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ABSTRACT

A Neural Network model has been developed for estimating the total electron content
(TEC) of the ionosphere. TEC is proportional to the delay suffered by electromagnetic
signals crossing the ionosphere and is among the errors that impact GNSS (Global
Navigation Satellite Systems) observations. onospheric delay is particularly a problem
for single frequency receivers, which cannot eliminate the (first-order) ionospheric delay
by combining observations at two frequencies. Single frequency users rely on applying
corrections based on prediction models or on regional models formed based on actual
data collected by a network of receivers. A regional model based on a neural network has
been designed and tested using data sets collected by the Brazlian GPS Network (RMBC)
covering periods of low and high solar activity. Analysis of the results indicates that the
model is capable of recovering, on average, 85% of TEC values.

Key words: total electron content, ionosphere, argi ionospheric model, neural
network

1. INTRODUCTION

lonospheric refraction is one of the most harmftfeas on GPS signals. It is
proportional to the total electron conteMEC), which corresponds to the number of free
electrons contained in the ionospheric laygoftnann-Wellenhof, 2001). TEC is defined
as the number of free electrons contained withoma meter squared column, along the
path of the signal through the ionosphere. It mimber associated with a slant trajectory
with respect to the local zenith, as a functionthad elevation angle of the satellite. In
addition to that, the signal goes through the iphese at coordinates different from those
of the station, at the ionospheric piercing point.

It is possible to determine the delay caused byidhespheric refraction on a GPS
signal onceTEC is known. The refraction is a function of the fuegcy because of the
dispersive character of the ionosphere. The dedaybe determined from dual-frequency
observations for the site where the receiver iatked.

For single frequency receiver users, one alteraawsing a regional model DEC,
generated by realizing measurements of a dual émmureceiver network. In general,
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from a network of spatially distributed receivergréd of TEC values can be generated.
From this gridTEC values can be inferred to any position inside earnthe region
covered by the tracking network, making it possibdecorrect the single-frequency
receiver observations.

In this paper we explore a new approach to regid&& modeling, using a Neural
Network model.

2. COMPUTING VERTICALTEC FROM DUAL-FREQUENCY
RECEIVERS

The computation of VerticalEC (VTEC), using dual frequency observations, results
in the determination o¥/TEC values for each station. We are using a simpleenfmt
VTEC computation since our final goal is to estimg®EC for void areas, i.e., for areas
where there is not an observing receiver. Simiues can be computed using different
techniques, probably providing better quality ingata to the regional model.

The receivers located at the study area did nouisegpseudoranges at both
frequencies. Only carrier phases were observedeattwo GPS frequency bands. To
overcome this limitation, we implementedT&C computation model totally based on
carrier phase observations. In this section we sheWEC computation model developed
as part of this research, which formed the bagighe estimation using artificial neural
networks.

We start by modelling the carrier-phase measuresmemtwo frequencied { andL,)
as:

Agia(t) = o7 (1) = 121(t) + T3(t) + SPa(t) e+ ANS, 1)

Aofra(t) = A7 (1)~ 1752(t) + T35 (t) + o(t) e+ ANT (2)

where A; and A, are the carrier phase wavelengths, in metgfs(t) and g7, (t) are

carrier-phase measurements for a receivand a satellites, in cycles, pf (t) is the

geometric distance between receiver and satetiitenaas, in meterd,’; (t) and | (t)
represent ionospheric refraction, in metefs; (t) and T3 (t) represent tropospheric

refraction, in metersgyy (t) and J;% (t) are the combinations of the satellite and receiver

clock errors, in seconds,is the speed of light, in meters per second, higd and N>,
are the carrier phase ambiguities, in cycles. The argument is representedtby
Subtracting Eq.(2) from Eq.(1) gives:
-S
Aoz (t) = Agra(t) = 179(t) ~ 17 2(t) + A NS = AN? ®3)
The terms due to geometric distance, troposphefiydand clock errors are cancelled

out since they are the same for both frequencieshé absence of a cycle slip the
ambiguity terms are constant. The ambiguity term&ath frequencies are combined into

a constant tern€;” :
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CP = AN = ANPy. (4)
Substituting Eq.(4) into Eq.(3) we get:
Aot (t) = Angra(t) = 17a(t) - 17 (1) + CF . (5)

