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ABSTRACT 

A Neural Network model has been developed for estimating the total electron content 
(TEC) of the ionosphere. TEC is proportional to the delay suffered by electromagnetic 
signals crossing the ionosphere and is among the errors that impact GNSS (Global 
Navigation Satellite Systems) observations. Ionospheric delay is particularly a problem 
for single frequency receivers, which cannot eliminate the (first-order) ionospheric delay 
by combining observations at two frequencies. Single frequency users rely on applying 
corrections based on prediction models or on regional models formed based on actual 
data collected by a network of receivers. A regional model based on a neural network has 
been designed and tested using data sets collected by the Brazilian GPS Network (RMBC) 
covering periods of low and high solar activity. Analysis of the results indicates that the 
model is capable of recovering, on average, 85% of TEC values. 
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1. INTRODUCTION 

Ionospheric refraction is one of the most harmful effects on GPS signals. It is 
proportional to the total electron content (TEC), which corresponds to the number of free 
electrons contained in the ionospheric layer (Hofmann-Wellenhof, 2001). TEC is defined 
as the number of free electrons contained within a one meter squared column, along the 
path of the signal through the ionosphere. It is a number associated with a slant trajectory 
with respect to the local zenith, as a function of the elevation angle of the satellite. In 
addition to that, the signal goes through the ionosphere at coordinates different from those 
of the station, at the ionospheric piercing point. 

It is possible to determine the delay caused by the ionospheric refraction on a GPS 
signal once TEC is known. The refraction is a function of the frequency because of the 
dispersive character of the ionosphere. The delay can be determined from dual-frequency 
observations for the site where the receiver is located. 

For single frequency receiver users, one alternative is using a regional model of TEC, 
generated by realizing measurements of a dual frequency receiver network. In general, 
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from a network of spatially distributed receivers a grid of TEC values can be generated. 
From this grid TEC values can be inferred to any position inside or near the region 
covered by the tracking network, making it possible to correct the single-frequency 
receiver observations. 

In this paper we explore a new approach to regional TEC modeling, using a Neural 
Network model. 

2. COMPUTING VERTICAL TEC FROM DUAL-FREQUENCY 
RECEIVERS 

The computation of Vertical TEC (VTEC), using dual frequency observations, results 
in the determination of VTEC values for each station. We are using a simple model for 
VTEC computation since our final goal is to estimate VTEC for void areas, i.e., for areas 
where there is not an observing receiver. Similar values can be computed using different 
techniques, probably providing better quality input data to the regional model. 

The receivers located at the study area did not acquire pseudoranges at both 
frequencies. Only carrier phases were observed at the two GPS frequency bands. To 
overcome this limitation, we implemented a TEC computation model totally based on 
carrier phase observations. In this section we show the TEC computation model developed 
as part of this research, which formed the basis for the estimation using artificial neural 
networks. 

We start by modelling the carrier-phase measurements on two frequencies (L1 and L2) 
as: 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1
s s s s s s
r r r r r rt t I t T t t c Nλ ϕ ρ δ λ= − + + + , (1) 

 ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2
s s s s s s
r r r r r rt t I t T t t c Nλ ϕ ρ δ λ= − + + + , (2) 

where λ1 and λ2 are the carrier phase wavelengths, in meters, ( )1
s
r tϕ  and ( )2

s
r tϕ  are 

carrier-phase measurements for a receiver r and a satellite s, in cycles, ( )s
r tρ  is the 

geometric distance between receiver and satellite antennas, in meters, ( )1
s
rI t  and ( )2

s
rI t  

represent ionospheric refraction, in meters, ( )1
s

rT t  and ( )2
s

rT t  represent tropospheric 

refraction, in meters, ( )1
s
r tδ  and ( )2

s
r tδ  are the combinations of the satellite and receiver 

clock errors, in seconds, c is the speed of light, in meters per second, and 1
s
rN  and 2

s
rN  

are the carrier phase ambiguities, in cycles. The time argument is represented by t. 
Subtracting Eq.(2) from Eq.(1) gives: 

