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Abstract. We develop a backward-in-time machine learning algorithm that uses a sequence of neural
networks to solve optimal switching problems in energy production, where electricity and fossil fuel prices

are subject to stochastic jumps. We then apply this algorithm to a variety of energy scheduling problems,

including novel high-dimensional energy production problems. Our experimental results demonstrate that
the algorithm performs with accuracy and experiences linear to sub-linear slowdowns as dimension increases,

demonstrating the value of the algorithm for solving high-dimensional switching problem.
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1. Introduction

Energy production and energy markets play a large role in the modern economy and as such, it is beneficial
to both producers and consumers for electricity production to be optimized. Energy producers, in particular,
desire to operate efficiently despite the inherent volatility of both electricity demand and the availability of
various fuels. Determining the correct operating strategy for an energy production facility therefore requires
dynamic adjustment as the underlying drivers of price and profit fluctuate stochastically with supply and
demand. Recent supply-chain issues in global markets have further underlined the volatility of prices and
the need for flexible optimization methods which allow producers to dynamically adapt to changes in the
energy markets.
There are multiple perspectives from which to approach problems related to energy production and pricing.

In the case where a model includes only a single power generation facility, this facility is considered a price-
taker, and its production decisions have little impact on the overall flow of electricity supply and demand.
The facility’s only goal is to maximize its own profit, as it is not the sole electricity producer in its region.
To this end, the facility is able to alter its own production capacity in response to exogenous outside factors.
However, we can also consider a situation in which an agent oversees multiple power generation facilities,
and has the option to bring them online or remove them. Each of these facilities is fueled by one of a
selection of fuel sources, ranging from coal to solar energy. The larger scale of this operation makes this
agent a price-setter, and so investment decisions affect both electricity spot prices and their own profits. In
this case, penalties could also be incurred for failing to satisfy electricity demand. Our focus will be on the
former case, but our algorithm could easily be extended to other situations.
These situations can be modeled as optimal switching problems, and in our paper we present a machine

learning algorithm that is able to solve optimal switching problems of higher dimensions than previously
studied, allowing us to consider a wider selection of fuel sources than in existing literature. Such energy
production switching problems consist of a stochastic state process (such as exogenous electricity demand and
fuel prices) which drives an objective function. At discrete “switching times” a production decision is chosen
from a discrete set of possible “modes” of production (which can model factors like capacity level or fuel
type). The controller switches between modes based on the current value of the state variable, but must pay
a penalty for such switches (usually monetary, reflecting resource redirection). The class of optimal switching
problems is one that has both been investigated from an analytical perspective [22, 5, 13, 14] and applied to
fields from finance [29] to cloud computing [17], but these problems remain difficult to solve numerically in
higher dimensions. In the realm of energy markets, mathematicians have used optimal switching to model
power plant scheduling [12, 35], electricity spot prices [1], and run-of-river hydroelectric power generation
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[33]. Energy storage problems [18, 32, 39] are another popular application of optimal switching, but we focus
on scheduling and production problems in our current work.
Various approaches have been taken to avoid a grid-based method, as grids are very susceptible to the

so-called “curse of dimensionality”, including many Monte Carlo-based methods like [40, 1]. However, such
probabilistic approaches are also limited in the dimension they can handle, as most rely on regression
over a number of basis functions that grows quickly with the dimension of the state space. In recent
years, the applications of machine learning to mathematical problems has become more and more common,
many inspired by seminal works such as [24], which trains a neural network to minimize the global error
associated with the backward stochastic differential equation (BSDE) representation of certain classes of
partial differential equations (PDEs). Expanding upon this work, neural networks have been found to
accurately estimate the solutions of a variety of partial differential equations of varying complexities when
used in different configurations, as in [26, 36, 6, 20]. In addition, the early paper [2] utilized neural networks
to solve for an optimal gas consumption strategy under uncertainty. It follows that such neural network-
based methods can be extended to solve optimal switching problems. Our algorithm draws upon the neural-
network-based deep backward dynamic programming approach introduced in [26] and extends it to situations
where the reflection boundary is no longer a known function, like the payoff of an American option. Instead,
the reflection boundary becomes dependent on the optimal control decision at the given point in time. We
also introduce jumps in the state process, which change the associated formulation from a partial differential
equation to a partial integro-differential equation (PIDE). These jumps are incorporated into the model to
better simulate the volatility inherent in electricity and fossil fuel markets. The recent work [21] extends
[24] to a setting with jumps, and [19] applies neural networks to PIDEs that arise in insurance mathematics.
In this paper, we extend [26] to handle both jumps and switches in a wider range of problems. This

algorithm is able to handle high-dimensional problems well because the time needed for artificial neural
network computations grows only linearly in the dimension of the state variable and suffers only minimal
slowdowns as the dimension increases, as demonstrated in Section 4. Our code can be found at https:

//github.com/april-nellis/osj.
In Section 2, we introduce the general stochastic model of an optimal switching problem. In Section 3,

we provide some background on neural networks and detail the proposed machine learning algorithm. In
Section 4 we discuss numerical examples of energy scheduling and capacity investment, and demonstrate the
high-dimensional abilities of our algorithm1. In Section 5, we verify the convergence of the neural networks
in our proposed algorithm to the true value functions.