The influence of ionosphere on GPS signal$ (and I) can be computed by
(Hoffmann-Wellenhof, 2001; Leick, 2004):

s - 40.3TEC

ri ( f1)2 (6)

and
S = 40.3TEC
2= 5
(f2)
wheref; andf, are the frequencies of the andL, carrier signals, in Hz, antEC is the

total electron content in electrorsL0'® m=2. Substituting Egs.(6) and (7) into Eq.(5), the
following expression is obtained:

(@)

(1) (f2)°
Eq.(8) can be evaluated, after elementary opestas
TEC +9.5CF = 9.5:<A2¢§2 (t) —A@fl(t)) . 9)

A mapping function must be used to account foriisénation and the position of the
piercing point, allowing the computation\6TEC directly:

A2¢fz(t)—aj¢:‘1(t):TEc[ﬂ—ﬂ}cﬁ ®)

TEC = ,LVTEC , (10)
sinv

where 1/sinv is the mapping function term that accounts for patiination, defined as

a function of the elevation angleof the satellite as perceived from the observing station.
The function to model the latitude and longitude dependenca klinear model
(Komjathy and Langley, 1996):
1
TEC =——(ap +aAp+asAAl), 11

o (80 T abg+aii) (11)
where Ag and A1 are differences in latitude and in longitude between the obgsrvat
point and the ionospheric piercing point, respectively, afdy, anda, are unknown

coefficients of the bilinear model. Substituting Eq.(1d)oi Eq.(9) we get the final
expression used in this work:

1 s _ s 3 45
— (a0 +aihp+ a0) +0.5T7 = 9.5914%,(1) - A 974(1)) (12)
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This expression allows computation of the coefficiegtsa; anday, and a consequent
determination ofVTEC for the tracking stations using measurements collected for al
visible satellites during a certain period of time.

The 3 coefficients as well as the ter@f, one for each satellite, are estimated in

a least squares parametric adjustment. If a cycle slip ocdsradtessary to add another
term to determine the combined ambiguities and the adjustimests one degree of
freedom. In the case of many cycle slips it may be bettgntwre the satellite altogether,
avoiding an excessive increase in the number of ambiguity pamamet

There will be a total of 3 $ unknowns,s being the number of satellites. The total
number of observations is equal to the summation of alirubsons collected for every
satellite.

For simplification we assumeEC is a constant value during a one-hour period. This
period provides a large enough number of degrees of freedibma adjustment to attempt
to successfully estimate the parameters containing phase atiaiigliihe operational
restriction we faced (the receivers did not acquire pseudoramgg) forced us to rely
solely on carrier phase measurements, causing our approacketousigfer a situation of
high variation of the ionospheric activity.

At the outset there will be ¥TEC value associated with each station of the network,
valid for the one hour period used in the computation desdgrabove. The computed
value of VTEC represents the average ionospheric activity over the one kedrim the
TEC computation, for each of the stations. These values are pg¢ @ the Neural
Network Model, which will predict TEC values for any point in the region covered by
the network, for the same time period (1 hour).

3. NEURAL NETWORK MODEL

A Neural Network is an information processing systenmfxt by simple processing
elements, called artificial neurons, or simply neurong. F shows an artificial neuron
model. The input signal of the neuron is manipulatedn®ans of synaptic weights.
Synaptic weights are parameters which are adjusted duringrativié adjustment process
known as training process. After the training process anadictivfunction is applied to
all neuron processes to generate the output signal. The netwalrk also includes a term
that is applied externally, called bias, and represented in Fig.l . The bias has the
function of increasing or decreasing the neuron input. énctiee of a linear activation
function, the neuron plays the role of a regression limeadel. The processing of
a neurork can be represented by:

m
Vi =) D (5w )+ |, (13)
i=1
wherey is the neuron outputy is the activation functionm is the number of input
parametersx is the input parametew is the synaptic weight arlis the bias.
The range of the normalized amplitude of a neuron processs uaitiein the range
[0,1] or [-1,1]. This range depends on the type of activation functed.u
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Additional layers of neurons, called hidden layers, can Wedated into the neural
network. The input signal of the first hidden layer coffines the input layer. The output
signal of the last hidden layer is used to generate the sigoal to the output layer.
A neural network model may have more than one hidden laperniodel resulting from
adding hidden layers between the input and output layealled Multilayer Perceptron
(MLP). The MLP is not the only type of neural networkdah but is one of the most
popular ones. In this work we have used an MLP.