 ( ) ( ) ( ) ( )2 2 1 1 1 2 2 2 1 1
s s S s s s
r r r r r rt t I t I t N Nλ ϕ λ ϕ λ λ− = − + − . (3) 

The terms due to geometric distance, tropospheric delay and clock errors are cancelled 
out since they are the same for both frequencies. In the absence of a cycle slip the 
ambiguity terms are constant. The ambiguity terms on both frequencies are combined into 

a constant term s
rC : 
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 2 2 1 1
s s s
r r rC N Nλ λ= − . (4) 

Substituting Eq.(4) into Eq.(3) we get: 

 ( ) ( ) ( ) ( )2 2 1 1 1 2
s s s s s
r r r r rt t I t I t Cλ ϕ λ ϕ− = − + . (5) 

The influence of ionosphere on GPS signals (1
s
rI  and 2

s
rI ) can be computed by 

(Hoffmann-Wellenhof, 2001; Leick, 2004): 

 
( )

1 2
1

40.3s
r

TEC
I

f
= , (6) 

and 

 
( )

2 2
2

40.3s
r

TEC
I

f
= , (7) 

where f1 and f2 are the frequencies of the L1 and L2 carrier signals, in Hz, and TEC is the 
total electron content in electrons × 1016 m−2. Substituting Eqs.(6) and (7) into Eq.(5), the 
following expression is obtained: 

 ( ) ( )
( ) ( )

2 2 1 1 2 2
1 2

40.3 40.3s s s
r r rt t TEC C

f f
λ ϕ λ ϕ

 
 − = − +
 
 

. (8) 

Eq.(8) can be evaluated, after elementary operations, as: 

 ( ) ( )( )2 2 1 19.52 9.52s s s
r r rTEC C t tλ ϕ λ ϕ+ = − . (9) 

A mapping function must be used to account for the inclination and the position of the 
piercing point, allowing the computation of VTEC directly: 

 
1

sin
TEC VTEC

ν
= , (10) 

where 1 sinν is the mapping function term that accounts for path inclination, defined as 

a function of the elevation angle ν of the satellite as perceived from the observing station. 
The function to model the latitude and longitude dependence is a bilinear model 
(Komjathy and Langley, 1996): 

 ( )0 1 2
1

sin
TEC a a aφ λ

ν
= + ∆ + ∆ , (11) 

where ∆φ and ∆λ are differences in latitude and in longitude between the observation 
point and the ionospheric piercing point, respectively, and a0, a1 and a2 are unknown 
coefficients of the bilinear model. Substituting Eq.(11) into Eq.(9) we get the final 
expression used in this work: 

 ( ) ( ) ( )( )0 1 2 2 2 1 1
1

9.52 9.52
sin

s s s
r r ra a a C t tφ λ λ ϕ λ ϕ

ν
+ ∆ + ∆ + = − . (12) 
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This expression allows computation of the coefficients a0, a1 and a2, and a consequent 
determination of VTEC for the tracking stations using measurements collected for all 
visible satellites during a certain period of time. 

The 3 coefficients as well as the term srC , one for each satellite, are estimated in 

a least squares parametric adjustment. If a cycle slip occurs it is necessary to add another 
term to determine the combined ambiguities and the adjustment looses one degree of 
freedom. In the case of many cycle slips it may be better to ignore the satellite altogether, 
avoiding an excessive increase in the number of ambiguity parameters. 

There will be a total of 3 + s unknowns, s being the number of satellites. The total 
number of observations is equal to the summation of all observations collected for every 
satellite. 

For simplification we assume TEC is a constant value during a one-hour period. This 
period provides a large enough number of degrees of freedom in the adjustment to attempt 
to successfully estimate the parameters containing phase ambiguities. The operational 
restriction we faced (the receivers did not acquire pseudorange on L2) forced us to rely 
solely on carrier phase measurements, causing our approach to suffer under a situation of 
high variation of the ionospheric activity. 

At the outset there will be a VTEC value associated with each station of the network, 
valid for the one hour period used in the computation described above. The computed 
value of VTEC represents the average ionospheric activity over the one hour used in the 
TEC computation, for each of the stations. These values are the input of the Neural 
Network Model, which will predict VTEC values for any point in the region covered by 
the network, for the same time period (1 hour). 

