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Abstract: Managing a catchment with a high proportion of agricultural land use for the supply of potable 
water supply is a difficult task if one has to maintain a reasonable balance between water quality demand and 
consequent restrictions for the farming industry. In this paper we present a neural net based method for 
finding optimized approximations to solve this problem. This method is capable of “inverting” a 
hydrological model to identify land use scenarios that match leaching criteria defined for establishing a 
certain water quality level in the stream best. The method allows not only to simulate land use scenarios like 
hydrologic models do, but can search systematically for land use scenarios that fulfill specified criteria 
without worrying about complexity of combinational optimization. 
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1. INTRODUCTION 

In regions with little groundwater storage a major 
resource for the supply with potable water are 
reservoirs. Before Germany was reunited, 
reservoirs in the eastern part were often built 
without accounting for the specific land use 
conditions in the contributing area. Reservoirs 
were even established in catchments with intensive 
agriculture. As a consequence, a water quality 
problem results which can be traced back mainly 
to two impacts: diffuse nutrient leaching from 
farmland on the one hand and improperly treated 
waste water from settlements on the other. In order 
to solve this problem innovative and flexible 
catchment management strategies have to be 
developed.  
A reservoir system showing this controverse 
problem in a typical manner is the Weida-
Zeulenroda-Lössau system located in eastern 
Thuringia federal state of Germany, which is 
managed by the Thuringian reservoir 
administration (TTV). Two thirds of the 
reservoir’s catchment of is used for intensive 
agriculture (Arbeitsgemeinschaft  
Trinkwassertalsperren e.V., 2000).  
At present the diffuse nitrogen (N) input from 
agricultural land is compensated by field-specific 

measures. These contain land use fertilization 
restrictions which are based on legal rules and 
individual contracts between the TTV and the 
farmers. However, land use restrictions have to be 
compensated financially. As the TTV has only a 
limited annual budget for compensation payments 
it is therefore interested in making the best use of 
it. They intend to impose restrictions only where it 
is necessary and want to control whether the 
farmers really restrict to the restrictions and keep 
in line with individual contracts. 
The TTV supervises such restrictions with the help 
of the following procedures: 
1. questioning of the farmers about the land use 

management of the individual fields, 
2. mineralised nitrogen soil analyses (Nmin-

analyses) of the individual fields and 
3. measurement of the nitrogen concentration and 

the water amount at the main inflow of the 
Zeulenroda reservoir. 

From the farmer’s answers to the questionnaires 
N-balances are derived and compared with the 
Nmin-analyses. The significance of the Nmin-
analyses is limited because only five samples are 
taken once a year per field regardless of its size 
(Thres et al., 1998). A further difficulty is the fact 
that gauge measurements at the main inflow only 
reveal lumped information from the catchment 



area in total and not from individual farm fields. In 
addition these procedures only permit an 
evaluation of land use at a certain point in time. As 
a consequence an inspection of the efficiency of 
individual measures on different fields is hardly 
possible. Therefore it is very difficult to derive 
forecasts for alternative land use practices by 
means of past land use data. 

2. THE  IWES  PROJECT 

In order to find a solution to this management 
problem a research project was launched in 
cooperation between the TTV and the University 
of Jena (Germany). The overall objective of this 
project is the development of an integrated 
decision support system for watershed 
management called IWES (Integriertes 
wasserwirtschaftliches Entscheidungs- 
Unterstützungssystem, Fink et.al., 2001). IWES is 
supposed to support TTV managers who are 
responsible for the generation of land use 
scenarios. This support should ensure that only 
land use scenarios characterised by the following 
properties are generated: 
1. Reduction of the nitrogen concentration in the 

reservoir in order to 
• observe the legal boundary values for 

nitrogen concentrations and 
• reduce the expenditures for the 

management of the water body of the 
reservoir. 

