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Abstract: In this paper, Neural Network (NN) approach is

developed and utilised to detect winding faults in an

electrical machine using the samples data of electrical

machine in both the healthy and different fault conditions

(i.e. shorted-turn fault, phase-to-ground fault and coil-to-

coil fault). This is done by interfacing a data acquisition

device connected to the machine with a computer in the

laboratory. Thereafter, a two-layer feed-forward network

with Levenberg–Marquardt back-propagation algorithm is

created with the collected input dataset. The NN model

developed was tested with both the healthy and the four

different fault conditions of the electrical machine. The

results from the NN approach was also compared with

other results obtained by determining the fault index (FI) of

an electrical machine using signal processing approach.

The results show that the NN approach can identify each of

the electrical machine condition with high accuracy. The

percentage accuracy for healthy (normal), shorted-turn,

phase-to-ground and coil-to-coil fault conditions are 99,

99.6, 100 and 100% respectively.

Keywords: condition monitoring; electrical machine; fault

detection; neural network (NN); winding faults.

1 Introduction

The main cost component constituting the operational and

maintenance costs in most processing and manufacturing

industries is attributed to the maintenance of electrical

machines. The expenses are incurred due to the high de-

pendency on electrical machines for industrial production

[1, 2]. These expenses particularly arise, when there is very

costly shut-down time as a result of failures/faults in

electrical machines. This can result in the loss of valuable

products and lives in critical applications in the industries.

It is crucial to ensure that these machines do not break-

down, particularly to ascertain the continuity of produc-

tion and process chains in many industries. Before the

breakdown of any machine, it would have exhibited dis-

turbances that change the normal operation on or in the

electrical machine. These disturbances result in failures/

faults whichmanifest in themachine informof unbalanced

line currents, pulsations in torque and speed, excessive

heating, decreased efficiency and average torque as well as

unbalanced air-gap voltages [3, 4]. The risk of failure of the

machine could be avoided if the proper diagnostic scheme

is designed and implemented to detect failure/impending

faults at an early stage. This would prevent production

shutdowns, huge financial loss, sudden disruption of the

machine and personal injuries if these faults were to be

detected at the incipient stage.

The relevant literature shows that early fault detection

of the electrical machine is not only important in mini-

mising damage and reducing energy consumption, but

also preventing the spread of failure or limiting its esca-

lation in terms of severity [5–7]. Hence, the condition

monitoring and fault diagnosis of the machines is impor-

tant to forestall costly interactions due to failures or faults

in the machine. This would prevent huge financial loss,

production shutdowns, sudden disruption of the machine

and personal injuries provided these faults are detected at

the early stage. Over the past 40 years, there have been

several research activities on developing new fault diag-

nosis and condition monitoring techniques for electrical

machines, especially the inductionmachines [8]. Certainly,

induction machine is one of the major parts of the in-

dustries that cannot be replaced because about 90% of all

electrical machines used worldwide in the industry is
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inductionmachines [9, 10]. Themachine is considered very

important because they are extensively used in the in-

dustries where it is the core of most of the engineering

processes as well as, in many home appliances. Hence, the

machine mustn’t break down, particularly for process

chains continuity and productions in many industries. The

risk of the failure or the breaking down of this type of

machine can be mitigated provided there is a proper

diagnostic and condition monitoring technique. The tech-

nique is needed to detect and diagnose the coming failure/

faults at an early stage.

From literature, there are many methods for fault

detection and diagnosis of themachine [1, 7, 10–12] such as

wavelet transform technique, Fourier transform technique,

negative sequence current compensation etc. However,

there is paucity of literature on the use of machine learning

techniques especially the neural networks in the literature.

This paper, therefore, looks into the neural network

approach to detect winding faults in electrical (induction)

machine. The rest of the paper is organised as follows:

Section 2 discusses winding fault as well as its statistical

proportion which is significant enough to research upon.

Section 3 describes the laboratory experiment carried out

for the research reported in this paper. Section 4 highlights

the early technique used. In Section 5, the description of a

neural network approach (algorithm) to detect faults in the

electrical machine was discussed. Section 6 contains the

results and discussion while the conclusion of the paper is

given in Section 7.

