normal Approx. 1.58 3.11 3.43 11.26 24.01 221.55 39388.00 No detection No detection No detection 345366.26

BPNN 1.81 5.35 17.23 15.59 72.99 499.85 210800.00 0.93 0.93 0.93 1762.37
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Table 34 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: 

p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.5  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -2s1, -2s2 -1s1, -1s2

samples/replication 500 500 1000 5000 1000 1000 10000 500 500 500 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Shifts Detected 

(Reps.)

MNP chart 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 10000 10000 10000 10000 10000 10000 10000 9719 9719 9719 9722

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (97.19%) (97.19%) (97.19%) (97.22%)

ARL

MNP chart 1.71 2.29 3.34 3.38 5.95 12.86 60.05 1.61 1.61 1.61 6.73

BPNN 1.65 2.15 3.13 3.12 5.42 11.23 60.96 1.57 1.57 1.57 6.56

ARL variance

MNP chart 1.24 3.17 8.30 8.76 30.69 183.41 3663.40 0.94 0.94 0.94 38.75

BPNN 1.10 2.72 7.74 7.72 28.88 149.29 19876.00 0.89 0.89 0.89 433.54
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 10000 10000 9998 9999 9988 9879 n/a 10000 10000 10000 10000

(%) (100%) (100%) (99.98%) (99.99%) (99.88%) (98.79%) (100%) (100%) (100%) (100%)

BPNN 10000 10000 9997 9998 9983 9884 n/a 9719 9719 9719 9717

(%) (100%) (100%) (99.97%) (99.98%) (99.83%) (98.84%) (97.19%) (97.19%) (97.19%) (97.17%)

 

Table 35 Performance of the BPNN and the Normal Approximation Techniques for Experimental 

Subset: p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 5000 1000 1000 10000 500 500 1000 500 1000 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Shifts Detected 

(Reps.)

Normal Approx. 10000 10000 10000 10000 10000 10000 10000 0 0 475 0 475 629

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (0%) (0%) (4.75%) (0%) (4.75%) (6.29%)

BPNN 10000 10000 10000 10000 10000 10000 9997 9639 9639 9639 9639 9639 9639

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.97%) (96.39%) (96.39%) (96.39%) (96.39%) (96.39%) (96.39%)

ARL

Normal Approx. 1.56 1.98 2.44 3.08 4.79 12.05 165.77 No detection No detection 490.51 No detection 490.51 1008.48

BPNN 1.67 2.30 3.73 3.68 7.18 18.16 168.78 1.68 1.68 4.11 1.68 4.11 9.47

ARL variance

Normal Approx. 0.95 2.14 3.99 7.01 20.41 166.86 40085.00 No detection No detection 87023.52 0.00 87023.52 326596.72

BPNN 1.22 3.53 11.77 11.40 57.08 451.90 128230.00 1.20 1.20 13.14 1.20 13.14 84.19

 

Table 36 Performance of the BPNN Technique and the MNP Chart for Experimental Subset: 

p1=0.01, p2=0.01, Sample Sizes=300, Correlation Coefficient=0.2  

Shift

+3s1, +3s2 +3s1, +2s2 +3s1, +1s2 +2s1, +2s2 +2s1, +1s2 +1s1, +1s2 NoShift_NoShift -3s1, -3s2 -3s1, -2s2 -3s1, -1s2 -2s1, -2s2 -2s1, -1s2 -1s1, -1s2

samples/replication 500 500 1000 5000 1000 1000 10000 500 500 1000 500 1000 2000

Replication 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
Shifts Detected 

(Reps.)

MNP chart 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

(%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 10000 10000 10000 10000 10000 10000 9999 9923 9923 9923 9923 9923 9923

(%) (100%) (100%) (100%) (100%) (100%) (100%) (99.99%) (99.23%) (99.23%) (99.23%) (99.23%) (99.23%) (99.23%)

ARL

MNP chart 1.46 1.87 2.79 2.79 4.92 11.40 103.67 1.72 1.72 4.25 1.72 4.25 9.96

BPNN 1.52 1.99 3.09 3.05 5.56 13.00 108.93 1.62 1.62 3.81 1.62 3.81 8.57

ARL variance

MNP chart 0.71 1.77 5.23 5.13 21.34 141.29 12108.00 1.26 1.26 13.59 1.26 13.59 88.62

BPNN 0.87 2.22 7.60 7.35 30.71 211.04 29860.00 1.07 1.07 12.31 1.07 12.31 74.91
Correct 

Classification of 

Shift Direction 

(Reps.)

MNP chart 10000 10000 10000 10000 9994 9982 n/a 10000 10000 10000 10000 10000 10000

(%) (100%) (100%) (100%) (100%) (99.94%) (99.82%) (100%) (100%) (100%) (100%) (100%) (100%)

BPNN 10000 9999 9999 10000 9993 9961 n/a 9923 9923 9923 9923 9923 9923

(%) (100%) (99.99%) (99.99%) (100%) (99.93%) (99.61%) (99.23%) (99.23%) (99.23%) (99.23%) (99.23%) (99.23%)
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7.3.3.1 Comparing BPNN to the Normal Approximation Techniques 

Table 31, Table 33, and Table 35 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2) that BPNN technique outperformed the normal approximation 

technique when the process is in-control. In general, the BPNN technique will indicate a 

false alarm much later than the normal approximation technique (e.g. 3 to 11 samples 

later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large or 

medium shifts (i.e. three or two standard deviations), BPNN and normal approximation 

techniques performed equally for shifts in the positive direction. However, when both 

proportion nonconforming shifted in the negative direction, the BPNN technique 

outperformed the normal approximation technique (the normal approximation technique 

could not detect any shift). When both proportion nonconforming had shifted one 

standard deviation (small shifts) and in the positive direction, the normal approximation 

outperformed the BPNN technique for all levels of correlation coefficient. When both 

proportion nonconforming had shifted one standard deviation and in the negative 

direction, the BPNN technique outperformed the normal approximation technique.  

When the shifts had different magnitudes and they were in the positive direction, 

performance of the two techniques depended on the magnitude of shifts. Specifically, for 

a process with the proportion nonconforming of the first attribute shifted three or two 

standard deviations and the proportion nonconforming of the second attribute shifted one 

standard deviation, the normal approximation technique outperformed the BPNN 
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technique for all levels of correlation. However, when the proportion nonconforming of 

the first attribute shifted three standard deviations and the proportion nonconforming of 

the second attribute shifted two standard deviations, the BPNN and the normal 

approximation technique performed equally. When both proportion nonconforming 

shifted with different magnitudes and in the negative direction, the BPNN technique 

outperformed the normal approximation technique for all levels of correlation. 

7.3.3.2 Comparing BPNN to the MNP Chart 

Table 32, Table 34, and Table 36 show for all the three correlation coefficients 

(0.8, 0.5, and 0.2) that the BPNN technique outperformed the MNP chart when the 

process is in-control. In general, the BPNN technique will indicate a false alarm much 

later than the MNP chart (e.g. 4 to 5 samples later).  

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the extent and direction of the shifts.  Specifically, for large shifts, 

the BPNN technique and the MNP chart performed equally for shifts in the positive 

direction. When both proportion nonconforming shifted in the negative direction, both 

techniques had the same ARL for all levels of correlation coefficients. However, the 

BPNN technique could not indicate the shifts for all of the replications while the MNP 

chart could. If one assumed that the BPNN technique detected the shifts for those 

replications, one would conclude that the MNP chart outperformed the BPNN technique.  

For processes with medium shifts and both proportion nonconforming shifted in the 

positive direction, the BPNN technique detected shifts faster than the MNP chart (the 
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BPNN had smaller ARL than the MNP chart) for strongly correlated processes. However, 

the MNP chart identified the direction of shifts more correctly than the BPNN technique. 

This difference was considered insignificant. For processes with medium shifts and both 

proportion nonconforming shifted in the positive direction, the BPNN had the same ARL 

as the MNP chart for moderately and weakly correlated processes. However, the MNP 

chart identified the direction of shifts more correctly than the BPNN technique for 

moderately correlated processes. Again, this difference was considered insignificant. 

When both proportion nonconforming shifted in the negative direction, both techniques 

had the same ARL for all levels of correlation coefficients. However, the BPNN 

technique could not indicate the shifts for all of the replications while the MNP chart 

could.  If one assumed that the BPNN technique detected the shifts for those replications, 

one would conclude that the MNP chart outperformed the BPNN technique.  When both 

proportion nonconforming had shifted one standard deviation (small shifts) and in the 

positive direction, the BPNN technique outperformed the MNP chart for all strongly and 

moderately correlated processes. In contrary, the MNP chart outperformed the BPNN for 

weakly correlated processes. When both proportion nonconforming had shifted in the 

negative direction, the MNP chart outperformed the BPNN for strongly correlated 

processes. For moderately and weakly correlated processes, the BPNN technique had 

ARL equal to and smaller than the MNP chart respectively. However, the BPNN 

technique could not indicate the shifts for all of the replications while the MNP chart 

could. If one assumed that the BPNN technique detected the shifts for those replications, 

one would conclude that the MNP chart outperformed the BPNN technique.   
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When the shifts had different magnitudes and were shifted in the positive 

direction, the performance depended on the level of correlation coefficient and the 

magnitude of the shifts. For strongly correlated processes, the BPNN technique 

outperformed the MNP chart when the proportion nonconforming of the first attribute 

shifted two standard deviations and the proportion nonconforming of the second attribute 

shifted one standard deviation.  Both techniques performed equally for other magnitudes 

of shifts. For moderately correlated processes, both techniques had the same ARL for all 

magnitudes of shifts. However, the MNP chart identified the direction of shifts more 

correctly than the BPNN technique when the proportion nonconforming of the first 

attribute shifted three or two standard deviations and the proportion nonconforming of the 

second attribute shifted one standard deviation. These differences were considered 

insignificant. For weakly correlated processes, both techniques had equal ARL but the 

MNP chart could identify the direction of shifts more correctly than the BPNN technique. 

Again, these differences were considered insignificant.  

When both proportion nonconforming shifted with different magnitudes and in 

the negative direction, the MNP chart outperformed the BPNN technique. Both 

techniques had equal ARL but the BPNN technique could not indicate the shifts for all of 

the replications while the MNP chart could. If one assumed that the BPNN technique 

detected the shifts for those replications, one would conclude that the MNP chart 

outperformed the BPNN technique.  
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7.3.3.3 Comparing the MNP Chart to the Normal Approximation Technique 

Table 31 through Table 36 show for all the three correlation coefficients (0.8, 0.5, 

and 0.2) that the normal approximation technique outperformed the MNP chart when the 

process is in-control. In general, the normal approximation technique will indicate a false 

alarm much later than the MNP chart (e.g. 62 to 105 samples later). 

When the process is out of control and when both proportion nonconforming have 

shifted in the same direction with the same magnitude, performance of the two techniques 

depended largely on the direction of the shifts.  Specifically, for large, medium, and small 

shifts, the MNP chart and the normal approximation technique performed equally when 

both proportion nonconforming shifted in the positive direction. However, when both 

proportion nonconforming shifted in the negative direction, the MNP chart outperformed 

the normal approximation technique.  