2. Minimization of the payments for the farmers. 
The generation of land use scenarios which fulfill 
both objectives is representing the project’s 
optimization problem. Due to the enormous range 
of the parameters which must be considered this is 
a very difficult problem whose exact solution is 
intractable in practice. This paper therefore will 
present a procedure that finds good 
approximations to the optimal solutions. 

3. STUDY AREA 

The catchments of the reservoirs of Weida- 
Zeulenroda and Lössau are located in the 
Thuringian Slate Mountains and have an area of 
about 249 km² (Figure 1). The reservoirs of 
Zeulenroda and Weida drain via the river Weida 
into the river Weisse Elster, and the Lössau 
reservoir drains via the river Wisenta into the river 
Saale. A tunnel viaduct connects both dams with 
each other. It permits water transfer from the 
Lössau into the Weida-Zeulenroda reservoir, thus 
merging both catchments into one management 
unit. The altitude in this catchment varies between 
270 and 650m over NN. Located in the rain 

shadow of the Thuringian Forest the annual 
average precipitation is only approx. 640mm. The 
annual average temperature is also low with less 
than 7° C. The geology is dominated by clay shists 
and eruptive rocks. The soils developed from this 
bedrock range from shallow rankers to well 
developed cambisols and fluvisols in the river 
valleys. The predominant part of the area is used 
for agriculture (67%) and forestry (27.5%). 
Settlements and traffic areas have a portion of 
5.2% and water areas cover about 0.3% of the 
catchment (Thüringer Talsperrenverwaltung, 
1999). 

 
Figure 1. The location of the Weida-Zeulenroda 

and Lössau catchment. 

4. THE HYDROLOGICAL MODEL 

4.1 Properties 

An optimization procedure of the described kind 
cannot be built without knowledge about the 
relationship between the field-specific land use on 
the one hand and the nitrogen concentration in the 
reservoir on the other. For the computation of this 
relationship the water and nitrogen modelling tool 
WASMOD (Water and Substance Simulation 
Model, Reiche, 1994/1996) is used. Since the 
measures for nitrogen reduction are applied to 
single agricultural fields the model must not only 
operate on the catchment scale but also on the plot 
level. WASMOD simulates both simultaneously 
and calculates the nitrogen discharge as a function 
of soil, relief, land use and climate. An application 



of WASMOD presumes that GIS-layers of soil, 
relief, land use, river network, sub-catchments and 
relief units (slopes, sinks and plains) are 
assembled to smallest common geometries 
(SCGs). They in turn are linked by their topology 
and water and solute transport is routed between 
them as shown in Figure 2: The model calculates 
the water and substance balances in each of the 
SCGs and routes the fluxes to the next 
downstream polygon where the calculation starts 
again. This process ends at the receiving stream 
where all fluxes are added up. The sum represents 
the model output for the whole catchment. 

 

 
Figure 2. Model routing scheme of WASMOD. 

WASMOD was developed to simulate this 
interactive process dynamics and therefore is the 
appropriate mean to evaluate the impact of land 
use change and  scenarios of climatic change. 

4.2 Results 

In Figure 3 the simulated and observed runoff for 
the year 1976 at a daily time step is shown. The 
coefficient of determination (R²) for our 
calculation amounts to 0.72. According to the 
simulation the base flow during the drought is too 
high but the general dynamic is well represented.  
However, we will furthermore improve the model 
performance and validations is in progress. 

 
Figure 3. Simulated and observed runoff in m³/s 

of the gauge Laewitz (ca. 100km²). 

Figure 4 and Figure 5 show the distribution of 
nitrogen output per year in the two main flow 
pathways: (i) Interflow (Figure 4) represents the 
lateral component and (ii) groundwater discharge  
(Figure 5)  the vertical one. 

 
Figure 4. Nitrogen output due to interflow within 

the catchment of the gauge Laewitz (approx. 
100km²). The darker colours indicate higher 

output. 

 
Figure 5. Nitrogen output due to groundwater 

discharge of the catchment of the gauge Laewitz. 