2 Winding faults in electrical

machine

There is a strong demand for induction machine owing to

their robustness, reliability and operational safety. In fact,

the most widely used electrical machines are induction

machines, nonetheless, when the machine are interrupted

or fail due to using incorrectly rated power, imperfections

in fabrication or construction, mistakes during repairs,

misuse of the machine, etcetera, they will be operating in

unhealthy or fault condition(s) [12, 13]. The chart presented

in Figure 1 depicts the industrial experience surveys of

faults conducted on electrical machines [14, 15]. The sur-

veys were categorised into a group of four (bearing, rotor,

stator and other) related faults. The outcome of the surveys

of the Electric Power Research Institute (EPRI),

IEEE-Industry Applications Society (IEEE-IAS) and Allianz

was comparedwith vis-`a-vis inductionmachines as shown

in the multiple bar chart (Figure 1). According to a statis-

tical study carried out by the EPRI, most failures in elec-

trical machine occurred due to bearing and winding faults

[16–18]. The Allianz survey focuses on medium-to-high

voltage large induction machines that are used in electric

ships. It was specified that stator-related faults are themost

prominent for high-power machines. Likewise, according

to [19], a survey that focused on electric motors used in

offshore applications indicates that themain faults are also

due to bearing and stator winding defects. Tavner et al. [20]

furnish greater detail and thorough analyses on several

real cases of faults in high-powered electrical machines.

Figure 2 presents the percentage of faults in induction

machine components based on the survey carried out by

[8, 12] on the distribution of failed components in induction

machines.

Stator winding faults account for approximately 38%

of all faults as illustrated (Figure 2) [21]. In an analogous

trend, in the survey carried out by EPRI in Figure 1, about

36%of all faults in inductionmachines can be attributed to

stator winding faults. This contributes to a significant

proportion of the total number of faults. Therefore, there is

a need to develop an efficient and reliable fault diagnostic

system or method to diagnose these winding faults at the

earliest possible stage before they lead to more severe

faults that can damage themachine. Statorwinding fault(s)

Figure 1: Chart showing the comparison of

surveys by EPRI, IEEE-IAS and Allianz.
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are often initiated with failure in insulations between the

turns of the individual windings in either stator of the

machine [22–24]. The inter-turn or shorted-turn which

short-circuits a few nearby turns of a phase winding leads

to insulations failure in the stator of the machine. The

current circulating in the shorted-turns generates heat and

increases the temperature in the affected area as the ma-

chine continues to operate. The increase in the temperature

leads to further little damage in the insulation of the

affected area [22, 23]. The shorted-turn fault could extend to

a short circuit between two coils of the same phase (coil to

coil fault) which is a potential severe fault. There is also an

open circuit fault when winding gets disconnected as well

as a phase-to-ground fault when any of the phases is

connected to the ground. On rare occasion, there could be a

short circuit between turns of two phases (phase to phase

fault) or a short circuit between turns of all three phases

(three-phase fault). Phase-to-phase and three-phase fault

are very dangerous and most severe winding faults, but

they seldom occur.

Figure 3, illustrates the schematic diagram of the

classifications of the electrical machine stator winding

faults. The classifications include: (i) Open circuit fault

when winding gets disconnected in any phase; (ii) Inter-

turn or shorted-turns faults within a coil (i.e., short circuits

of turn to turn within a coil); (iii) Phase-to-ground short

circuit faults; (iv) Coil-to-coil short circuit faults within the

same phasewinding (v) Phase-to-phase short circuit faults;

and (vi) Three-phase faults.

The general opinion of the users and manufacturers of

the electrical machine is that there is a longer lead-time

between the inception of shorted turns up to failure in the

winding. Even if there is no enough knowledge about the

time interval from the shorted-turns fault to insulation

failure, but it is clear that transition and its rate depend on

the severity of the fault. In other words, the number of

shorted-turns has gradually and slowly increased to insu-

lation failure. Thus, the earlier the shorted-turn faults are

detected the better for the machine. If this is not detected

on time, it could lead to a more severe fault and further to

the machine accidental shut-down. In this paper, four

cases of electrical machine conditions are considered for

the neural network diagnosis approach.

3 Laboratory experiment for neural

network training data collection

Laboratory experiments were carried out on two sets of

identical induction machines with the rating parameters

1.5 kW, 380 V/220 V, 50 Hz, 4-pole as shown in Figures 4a

and 4b. Switches X, Y and Z are connected to the stator

winding on phase A of one of the machines to create

winding faults on the phase. Each of the switches X, Y and Z

are connected to create shorted-turns, phase-to-ground and

coil-to-coil winding faults respectively. It should be noted

that only two turn of shorted-turnwere connected to Switch

X, a single turn to the ground was connected to Switch Y

and a single coil to coil was made to Switch Z (Figure 4b).