2. Stochastic Model

2.1. Setup. The goal of our paper is to numerically solve high-dimensional optimal switching problems
related to energy production. Consider a filtered probability space (Ω,F , {Ft}t,P) satisfying the usual
conditions and supporting a d-dimensional Wiener processW and a one-dimensional Poisson random measure
N (de, ds) with intensity measure ν(de)ds, where

∫
Rd ν(de) = λ ≥ 0. Consider further a d-dimensional jump-

diffusion process, given by

(2.1) Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs +

∫ t

0

∫
Rd

β(Xs− , e)N (de, ds), t ∈ [0, T ], x0 ∈ Rd.

Here, b : Rd → Rd, σ : Rd → Rd×d, and β : Rd × E → Rd, where d is a relatively large dimension and
E ⊆ Rd.

Assumption 1. We assume that

(1) The functions b, σ, and β are Lipschitz, and β is a measurable map such that there exists K > 0 for
which

sup
ξ∈E

|β(0, ξ)| ≤ K and sup
ξ∈E

|β(x, ξ)− β(x′, ξ)| ≤ K|x− x′|, ∀x, x′ ∈ Rd.

(2) The function β(x, ξ) has Jacobian such that ∇β(x, ξ) + Id is invertible with a bounded inverse.

Remark 1. From the appendices of [8], the conditions in assumption 1 imply the existence of a unique
adapted solution Xt to eq. (2.1).

1All calculations in this paper were performed on a 10-core CPU, 16-core GPU 2021 Macbook Pro with M1 Pro chip, without

using GPU acceleration.

https://github.com/april-nellis/osj
https://github.com/april-nellis/osj
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This stochastic process drives an optimal switching problem which we will solve using a series of artificial
neural networks. Variations on this problem have been studied in previous theoretical papers such as [23]
and [16], and can be summarized as trying to find the optimal choice of control a = {(τk, αk)}k∈N, where
αk ∈ I =: {1, . . . , I} is the regime/mode which is selected at switching time τk, such that αk is Fτk -
measurable, for any k ∈ N. We set τ0 = 0 to denote that a switch is allowed as soon as the process begins.
The initial mode of the system, i, is therefore denoted by α−1 = i. The control process (as)s∈[0,T ] associated
with a is denoted by:

as =
∑
k

αk1{τk≤s<τk+1}.

It represents the current mode of the system and the set of such strategies is given by A. The set of
admissible strategies is defined as all strategies fitting the above description which contain only a finite,
though potentially random, number of switches, and is denoted A. The set of admissible strategies that
begin in mode i at initial time t is denoted At,i. The expected payoff function associated with the control
a ∈ At,i is given by

(2.2) J(t, x, i,a) := E

∫ T

t

fas
(s,Xs)ds+ gaT (XT )−

∑
k∈N\{0}

Cαk−1,αk
(Xτk)1{t≤τk<T}

∣∣∣Xt = x, at = i

 ,

where fi : R× Rd → R is the running profit in mode i, gi : Rd → R is the terminal profit if ending in mode
i, and Ci,j : Rd → R is the cost of switching modes from i to j for a given value of the state variable, where
i, j ∈ I. Here and in the sequel, 1B is the indicator of the event B, such that 1B(ω) = 1 if ω ∈ B and 0
otherwise. We can define the initial status of the system as F0 := {X0 = x0, α−1 = i}. All expectations are
conditioned on F0 when not otherwise specified.

Assumption 2. To discourage an optimal strategy with multiple instantaneous switches, we make the fol-
lowing assumptions on the switching costs. There exists ϵ > 0 such that

Ci,j(x) ≥ ϵ > 0, ∀i, j ∈ I, ∀x ∈ Rd,

Cii(x) ≡ 0, ∀i ∈ I,

Ci,j(x) + Cj,k(x) ≥ Ci,k(x), ∀i, j, k ∈ I, ∀x ∈ Rd.

These assumptions are standard in optimal switching problems, encoding “direct” switches between states,
and are enforced throughout the paper. We also make the Lipschitz assumption that there exists a constant
[C]l such that

|Ci,j(x1)− Ci,j(x2)| ≤ [C]l||x1 − x2||,

for all x1, x2 ∈ Rd and all i, j ∈ I.

We also make certain assumptions on the running profit and terminal profit functions throughout the
paper.

Assumption 3. .