When the shifts had different magnitudes and were in the positive direction, the 

level of correlation affected the results. For strongly correlated processes, the normal 

approximation technique outperformed the MNP chart when the proportion 

nonconforming of the first attribute shifted two standard deviations and the proportion 

nonconforming of the second attribute shifted one standard deviation. Both techniques 

performed equally for other magnitudes of shift. For moderately correlated processes, the 

normal approximation technique outperformed the MNP chart when the proportion 

nonconforming of the first attribute shifted three standard deviations and the proportion 

nonconforming of the second attribute shifted one standard deviation. Both techniques 

performed equally for other magnitudes of shift. For weakly correlated processes, the 

normal approximation technique and the MNP chart performed equally when both 
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proportion nonconforming shifted with any magnitude. When both proportion 

nonconforming shifted with different magnitudes and in the negative direction, the MNP 

chart detected shifts faster than the normal approximation technique for all levels of 

correlation. 
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8.0 RECCOMENDATION FOR IMPLEMENTATION 

This chapter provides summary of the results and how they may be implemented 

for practical use. Section 8.1 discusses guidelines for selecting a suitable technique for a 

particular process condition. General performances for the three multi-attribute process 

control techniques are summarized in section 8.2. Finally, the interpretation of out-of-

control signals is discussed in section 8.3. 

The results for large sample sizes (sample size #1: estimating multivariate 

normally distributed variables from a multivariate binomial distribution) discussed in 

section 7.1 are summarized in Table 37 through Table 39.  

Table 37 Comparisons of the BPNN and Normal Approximation Techniques for Large Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 1

p1=0.3,p2=0.3,n=50 p1=0.1,p2=0.1,n=100 p1=0.01,p2=0.01,n=910

In-control B>N B>N B>N

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=N B=N B=N

large shift in the negative direction B>N(S.C.), B=N (M.C.&W.C.) B>N (S.C.&M.C.), B=N (W.C.) B>N

medium shift in the positive direction B>N B=N B=N

medium shift in the negative direction B>N B>N B>N

small shift in the positive direction B>N B>N B>N

small shift in the negative direction B>N B>N B>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s B=N B=N B=N B=N B=N B=N B=N B=N B=N

3s,1s n/a N>B B=N n/a N>B B=N N>B N>B B=N

2s,1s N>B B=N B>N N>B B=N B=N N>B B=N B=N

-3s,-2s n/a B>N B=N n/a n/a B>N n/a n/a n/a

-3s,-1s n/a N>B B=N n/a n/a B>N n/a n/a n/a

-2s,-1s N>B B>N B>N n/a B>N B>N n/a B>N B>N
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Table 38 Comparisons of the BPNN Technique and the MNP chart for Large Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 1

p1=0.3,p2=0.3,n=50 p1=0.1,p2=0.1,n=100 p1=0.01,p2=0.01,n=910

In-control B>M B>M B>M

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=M B=M B=M

large shift in the negative direction B=M B=M (S.C.
#
&M.C.

#
 &W.C.) M>B(S.C.)

@
, M=or>B(M.C.)

+
, B=M (W.C.)

medium shift in the positive direction B=M B=M B=M

medium shift in the negative direction B=M B>M(S.C.)*,M>B(M.C.),B=M(W.C.) B>M (S.C.)*,M=or>B (M.C.)
+
, M>B(W.C.)

small shift in the positive direction M>B(S.C&M.C.&W.C*) M>B(S.C.&M.C.), B=M(W.C.) B=M (S.C.
#
&M.C.&W.C.)

small shift in the negative direction B>M(S.C.),M>B(M.C.&W.C.)* B>M(S.C.)*,M>B(M.C.&W.C.) B>M(S.C.&M.C.*),M>B(W.C.)

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s B=M B=M B=M B=M B=M B=M B=M B=M B=M

3s,1s n/a B=M B=M n/a B=M B=M B=M B=M B=M

2s,1s B=M B=M B=M B=M B=M B=M B=M B=M B=M

-3s,-2s n/a B=M B=M n/a n/a B=M n/a n/a n/a

-3s,-1s n/a B=M B=M n/a n/a M>B n/a n/a n/a

-2s,-1s B=M
#

B=M
#

M>B n/a M>B M>B n/a M>B M>B

 

Table 39 Comparisons of the MNP Chart and the Normal Approximation Technique for Large 

Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 1

p1=0.3,p2=0.3,n=50 p1=0.1,p2=0.1,n=100 p1=0.01,p2=0.01,n=910

In-control M>N(S.C.),N>M(M.C.&W.C.) M>N M>N

Out-of-control with the same magnitude of shifts

large shift in the positive direction M=N M=N M=N

large shift in the negative direction M>N(S.C.), M=N (M.C.&W.C.) M>N (S.C.&M.C.), M=N (W.C.) M>N

medium shift in the positive direction M>N M=N M=N

medium shift in the negative direction M>N M>N M>N 

small shift in the positive direction M>N M>N M>N

small shift in the negative direction M>N M>N M>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s M=N M=N M=N M=N M=N M=N M=N M=N M=N

3s,1s n/a N>M M=N n/a N>M M=N N>M N>M M=N

2s,1s N>M M=N M>N N>M M=N M=N N>M M=N M=N

-3s,-2s n/a M>N M=N n/a n/a M>N n/a n/a n/a

-3s,-1s n/a N>M M=N n/a n/a M>N n/a n/a n/a

-2s,-1s N>M M>N M>N n/a M>N M>N n/a M>N M>N

 

Remark: S.C., M.C., and W.C. are strong, moderate, and weak correlation coefficients. 

 

The symbol (>) shown in the tables indicates which technique “outperforms” the 

other technique (e.g. B>N represents the BPNN technique is better than the normal 

approximation technique). Some of the techniques outperform the other two for certain 

specified process conditions while they are inferior in other process conditions. To select 

a suitable technique, users must weigh the in-control against the out-of-control average 

run length. If stopping a process to investigate the out-of-control signal is critical, a 

technique with a large in-control ARL is recommended. For instance, the BPNN 

technique is preferred for a strongly correlated process with large proportion 
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nonconforming when both proportion nonconforming only shift with the same magnitude 

and in the same direction (either positive or negative). In this condition, the BPNN 

technique detects a false alarm 61 and 20 samples later than the normal approximation 

technique and the MNP chart respectively, as shown in Table 6.  In addition, the BPNN 

technique has an out-of-control ARL either smaller than or equal to the normal 

approximation technique. The out-of-control ARL for the BPNN and the MNP chart are 

equal when both proportion nonconforming shift from medium to large magnitude. The 

MNP chart detects shifts faster than the BPNN by only one ARL sample when both 

proportion nonconforming shift with a small magnitude and in the positive direction. The 

BPNN detects shifts faster than the MNP chart four ARL samples when both proportion 

nonconforming shift with a small magnitude and in the negative direction.  

In contrary, if a process needs to be adjusted quickly from an out-of-control status 

to an in-control status, one might select a technique with a small out-of-control ARL for 

quick detection. For example, the MNP chart is preferred for a process with two weakly 

correlated attributes each having proportion nonconforming of 0.01. Both of the process’s 

proportion nonconforming often shift with the same magnitude in the same direction, 

either positive or negative, and the sample sizes are large. The BPNN technique indicates 

a false alarm 22 and 53 samples later than the MNP chart and the normal approximation 

technique respectively as shown in Table 14. The MNP chart designates a false alarm 31 

samples later than the normal approximation technique. All techniques performed equally 

when both proportion nonconforming shift from medium to large magnitudes and in the 

positive direction. The MNP chart and the BPNN technique outperform the normal 

approximation when both proportion nonconforming shift in the negative direction. The 
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MNP chart outperforms the BPNN when both proportion nonconforming shift with 

medium and small magnitudes in the negative directions. 

In comparing the BPNN technique and the MNP chart, the two techniques did not 

always detect the shifts for all of the replications. As a result, it is unclear how to evaluate 

the performances of both techniques since the ARL results contradict the number of 

replications detected by each technique. For example, the BPNN technique had a smaller 

ARL than the MNP chart; however, the MNP chart detected the shifts for all of the 

replications while the BPNN technique failed to detect the shift for one replication. 

Furthermore, the ARL results contradict the number of correct classifications, i.e. the 

BPNN technique had a smaller out-of-control ARL than the MNP chart but the MNP 

chart correctly classified the direction of shifts more than the BPNN.  The difference of 

the number of replications detected and the correct classification may or may not be 

significant to the ARL results.   

Though not the majority, such contradictory results require decision rules to guide 

the user in determining which technique (BPNN or MNP) is best to apply. Table 40 

provides the decision (i.e. yes or no) of whether or not there is a significant difference 

between the number of replications detected and the correct classification in comparison 

to the ARL results.  The different situations are denoted by the superscripts, which are 

also shown in Table 38, Table 43, and Table 46. 
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Table 40 Meaning of Superscripts Used in the Comparisons between the BPNN technique and the 

MNP Chart. 

Superscript

Comparison 

Results

Out-of-Control ARL X 

compare to Out-of-

Control ARL Y

Number of Replications 

Detected

Correct Classification 

of Shift Direction

Significance of the 

Difference of the Number of 

Replications Detected and 

the Correct Classification of 

Shift Direction

* X>Y ARLX smaller than ARLY Rep.X equal Rep.Y Y more correct than X no

* X>Y ARLX smaller than ARLY Rep.X more than Rep.Y Y more correct than X no

* X>Y ARLX smaller than ARLY Rep.X less than Rep.Y Y more correct than X no

# X=Y ARLX equal ARLY Rep.X equal Rep.Y X more correct than Y no

# X=Y ARLX equal ARLY Rep.X less than Rep.Y Y more correct than X no

# X=Y ARLX equal ARLY Rep.X equal Rep.Y Y more correct than X no

@ X>Y ARLX equal ARLY Rep.X more than Rep.Y X more correct than Y yes

@ X>Y ARLX larger than ARLY Rep.X more than Rep.Y X more correct than Y yes

+ X= or >Y ARLX larger than ARLY Rep.X more than Rep.Y X more correct than Y yes

+ X= or >Y ARLX equal ARLY Rep.X more than Rep.Y X more correct than Y yes

 

X and Y in Table 40 can be either BPNN technique or MNP chart. Rep.X and Rep.Y 

represent the number of replications that X and Y techniques detect shifts respectively. 

None of the three techniques had equal in-control ARL for a number of reasons.
*
  

Although attempts were made to initialize the three techniques to have the same ARL, the 

initial process conditions (i.e. sample size, proportion nonconforming, level of 

correlation, etc.) often made this impossible.  However, if one assumes equal in-control 

ARL, comparisons of the three techniques are shown in Table 41, which is a summary of 

Table 37 through Table 39.  

 

 

 

 

 

 
* In some cases differences in the in-control ARL differed as much as 90 samples or as small as eight 

samples depending on the techniques compared and the process conditions. 

 132



Table 41 The BPNN, MNP Chart and the Normal Approximation Technique for Large Sample Sizes. 

(Best performing techniques in each situation are shown by their first letters) 

Status of Process's Proportion Nonconforming Sample Size # 1

p1=0.3,p2=0.3,n=50 p1=0.1,p2=0.1,n=100 p1=0.01,p2=0.01,n=910

In-control B,M,

 

N N N

N N N

N( N(W

N N

N N N N N N N N N

N N N N N N N

N N N N N N N N

N

N N

N

B,M, B,M,

Out-of-control with the same magnitude of shifts

large shift in the positive direction B,M, B,M, B,M,

large shift in the negative direction B,M(S.C.), B,M, M.C.&W.C.) B,M(S.C.&M.C.), B,M, .C.) M(S.C&M.C..),B,M,(W.C.)

medium shift in the positive direction B,M B,M, B,M,

medium shift in the negative direction B,M B(S.C.),M(M.C.),B,M(W.C.) B(S.C.), M(M.C.&W.C.)

small shift in the positive direction M M(S.C.&M.C.),B,M(W.C.) B,M

small shift in the negative direction B(S.C.),M(M.C.&W.C.) B(S.C.),M(M.C.&W.C.) B(S.C.&M.C.),M(W.C.)