When any of the switches are in “OFF” position, and the

machine is operating at no-fault condition, the data

Figure 3: Classification of stator winding faults of an electrical

machine.

Figure 2: Percentile pie chart of faults in induction machine.
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obtained during this time are captured as a healthy

(normal) condition. However, when any of the switches are

in “ON” position, and the machine is still operating, a fault

is created and the data obtained are captured as the

particular type of fault condition labelled on the switch.

These data are collected by the HIOKI 3197-Power Quality

Analyser measuring device and are interfaced with the

computer for application further analysis. When the ma-

chine is in operation, about 2056 samples of data (stator

currents and voltages) is captured from the HIOKI Power

Quality Analyser in 200 ms, this is 10 waveforms for the

power supply of 50 Hz [25]. This is the number of samples

captured for a 50 Hz supply according to the instruction

manual of the HIOKI power quality analyser [25] 2056 for 10

waveform. The data is recorded in the computer interfacing

the HIOKI as shown in the experimental set-up of Fig-

ures 4a and 4b.When the switch (OFF), the samples of data

(stator currents and voltages) captured from the HIOKI

PowerQuality Analyser are recorded as healthy conditions.

Whereas, when each of the three faults is switched (OFF),

the samples of data (stator currents and voltages) captured

from the HIOKI Power Quality Analyser are recorded as

fault condition createdwithin thewindings of themachine.

Figure 5 depicts the comparison of the phase-A current of

both healthy and each of the threewinding fault conditions

on the machine. A close look at healthy and shorted-turn

fault condition is in agreement with similar comparison

carried out by [10, 26]. It is evident in Figure 5 that the

peak value of the current for a healthy condition is 2.32A.

However, the peak of stator currents for shorted-turns,

phase-to-ground and coil-to-coil faults are 3.48 A, 4.69 A

and 0.27 A respectively. There are increments of 50 and

102% for shorted-turns, phase-to- ground faults respec-

tively, while there was an 88% decrease in the coil-to-

coil fault which could destroy the machine if it continues

to be in operation.

Figure 4: (a) Laboratory experiment for data

capturing. (b) Block diagram of experiment

for data capturing.

34 O. Imoru et al.: Neural network approach to detect winding faults



4 Electrical machine fault index (FI)

An algorithm to determine the fault index (FI) of an elec-

trical machine using signal processing approach has been

developed by [12, 21]. In the algorithm, a district wavelet

transform application [12, 21] was used to generate the

energy-frequency plots for the stator currents data

captured from the electrical machine under some winding

faults and healthy state conditions. The severity of the

machine state is classified into Normal, Medium, or High,

using the fault index. This was achieved by selecting the

maximum energy value, En as well as the corresponding

frequency, fn of the healthy (normal) machine condition

and assigned them the set energy, Et and set frequency, ft,

respectively. Whereas for different fault conditions, the

maximum energy value, Ef, and corresponding frequency,

ff, were also assigned for each of the fault condition.

The fault index fault (FI) can be written as:

FI �
Ex

Et

(1)

where Ex, represents either normal or faulty state peak

energy.

Figure 6 shows the results of the analysis carried out by

[12, 27] to also detect the shorted- turn faults in induction

Figure 5: Healthy and fault conditions

comparison of induction machine stator

currents.

Figure 6: WT-energy plot for healthy and

winding fault conditions.
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machines using discrete wavelet transform. The maximum

values of the energy and corresponding frequency for each

condition obtained from Figure 6 are presented in Table 1

[12]. Using a computer with 2.60 GHz core i5 4210M pro-

cessor, it takes approximately 38 s for a healthy electrical

machine with no created faults to obtain the peak energy

value. In the case of a shorted-turns fault and phase to

ground, it took about 41 s before it obtained themaximum

energy. When the most severe (coil to coil in a phase)

faults within the experiment considered in this research

work are created, it takes about 1 min (60 s) to obtain the

maximum energy. The discrepancies found in the devi-

ation from the normal condition are used to classify the

severity of the state of the machine into Normal, Medium,

or High, using the fault index (FI). In the next section, a

neural network approach is presented to diagnose the

winding faults.