Once a neural network model is defined, it is necessary toitraith data. The data is
composed of a set of known input and output parameters. tiEi@ng process
corresponds to an adjustment of the synaptic weights toatse sg¢t. This adjustment
attempts to decrease the residuals (difference between the compigetdand the known
output) of the output of the network, by means of aratgadf the synaptic weights. Due
to the complexity of neural networks the adjustment cahaalone on a single step. An
iterative adjustment of the synaptic weights is performededadthining algorithm. One
of these algorithms is the Back-Propagation Training Allgor, which is composed of
two steps. Details about neural network training procesedound inHaykin (1999).

A comprehensive introduction to neural network applicationsggeodesy and space
research can be found ireandro and Santos (2004) and Tulunay et al. (2004a). Other
types of neural network applications for ionosphere modedirg also explored in
McKinnell (2002) andTulunay et al. (2004b).

A neural network model was designed to estimate/tieC for a given position. The
input parameters are latitude and longitude, while the bytptameter iSVTEC. The
training parameters are the known coordinates\AreC values of each station of the
GPS network at a given time. Once the model is trained we GamatsaVTEC to any
position inside or near the region covered by the GPS netiwathe given time. Input
parameters related to time variability of ionospheric activiuch as parameters
representing geomagnetic and solar activities were not used beaaubis case, the
neural network/TEC estimations are supposed to be made only for the same jreriod
which TEC values were computed from the GPS receivers network. Thert#feraeural
network models the regional behaviour of the ionosphere $peeific time period, in our
case, of one hour.

Synaptic Weights
Activation
Function

Xz%\ Y60 Yy
‘ / Output
Signal

Blas

Ee

Input Signal

i

Fig. 1. Nonlinear artificial neuron model (adapted frétaykin, 1999).
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Fig. 2. The Neural Network Model.

Fig. 2 shows the scheme of the neural network model ustdsi investigation. Two
hidden layers were used, each one with five neurons. The amtiatiction of all layers
(except the input one) is the hyperbolic tangent sigmaidtion, represented by:

2
P(¥)= b (14)

wherex is the input signal of the neuron.
The Levenberg-Marquardt back-propagation algorithas used to train the neural
model. The neural network processing was carriednoMatLab.

4. ANALYSIS STRATEGY

Data from a subset of the Brazilian active contretwork (RBMC) were used in this
investigation. Fig. 3 shows the locations of tlaighs used.

The continental coverage of the network can beidensd one additional challenge
for testing the capability of the model to estim@iE#E over large areas.

Fig. 4 shows a flowchart of the data processing dach given time. For each
determination ofVTEC, one of the network stations was not used durhmg rieural
network training process. This particular stati@tdme a test station. After the training
process the model was used to estimate/iliteC value for the test station without any
further modification. This estimate value is theampared with the GPS deriva@lEC
value (Eqgs.(1)(12)). The difference is the estimation error af teeural Network Model.
This procedure was repeated for each one of thetdtions allowing us to assess the
performance of the model everywhere in the studg.ar

The training and testing procedure was performedéeh isolated station using two
different periods of five days each. The first wvaaperiod of low solar activity (from
February 1st to February 5th 2004) and the otharavaeriod of high solar activity (from

284 Stud. Geophys. Geod., 51 (2007)



A Neural Network Approach for Regional Vertical Total Electron Content Modelling

Fig.3. Stations of the RBMC.

October 26th to October 30th 2003). Fig. 5 showsdlar radio flux for years of 2003
and 2004. The days used as low solar activity desi@ shown as circles and the ones
used for high solar activity are shown as triangles

For each daywTEC values were computed at 12:00 LT, 14:00 LT and0Q&T
(where LT stands for local time), correspondinghree training and testing procedures
per day per station. These times of the day weoserhin order to test the model near the
time of the day with higher ionospheric activitiestound 12:00 LT according to
Klobuchar (1987). According to this procedure the total number stfreations would be
330 for the 11 stations, however, due to the alesehdata of some stations for some of
the days used, 318 estimations were performedtah tAs mentioned before, the period
used forTEC computation was 1 hour.

Due to the small number of receivers and the prna@eddopted fofEC computation,
the number of patterns available to be used iméwal process was small. A total of 10
patterns were used for training the model, eachrelaed to one of the receivers of the
network. Because of this limitation the use of st et (set of patterns used prior to the
estimations to verify the generalization capabildf the model) was not possible.
However the results show that the generalizatigralbéity of the model is good, even
with stations poorly distributed across the region.
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‘ VTEC computation for the 11 Stations ‘

\,
‘ Choose the test Station ‘

v
Training process of the Neural Network
with data of the remaining 10 Stations

l

Estimation of VT EC for the test Station
using the Neural Network Model

l

Comparis on of the estimated VTEC
with the known value

A

|

Change the test Station -« All Stations tested?