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s B,M, B,M, B,M, B,M, B,M, B,M, B,M, B,M, B,M,

3s,1s n/a B,M, n/a B,M, B,M,

2s,1s B,M, B,M B,M, B,M, B,M, B,M,

-3s,-2s n/a B,M B,M, n/a n/a B,M n/a n/a n/a

-3s,-1s n/a B,M, n/a n/a M n/a n/a n/a

-2s,-1s B,M M n/a M M n/a M M

Table 41 presents the comparisons among the normal approximation technique, 

the MNP chart, and the BPNN technique for varied process conditions and when the 

sample sizes are large. One can use the table as a guideline to select the technique that 

most suitable to a particular process condition. For instance, the BPNN technique and the 

MNP chart are preferred for a process with two strongly correlated attributes, each having 

a large proportion nonconforming. The sample size is large and the proportion 

nonconforming are expected to shift from medium to large magnitude in either positive 

or negative direction.  

The results also show that for any value of proportion nonconforming and level of 

correlation, all techniques performed equally when both of the process’s proportion 

nonconforming shift with large magnitudes and in the positive direction. 

The table further indicates that the MNP chart is preferred for a weakly correlated 

process for which both proportion nonconforming shift with the same magnitude. This 

applies to any level of proportion nonconforming. 

It can be noticed that the normal approximation technique is preferred when both 

proportion nonconforming shift only in the positive direction and with different 

magnitudes. This is correct for strongly and moderately correlated processes for any level 
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of in-control proportion nonconforming. For example, the normal approximation 

outperformed the other methods for moderately correlated processes when the proportion 

nonconforming of the first attribute shifts three standard deviations and the proportion 

nonconforming of the second attribute shifts one standard deviation. All three methods 

performed equally for the other magnitudes of shift. As a result, the normal 

approximation technique is recommended. 

The results discussed in section 7.2 for sample sizes recommended for the MNP 

chart (sample size #2) are summarized in Table 42 through Table 44. 

Table 42 Comparisons of the BPNN and Normal Approximation Techniques for the MNP Chart 

Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 2

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=810,670,540

In-control B>N B>N B>N

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=N B=N B=N

large shift in the negative direction B>N B>N B>N

medium shift in the positive direction B>N(S.C.), B=N (M.C), N>B(W.C.) B=N B=N

medium shift in the negative direction B>N B>N B>N

small shift in the positive direction B>N(S.C.), N>B (M.C.&W.C.) B=N(S.C.), N>B (M.C.&W.C.) B=N(S.C.), N>B (M.C.&W.C.)

small shift in the negative direction B>N B>N B>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a B=N B=N B=N B=N B=N B=N B=N B=N

3s,1s n/a N>B N>B n/a N>B N>B N>B N>B N>B

2s,1s n/a N>B N>B N>B N>B N>B N>B N>B N>B

-3s,-2s B>N B>N B>N B>N B>N B>N n/a B>N B>N

-3s,-1s n/a n/a B>N n/a n/a n/a n/a n/a B>N

-2s,-1s n/a n/a B>N n/a n/a n/a n/a B>N B>N

 

 

Table 43 Comparisons of the BPNN Technique and the MNP chart for the MNP Chart Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 2

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=810,670,540

In-control B>M B>M B>M

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=M B=M B=M

large shift in the negative direction M>B
@

M>B
@

M=or>B(S.C.&M.C.)
+
, B>M (W.C.)

medium shift in the positive direction B>M(S.C.), B=M (M.C&W.C.) B=M (S.C.
#
&M.C&W.C.) B=M

medium shift in the negative direction M>B
@

M>B
@

B>M(S.C.*&M.C.*&W.C.)

small shift in the positive direction B>M (S.C.),B=M (M.C.)
#
,M>B (W.C.) B>M (S.C.&M.C.*),B=M (W.C.)

#
M>B

small shift in the negative direction M>B
@

M>B (S.C.&M.C.
@

&W.C.
@

) B>M

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a B=M B=M B=M B=M B=M B=M B=M B=M

3s,1s n/a B=M B=M n/a B=M B=M B=M B=M B=M

2s,1s n/a B=M M>B B>M B=M
#

B=M M>B B=M M>B

-3s,-2s M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

n/a B>M* B>M

-3s,-1s n/a n/a M>B
@

n/a n/a n/a n/a n/a B>M

-2s,-1s n/a n/a M>B
@

n/a n/a n/a n/a B>M* B>M
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Table 44 Comparisons of the MNP chart and the Normal Approximation Technique for the MNP 

Chart Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 2

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=810,670,540

In-control N>M N>M M>N

Out-of-control with the same magnitude of shifts

large shift in the positive direction M=N M=N M=N

large shift in the negative direction M>N M>N M>N

medium shift in the positive direction M>N M=N M=N

medium shift in the negative direction M>N M>N M>N

small shift in the positive direction M>N M>N M>N

small shift in the negative direction M>N M>N M>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a M=N M=N M=N M=N M=N M=N M=N M=N

3s,1s n/a N>M M=N n/a N>M M=N N>M N>M M=N

2s,1s n/a M=N M>N N>M M=N M=N N>M M=N M=N

-3s,-2s M>N M>N M>N M>N M>N M>N n/a M>N M>N

-3s,-1s n/a n/a M>N n/a n/a n/a n/a n/a M>N

-2s,-1s n/a n/a M>N n/a n/a n/a n/a M>N M>N

 

The in-control ARL for the normal approximation technique and the MNP chart 

were substantially different, as mentioned in section 7.2. In order to compare the BPNN 

technique to the normal approximation technique and the MNP chart, two different cut-

off values were used to obtain comparable in-control ARL. As a result, the BPNN in 

Table 42 and Table 43 have different in-control ARL and the three tables cannot be 

combined into a summary table. 

For the sample sizes recommended for the MNP chart, Table 42 shows that the 

BPNN technique outperformed the normal approximation technique when shifts were in 

the negative direction for any level of proportion nonconforming and level of correlation 

coefficient. The normal approximation technique cannot detect shifts that are close to “0” 

and in the negative direction.  

The normal approximation technique performed better than the BPNN technique 

when both proportion nonconforming shifted in the positive direction and with different 

magnitudes, i.e. the proportion nonconforming of the first attribute shifted with either 

three or two standard deviations and the proportion nonconforming of the second 
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attribute shifted with one standard deviation. This applies to processes with all levels of 

proportion nonconforming and correlation coefficient. 

Table 44 shows that the normal approximation technique indicates a false alarm 

later than the MNP chart when proportion nonconforming is either large or medium (0.3 

or 0.1) for the sample sizes suggested by the MNP chart (sample size #2).  This result is 

due to the fact that the in-control ARL for the MNP chart drops significantly when the 

sample sizes suggested for the MNP chart (sample size #2) are used instead of the large 

sample sizes (sample size #1). For instance, a process with two strongly correlated 

attributes each having proportion nonconforming of 0.3 will indicate a false alarm every 

411 samples when the large sample size is used as shown in Table 6. Whereas the process 

will designate a false alarm every 58 samples when smaller sample sizes (as 

recommended by the MNP chart) are used as shown in Table 17. However, the MNP 

chart will indicate a false alarm later than the normal approximation technique for 

processes with small proportion nonconforming (0.01).  

The MNP chart outperforms the normal approximation technique for all levels of 

proportion nonconforming and correlation coefficient when both proportion 

nonconforming shift with any magnitude in the negative direction. Also, the MNP chart 

performs better than the normal approximation technique for all levels of proportion 

nonconforming and level of correlation coefficient when both proportion nonconforming 

shift with the same magnitude in either the positive or the negative direction.  

For a strongly correlated process with any level of proportion nonconforming, the 

normal approximation technique outperforms the MNP chart when the proportion 

nonconforming of the first attribute shifts with either three or two standard deviations and 
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the proportion nonconforming of the second attribute shifts one standard deviation and 

both proportion nonconforming shift in the positive direction. For a moderately correlated 

process with any level of proportion nonconforming, the normal approximation technique 

outperforms the MNP chart when the proportion nonconforming of the first attribute 

shifts three standard deviations and the proportion nonconforming of the second attribute 

shifts one standard deviation and both proportion nonconforming shift in the positive 

direction.  

When selecting between the MNP chart and the normal approximation technique 

one must weigh the criticality between stopping the process to investigate the out-of-

control signal and adjusting the out-of-control process to get it back into in-control status 

as fast as possible.  For example, if one is concerned about identifying the out-of-control 

signal as fast as possible, the MNP chart is preferred for a process with two strongly 

correlated attributes each having a large proportion nonconforming.   

For this process condition, the in-control ARL for the MNP chart is 

approximately one-fourth the size (58 for the MNP chart as shown in Table 17 and 249 

for the normal approximation technique as shown Table 16) of the normal approximation 

technique. Therefore, if a process requires substantial resources to stop and investigate 

potential out-of-control causes, the normal approximation is preferred. However, the 

normal approximation technique cannot detect shifts that are close to “0” and in the 

negative direction. For this particular situation, the BPNN technique is preferred to the 

normal approximation technique since the BPNN indicates a false alarm 38 samples later 

than the normal approximation technique (287 for the BPNN and 249 for the normal 

approximation technique as shown in Table 16). Furthermore, the BPNN technique 
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detects shifts faster than the normal approximation technique when processes are out-of-

control (proportion nonconforming shift with any magnitude and direction). 

The results discussed in section 7.3 for sample sizes that satisfy the condition of 

finding at least one nonconforming item in a sample (sample size #3) are summarized in 

Table 45 through Table 47. Note, the first two columns of each table are the same as for 

Table 42 through Table 44 because the sample sizes were the same. 

Table 45 Comparisons of the BPNN and Normal Approximation Techniques for the Small Sample 

Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 3

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=300

In-control B>N B>N B>N

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=N B=N B=N

large shift in the negative direction B>N B>N B>N

medium shift in the positive direction B>N(S.C.), B=N (M.C), N>B(W.C.) B=N B=N

medium shift in the negative direction B>N B>N B>N

small shift in the positive direction B>N(S.C.), N>B (M.C.&W.C.) B=N(S.C.), N>B (M.C.&W.C.) N>B

small shift in the negative direction B>N B>N B>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a B=N B=N B=N B=N B=N B=N B=N B=N

3s,1s n/a N>B N>B n/a N>B N>B n/a N>B N>B

2s,1s n/a N>B N>B N>B N>B N>B N>B N>B N>B

-3s,-2s B>N B>N B>N B>N B>N B>N B>N B>N B>N

-3s,-1s n/a n/a B>N n/a n/a n/a n/a n/a B>N

-2s,-1s n/a n/a B>N n/a n/a n/a n/a n/a B>N

 

Table 46 Comparisons of the BPNN Technique and the MNP chart for the Small Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 3

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=300

In-control B>M B>M B>M

Out-of-control with the same magnitude of shifts

large shift in the positive direction B=M B=M B=M

large shift in the negative direction M>B
@

M>B
@

M>B
@

medium shift in the positive direction B>M(S.C.), B=M (M.C&W.C.) B=M (S.C.
#
&M.C&W.C.) B>M(S.C.)*, B=M (M.C.

#
&W.C.)

medium shift in the negative direction M>B
@

M>B
@

M>B
@

small shift in the positive direction B>M (S.C.),B=M (M.C.)
#
,M>B (W.C.) B>M (S.C.&M.C.*),B=M (W.C.)