5 Neural network approach

Artificial Neural Networks (ANN)were originallymotivated

by the biological structures in the brains of animals and

humans, which are exceedingly powerful for such tasks as

learning, information processing, and adaptation. Good

overviews on the biological background can be found in

[28, 29]. Themost important features of neural networks are

a large number of simple units; a strongly connected unit; a

highly parallel unit; the robustness against the failure of a

single unit; and the learning from data.

The five aforementioned characteristics make an arti-

ficial neural network well suitable for quick hardware

implementations [28, 30]. The directions of research of

neural network can be categorised into two. In the first

direction of research, the biologist’s, psychologist’s and

physician’s interests are to learn more about and even

model the fundamental properties and operation of the

animal and human brain. The fundamental properties and

operations are still not well understood. The second di-

rection of research is the engineer’s interest is to develop a

universal tool for problem-solving inspired by the

impressive examples of nature but without any pretension

tomodel biological neural network.Wewould consider the

second in the paper because, themost neural network used

in engineering are at least related to statistics, mathe-

matics, and optimisation as to the biological character

model. A typical block diagram of Neural Network (NN) is

shown in Figure 7 [31]. The network is trained or adjusted so

that a specific input leads to a particular target-output. The

connections between elements largely determine the

network function. An NN can be trained to perform a

particular function by adjusting the values of the connec-

tions (weights) between elements (Figure 7). NNs have

been trained to perform complex functions in various

fields, including pattern recognition, identification, clas-

sification, vision, speech, and control systems. NNs have

been proposed and have demonstrated the capability of

solving the electrical machine condition monitoring and

fault diagnosis problem using a non-invasive, reliable, and

inexpensive procedure [32–35].

NNs consist of three layers as shown in Figure 8. They

are–the input layer; the hidden layer and the output layer.

The input layer comprises of the model inputs and the

output layer comprises the model outputs. The hidden

layer consists of nodes that attempt to functionallymap the

model inputs to the model outputs during optimisation

[36, 37]. The details about the numerous NN architectures

can be found in [31, 37].

5.1 Neural network algorithm

A multilayer perceptron NN model was considered to es-

timate the state of electrical machine condition. This pro-

cedure is a mathematical model that performs a

computational simulation of the behaviour of neurons in

the human brain by replicating, on a small scale, the

brain’s patterns in order to produce results from the events

Table : Maximum values of the energy and corresponding

frequency [].

State of

machine

Max.

energy (J)

Cor. freq

(Hz)

Phenomena

Period

FI

Healthy  . . s .

Shorted-turns

fault

 . . s .

Phase-to-

ground fault

 . . s .

Coil-to-coil fault . . . s .

Figure 7: Block diagram of NN.
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perceived, i.e. it is a model based on learning a set of

training data.

The Algorithm for the neural network design process

discussed in this paper comprises three primary stages as

depicted in the algorithm block diagram in Figure 9. The

stages are data acquisition, training algorithm as well as

diagnosis and detection of machine condition.

5.1.1 Data acquisition

This involves the collection of the electrical machine data

(stator currents and voltages) into the computer for

analysis and diagnosis purpose. A HIOKI 3197-Power

Quality Analyser measuring device was connected to

captured all cases of the machine conditions. The fre-

quency, fs of the captured signals is the same as the fre-

quency of the power supply. In this case, the frequency is

50 Hz. The number of data samples captured with a 50 Hz

power supply is 2056 samples which also produces 10

waveforms (Figure 5) [25].

5.1.2 Training algorithm

After the collection of data, the next stage is the pre-

processed dataset training. This involves, neural network

creation of the data collected into the computer. Then, a

two-layer feed-forward network with Levenberg–Mar-

quardt back-propagation algorithm is created with input

dataset of healthy and differently three winding fault

conditions. Using FI values in Table 1, a target of 1, 2.61, 2.51

and 0.038 are assigned for healthy (normal), shorted-

turn, phase-to-ground and coil-to-coil fault conditions

respectively. After an NN has been created, it is then

configured. The configuration step consists of examining

input and target data. The setting the network’s input and

output sizes to match the data, and choosing settings for

processing inputs and outputs that will enable best

network performance. The configuration step is normally

done automatically, when the training function is called.

However, it can be done manually, by using the configu-

ration function [31]. The network learns by training the data

inputs and outputs. By default, 70% of the total data

samples is configured for training and 15% of the data

samples is configured for validation. In other words, 70%

would be used for training, 15% would be used to validate

the network by generalising and stopping training before it

is over-fitting. The last 15% would be used as a completely

Figure 9: Neural network block algorithm.

Figure 8: Multilayer perceptron NN schematic map.