3. NEURAL NETWORK MODEL 

A Neural Network is an information processing system formed by simple processing 
elements, called artificial neurons, or simply neurons. Fig. 1 shows an artificial neuron 
model. The input signal of the neuron is manipulated by means of synaptic weights. 
Synaptic weights are parameters which are adjusted during an iterative adjustment process 
known as training process. After the training process an activation function is applied to 
all neuron processes to generate the output signal. The neural network also includes a term 
that is applied externally, called bias, and represented in Fig. 1 by kb . The bias has the 

function of increasing or decreasing the neuron input. In the case of a linear activation 
function, the neuron plays the role of a regression linear model. The processing of 
a neuron k can be represented by: 

 ( )
1

m

k i ki k

i

y x w b

=

 
 = Ψ +
 
 
∑ , (13) 

where y is the neuron output, Ψ is the activation function, m is the number of input 
parameters, x is the input parameter, w is the synaptic weight and b is the bias. 

The range of the normalized amplitude of a neuron process varies within the range 
[0,1] or [−1,1]. This range depends on the type of activation function used. 



A Neural Network Approach for Regional Vertical Total Electron Content Modelling 

Stud. Geophys. Geod., 51 (2007) 283 

Additional layers of neurons, called hidden layers, can be introduced into the neural 
network. The input signal of the first hidden layer comes from the input layer. The output 
signal of the last hidden layer is used to generate the input signal to the output layer. 
A neural network model may have more than one hidden layer. The model resulting from 
adding hidden layers between the input and output layers is called Multilayer Perceptron 
(MLP). The MLP is not the only type of neural network model, but is one of the most 
popular ones. In this work we have used an MLP. 

Once a neural network model is defined, it is necessary to train it with data. The data is 
composed of a set of known input and output parameters. The training process 
corresponds to an adjustment of the synaptic weights to the data set. This adjustment 
attempts to decrease the residuals (difference between the computed output and the known 
output) of the output of the network, by means of an update of the synaptic weights. Due 
to the complexity of neural networks the adjustment cannot be done on a single step. An 
iterative adjustment of the synaptic weights is performed, called training algorithm. One 
of these algorithms is the Back-Propagation Training Algorithm, which is composed of 
two steps. Details about neural network training process can be found in Haykin (1999). 
A comprehensive introduction to neural network applications in geodesy and space 
research can be found in Leandro and Santos (2004) and Tulunay et al. (2004a). Other 
types of neural network applications for ionosphere modeling are also explored in 
McKinnell (2002) and Tulunay et al. (2004b). 

A neural network model was designed to estimate the VTEC for a given position. The 
input parameters are latitude and longitude, while the output parameter is VTEC. The 
training parameters are the known coordinates and VTEC values of each station of the 
GPS network at a given time. Once the model is trained we can estimate a VTEC to any 
position inside or near the region covered by the GPS network to the given time. Input 
parameters related to time variability of ionospheric activity, such as parameters 
representing geomagnetic and solar activities were not used because, in this case, the 
neural network VTEC estimations are supposed to be made only for the same period in 
which TEC values were computed from the GPS receivers network. Therefore, the neural 
network models the regional behaviour of the ionosphere for a specific time period, in our 
case, of one hour. 

 

Fig. 1. Nonlinear artificial neuron model (adapted from Haykin, 1999). 



R.F. Leandro and M.C. Santos 

284 Stud. Geophys. Geod., 51 (2007) 

Fig. 2 shows the scheme of the neural network model used in this investigation. Two 
hidden layers were used, each one with five neurons. The activation function of all layers 
(except the input one) is the hyperbolic tangent sigmoid function, represented by: 

 ( ) 2

2
1

1 e x
xϕ −= −

+
, (14) 

where x is the input signal of the neuron. 
The Levenberg-Marquardt back-propagation algorithm was used to train the neural 

model. The neural network processing was carried out in MatLab. 