Groundwater discharge is mainly controlled by the 
physical properties of the geological strata. The 
river valleys as well as the eruptive bedrock can be 
identified, as the underlying rock is more 
permeable. For the case of interflow discharge 
(Figure 4) the picture becomes more complex. It is 
caused by different crops on various soils, bedrock 
and topography conditions. 

5. THE OPTIMIZATION PROBLEM 

As the main objective of the TTV is to reduce 
nitrogen inflow into the reservoir the TTV intends 
to reduce the nitrogen fertilization and consequent 
leaching to a threshold value the water body is 
able to compensate by its internal biochemical 



dynamics. To compensate farmers income losses 
compensation payments must be done. Land use 
restrictions therefore must be agreed on in such a 
way that reduction of nitrogen leaching is 
maximised and consequent compensation payment 
is minimized. Consequently the core element of 
DSS developed is focusing on relevance of 
nitrogen reduction of the individual fields in 
relation to the threshold value set for the reservoir 
input.  
The technique applied therefore comprises “real 
world” land use scenarios which can be accounted 
for by financial resources available for 
compensation. The intention of this strategy is to 
find the “best” land use scenario to produce the 
leaching threshold into the reservoir. The research 
problem is twofold: (i) there is a large number of 
scenarios to be examined, and (ii) hydrologic 
models are often too fine grained that it is hardly 
possible to consider all possible scenarios. We 
therefore developed a procedure that does not 
attempt to always find exact solutions to this 
optimization problem. Its primary objective is to 
identify very good approximations to the exact 
solutions. For a given configuration of land use on 
the specific fields this leaching is simulated by 
WASMOD. 

6. THE NEURAL NETWORK APPROACH 

Our optimization procedure applies the concept of 
neural networks (Gallant, 1995). Neural networks 
consist of simple autonomous processing units 
(neurons) which are joined by directed 
communication paths (edges). Each edge is 
parameterised with a numeric value (weight) 
which specifies the strength of the connection 
between the connected neurons and thus the ability 
to pass signals. A so-called activation function is 
assigned to each neuron enabling it to calculate an 
output signal dependent on the input signals 
received over incoming edges. This output is then 
propagated to neighbouring neurons. A neural net 
can therefore be seen as a machine which 
computes a function that is characterised by a 
possibly large set of parameters (represented by 
the weights). There are learning algorithms that 
can fine tune the parameters of a given neural net 
such that the function computed by this net 
approximates a given function (in our case the 
nitrogen threshold value defined by the TTV) as 
good as possible. Neural nets are therefore 
especially suited to solve optimization problems. 

6.1 Representing the Catchment 

Network topology: For the segmentation of the 
catchment we refer to the SCG used by 

WASMOD as modelling entities. We applied a 
modified Backpropagation network to represent 
the catchment. It possesses one neuron (fertilizer 
input) in the input layer and one neuron in the 
output layer, the latter is representing the 
catchment. The remaining neurons represent the 
catchment area in the following way: 
1. each SCG is represented by a unique (SCG) 

neuron, 
2. for an hydraulic linkage between two SCGs 

there is an (interflow) edge between the 
neurons representing the SCGs, 

3. for an hydraulic linkage between a  SCG and 
the catchment outlet there is an (groundwater 
discharge) edge between the corresponding 
neurons, 

4. the input neuron is connected via (fertilisation) 
edges to all neurons except the output neuron. 

Since WASMOD distinguishes between two main 
runoff components (namely groundwater 
discharge and interflow), each SCG neuron 
possesses exactly two outgoing edges: via the 
interflow edge it is connected to another SCG 
neuron or (in special cases) the output neuron. The 
groundwater discharge edge connects the neuron 
to the output neuron. We can distinguish between 
the following types of hydraulic linkages that are 
represented by edges in the network: 
1. surface runoff and interflow between SCGs 

(class E1), 
2. groundwater discharge from the SCGs into the 

catchment outlet (class E2) and 
3. surface runoff and interflow from the SCGs 

into the catchment outlet (class E3). 
The edges from the input neuron to SCG neurons 
(class E4) represent external nitrogen inputs 
(fertilisation etc.) which are dependent on the 
current land use management of the SCGs.  
Activation function: The activation functions 
represent approximations of the nitrogen discharge 
functions of the SCG neurons. In order to 
determine that function for each SCG neuron 
sampling points of the nitrogen discharge for the 
SCGs are calculated by WASMOD. The discharge 
function has the following properties: 
1.  It maps the amount of nitrogen which is 

applied to the SCG to the amount of nitrogen 
delivered from the SCG. 