#
B>M (S.C.&M.C.),M>B (W.C.)

small shift in the negative direction M>B
@

M>B (S.C.&M.C.
@

&W.C.
@

) M>B (S.C.&M.C.
@

&W.C.
@

)

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a B=M B=M B=M B=M B=M B=M
#

B=M B=M
#

3s,1s n/a B=M B=M n/a B=M B=M n/a B=M
#

B=M
#

2s,1s n/a B=M M>B B>M B=M
#

B=M B>M B=M
#

B=M
#

-3s,-2s M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

M>B
@

-3s,-1s n/a n/a M>B
@

n/a n/a n/a n/a n/a M>B
@

-2s,-1s n/a n/a M>B
@

n/a n/a n/a n/a n/a M>B
@
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Table 47 Comparisons of the MNP chart and the Normal Approximation Technique for the Small 

Sample Sizes. 

Status of Process's Proportion Nonconforming Sample Size # 3

p1=0.3,p2=0.3,n=10 p1=0.1,p2=0.1,n=30 p1=0.01,p2=0.01,n=300

In-control N>M N>M N>M

Out-of-control with the same magnitude of shifts

large shift in the positive direction M=N M=N M=N

large shift in the negative direction M>N M>N M>N

medium shift in the positive direction M>N M=N M=N

medium shift in the negative direction M>N M>N M>N

small shift in the positive direction M>N M>N M=N

small shift in the negative direction M>N M>N M>N

Out-of-control with different magnitude of shifts Strong Mod. Weak Strong Mod. Weak Strong Mod. Weak

3s,2s n/a M=N M=N M=N M=N M=N M=N M=N M=N

3s,1s n/a N>M M=N n/a N>M M=N n/a N>M M=N

2s,1s n/a M=N M>N N>M M=N M=N N>M M=N M=N

-3s,-2s M>N M>N M>N M>N M>N M>N M>N M>N M>N

-3s,-1s n/a n/a M>N n/a n/a n/a n/a n/a M>N

-2s,-1s n/a n/a M>N n/a n/a n/a n/a n/a M>N

 

As mentioned in section 7.3 the in-control ARL for the normal approximation 

technique and the MNP chart were substantially different. To compare the BPNN 

technique to the normal approximation technique and the MNP chart, two different cut-

off values were used for the BPNN technique in order to have comparable in-control 

ARL for each technique. As a result, the three tables cannot be combined into a summary 

table. 

For small sample sizes, Table 45 shows that the BPNN outperformed the normal 

approximation technique when shifts were in the negative direction for any level of 

proportion nonconforming and level of correlation coefficient. The normal approximation 

technique cannot detect shifts that are close to “0” and in the negative direction.  

The normal approximation technique performed better than the BPNN technique 

when both of the process’s proportion nonconforming shifted in the positive direction and 

with different magnitudes, i.e. the proportion nonconforming of the first attribute shifted 

with either three or two standard deviations and the proportion nonconforming of the 

second attribute shifted with one standard deviation.  This result applies to all levels of 

proportion nonconforming and correlation coefficient. 
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Table 46 indicates that the BPNN technique designates a false alarm later than the 

MNP chart. However, the MNP chart detects shifts faster than the BPNN technique for 

all levels of proportion nonconforming and correlation coefficient when both proportion 

nonconforming shift in negative direction.  

Table 47 shows that the normal approximation technique indicates a false alarm 

later than the MNP chart when the proportion nonconforming varied from large to small 

for small sample sizes (sample size #3). This is due to the fact that the in-control ARL for 

the MNP drops significantly when small sample sizes (sample size #3) are used instead of 

sample sizes prescribed by the normal approximation (sample size #1).  

The MNP chart outperforms the normal approximation technique for all levels of 

proportion nonconforming and correlation when both proportion nonconforming shift 

with any magnitude in the negative direction. Also, the MNP chart performs better than 

the normal approximation technique for all levels of proportion nonconforming and 

correlation coefficient when both proportion nonconforming shift with the same 

magnitude in either the positive or the negative direction.  

For a strongly correlated process at any levels of proportion nonconforming, the 

normal approximation technique outperforms the MNP chart when the proportion 

nonconforming for the first attribute shifts two standard deviations and the proportion 

nonconforming for the second attribute shifts one standard deviation and both shifts are 

in the positive direction. For a moderately correlated process at any levels of proportion 

nonconforming, the normal approximation technique outperforms the MNP chart when 

the proportion nonconforming for the first attribute shifts three standard deviations and 
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the proportion nonconforming for the second attribute shifts one standard deviation and 

both shifts are in the positive direction.  

8.1 Guidelines for Selecting a Suitable Technique 

The following key questions can serve as a guide to determine the most suitable 

technique for a particular process and its conditions. 

1) What is the known proportion nonconforming for each attribute? 

2) What is the known correlation coefficient of the process? 

3) What is the most feasible sample size for the process (i.e. this may include cost 

considerations for collecting the samples)?   

4) Is the user more concerned about Type I or II errors? 

5) What is the preferable in-control ARL (i.e. how large should be the number of 

samples before detecting an in-control ARL)? 

6) What are the magnitude and direction of shifts normally happen in the process? 

Once these questions have been addressed, one should then make the following 

considerations in selecting a technique. 

1) Compare in-control ARL for all techniques and see how are they different. 

2) Compare out-of-control ARL for all techniques and see how are they different. 

3) Weigh the differences between the in-control against the out-of-control ARLs to 

determine which technique yields the lowest risks associated with both ARLs. 

Three scenarios are now presented how one might select a technique for their 

particular processes. 
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Scenario 1 

A process engineer is looking for a technique to monitor a process with two 

weakly correlated attributes each having a proportion nonconforming of 0.3. Collecting 

large samples for this process are not a major concern as the costs associated with 

measuring for defects is minimal. Therefore, a sample size of 50 is preferred to a sample 

size of 10.  The engineer is more concern about committing a Type II error than a Type I 

error since the product cost is high and it consumes several resources to correct 

nonconforming products. The engineer also has knowledge that the proportion 

nonconforming of both attributes naturally shift in the same direction (either in the 

positive or the negative direction) but often with different magnitudes. 

Large sample sizes are selected; therefore, one should look at Table 37 through 

Table 39. They show that the BPNN has a larger in-control ARL than the normal 

approximation technique and the MNP chart. The normal approximation technique has a 

larger ARL than the MNP chart. The in-control ARL for the normal approximation 

technique, MNP chart, and the BPNN are 416, 386, and 451 respectively (as shown in 

Table 8). The BPNN technique and the MNP chart perform equally to the normal 

approximation technique when the proportion nonconforming of the first attribute shifts 

with three standard deviations and the proportion nonconforming of the second attribute 

shifts with either two or one standard deviation and both proportion nonconforming shift 

in the same direction (either in the positive to the negative direction).   

In Table 8 section 7.1 both the BPNN technique and the MNP chart detect shifts 

faster than the normal approximation technique one ARL sample when the proportion 

nonconforming of the first attribute shifts with two standard deviations and the proportion 
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nonconforming of the second attribute shifts with one standard deviation and both 

proportion nonconforming shift in the positive direction.  When the proportion 

nonconforming of the first attribute shifts with two standard deviations and the proportion 

nonconforming of the second attribute shifts with one standard deviation and both 

proportion nonconforming shift in the negative direction, the BPNN technique and the 

MNP chart indicate the shifts faster than the normal approximation technique 10 and 12 

ARL samples, respectively. The BPNN technique and the MNP chart perform equally in 

all magnitudes of shift except for the case where the proportion nonconforming of the 

first attribute shifts two standard deviations and the proportion nonconforming of the 

second attribute shift one standard deviation and both proportion nonconforming shift in 

the negative direction. In this situation, the MNP chart detects shifts faster than the 

BPNN technique 2 ARL samples.  

In this scenario the engineer is more concern about the out-of-control ARL; 

therefore, the normal approximation technique is disregarded. The engineer must weigh 

the differences between the in-control ARL and the out-of-control ARL for the BPNN 

technique and the MNP chart. The BPNN technique indicates a false alarm 65 ARL 

samples later than the MNP chart.  However, the MNP chart detects an out-of-control 

signal 2 ARL samples faster than the BPNN technique when the proportion 

nonconforming of the first attribute shifts two standard deviations and the proportion 

nonconforming of the second attribute shifts one standard deviation and both proportion 

nonconforming shift in the negative direction.  The engineer must consider how likely 

this condition will occur.  If the engineer is not concerned, then he/she should select the 

BPNN technique; otherwise the MNP chart.  
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Scenario 2 

A process has two strongly correlated attributes (0.80) and each attribute has 

proportion nonconforming of 0.01.  Engineers are more concerned about committing a 

Type I error than a Type II error because substantial resources are required to stop and 

investigate the process.  Furthermore, the cost associated with measuring product quality 

is high; therefore, small sample sizes are preferred.  The process’s proportion 

nonconforming are expected to shift with approximately the same magnitude in the same 

direction (either positive or negative). 

Table 45 through Table 47 show for sample sizes of 300 that the BPNN technique 

has larger in-control ARL than the normal approximation technique and MNP chart for 

processes that have proportion nonconforming of 0.01. In general, the normal 

approximation technique has a larger in-control ARL than the MNP chart. When 

comparing the BPNN to the normal approximation technique as shown in Table 31, the 

in-control ARL for the BPNN and the normal approximation techniques are 147 and 136 

respectively. The in-control ARL for the BPNN and the MNP chart are 35 and 31 

respectively as shown in Table 32. 

Since Type I error is more critical than Type II error, either BPNN or the normal 

approximation technique should be considered. From Table 45 the BPNN technique 

detects shifts equal to or faster than the normal approximation technique for all 

conditions of shifts except for one condition.  Moreover, Table 31 describes that the 

normal approximation technique cannot detect shifts in the negative direction.  Therefore, 

the BPNN technique is the most suitable to this process condition.  
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Scenario 3 

A process has two attributes. Both attributes have proportion nonconforming of 

0.1 and they are weakly correlated. Collecting large samples for this particular process is 

not a major concern as the costs associated with measuring for defects is minimal. The 

engineers are unclear as to which is more critical: committing a Type I or Type II error. 

The engineers also have no knowledge about the process with respect to how the process 

may shift as it goes out-of-control (direction and magnitude).  

A sample size of 100 is selected. Table 37 and Table 39 show that the BPNN 

technique and the MNP chart have larger in-control ARL than the normal approximation 

technique. As shown in Table 11, the BPNN technique detects an in-control ARL 54 

samples later than the normal approximation technique and the MNP chart detects an in-

control ARL 40 samples later than the normal approximation technique. The BPNN, 

therefore, provides the best in-control ARL (14 samples later).  

In general, the BPNN technique and the MNP chart perform equal to or better 

than the normal approximation technique for all conditions of shifts. It is obvious that the 

normal approximation technique is inferior to the other two techniques for this particular 

scenario in terms of in-control and out-of-control ARLs.   

The MNP chart and the BPNN techniques perform equally for most shift 

combinations (i.e. direction and magnitude).  There are three shift combinations in which 

the MNP chart outperforms the BPNN technique. First, both proportion nonconforming 

shift with small magnitude (one standard deviation) and in the negative direction. Table 

11 shows that the MNP chart detects shifts 29 ARL samples faster than the BPNN 

technique. Second, the proportion nonconforming of the first attribute shifts with three 
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standard deviations and the proportion nonconforming of the second attribute shifts with 

one standard deviation, and both proportion nonconforming shift in the negative 

direction.  For this shift combination, the MNP chart detects shifts one sample faster than 

the BPNN technique. Third, the proportion nonconforming of the first attribute shifts 

with two standard deviations and the proportion nonconforming of the second attribute 

shifts with one standard deviation, and both proportion nonconforming shift in the 

negative direction. For this particular shift combination, the MNP chart indicates shifts 

faster than the BPNN technique seven ARL samples.  If the time between samples is 

short, the differences in the results for these later two shift combinations may be 

considered negligible. 