4. ANALYSIS STRATEGY 

Data from a subset of the Brazilian active control network (RBMC) were used in this 
investigation. Fig. 3 shows the locations of the stations used. 

The continental coverage of the network can be considered one additional challenge 
for testing the capability of the model to estimate TEC over large areas. 

Fig. 4 shows a flowchart of the data processing for each given time. For each 
determination of VTEC, one of the network stations was not used during the neural 
network training process. This particular station became a test station. After the training 
process the model was used to estimate the VTEC value for the test station without any 
further modification. This estimate value is then compared with the GPS derived VTEC 
value (Eqs.(1)−(12)). The difference is the estimation error of the Neural Network Model. 
This procedure was repeated for each one of the 11 stations allowing us to assess the 
performance of the model everywhere in the study area. 

The training and testing procedure was performed for each isolated station using two 
different periods of five days each. The first was a period of low solar activity (from 
February 1st to February 5th 2004) and the other was a period of high solar activity (from 

Latitude
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Bias

Bias Bias

Input
Layer
o=i

Hidden
Layer

o=tanh(i)

Hidden
Layer

o=tanh(i)

Output
Layer

o=tanh(i)

 
Fig. 2. The Neural Network Model. 
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October 26th to October 30th 2003). Fig. 5 shows the solar radio flux for years of 2003 
and 2004. The days used as low solar activity period are shown as circles and the ones 
used for high solar activity are shown as triangles. 

For each day VTEC values were computed at 12:00 LT, 14:00 LT and 16:00 LT 
(where LT stands for local time), corresponding to three training and testing procedures 
per day per station. These times of the day were chosen in order to test the model near the 
time of the day with higher ionospheric activities, around 12:00 LT according to 
Klobuchar (1987). According to this procedure the total number of estimations would be 
330 for the 11 stations, however, due to the absence of data of some stations for some of 
the days used, 318 estimations were performed in total. As mentioned before, the period 
used for TEC computation was 1 hour.  

Due to the small number of receivers and the procedure adopted for TEC computation, 
the number of patterns available to be used in the neural process was small. A total of 10 
patterns were used for training the model, each one related to one of the receivers of the 
network. Because of this limitation the use of a test set (set of patterns used prior to the 
estimations to verify the generalization capability of the model) was not possible. 
However the results show that the generalization capability of the model is good, even 
with stations poorly distributed across the region. 

 
Fig. 3. Stations of the RBMC. 
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5. ASSESSMENT OF RESULTS 

In our analysis we assessed both absolute and relative errors. The absolute error α  

can be computed according to: 

 eVTEC VTECα = − , (15) 

where α represents the error in the estimation of VTECe. VTEC represents the value 
computed from GPS observations using the dual-frequency algorithm described in 
Section 2, and VTECe is the predicted value of VTEC as computed using the Neural 
Network model presented in Section 3. Both quantities are expressed in units of TEC 
(TECU). The relative error ε can be computed according to: 

 100
VTEC

α
ε = × . (16) 

VTEC computation for the 11 Stations

Training process  of the Neural Network

with data of the remaining 10 Stations

Estimation of VTEC for the test Station

using the Neural Network Model

Comparison of the estima ted VTEC

with the known value

All Sta tions  tested?

Choose the test Sta tion

Change the test Station

End

 
Fig. 4. Flowchart of the data processing. 
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The less the absolute and relative errors are, the closer VTECe and VTEC are. 
Ionospheric delay can be corrected with an accuracy similar to the estimation of TEC due 
to the direct relationship between TEC and ionospheric delay. Therefore, accuracy of 
VTEC estimation can be considered the same as the accuracy of correcting ionospheric 
delay to single frequency receivers. 