2. It takes into account all further location-
specific characteristics of the SCG which are 
modelled with WASMOD. 

The sampling points form the basis for a linear 
regression, which is used to approximate the 
activation function of the neuron representing the 
SCG. The input and output neuron are assigned 
the identity function as activation function since 
they just have to transmit incoming data. 



Edge weights: The weights at the outgoing edges 
of the input neuron (E4) correspond to the nitrogen 
input which is supplied to the SCGs (e.g. by 
fertilisation). They are the parameters which will 
have to be optimised later on by our procedure. 
The weights at the outgoing edges of the SCG 
neurons are computed with the help of WASMOD. 
They reflect the relevance of the discharge 
components of the SCG and thus the proportions 
of the transmitted nitrogen quantities. 
Figure 6 shows a network (right part) which was 
computed from the data of a subcatchment with 
762 SCGs (left part). In order to simplify the 
picture only edges of the class E1 are shown. As 
can be seen the spatial topology of the catchment 
is maintained in the net, i.e. the position of each 
neuron in the figure corresponds to the position of 
the center of area of the associated SCG in the 
catchment. 

 
Figure 6. Neural Network − derived from the 

topology of a catchment area. 

6.2 Formal NN Representation 

The neural network represented in the last section 
can be formally described as follows.  
Definition: The Hydro-NN is a tuple 

),,,,,( exNEToutputAWU  with: 

1. U  is a set of neurons with: 

(a) nUUU ∪∪= K1  with 3≥n , 

(b) ∅≠iU  for { }ni ,,1 K∈ , 

(c) ∅=∩ ji UU  for ji ≠ , 

(d) }{1 inuU =  is the input layer with the 
input neuron inu , 

(e) }{ outn uU =  is the output layer with the 
output neuron outu , 

(f) U
ni

iinner UU
<<

=
1

 is the set of the inner 

neurons. 

2. RUUW →×:  is the network structure with 
the following properties: 
(a) The corresponding graph is cycle free 
(b) within innerU  only connections between 

neurons of consecutive layers exist: 

1}-n,{2,ifor  ,          
0),(:,

1 K∈∈∈
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+ii

inner

UvUu
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(c) the edges  
),( vuW in  for innerUv ∈  

are called fertilisation edges 
(d) the edges  

),( vuW  for }{, outinnerinner uUuUv ∪∈∈  

are called runoff edges 
(e) there is no fertilisation of the water body: 

0),( =outin uuW  

(f) the weights of the outgoing edges of the 
inner neurons are scaled, i.e. 

∑
∈

=∈∀
Uv

inner vuWUu 1),(:  

3. A  assigns a function RRAu →:  to every 
neuron Uv ∈ for calculating it’s activation ua : 

(a) for inu and outu  holds: 

   exexA
inu =)( , 

outoutout uuu netnetA =)(  
(b) for all other neurons innerUu ∈  the 

activation ua  is calculated via a 
differentiable function uf : 

)()( uuuuu netfnetAa == . 

4. output  is the output of the network, i.e. 

outudef aoutput = . 

5. NET assigns to every neuron iUv ∈  with 
},,2{ ni K∈ a function 

RRRRNET iU
v →×× −1)(:  

for the calculation of the network input 

∑
−∈

+⋅=
1

),(),(
iUu

uinv vuWavuWexnet  

6. ex  is the external input for the input neuron 
inu : 

1defex = . 