By weighing the in-control difference of the MNP chart and the BPNN technique 

(14 ARL samples) against the out-of-control difference of the MNP chart and the BPNN 

technique (29, 1, and 7 ARL samples for the three shift combinations, respectively), one 

should prefer the MNP chart since the conditions of shifts are vague in this process. 

It should be noted that the more knowledge one knows about the process, a more 

informed decision can be made in choosing techniques that are most suitable. However, 

there may be some cases in which the users do not have much knowledge about the 

quality of their processes. For these situations, a tree diagram (shown in Figure 8) is 

provided to guide users in making a decision based on limited process knowledge. 
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Figure 8 Decision tree diagram for process with limited knowledge 

 

Once the proportion nonconforming of a process are known, a large sample size 

(estimating a multivariate normal variable from a multivariate binomial variable) can be 

calculated from equation (4-1).  Users determine whether the sample size is appropriate 

to their process.  If a large sample size is chosen, user must answer what the correlation 

coefficient of the process is.  For weakly correlated processes, the MNP chart is the most 

suitable technique based on the information provided.  More information about the 

magnitude and direction of shifts are required to make decision for strongly and 

moderately processes.  If the process tends to have shifts with different magnitude and in 

the positive direction, the normal approximation technique is preferred.  However, either 

the BPNN technique or MNP chart is preferred for other pattern of the shifts. 
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If a small sample size is selected, the BPNN technique is preferred when Type I 

error (false alarm rate) is more critical than Type II error.  Otherwise, the MNP chart is 

preferable. 

8.2. General Performances of Multi-Attribute Process Control Techniques 

Following sections summarized the performances of each technique in general. 

8.2.1 Normal Approximation Technique 

The following conclusions can be made for the use of the normal approximation 

technique as a suitable technique for multi-attribute process control. 

a) Could not adequately detect shifts in the negative direction (proportion 

nonconforming close to “0”) for smaller sample sizes (#2 and #3). 

b) The stronger the level of correlation coefficient, the larger the out-of-control 

ARL when both proportion nonconforming shift with the same magnitude and 

in the positive direction as shown in Figure 9. 
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p1 = 0.3, p2 = 0.3, Sample Size = 50

p1 = 0.01, p2 = 0.01, Sample Size = 910

p1 = 0.1, p2 = 0.1, Sample Size = 30

Correlation Coefficient +3s1, +3s2 +2s1, +2s2 +1s1, +1s2

Strong 2.287 7.568 49.436

Moderate 1.832 5.932 40.409

Weak 1.508 4.151 31.494

Correlation Coefficient +3s1, +3s2 +2s1, +2s2 +1s1, +1s2

Strong 2.166 5.237 24.257

Moderate 1.863 4.239 19.831

Weak 1.534 3.258 16.443

Correlation Coefficient +3s1, +3s2 +2s1, +2s2 +1s1, +1s2

Strong 2.128 4.661 18.227

Moderate 1.831 3.815 16.397

Weak 1.539 3.239 13.918
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Figure 9 Performances of the normal approximation technique with different correlation coefficient 

 

c) In general, normal approximation outperformed the other two techniques for 

strongly and moderately correlated processes when both proportion 

nonconforming shift with different magnitudes and in the positive direction. 

8.2.2 MNP Chart 

The following conclusions can be made for the use of the MNP chart as a suitable 

technique for multi-attribute process control. 

a) The in-control ARL is small for sample sizes recommended for the MNP chart 

(sample size #2) and small sample size (sample size #3), especially for strong 

correlation coefficient. 

b) The recommended sample size provided by the literature for the MNP chart 

for large and medium proportion nonconforming is not appropriate. 
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c) In general, MNP chart can detect shifts with the same magnitude faster than 

the normal approximation. 

d) In general, MNP chart can detect negative shifts faster than the other two 

techniques for small sample sizes. 

8.2.3 Backpropagation Neural Network Technique 

The following conclusions can be made for the use of the BPNN technique as a 

suitable technique for multi-attribute process control. 

a) In general, BPNN can detect shifts with the same magnitude faster than the 

normal approximation for large sample sizes. 

b) In general, BPNN can outperform the normal approximation technique for 

shifts in the negative direction. BPNN is preferred for small sample sizes 

since it provids large in-control ARL and is able to detect negative shifts 

(while the normal approximation cannot). 

8.3 Interpretation of Out-of-Control Signals 

Once an out-of-control signal is indicated, process attributes that cause the 

process’s proportion nonconforming shifts must be identified and adjusted to bring the 

process back to the in-control status. In addition to the MNP chart, which detects an out-

of-control signal, Lu et al. discussed how to designate process attributes, which 

contribute to the out-of-control processes. A ZDi score is calculated for each attribute as 

shown in equation (3-6) of section 3.1.2. The quality characteristic with the largest 

positive ZDi score is considered the major contributor to an upward shift in the process. 
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Conversely, the smallest negative ZDi score is considered the major contributor to a 

downward shift in the process. 

As shown in section 2.5, there are several approaches suggested for multivariate 

control charts to interpret the out-of-control signals. One of the simplest approaches is 

plotting several univariate control charts accompanied by the multivariate control chart. 

Likewise, several uni-attribute control charts can be used together with a multi-attribute 

control chart to identify the attributes that cause the out-of-control signal. However, when 

implementing this, similar concerns arise as with multivariate processes. First, when a 

process includes several attributes, there are many uni-attribute control charts to interpret. 

Second, the uni-attribute control charts may not show any out-of-control signal when the 

multi-attribute control chart detects a signal since the signal may be a function of several 

correlated attributes. Third, the overall significance level of the simultaneous use of p 

uni-attribute control charts is difficult to determine. 

Most of the approaches found in the literature for interpreting out-of-control 

signals for multivariate control charts are based on the T
2
 control chart where the 

normality is assumed. Therefore, these techniques may be applicable to multi-attribute 

processes if sample sizes are large enough.  
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9.0 CONCLUSIONS, CONTRIBUTIONS, FUTURE WORK 

A new technique using backpropagation (BPNN) was proposed for monitoring the 

quality of processes involving two correlated attributes. This new technique was 

compared to the current two techniques, the normal approximation technique and the 

MNP chart, for a large variety of process conditions.  Five parameters, proportion 

nonconforming, level of correlation coefficient, sample size, and magnitude and direction 

of the shifts of proportion nonconforming, were varied.  The proportion nonconforming 

contained three levels, large (0.3), medium (0.1), and small (0.01). The correlation 

coefficient included three levels, strong (0.8), moderate (0.5), and weak (0.2). Three 

different sample sizes were applied based on: (1) estimates of multivariate normally 

distributed variables from a multivariate binomial distribution, (2) recommendations for 

the MNP chart, and (3) satisfying the condition of finding at least one nonconforming 

item in a sample.  Shifts of process’s proportion nonconforming varied between one and 

three standard deviations.  The process’s proportion nonconforming also shifted in either 

the positive or the negative direction. 

To compare the three techniques in-control average run length (ARL) and out-of-

control ARL were used as performance measures. In addition, for each technique the 

number of replications that indicated out-of-control shifts were tracked, along with 

whether or not the direction of the shift was correct. In general, both the MNP chart and 

the BPNN technique are capable of correctly identifying the directions of shift; however 
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depending on the process condition, one technique may be more favorable over the other 

method.  By the nature of the method, the normal approximation technique could not 

identify the direction of shift.  The number of replications of correctly identified direction 

of shifts (positive or negative) was also considered in the performance comparison 

between the MNP chart and the BPNN technique.  All pair-wise comparisons for the 

different process conditions were summarized as previously shown in section 7.4. 

The results showed that the normal approximation technique could not adequately 

detect a shift (or could detect but for only a few replications) in the negative direction 

(the shifted proportion nonconforming were close to “0”) when smaller sample sizes were 

applied. In addition, the stronger the level of correlation coefficient, the larger the out-of-

control ARL for the normal approximation technique when both proportion 

nonconforming shifted with the same magnitude and in the positive direction.  In general, 

the normal approximation technique detects shifts faster than the other two techniques for 

the strongly and moderately correlated processes when proportion nonconforming shifted 

with different magnitude and in the positive direction. 

For most process conditions, especially when the sample sizes were small, the 

MNP chart detected negative shifts faster than the other two techniques. However, the in-

control ARL for the MNP chart decreased substantially. For instance, for the process with 

two strongly correlated attributes, each having proportion nonconforming of 0.3, and 

employing the large sample size the in-control ARL was 411.  The in-control ARL was 

reduced to 58 when the smaller sample size was used. 

In general, the BPNN technique detected shifts faster than the normal 

approximation technique except when the proportion nonconforming shifted in the 
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positive direction, but with different magnitudes. For most process conditions that 

involved small sample sizes, the BPNN was preferred as its in-control ARL is 

considerably larger than the MNP chart and its out-of-control ARL is smaller than the 

normal approximation technique (its in-control ARL is larger than the normal 

approximation technique). Unfortunately, for smaller sample sizes and as the level of 

correlation coefficient increased, the BPNN technique did not adequately detect shifts in 

the negative direction. As mentioned in the chapter 6 (validation), testing the hypothesis 

of strong correlation given small sample sizes, the data generated yielded inconsistent 

results.  This may account for the inadequacy of the BPNN technique for this particular 

situation. 

Selecting a technique for a process with correlated attributes is similar to that of 

selecting a conventional control chart. In conventional control charts, one must decide 

acceptable levels of the Type I and Type II errors and determine the costs associated with 

this decision.  From this study, no one technique outperforms the other two techniques for 

all process conditions. A user must know their process conditions and concerns in order 

to select a most suitable technique. 

This research has provided some recommendations for selecting a technique that 

is most suitable to one’s process condition. Key questions were presented to serve as 

guidelines to determine an appropriate technique, as illustrated by the three scenarios. 

The scenarios provide a decision making process to follow to help satisfy process 

concerns (i.e. Type I and II errors, cost, and risks). 

Once an out-of-control signal has been identified, process engineers must 

interpret the signal to determine which attribute(s) is delinquent so that an assignable 
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cause may be investigated. Techniques, commonly used to interpret out-of-control signals 

in the multivariate control charts, were discussed. These same techniques may be 

applicable to the processes with multiple attributes. 

In conducting this research other classification techniques potentially suitable for 

identifying shifts of the proportion nonconforming were investigated and evaluated. 

Concerns associated with employing these techniques were discussed. 

Due to the limitation of the algorithms used to generate the data, process 

situations could not be studied where the proportion nonconforming varied (e.g. the first 

attribute had a proportion nonconforming of 0.3 and the second attribute had a proportion 

nonconforming of 0.1) and the correlation coefficient was strong or moderate.  

Furthermore, data cannot be generated for processes with two correlated attributes having 

substantially different proportion nonconforming (i.e. the proportion nonconforming of 

the first attribute is 0.3 and the proportion nonconforming of the second attribute is 0.01). 

If data can be generated or collected from a real process, future research may include the 

comparison of all the three techniques for this wider variety of process conditions.   

The sample sizes, which estimate the multivariate normal distribution from the 

multivariate binomial distribution, are large when the proportion nonconforming is 0.1 or 

smaller. In a real environment, large sample sizes consume inspection time and money. In 

contrary, small sample sizes may not properly represent the relationship(s) between the 

attributes. Therefore, further research should be conducted on how to select appropriate 

sample sizes. 