In this investigation a total of 318 estimations were made with the neural network 
model, involving different station configurations, days and times of day. Half of those 
estimations were made for a period with low solar activity whereas the other half were 
performed when the sun was very active. The results are grouped in order to compare the 
GPS-derived values of VTEC with the ones originating from the Neural Network solution 
VTECe. This comparison is provided in terms of the mean error α and the mean absolute 
error α , as given by Eq.(15), the relative error ε, as given by Eq.(16), and the relative 

correction (100% − ε). For the sake of this comparison, the GPS-derived values of VTEC 
are considered as a bench mark. The differences found indicate the error in the values of 
VTECe. The mean error (α) shows the mean bias of the estimations with respect to the 
known values of VTEC. The mean absolute error α  gives a quantity for the average 

estimation error as well as for its standard deviation. Standard deviation and RMS are 
given in 1-sigma values. 

Table 1 summarizes the results obtained for the low solar activity period. The 
difference between mean VTEC and mean VTECe, i.e., the mean error α�  equals 0.4 TECU, 
which corresponds to approximately 7 cm of delay at the L1 frequency. Since α�  (which 
could be considered as a bias) is very small, the spread of the difference as given by both 
the RMS and the standard deviation is almost the same. The minimum and maximum 
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Fig. 5. Solar activity for years of 2003 and 2004 (Space Environment Center, 2004). 
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values (−5.9 and 5.7) indicate a possible symmetry in the differences between mean VTEC 
and mean VTECe. The mean absolute error α  of the estimation is 3 TECU with standard 

deviation of 2 TECU. In terms of relative error ε it was found an average value of 16.7%. 
Alternatively, indicating an agreement in 83.3% of the cases.  

Table 2 summarizes the results obtained for the high solar activity period. The 
difference of mean VTEC and mean VTECe, i.e., the mean error α equals to −1.1 TECU, 
which corresponds to approximately 18 cm of delay at the L1 frequency. This values is 
more than twice the one for the low solar activity period. The spread of the difference as 
given by both the RMS and the standard deviation is still almost the same because α�  is still 
a small value. The minimum and maximum values (−9.1 and 8.4) again seem to suggest 
a possible symmetry in the differences between mean values of VTEC and VTECe. The 
module of the mean absolute error α  of the estimation is 4.3 TECU with standard 

deviation of 3.1 TECU. The maximum error of all estimations is 9.1 TECU. In terms of 
relative error ε it was found that the estimations had error of 13.2% in average. 
Alternatively, this indicates an agreement in 86.1% of the cases. Although the absolute 
errors are greater for higher solar activity period, the relative errors are less than that for 
the period of low solar activity. This is an artifact due to the higher values of TEC as an 
outcome of the high activity itself. 

Table 3 summarizes the overall results achieved in this investigation, involving all 
results both for low and high solar activity. The average absolute error of all estimations is 

Table 1. Statistics of the solutions obtained during the low solar activity period. 

 VTEC 
[TECU] 

VTECe 
[TECU] 

α 
[TECU] 

α  

[TECU] 

ε 
[%] 

100 − ε 
[%] 

Mean 18.7 19.1 0.4 3.0 16.7 83.3 
Std. Dev. 4.7 4.4 3.7 2.0 11.4 11.4 
RMS - - 3.6  20.1 - 
Minimum 12.4 12.6 −5.9 0.2 1.4 62.2 
Maximum 32.2 29.0 5.7 5.9 37.8 98.6 

Table 2. Statistics of the solutions obtained during the high solar activity period. 

 VTEC 
[TECU] 

VTECe 
[TECU] 

α 
[TECU] 

α  

[TECU] 

ε 
[%] 

100 − ε 
[%] 

Mean 35.4 34.3 −1.1 4.3 13.2 86.8 
Std. Dev. 9.7 9.1 5.3 3.1 10.3 10.3 
RMS - - 5.3 - 16.6 - 
Minimum 20.6 20.9 −9.1 0.1 0.3 68.1 
Maximum 60.0 59.7 8.4 9.1 31.9 99.7 
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equal to 3.7 TECU with standard deviation of 2.7 TECU. The average relative error was 
14.9%, with standard deviation of 10.9%. This indicates that the average relative 
correction of ionospheric delays that would be made possible by using our technique 
would be at least around 85%. 