6.3 Setting up the Network 

The catchment area from section 3 was used to set 
up our network structure in the way described 
above. For the determination of the edge weights 
and activation functions we used the results of the 
WASMOD hydrological model. For this exercise   
five different fertilisation scenarios with uniform 
nitrogen inputs on all SCGs were defined: 
• scenario 1: no fertilisation 
• scenario 2: 50% of  crop typical (normal) 

fertilisation  
• scenario 3: normal fertilisation 
• scenario 4: 150% of  normal fertilisation 
• scenario 5: 200% of  normal fertilisation 
In order to ensure robustness of our procedure and 
to represent a typical land use we not only 
simulated the five scenarios with the land use data 
from one single year, but also applied the complete  
five year crop rotation to represent the land use 
changes within the catchment: 
• year 1: winter wheat 
• year 2: winter barley 
• year 3: maize 
• year 4: summer barley 
• year 5: winter rape 
This crop rotation was derived from a detailed 
questioning of the farmers and evaluations of 
mapping data. 
Based on the results from the five year modelling 
exercise we computed the average nitrogen 
discharge value for each SCG. Repeating this 
procedure for every scenario we obtained five 
sampling points − one for each scenario for the 
activation function.  
From these five sampling points the activation 
functions of all SCG neurons as well as the 
weights on all edges of classes E1, E2 and E3 was 
derived. Finally values were assigned to all 
weights of edges of class E4 according to the 
fertiliser inputs on the SCGs taken from an actual 
scenario.  
According to the number of SCGs in the 
catchment the resulting network contained 15301 
neurons and 45897 edges. As activation functions 
for the neurons we chose 2nd-degree polynoms 
(Figure 7).  

 
Figure 7. Example of a typical neuron activation 
function with sampling points, showing nitrogen 

discharge (y-axis) for given nitrogen input (x-axis) 
on a single SCG. 

6.4 Solving the Optimization Problem 

The network representing the catchment area can 
be seen as a restriction of the WASMOD model. 
Regarding the fertilisation regime, it can perform 
the same simulations of land use scenarios as 
WASMOD: after a value of 1 is applied to the 
input neuron and propagated through the net, the 
activation of the output neuron corresponds to the 
amount of nitrogen which is introduced into the 
catchment outlet from the entire catchment area. 
The specific land use scenario is represented by 
the parameters of the edges connecting the input 
neuron to the SCG neurons, i.e. the fertilisation 
prescriptions for the individual SCGs. 
Contrary to WASMOD our neural net 
representation of the catchment is not only able to 
simulate land use scenarios but also to 
systematically search for changes in land use 
scenarios to establish certain desired leaching 
properties. This search is performed with a 
modified Backpropagation procedure. 
Backpropagtion (Rumelhart et al., 1986) is a 
neural net learning method that attempts to 
determine the parameters of a neural net in such a 
way that a given (failure) function on the output 
neurons of the net is minimised. 
The failure function in our case is given as a 
function (i) of the nitrogen input into the reservoir 
and (ii) of the costs involved by the restrictions 
that the TTV imposes on the land use (e.g. the 
compensation payments for fertilisation 
reductions). Formally, the failure is the (squared) 
difference between the actual and the desired 
output of the output neuron. It is used to compute 
a change in the parameters of the neural net (for 
our procedure just the parameters that describe the 
connections from the input neuron to the SCG 
neurons, class E4). This change represents how the 
land use scenario the optimization was starting  



with has to be modified. The parameters are 
changed repeatedly until the failure is sufficiently 
small. 
Our learning procedure differs from the standard 
Backpropagation algorithm in the following way: 
After each step of determination of the partial 
errors on all SCG neurons we update only the 
weights of the fertilisation edges (class E4). As a 
consequence from that modification, our learning 
procedure possibly finds another local minimum of 
the error function than the standard 
Backpropagation procedure does. But it works 
correctly assuming the fact that the weigths of 
classes E1, E2 and E3 must not be changed since 
they describe some statical properties of our 
catchment. 