This study only investigated multi-attribute processes that consisted of two 

attributes.  Certainly multiple attribute processes can and do involve more than two 
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attributes. In the future, these three techniques should be evaluated across several 

attributes.  

In this study shifts in the proportion nonconforming were investigated. It was 

assumed that the variance remained the same.  Further research is needed to investigate 

multi-attribute processes in which there are changes in the variance-covariance of the 

attributes.  A technique to identify changes in the variances of the attributes would be 

valuable.   

Finally, the performance of the backpropagation neural network technique used to 

detect small shifts may improve by applying a sliding window procedure.  The procedure 

allows prior sample(s) to be fed into the network simultaneously with the most recent 

sample.  The number of samples fed to the networks depends on the window size. A 

small window size would shorten the out-of-control ARL, but it may result in a shorter 

in-control ARL. A large window size will most likely increase the time to detect shifts 

(thus longer out-of-control ARL).  
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APPENDIX A 

SHIFTS OF PROPORTION NONCONFORMING FOR PROCESSES WITH TWO 

POSITIVELY CORRELATED ATTRIBUTES 

Table A. 1 Shifts of Proportion Nonconforming for Process with In-control p1 = 0.3, p2 = 0.3  

Correlation Coefficient = 0.8 

Test Set Data Mean Shift 

(Sample Size = 50) 

Test Set Data Mean Shift 

(Sample Size = 10) 

+3s1 +3s2 +3s1 +3s2 
+3s1 +2s2 +3s1 +2s2 
+3s1 +1s2 +3s1 +1s2 
+2s1 +2s2 +2s1 +2s2 
+2s1 +1s2 +2s1 +1s2 
+1s1 +1s2 +1s1 +1s2 
-3s1 -3s2 -3s1 (.01) -3s2 (.01) 
-3s1 -2s2 -3s1 (.01) -2s2 
-3s1 -1s2 -3s1 -1s2 
-2s1 -2s2 -2s1 -2s2 
-2s1 -1s2 -2s1 -1s2 
-1s1 -1s2 -1s1 -1s2 

 

 
Correlation Coefficient = 0.5 

Test Set Data Mean Shift 

(Sample Size = 50) 

Test Set Data Mean Shift 

(Sample Size = 10) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.01) -3s2 (.01) 
-3s1 -2s2 -3s1 (.01) -2s2

-3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 -2s2

-2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2
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Correlation Coefficient = 0.2 

Test Set Data Mean Shift 

(Sample Size = 50) 

Test Set Data Mean Shift 

(Sample Size = 10) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.01) -3s2 (.01) 
-3s1 -2s2 -3s1 (.01) -2s2

-3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 -2s2

-2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2
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Table A. 2 Shifts of Proportion Nonconforming for Process with In-control p1 = 0.3, p2 = 0.1  

 

Correlation Coefficient = 0.2 

Test Set Data Mean Shift 

(Sample Size = 100) 

Test Set Data Mean Shift 

(Sample Size = 15) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s2 +3s2 +2s2 +3s2

+2s2 +2s2 +2s2 +2s2

+2s2 +1s2 +2s2 +1s2

+1s2 +3s2 +1s2 +3s2

+1s2 +2s2 +1s2 +2s2

+1s2 +1s2 +1s2 +1s2

-3s1 -3s2 -3s1 (.01) -3s2 (.001) 
-3s1 -2s2 -3s1 (.01) -2s2 (.001) 
-3s1 -1s2 -3s1 (.01) -1s2

-2s2 -3s2 -2s2 -3s2

-2s2 -2s2 -2s2 -2s2

-2s2 -1s2 -2s2 -1s2

-1s2 -3s2 -1s2 -3s2

-1s2 -2s2 -1s2 -2s2

-1s2 -1s2 -1s2 -1s2
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Table A. 3 Shifts of Proportion Nonconforming for Process with In-control p1 = 0.1, p2 = 0.1  

Correlation Coefficient = 0.8 

Test Set Data Mean Shift 

(Sample Size = 100) 

Test Set Data Mean Shift 

(Sample Size = 30) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 (.001) -2s2 (.001) 
-3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2

 

 
Correlation Coefficient = 0.5 

 

Test Set Data Mean Shift 

(Sample Size = 100) 

Test Set Data Mean Shift 

(Sample Size = 30) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 (.001) -2s2 (.001) 
-3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2
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Correlation Coefficient = 0.2 

 

Test Set Data Mean Shift 

(Sample Size = 100) 

Test Set Data Mean Shift 

(Sample Size = 30) 

+3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 (.001) -2s2 (.001) 
-3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2
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Table A. 4 Shifts of Proportion Nonconforming for Process with In-control p1 = 0.01, p2 = 0.01  

Correlation Coefficient = 0.8 

Test Set Data Mean Shift 

(Sample Size = 910) 

Test Set Data Mean Shift 

(Sample Size = 810) 

Test Set Data Mean Shift 

(Sample Size = 300) 

+3s1 +3s2 +3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 -2s2 -3s1 (.001) -2s2 (.001) 

-3s1 -1s2 -3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 -2s2 -2s1 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2 -1s1 -1s2

 

 
Correlation Coefficient = 0.5 

 

Test Set Data Mean Shift 

(Sample Size = 910) 

Test Set Data Mean Shift 

(Sample Size = 670) 

Test Set Data Mean Shift 

(Sample Size = 300) 

+3s1 +3s2 +3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 (.001) -2s2 -3s1 (.001) -2s2 (.001) 
-3s1 -1s2 -3s1 -1s2 -3s1 -1s2

-2s1 -2s2 -2s1 -2s2 -2s1 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2 -2s1 -1s2

-1s1 -1s2 -1s1 -1s2 -1s1 -1s2
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Correlation Coefficient = 0.2 

 

Test Set Data Mean Shift 

(Sample Size = 910) 

Test Set Data Mean Shift 

(Sample Size = 540) 

Test Set Data Mean Shift 

(Sample Size = 300) 

+3s1 +3s2 +3s1 +3s2 +3s1 +3s2

+3s1 +2s2 +3s1 +2s2 +3s1 +2s2

+3s1 +1s2 +3s1 +1s2 +3s1 +1s2

+2s1 +2s2 +2s1 +2s2 +2s1 +2s2

+2s1 +1s2 +2s1 +1s2 +2s1 +1s2

+1s1 +1s2 +1s1 +1s2 +1s1 +1s2

-3s1 -3s2 -3s1 (.001) -3s2 (.001) -3s1 (.001) -3s2 (.001) 
-3s1 -2s2 -3s1 (.001) -2s2 -3s1 (.001) -2s2 (.001) 
-3s1 -1s2 -3s1 (.001) -1s2 -3s1 (.001) -1s2

-2s1 -2s2 -2s1 -2s2 -2s2 (.001) -2s2 (.001) 
-2s1 -1s2 -2s1 -1s2 -2s2 (.001) -1s2

-1s1 -1s2 -1s1 -1s2 -1s1 -1s2
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APPENDIX B 

VALIDATION OF DATA GENERATED 

 

 

Table B. 1 Number of Null Hypothesis Accepted for Process Condition: p1=0.3, p2=0.3, Correlation 

Coefficient = 0.8, Sample Sizes = 50. 

 

Number of Null Hypothesis Accepted out of 10 Replications 

In-control Status Out-of-Control Status 

(Means shift 3σ  in the positive 

direction.) 

Out-of-Control Status 

(Means shift 3σ  in the negative 

direction.) 

Data 

Set 

p1=p10 p2=p20 Corr.=Corr0 p1=p10 p2=p20 Corr.=Corr.0 p1=p10 p2=p20 Corr.=Corr.0 

Training 10 10 10 10 10 10 10 10 9 

Testing 10 10 10 10 10 9 10 10 10 

 

Table B. 2 Number of Null Hypothesis Accepted for Process Condition: p1=0.01, p2=0.01, 

Correlation Coefficient = 0.8, Sample Sizes = 910. 

 

Number of Null Hypothesis Accepted out of 10 Replications 

In-control Status Out-of-Control Status 

(Means shift 3σ  in the positive 

direction.) 

Out-of-Control Status 

(Means shift 3σ  in the negative 

direction.) 

Data 

Set 

p1=p10 p2=p20 Corr.=Corr0 p1=p10 p2=p20 Corr.=Corr.0 p1=p10 p2=p20 Corr.=Corr.0 

Training 10 10 9 10 10 10 10 10 7 

Testing 10 10 9 10 10 10 10 10 8 

 

Table B. 3 Number of Null Hypothesis Accepted for Process Condition: p1=0.3, p2=0.1, Correlation 

Coefficient = 0.2, Sample Sizes = 100. 

 

 

Number of Null Hypothesis Accepted out of 10 Replications 

In-control Status Out-of-Control Status 

(Means shift 3σ  in the positive 

direction.) 

Out-of-Control Status 

(Means shift 3σ  in the negative 

direction.) 

Data 

Set 

p1=p10 p2=p20 Corr.=Corr0 p1=p10 p2=p20 Corr.=Corr.0 p1=p10 p2=p20 Corr.=Corr.0 

Training 10 10 10 10 10 10 10 10 10 

Testing 10 10 10 10 10 9 10 10 10 
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Table B. 4 Number of Null Hypothesis Accepted for Process Condition: p1=0.3, p2=0.3, Correlation 

Coefficient = 0.8, Sample Sizes = 10. 

 

Number of Null Hypothesis Accepted out of 10 Replications 

In-control Status Out-of-Control Status 

(Means shift 3σ  in the positive 

direction.) 

Out-of-Control Status 

(Means shift 3σ  in the negative 

direction.) 

Data 

Set 

p1=p10 p2=p20 Corr.=Corr0 p1=p10 p2=p20 Corr.=Corr.0 p1=p10 p2=p20 Corr.=Corr.0 

Training 10 10 10 10 10 10 10 10 4 

Testing 10 10 10 10 10 10 10 10 7 

 

Table B. 5 Number of Null Hypothesis Accepted for Process Condition: p1=0.3, p2=0.3, Correlation 

Coefficient = 0.2, Sample Sizes = 10. 

 

Number of Null Hypothesis Accepted out of 10 Replications 

In-control Status Out-of-Control Status 

(Means shift 3σ  in the positive 

direction.) 

Out-of-Control Status 

(Means shift 3σ  in the negative 

direction.) 

Data 

Set 

p1=p10 p2=p20 Corr.=Corr0 p1=p10 p2=p20 Corr.=Corr.0 p1=p10 p2=p20 Corr.=Corr.0 

Training 10 10 9 10 10 10 10 10 8 

Testing 10 10 9 10 10 10 7 10 10 

 

 165



 

 

REFERENCES 

1
 Montgomery, D. C., Introduction to Statistical Quality Control (4

th
 edition; John Wiley 

& Sons, Inc., 2001), pp. 9. 

 
2
 Ibid., pp. 9. 

 
3
Jackson, J. E., A User’s Guide to Principal Components (John Wiley & Sons, Inc., 

1991), pp. 300 – 301.  

 
4
 Lowery, C. A. and Montgomery, D. C.,  “A Review of Multivariate Control Charts,” 

IIE Transactions, Vol. 27 (1995), pp. 800-810. 

 
5
 Jackson (1991), Op. Cit. pp. 21 

 
6
 Palm, A. C., Rodriguez, R. N., Spiring, F. A. and Wheeler, D. J., “Some Perspectives 

and Challenges for Control Chart Methods,” Journal of Quality Technology, Vol. 29, No. 