End

Fig. 4. Flowchart of the data processing.

5. ASSESSMENT OF RESULTS

In our analysis we assessed both absolute andvesktrors. The absolute errM
can be computed according to:

|la| = VTEC, -VTEC|, (15)

where a represents the error in the estimationMiEC,. VTEC represents the value
computed from GPS observations using the dual-&eqy algorithm described in
Section 2, andVTEC, is the predicted value ofTEC as computed using the Neural
Network model presented in Section 3. Both quadtithire expressed in units BEC
(TECU). The relative errags can be computed according to:

£= ﬂ x100. (16)
VTEC
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The less the absolute and relative errors are,ctbser VTEC, and VTEC are.
lonospheric delay can be corrected with an accusauoilar to the estimation ofEC due
to the direct relationship betwedfEC and ionospheric delay. Therefore, accuracy of
VTEC estimation can be considered the same as theamgcof correcting ionospheric
delay to single frequency receivers.

In this investigation a total of 318 estimationsrevénade with the neural network
model, involving different station configurationdays and times of day. Half of those
estimations were made for a period with low soletivity whereas the other half were
performed when the sun was very active. The reanéiggrouped in order to compare the
GPS-derived values MTEC with the ones originating from the Neural Netwskution
VTECe. This comparison is provided in terms of thean errorr and the mean absolute

error |a|, as given by Eq.(15), the relative ermras given by Eq.(16), and the relative

correction (100%- &). For the sake of this comparison, the GPS-denxaddes ofVTEC
are considered as a bench mark. The differenceslfoulicate the error in the values of
VTEC.. The mean errord) shows the mean bias of the estimations with i&sfethe
known values ofVTEC. The mean absolute err¢m| gives a quantity for the average
estimation error as well as for its standard démiatStandard deviation and RMS are
given in 1-sigma values.

Table 1 summarizes the results obtained for the &wlar activity period. The
difference between medEC and meaVTEC,, i.e., the mean errar equals 0.4 TECU,
which corresponds to approximately 7 cm of delayhatL; frequency. Sincex (which
could be considered as a bias) is very small, pheasl of the difference as given by both
the RMS and the standard deviation is almost the same. minénum and maximum
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Table 1. Statistics of the solutions obtained during the $mlar activity period.

VTEC VTECe a lal £ 100- &

TECU TECU 0 9

[ 1 [ 1 [TECU] [TECU] [%] [%]
Mean 18.7 19.1 0.4 3.0 16.7 83.3
Std. Dev. 4.7 4.4 3.7 2.0 11.4 11.4
RMS - - 3.6 20.1 -
Minimum 12.4 12.6 -5.9 0.2 1.4 62.2
Maximum 32.2 29.0 5.7 5.9 37.8 98.6

values £5.9 and 5.7) indicate a possible symmetry in tlfieidinces between me&fEC
and mean/TEC,. The mean absolute errp1| of the estimation is 3 TECU with standard

deviation of 2 TECU. In terms of relative ermit was found an average value of 16.7%.
Alternatively, indicating an agreement in 83.3%ttf cases.

Table 2 summarizes the results obtained for thén fEglar activity period. The
difference of meaVTEC and meanVTEC,, i.e., the mean errar equals to-1.1 TECU,
which corresponds to approximately 18 cm of delayha L, frequency. This values is
more than twice the one for the low solar actiyigriod. The spread of the difference as
given by both th&MS and the standard deviation is still almost theesherauser is still
a small value. The minimum and maximum value®.1 and 8.4) again seem to suggest
a possible symmetry in the differences between nwvedures ofVTEC and VTEC,. The

module of the mean absolute errfzxr| of the estimation is 4.3 TECU with standard

deviation of 3.1 TECU. The maximum error of alliesttions is 9.1 TECU. In terms of
relative error¢ it was found that the estimations had error of2%3.in average.
Alternatively, this indicates an agreement in 86.&#4he cases. Although the absolute
errors are greater for higher solar activity peritte relative errors are less than that for
the period of low solar activity. This is an artifalue to the higher values ©EC as an
outcome of the high activity itself.

Table 3 summarizes the overall results achievethis investigation, involving all
results both for low and high solar activity. Theegge absolute error of all estimations is

Table 2. Statistics of the solutions obtained during tighlsolar activity period.