Looking at the  results in terms of geographical location it can be seen that there are 
a few differences for each station individually. Figs. 6 and 7 show the mean absolute 
errors obtained for each station used during the low and the high solar activity periods, 
respectively. The errors obtained for the period of higher solar activities are obviously 
greater than those for the lower solar activities, with maximum values around double the 
value from the latter. In both situations, smaller errors were found for stations situated 
around the 15° latitude South, exactly those not affected by the equatorial electrojet and 
by the South Atlantic Anomaly. These stations are also located near the center of the 
region, where better estimation performances are expected. The largest errors are more 
readily noticed for the stations on the equatorial electrojet path (CRAT and IMPZ) 
followed by those under the influence of the South Atlantic Anomaly (especially PARA). 
The lowest errors were found for stations CUIB and BRAZ, during both low and high 
solar activities, respectively. 

The case of station IMPZ requires further explanation. Since we tested the 
performance of the model by data deprivation, whenever we removed a station located at 
the border of the region, the situation became a case of extrapolation. Station IMPZ is the 
farthest station from the rest of the stations of the network. Also, it is located along the 
path of the equatorial electrojet. We believe that this combination of extrapolation error 
plus the effect of the equatorial electrojet explains very well the large absolute error value 
it shows. A similar effect impacted station CRAT. Looking a little into the South, an 
analogous reasoning can be used for station PARA. The neighboring stations at the border 
of the region show an absolute error smaller than station PARA, but station PARA is 
under the direct influence of the South Atlantic Anomaly. 

An expected feature that we can observe from Figs. 6 and 7 is that stations within the 
network have the lowest absolute error values. This is particularly noticeable for station 
BRAZ, which has an absolute error value of around 1 TECU even during high solar 
activity.  

Table 3. Synopsis of the results. 

 VTEC 
[TECU] 

VTECe 
[TECU] 

α 
[TECU] 

α  

[TECU] 

ε 
[%] 

100 − ε 
[%] 

Mean 27.4 27.1 -0.4 3.7 14.9 85.1 
Std. Dev. 11.4 10.5 4.56 2.7 10.9 10.9 
RMS - - 4.6 - 18.7 - 
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Figure 6. Mean absolute errors by location for a low solar activity period. 
 

Fig. 6. Mean absolute errors by location for a low solar activity period. 

Figure 7. Mean absolute errors by location for a high solar activity period.
 

Fig. 7. Mean absolute errors by location for a high solar activity period. 
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6. CONCLUSIONS AND FUTURE RESEARCH 

The Neural Network model provided estimates of VTEC values with an average 
absolute error of 3.7 TECU with standard deviation of 2.7 TECU (1 sigma). The average 
relative error was 14.9%, with standard deviation of 10.9% (1 sigma).  

The worst absolute error results were obtained in periods of high solar activity. The 
worst relative error results were obtained in periods of low solar activity, due to a lower 
absolute TEC value during low solar activity periods. In absolute terms the performance 
of the Neural Network model was better during low solar activity periods (3.1 TECU and 
4.3 TECU, respectively). 

The worst average error results were obtained for station IMPZ for two reasons. It lies 
under the equatorial electrojet and, being the farthest from the others, when used as test 
station it was located outside the region formed by the stations used in the training 
process. 

According to these preliminary results the Neural Network model can correct 
approximately 85% of the ionospheric refraction, providing values which can be used by 
single frequency receivers located inside or near the borders of the network region. We 
believe that these results can be improved if a more comprehensive manipulation of the 
input data set is carried out. This would bring improvements to the estimations. In this 
paper, the technique used to compute TEC values for each station is not an optimal 
approach, because it depends on an ambiguity term that is not fixed. Data from other 
regions can also show different performances when using this technique. 

Even though the distribution of tracking stations in the network used in this research is 
sparse, the model produced good estimations. With a larger number of stations we expect 
an improved stability and reliability of the model estimations. further research is 
underway using data sets generated with more dense GPS networks and with larger 
geographical coverage. Our further research also involves the estimation of VTEC values 
for real time scenarios. 

We used five days periods of high and low solar activity which were only about six 
months apart from each other. For future research it would also be interesting to compare 
measured and predicted TEC values over a larger time periods. 
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