2 (1997), pp. 122 – 127. 

 
7
Patel, H. I., “Quality Control Methods for Multivariate Binomial and Poisson 

Distributions,” Technometrics, Vol. 15, No. 1 (1973), pp. 103-112. 

 
8
 Lu, X. S., Xie, M., Goh, T. N. and Lai, C. D., “Control Chart for Multivariate Attribute 

Processes,” International Journal of Production Research, Vol. 36, No. 12 (1998), pp. 

3477-3489. 

 
9
 Jolayemi, J.K., “An Optimal Design of Multi-attribute Control Charts for Processes 

Subject to a Multiplicity of Assignable Causes,” Applied Mathematics and Computation, 

Vol. 114 (2000), pp. 187-203. 

 
10

 Montgomery, D. C., Introduction to Statistical Quality Control (3
rd

 edition; John Wiley 

& Sons, Inc., 1997), pp. 300 – 301. 
 

11
 Ibid., pp. 294 –295. 

 
12

 Palm (1997), Op. Cit. 

 

 166



 
13

 Palm (1997), Op. Cit. 

 
14

 Ryan, T. P. and Schwertman, N. C., “Optimal Limits for Attributes Control Charts,” 

Journal of Quality Technology, Vol. 29 (1997), pp. 86 – 98. 

 
15

 Schwertman, N. C. and Ryan, T. P., “Using Dual np-charts to Detect Changes,” 

Quality and Reliability Engineering International, Vol. 15 (1999), pp. 317 – 320. 

 
16

 Chen, G., “An Improved p Chart Through Simple Adjustments,” Journal of Quality 

Technology, Vol. 30, No. 2 (1998), pp. 142 – 151.  

 
17

 Reynolds, M. R. and Stoumbos, Z. G., “A General Approach to Modeling CUSUM 

Charts for a Proportion,” IIE Transactions, Vol. 32 (2000), pp. 515 – 535. 

 
18

 Reynolds, M. R. and Stoumbos, Z. G., “The SPRT Chart for Monitoring a Proportion,” 

IIE Transactions, Vol. 30 (1998), pp. 545 – 561.  

 
19

 Nelson, Lloyd S., “A Control Chart for Parts-Per-Million Nonconforming Items,” 

Journal of Quality Technology, Vol. 26, No. 3 (1994), pp. 239 – 240. 

 
20

 Su, C. T. and Tong, L. I., “A Neural Network-Based Procedure for the Process 

Monitoring of Clustered Defects in Integrated Circuit Fabrication,” Computers in 

Industry, Vol. 34 (1997), pp. 285 – 294. 

 
21

 Aparisi, F., “Hotelling T
2
 Control Chart with Adaptive Sample Sizes,” International 

Journal of Production Research, Vol. 34, No. 10 (1996), pp. 2853 – 2862. 

 
22

 Hotelling, H., Multivariate Quality Control: Techniques of Statistical Analysis, 

(Eisenhart, Hastay, and Wallis, Eds., New York: McGraw-Hill, 1947) 

 
23

 Lowry and Montgomery  (1995), Op. Cit. pp.800 - 810. 

 
24

 Jackson (1991), Op. Cit.  pp. 19. 

 
25

 Jackson (1991), Op. Cit.  pp. 18, 20 – 25. 

 
26

 Wold, H., “Partial Least Square”, Encyclopedia of Statistical Sciences, Vol. 6 (1985), 

edited by Kotz, Z. and Johnson, N. L. (John Wiley & Sons Inc.) 

 
27

 Patel (1973), Op. Cit.  pp. 103-112. 

 
28

 Lu, Xie, Goh and Lai (1998), Op. Cit.  pp. 3477-3489. 

 
29

 Jolayemi (2000), Op. Cit.  pp. 187-203. 

 167



 
30

 Jolayemi, J.K., “Convolution of Independent Binomial Variables: An Approximation 

Method and a Comparative Study”, Computational Statistics & Data Analysis, Vol. 18 

(1994), pp. 403 – 417. 

 
31

 Jolayami, J.K. and Berrettoni, J.N., “Multivariate Control Charts: An Optimization 

Approach to Effective Use and Measurement of Performance,” Applied Mathematics and 

Computational, Vol. 32, No. 1 (1989), pp. 1 – 16. 

 
32

 Gibra, I. N., “Economically Optimal Determination of the Parameters of np-Control 

Charts,” Journal of Quality Technology, Vol. 10, No. 1 (1978), pp. 12 –19. 

 
33

 Gibra, I. N., “Economic Design of Attribute Control Charts for Multiple Assignable 

Causes,” Journal of Quality Technology, Vol. 13, No. 2 (1981), pp. 93 –99. 

 
34

 Zorriassatine, F. and Tannock, J. D. T., “A Review of Neural Networks for Statistical 

Process Control,” Journal of Intelligence Manufacturing, Vol. 9 (1998), pp. 209 – 224.  

 
35

 Pugh, G. A., “Synthetic Neural Networks for Process Control,” Computers and 

Industrial Engineering, Vol. 17, No. 1 – 4 (1989), pp. 24 – 26. 

 
36

 Pugh, G. A., “A Comparison of Neural Networks to SPC Charts,” Computers and 

Industrial Engineering, Vol. 21, No. 1 – 4 (1991), pp. 253 – 255. 

 
37

 Guo, Y. and Dooley, K. J., “Identification of Change Structure in Statistical Process 

Control,” International Journal of Production Research, Vol. 30, No. 7 (1992), pp. 1655 – 

1669. 

 
38

 Smith, A. E., “ X and R Control Chart Interpretation Using Neural Computing,” 

International Journal of Production Research, Vol. 32, No. 2 (1994), pp. 309 – 320. 

 
39

 Stutzle, T., “A Neural Network Approach to Quality Control Charts From Neural to 

Artificial Neural Computation,” Proceedings of the International Workshop on Artificial 

Neural Networks, Malaga-Torrmolinos, Spain, (1995), pp. 1135 – 1141. 

 
40

 Cheng, C. S., “A Multi-Layer Neural Network Model for Detecting Changes in the 

Process Mean,” Computers and Industrial Engineering, Vol. 28, No. 1 (1995), pp. 51 – 

61. 

 
41

 Chang, S. I. and Aw, C. A., “A Neural Fuzzy Control Chart for Detecting and 

Classifying Process Mean Shifts,” International Journal of Production Research, Vol. 34, 

No. 8 (1996), pp. 2265 – 2278. 

 
42

 Pugh (1989), Op. Cit. 

 
43

 Pugh (1991), Op. Cit. 

 168



 
44

 Cheng (1995), Op. Cit. 

 
45

 Chang and Aw (1996), Op. Cit. 

 
46

 Hwarng, H. B. and Hubele, N. F., “X bar Control Chart Pattern Identification Through 

Efficient Off-Line Neural Network Training, IIE Transactions, Vol. 25, No. 3 (1993b), 

pp. 27 – 40. 

 
47

 Cheng, C. S., “A Neural Network Approach for the Analysis of Control Chart 

Patterns,” International Journal of Production Research, Vol. 35, No. 3 (1997), pp. 667 – 

697. 

 
48

 Guh, R. S. and Tannock, J. D. T., “Recognition of Control Chart Concurrent Patterns 

Using a Neural Network Approach,” International Journal of Production Research, Vol. 

37, No. 8 (1999), pp. 1743 – 1765. 

 
49

 Guh, R. S. and Hsieh, Y. C., “A Neural Network Based Model for Abnormal Pattern 

Recognition of Control Charts,” Computers & Industrial Engineering, Vol. 36 (1999), pp. 

97 – 108.  

 
50

 Chang, S. I., and Ho, E. S., “An Integrated Neural Network Approach for Simultaneous 

Monitoring of Process Mean and Variance Shifts – a Comparative Study,” International 

Journal of Production Research, Vol.37, No. 8 (1999), pp. 1881 – 1901. 

 
51

 Zorriassatine and Tannock (1998), Op. Cit. 

 
52

 Guo and Dooley (1992), Op. Cit. 

 
53

 Hwarng and Hubele (1993b), Op. Cit. 

 
54

 Cheng (1995), Op. Cit. 

 
55

 Cheng (1997), Op. Cit. 

 
56

 Hetch-Nelson, R., Neurocomputing, (Addison-Wesley, Reading, MA, 1990). 

 
57

 Guo and Dooley (1992), Op. Cit. 

 
58

 Hwarng and Hubele (1993b), Op. Cit. 

 
59

 Martin, E.B. and Morris, A.J., “Multivariate Statistics and Neural Networks In Process 

Fault Detection”, IEE-Colloquium-(Digest), No. 079 (1995), pp. 7/1 – 7/8. 

 
60

 Wilson, D.J.H., Irwin, G.W. and Lightbody, G., “Neural Networks and Multivariate,” 

IEE-Colloquium-(Digest), No. 174 (1997), pp. 5/1 – 5/5. 

 169



 
61

 Wilson, D.J.H. and Irwin, G.W., “Multivariate SPC Using Radial Basis Functions,” 

UKACC International Conference on Control, Conference Publication No. 455 (1998), 

IEE. 

 
62

 Su, C. T. and Tong, L. I, “A Neural Network-Based Procedure for the Process 

Monitoring of Clustered Defects in Integrated Circuit Fabrication,” Computers in 

Industry, Vol. 34 (1997), pp. 285 – 294. 

 
63

 Alt, F.B., “Multivariate Quality Control” in Encyclopedia of Statistical Sciences, Vol. 

6 (1985), edited by S. Kotz and N.L. Johnson. Jon Wiley & Sons, New York, NY, pp. 

110 – 122. 

 
64

 Doganaksoy, N., Faltin, F., and Tucker, W.T., “Identification of Out of Control Quality 

Characteristics in a Manufacturing Environment,” Communications in Statistics – Theory 

and Methods, Vol. 20 (1991), pp. 2775 – 2790. 

 
65

 Hayter, A.J. and Tsui, K.L., “Identification and Quantification in Multivariate Quality 

Control Problems,” Journal of Quality Technology, Vol. 26 (1994), pp. 197 – 208. 

 
66

 Jackson, J.E., “Multivariate Quality Control,” Communications in Statistics – Theory 

and Methods, Vol. 14 (1985), pp. 2657 – 2688. 

 
67

 Mason, R.L., Tracy, N.D., and Young, J.C., “A Practical Approach for Interpreting 

Multivariate T2 Control Chart Signals,” Journal of Quality Technology, Vol. 29, No. 4 

(1997), pp. 396 – 406.  

 
68

 Fuchs, C. and Benjamini, Y., “Multivariate Profile Charts for Statitical Process 

Control,” Technometrics, Vol. 36, No. 2 (1994), pp. 182 – 195. 

 
69

 Runger, G.C., Alt, F.B., and Montgomery, D.C., “Contributors to a Multivariate 

Statistical Process Control Signal,” Communications in Statistics – Theory and Methods, 

Vol. 25, No. 10 (1996b). 

 
70

 Patel  (1973), Op. Cit. pp. 103 – 112. 

 
71

 Lu, Xie, Goh and Lai (1998), Po. Cit.  pp. 3477-3489. 
 
72

 Demuth, H. and Beale, M., March 2001, “Chapter 5: Backpropagation,” appears in 

Neural Network Toolbox for Use with MATLAB (Version 4), 26-27.  

 
73

 Goldstein, M. and Dillon, W. R., Discrete Discriminant Analysis (John Wiley & Sons, 

1978), pp. 21. 

 
74

 James, S. and Wilson, S., “Choosing Between Logistic Regression and Discriminant 

Analysis”, Journal of the American Statistical Association, Vol. 73, No. 364 (Dec. 1978), 

pp. 699 – 705. 