6.5 Learning Procedure 

Assuming a network with n  layers and a target 
output t  our learning procedure performed in the 
optimization step can be outlined as follows: 
1. Propagate the value 1≡ex  through the net, the 

resulting value at the output neuron is output . 

2. Calculate the error δ  of the output neuron: 

outputt
outu −=:δ . 

3. Is 
outuδ  smaller than some threshold value ε ? 

• yes: We are ready. 
• no: Proceed with step 4. 

4. nl =:  

5. Select layer 1: −= ll . Is lU  an inner layer? 

• yes: Proceed with step 6. 
• no: Proceed with step 8. 

6. For all neurons u  of layer l , calculate the 
partial error uδ : 

(a) calculate the network input of u : 

∑
−∈

=
1

),(
lUv

vu auvWnet  

(b) calculate the partial error of u : 

∑
∪∈ +

′=
}{1

),()(:
outl uUv
vuuu vuWnetf δδ  

7. Proceed with step 5. 
8. Calculate and apply the weight adjustment for 

all fertilisation edges: 

uinininner uuWuuWUu σδ+=∈∀ ),(:),(:  

(σ  is called the learning rate with 10 ≤< σ ) 
9. Proceed with step 1. 

7. RESULTS 

To test our network, we assigned the value 1 to the 
input neuron of the network described in section 
6.3 and propagated that value through the network. 
The activation of the output neuron amounted to 
74000kg N and deviated from the total nitrogen 
discharge as simulated by WASMOD by 
approximately 10%. The reason for that deviation 
is the inaccuracy of our activation functions. 
Nevertheless, for our demands that accuracy is 
sufficiently high. 
Afterwards we started the optimization procedure 
described above. Our target output from the neural 
network amounted to 60000kg N. Thus, the failure 
of our network (difference between desired and 
actual output) amounted to 14000 kg N. Applying 
our modified Backpropagation procedure to the 
network, the failure became 0 (i.e. nitrogen output 
reached the target value) after 61 steps of weight 
adjustment.  
The changes of the weights and thus the changes 
in external nitrogen inputs on the SCGs to 
establish that reduction are shown in Figure 8. 

 
Figure 8. Fertilisation changes computed by a 

modified Backpropagation algorithm. The darker 
colours indicate higher changes. 

In order to validate the fertilization changes 
calculated by our procedure we used the results to 
set up WASMOD again. After modelling the 
catchment with the modified fertilization inputs 
the change in the output of WASMOD amounted 
to 14800 kg N, i.e. 6% more than the predicted 
reduction. This result indicates that our approach 
is well suited to represent the behaviour of 
hydrological models like WASMOD. 
Our optimization procedure ensures that the 
external nitrogen inputs (i.e. the fertilisation 
actions) are reduced especially on those SCGs, 
which have a high relevance for the nitrogen load 
of the catchment outlet. As a result the financial 
resources formerly used for compensating reduced 



fertilisations on irrelevant fields can now be used 
more efficiently to compensate fertiliser reduction 
on those fields which have the highest relevance 
for the system. 

8. CONCLUSION 

We have presented a new approach for the 
optimization of a given land use scenario of a 
catchment in order to obtain a specific nitrogen 
output from that catchment. Our approach includes 
the transformation of a complex hydrological 
model into a neural network. This neural network 
is a computational model representing the 
relationship between the nitrogen input resulting 
from the fertilization related to the respective land 
use scenario to the nitrogen output into the 
catchment outlet. Contrary to classical 
hydrological models this neural net can be used to 
tractably search for optimum land use scenarios in 
relation to the threshold N-input into the reservoir. 
First applications indicate that a suitably designed 
neural network learning procedure will find near 
optimal solutions to the problem if the starting 
land use scenario is reasonable. Therefore the 
presented optimization procedure is an important 
step towards an integrated computer based 
decision support system design for watershed 
management. 
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