O. Imoru et al.: Neural network approach to detect winding faults 37



independent test of network generalisation. All these per-

centage values were obtained by default selection (random

data division) from the NN- training. The training is ini-

tialised and the network is updated each time an input is

presented to the network.

5.1.3 Detection of machine condition

After training the pre-processed dataset via a neural

network, we proceed to the detection of the machine con-

dition. Once the network has been trained with the ma-

chine parameters, it can be used to test other sets of data to

determine the condition of the machine. If the sets of data

tested are close the targets-outputs for healthy then it can

be said that the machine is working without fault. How-

ever, if the sets of data tested are close to the targets-

outputs for any of the winding faults, the machine is

operating with on fault condition (shorted-turn, phase-to-

ground or coil-to-coil).

6 Results and discussion

The algorithm described in Section 5.1 is followed, the

network is trained and validated. The network object can

be used to calculate the network response to any input.

Figure 10 depicts the validation performance plot of the

network. It shows the value of the performance function

versus the iteration number (epoch). It plots training,

validation, and test performances. It indicates how the

Figure 10: Validation performance.

Figure 11: The regression plot.
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network mean squared Error (MSE) drops rapidly as it

learns. The blue line shows the decreasing error on the

train data, the green line shows the validation error. The

train stops when the validation error stops decreasing. The

red line shows the error on the test data indicating howwell

the network could generalise the training data. The default

performance function for feed-forward networks is MSE

(i.e. the average squared error) between the network out-

puts y and the target outputs t which can be obtained using

(2). The lower the values of MSE, the better the network.

Zero means no error. The MSE from Figure 10 is 0.00423

and this is a good result.

mse �
1

N
∑
N

1�1
(ei)

2
�

1

N
∑
N

1�1
(ti − yi)

2
(2)

Figure 11 depicts the regression plots between network

outputs and network targets. The training, validation and

test phases that contain all networks for the NN model

generated are R = 0.99851, R = 0.99816 and R = 0.99826

respectively. The combined value of the regression gives a

correlation of R = 0.99843. This implies that the model

gives high correlation coefficient between predicted out-

puts and targets. Thus this is a robust and precise approach

to detect the condition of the electrical machine.

In addition to the aforementioned description of Fig-

ures 10 and 11, the output of the network is compared to the

target (FI) as shown in Figure 12. The FI (see Table 1) for

values for each state of the machine is compared with the

(NN) prediction for same sets of data and these are pre-

sented in Table 2. The results in Table 2 show that the NN

approach can identify each of the electrical machine con-

dition with high accuracy. The percentage accuracy for

healthy (normal), shorted-turn, phase-to-ground and coil-

to-coil fault conditions are 99, 99.6, 100 and 100%

respectively. In other words, the values obtained with NN

similar to the ones with FI.

Furthermore, a 200 dataset is obtained for each of the

conditions (healthy and fault) of themachine. This sets of data

are taken outside the sample used as inputs to the network.

This is done in order to check the validation the network

created, configured and trained to diagnose each condition of

the electrical machine. Figure 12 shows the comparison be-

tween the (FI) and theNeuralNetworkapproach. It canbe seen

for each set of 200 data samples for each of the conditions

(healthy and fault) of the machine that the NN can detect the

condition of the machine correctly. Thus, the values of the FI

for each condition is approximately the same as the average

values of the NN approach.

7 Conclusion

In this paper, we present the detection of winding faults in

the electrical machine using Neural Networks (NN). We

believe that the method is generally applicable to all types

of electrical machines, even though we have concentrated

on the induction machine to develop and test the method.

Some vital details about winding faults have been

explained and laboratory experiments were carried out on

two sets of identical induction machines with the same

rating. A neural network (NN) approach is developed to

detect the condition (healthy and fault) of an electrical

machine. The NN approach can identify each of the

Figure 12: NN and FI comparison for any

other data, e.g. (200 samples) of both

machine with healthy and each of the three

fault conditions.

Table : FI and NN comparison.

State of machine FI NN Percentage accuracy

Healthy  . .%

Shorted-turns fault . . .%

Phase-to-ground fault . . %

Coil-to-coil fault . . %
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electrical machine condition with high accuracy. The per-

centage accuracy for healthy (normal), shorted-turn,

phase-to-ground and coil-to-coil fault conditions are 99,

99.6, 100 and 100% respectively. In otherwords, the values

obtained with NN similar to the ones with FI.
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