 170



 
75

 Ibid., pp. 699 – 705. 

 
76

 Halperin, M., Blackwelder, W. C., and Verter, J. I., “Estimation of the Multivariate 

Logistic Risk Function: A Comparison of the Discriminant Function and Maximum 

Likelihood Approaches,” Journal of Chronic Disease, Vol. 24 (1971), pp. 125 – 158. 

 
77

 Truett, J., Cornfield, J., and Kannel, W., “A Multivariate of the Risk of Coronary Heart 

Disease in Framingham,” Journal of Chronic Disease, Vol. 20 (1967), pp. 511 – 524. 

 
78

 Gordon, T., “Hazards in the Use of the Logistic Function with Special Reference to 

Data from Prospective Cardiovasular Studies,” Journal of Chronic Disease, Vol. 27 

(1974), pp. 97 – 102. 

 
79

 Hosmer, D. W. and Lameshow, S., Applied Logistic Regression (John Wiley and Sons, 

1989), pp.127. 

 
80

 Ryan, T. P., Modern Regression Methods (John Wiley & Sons, Inc., 1997), pp. 262. 

 
81

 Specht, D. F., “Probabilistic Neural Networks,” Neural Networks, Vol. 3 (1990), pp. 

109 – 118. 

 
82

 Wasserman, P. D., Advanced Methods in Neural Computing (Van Nostrand Reinhold, 

ITP, 1993), pp. 223. 

 
83

 Ryan, P. T., Statistical Methods For Quality Improvement (John Wiley & Sons, Inc., 

1989), pp. 104.  

 
84

 Woodall, W. H. and Ncube, M. M., “Multivariate CUSUM Quality Control 

Procedures,” Technometrics, Vol. 27, No. 3 (1985), pp. 285 – 292. 

 
85

 Healy, J. D., “A Note on Multivariate CUSUM Procedures,” Technometrics, Vol. 29, 

No. 4 (1987), pp. 409 - 412. 

 
86

 Crosier, R. B., “Mutlivariate Generalizations of Cumulative Sum Quality Control 

Schemes,” Technometrics, Vol. 30, No. 3 (1988), pp. 291 – 303. 

 
87

 Pignatiello, J. J., Jr. and Runger, G. C., “Comparisons of Multivariate CUSUM 

Charts,” Journal of Quality Technology, Vol. 22, No. 3 (1990), pp. 173 – 186. 

 
88

 Woodall and Ncube (1985), Op. Cit.   

 
89

 Ong, S. H., “The Computer Generation of Bivariate Binomial Variables with Given 

Marginals and Correlation,” Communications Statistical – Simulation, Vol. 21, No. 2 

(1992), pp. 285 – 299.    

 171



 
90

 Weintraub, S., Tables of the Cumulative Binomial Probability Distribution for Small 

Values of p (The Free Press of Glencoe, 1963). 

 
91

 Ryan, T. P., Statistical Methods For Quality improvement (John Wiley & Sons, Inc., 

1989), pp. 218.  
92

 Discussion in applied multivariate statistical analysis class (STAT 2310). 

 
93

 Montgomery, D. C., Introduction to Statistical Quality Control (4
th

 edition; John Wiley 

& Sons, Inc., 2001), pp. 295 – 296. 

 
94

 Kenett, R. S. and Zacks, S., Modern Industrial Statistics – Design and Control of 

Quality and Reliability, pp. 148. 

 
95

 Devore, J.L., Probability and Statistics for Engineering and the Sciences (4
th

 edition; 

Wadsworth, Inc., 1995), pp. 512. 

 
96

 Law, A. M. and Kelton, W. D., Simulation Modeling & Analysis (2
nd

 edition; 

McGraw-Hill, 1991), pp. 538 – 539. 

 
97

 Montgomery, D. C., Introduction to Statistical Quality Control (4
th

 edition; John Wiley 

& Sons, Inc., 2001), pp. 167. 

 
98

 Cheng, C. S., “A Multi-Layer Neural Network Model for Detecting Changes in the 

Process Mean,” Computers and Industrial Engineering, Vol. 28, No. 1 (1995), pp. 51 – 

61. 

 
99

 Cheng, C. S., “A Neural Network Approach for the Analysis of Control Chart 

Patterns,” International Journal of Production Research, Vol. 35, No. 3 (1997), pp. 667 – 

697. 

 
100

 Kramer, C. Y. and Jensen, D. R., “Fundamental of Multivariate Analysis Part I. 

Inference about Means,” Journal of Quality Technology, Vol. 1 (1969a), pp. 120 - 133.  

 
101

 Kramer, C. Y. and Jensen, D. R., “Fundamental of Multivariate Analysis Part II. 

Inference about Two Treatments,” Journal of Quality Technology, Vol. 1 (1969b), pp. 

189 - 204. 

 
102

 Jackson, J. E., “Quality Control Methods for Several Related Variables,” 

Technometrics, Vol. 1 (1959), pp. 359 – 377.  

 
103

 Jackson, J. E., “Principal Components and Factor Analysis: Part I – Principal 

Components,” Journal of Quality Technology, Vol. 12 (1981), pp. 201 – 213. 

 172


	TABLE OF CONTENTS
	1.0 INTRODUCTION
	1.1 Quality Control Chart Applications
	1.2 Benefits of Multivariate/Multi-Attribute Process Control
	1.3 Multi-Attribute Process Quality Control Approaches
	1.4 Research Objectives
	1.5 Research Contributions

	2.0 LITERATURE REVIEW
	2.1 Uni-Attribute Control Charts
	2.1.1 Control Chart for Proportion Nonconforming (p-chart)
	2.1.2 Control Chart for Number of Nonconforming Items (np-ch
	2.1.3 Control Chart for the Number of Nonconformities (c-cha
	2.1.4 Control Chart for the Number of Nonconformities Per Un
	2.1.5 Current Research Issues in Uni-Attribute Control Chart

	2.2 Multivariate Control Charts
	2.2.1 Hotelling T2 Control Chart
	2.2.2 Principal Component Analysis (PCA)
	2.2.3 Partial Least Squares (PLS)

	2.3 Multi-Attribute Control Charts
	2.4 Neural Networks and Control Charts
	2.4.1 Neural Networks for Univariate Control Charts
	2.4.2 Neural Networks for Multivariate Statistical Process C
	2.4.3 Neural Networks for Uni-Attribute Control Charts
	2.4.4 Neural Networks for Multi-Attribute Control Charts

	2.5 Interpretation of Out-of-Control Signals for Multivariat

	3.0 MULTI-ATTRIBUTE METHODOLOGIES
	3.1 Current Methods In Literature
	3.1.1 Normal Approximation of Multivariate Binomial Distribu
	3.1.2 Multivariate np-Chart (MNP chart)

	3.2 Backpropagation Neural Networks
	3.2.1 General Concept
	3.2.1.1 Architecture
	3.2.1.2 Algorithm

	3.2.2 Backpropagation Neural Network for Multi-Attribute Pro
	3.2.2.1 Architecture and Algorithm
	3.2.2.2 Preprocessing Data
	3.2.2.3 Training Data
	3.2.2.4 Cut-Value for In-Control and Out-of-Control Processe


	3.3 Other Techniques
	3.3.1 Discriminant Analysis
	3.3.2 Logistic Regression
	3.3.3. Probabilistic Neural Network
	3.3.4 Cumulative Sum Control Procedures


	4.0 EVALUATION OF METHODOGIES: EXPERIMENTAL DESIGN
	4.1 Data Generation
	4.2 The Experimental Design
	4.3 Sample Sizes
	4.3.1 Sample Size #1 - Estimating Multivariate Normally Dist
	4.3.2 Sample Size #2 - Recommended Sample Size for the MNP C
	4.3.3 Sample Size #3 - Satisfying the Condition of Finding a

	4.4 Level of correlation
	4.5 Number of Replications
	4.6 Assumptions

	5.0 PERFORMANCE MEASURES
	5.1 Average Run Length (ARL)
	5.1.1 In-Control Average Run Length
	5.1.2 Out-Of-Control Average Run Length

	5.2 Percentage of Correct Classification

	6.0 MODEL VERIFICATION AND VALIDATION
	6.1 Model Verification
	6.2 Model Validation

	7.0 RESULTS AND ANALYSES
	7.1 Sample Size #1 - Estimating Multivariate Normally Distri
	7.1.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 50 (Levels of Corre
	7.1.1.1 Comparing the BPNN to the Normal Approximation Techn
	7.1.1.2 Comparing the BPNN Technique to the MNP Chart
	7.1.1.3 Comparing the MNP Chart to the Normal Approximation 

	7.1.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 100 (Levels of Corr
	7.1.2.1 Comparing the BPNN to the Normal Approximation Techn
	7.1.2.2 Comparing the BPNN Technique to the MNP Chart
	7.1.2.3 Comparing the MNP Chart to the Normal Approximation 

	7.1.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 910 (Levels of Co
	7.1.3.1 Comparing the BPNN to the Normal Approximation Techn
	7.1.3.2 Comparing the BPNN Technique to the MNP Chart
	7.1.3.3 Comparing the MNP Chart to the Normal Approximation 

	7.1.4 p1 = 0.3, p2 = 0.1, Sample Sizes = 100 (Levels of Corr
	7.1.4.1 Comparing the BPNN to the Normal Approximation Techn
	7.1.4.2 Comparing the BPNN Technique to the MNP Chart
	7.1.4.3 Comparing the MNP Chart to the Normal Approximation 


	7.2 Recommended Sample Size for the MNP Chart
	7.2.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 10 (Levels of Corre
	7.2.1.1 Comparing the BPNN to the Normal Approximation Techn
	7.2.1.2 Comparing the BPNN Technique to the MNP Chart
	7.2.1.3 Comparing the MNP Chart to the Normal Approximation 

	7.2.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 30 (Levels of Corre
	7.2.2.1 Comparing the BPNN to the Normal Approximation Techn
	7.2.2.2 Comparing the BPNN Technique to the MNP Chart
	7.2.2.3 Comparing the MNP Chart to the Normal Approximation 

	7.2.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 810, 670, and 540
	7.2.3.1 Comparing the BPNN to the Normal Approximation Techn
	7.2.3.2 Comparing the BPNN Technique to the MNP Chart
	7.2.3.3 Comparing the MNP Chart to the Normal Approximation 


	7.3 Satisfying the Condition of Finding at Least One Nonconf
	7.3.1 p1 = 0.3, p2 = 0.3, Sample Sizes = 10 (Levels of Corre
	7.3.2 p1 = 0.1, p2 = 0.1, Sample Sizes = 30 (Levels of Corre
	7.3.3 p1 = 0.01, p2 = 0.01, Sample Sizes = 300 (Levels of Co
	7.3.3.1 Comparing BPNN to the Normal Approximation Technique
	7.3.3.2 Comparing BPNN to the MNP Chart
	7.3.3.3 Comparing the MNP Chart to the Normal Approximation 



	8.0 RECCOMENDATION FOR IMPLEMENTATION
	8.1 Guidelines for Selecting a Suitable Technique
	8.2. General Performances of Multi-Attribute Process Control
	8.2.1 Normal Approximation Technique
	8.2.2 MNP Chart
	8.2.3 Backpropagation Neural Network Technique

	8.3 Interpretation of Out-of-Control Signals

	9.0 CONCLUSIONS, CONTRIBUTIONS, FUTURE WORK
	APPENDIX A
	APPENDIX B
	REFERENCES

	LIST OF TABLES
	LIST OF FIGURES