VTEC VTECe a E £ 100- ¢
TECU TECU 9 9
(TECU] | [TECU] | [TECU] | pay | B | [
Mean 35.4 343 1.1 43 132 86.8
Std. Dev. 9.7 9.1 5.3 3.1 10.3 10.3
RMS - - 5.3 - 16.6 -
Minimum 20.6 20.9 9.1 0.1 03 68.1
Maximum 60.0 59.7 8.4 9.1 31.9 99.7
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Table 3. Synopsis of the results.

VTEC VTECe a la] £ 100- ¢
TECU TECU 0 9
[TECU] | [TECU] | [TECU] | poy, | [ (%
Mean 27.4 27.1 0.4 3.7 14.9 85.1
Std. Dev. 11.4 10.5 4.56 2.7 10.9 10.9
RMS - - 4.6 - 18.7 -

equal to 3.7 TECU with standard deviation of 2. 7CLE The average relative error was
14.9%, with standard deviation of 10.9%. This imadés that the average relative
correction of ionospheric delays that would be madssible by using our technique
would be at least around 85%.

Looking at the results in terms of geographicahtmn it can be seen that there are
a few differences for each station individuallyg$:i6 and 7 show the mean absolute
errors obtained for each station used during tkedad the high solar activity periods,
respectively. The errors obtained for the periochigher solar activities are obviously
greater than those for the lower solar activitigdh maximum values around double the
value from the latter. In both situations, smakerors were found for stations situated
around the 15latitude South, exactly those not affected byebeatorial electrojet and
by the South Atlantic Anomaly. These stations de® docated near the center of the
region, where better estimation performances apeard. The largest errors are more
readily noticed for the stations on the equatogkdctrojet path (CRAT and IMPZ)
followed by those under the influence of the SoMtlantic Anomaly (especially PARA).
The lowest errors were found for stations CUIB &RIAZ, during both low and high
solar activities, respectively.

The case of station IMPZ requires further explamati Since we tested the
performance of the model by data deprivation, wkiengve removed a station located at
the border of the region, the situation becamese cé extrapolation. Station IMPZ is the
farthest station from the rest of the stationshaf hetwork. Also, it is located along the
path of the equatorial electrojet. We believe thi combination of extrapolation error
plus the effect of the equatorial electrojet expaiery well the large absolute error value
it shows. A similar effect impacted station CRATodking a little into the South, an
analogous reasoning can be used for station PARA.rEighboring stations at the border
of the region show an absolute error smaller thatiom PARA, but station PARA is
under the direct influence of the South Atlanticofmaly.

An expected feature that we can observe from Bigsd 7 is that stations within the
network have the lowest absolute error values. Ehigarticularly noticeable for station
BRAZ, which has an absolute error value of arounBECU even during high solar
activity.
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Fig. 7. Mean absolute errors by location for a high sataivity period.
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6. CONCLUSIONS AND FUTURE RESEARCH

The Neural Network model provided estimates\M@fEC values with an average
absolute error of 3.7 TECU with standard deviatbr2.7 TECU (1 sigma). The average
relative error was 14.9%, with standard deviatib@@9% (1 sigma).

The worst absolute error results were obtainedeiriods of high solar activity. The
worst relative error results were obtained in pdsiof low solar activity, due to a lower
absoluteTEC value during low solar activity periods. In abgelterms the performance
of the Neural Network model was better during laas activity periods (3.1 TECU and
4.3 TECU, respectively).

The worst average error results were obtainedtédios IMPZ for two reasons. It lies
under the equatorial electrojet and, being thenémtt from the others, when used as test
station it was located outside the region formedthy stations used in the training
process.

According to these preliminary results the NeurattWbrk model can correct
approximately 85% of the ionospheric refractiorgyiding values which can be used by
single frequency receivers located inside or nkarbiorders of the network region. We
believe that these results can be improved if aencomprehensive manipulation of the
input data set is carried out. This would bring ioyements to the estimations. In this
paper, the technique used to compUEC values for each station is not an optimal
approach, because it depends on an ambiguity teamis not fixed. Data from other
regions can also show different performances wisémgtthis technique.

Even though the distribution of tracking stationgtie network used in this research is
sparse, the model produced good estimations. Wiingar number of stations we expect
an improved stability and reliability of the modektimations. further research is
underway using data sets generated with more d&k® networks and with larger
geographical coverage. Our further research algahias the estimation ofTEC values
for real time scenarios.

We used five days periods of high and low solaivaigtwhich were only about six
months apart from each other. For future resedralould also be interesting to compare
measured and predict@&C values over a larger time periods.
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