(1) There exists a constant [f ]l such that for every t1, t2 ∈ [0, T ] and x1, x2 ∈ Rd,

|fi(t1, x1)− fi(t2, x2)| ≤ [f ]l(|t1 − t2|1/2 + ||x1 − x2||), ∀i ∈ I.

(2) We assume maxi∈I sup0≤t≤T |fi(t, 0)| < ∞ and fi is square-integrable on [0, T ] for all i in I.
(3) The functions {gi}i∈I are Lipschitz continuous and satisfy linear growth conditions.

The value function is given by

V (t, x, i) := sup
a∈At,i

J(t, x, i,a).

It is a standard result in control theory (see [15, 7]) that the solution to this optimization problem can be
represented as a real-valued stochastic process Y i

t = V (t,Xt, i) that solves the stochastic differential equation
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Y i
t = gi(XT ) +

∫ T

t

fi(s,Xs)ds−
∫ T

t

(Zi
s)

T dWs −
∫ T

t

∫
Rd

∆Y i
s (e)Ñ (de, ds) +Ri

T −Ri
t,

Y i
t ≥ max

j ̸=i
{−Ci,j(Xt) + Y j

t }, t ∈ [0, T ],∫ T

0

(Y i
t −max

j ̸=i
(−Ci,j(Xt) + Y j

t ))dR
i
t = 0.

(2.3)

where Ñ (de, ds) := N (de, ds) − ν(de)ds and the reflection boundary Ri
t is a nondecreasing process with

Ri
0 = 0. Further, the auxiliary processes Zi

t and ∆Y i
t (e) can be defined as

Zi
t := σT (Xt)Vx(t,Xt, i) ∈ Rd,

∆Y i
t (e) := V

(
t,Xt− + β(Xt− , e), i

)
− V (t,Xt− , i) ∈ R.

The stochastic differential equations for Xt and Yt comprise a system of forward-backward stochastic
differential equations (FBSDEs). In addition, the continuation values associated with beginning in mode i
at time t1 and remaining in that mode over the interval [t1, t2] for t1, t2 ∈ [0, T ] can be defined via eq. (2.3)
as

Ỹ i
t1 := Y i

t2 +

∫ t2

t1

fi(s,Xs)ds−
∫ t2

t1

(Zi
s)

T dWs −
∫ t2

t1

∫
Rd

∆Y i
s (e)Ñ (de, ds).

Approximation of certain continuation values will play a key role in approximating the value function of
interest. Our goal in the rest of this paper is to present an efficient algorithm for calculating Y i where X is a
high-dimensional state process with finite-variational jumps. In section 3, we first provide some background
on neural networks, then we present the details of the Optimal Switching with Jumps (OSJ) algorithm.

3. Optimal Switching with Jumps (OSJ) Algorithm

3.1. Neural Network Structure. We utilize feedforward neural networks, which are in essence a series
of weighted sums of inputs composed with simple functions in such a way that unknown functions can be
approximated. Training data enters the network in the first layer, and at each layer a weighted sum of the
inputs is computed using the choice of parameters assigned to the nodes in that layer to create an affine
function. The output of each layer is processed by an activation function before becoming the input of the
next layer, and the final layer produces the desired output of the network.

For a network of depth δ with δℓ nodes in layer ℓ, there are
∑δ−1

ℓ=0 δℓ(δℓ+1+1) = δ̄ parameters, represented
as a whole as θ. This θ is chosen from all possible parameters in the parameter space Θδ, a compact subset
of Rδ̄ defined as

Θδ := {θ ∈ Rδ̄, ||θ||∞ ≤ γδ},
where γδ is positive and chosen to be very large. We can then define the set of neural networks that we are
working with as the union over δ ∈ N of all the neural networks of depth δ with δ̄ total parameters. This
formulation accomplishes two things. First, the universal approximation theorem of [25] asserts that this set
of neural networks is dense in the set of continuous and measurable functions which map from Rd → Rs, for
any dimension s, and so are universally good approximators. Second, the parameter space associated with
this union, Θ = ∪δ∈NΘδ, represents the set of all possible weights that can be assigned to the nodes in the
neural network and is compact. Therefore, when trying to minimize the loss function associated with our
problem (which will be described in the next subsection), a minimizing θ∗ exists.
The network therefore “learns” the function of interest by adjusting θ via multiple iterations of an opti-

mization algorithm. In our work, we use the Adam optimizer [27] applied to a four-layer neural network
with d + 10 nodes in each layer and tanh as the chosen activation function. We fix the input dimension as
d, and set the output dimension as d1 = 1 + d+ 1 because Y i

t ∈ R, Zi
t ∈ Rd, and ∆Y i

t ∈ R.

3.2. Algorithm. To perform the numerical calculations, we discretize the continuous time interval [0, T ]
using a regular grid π = {tn}Mn=0 = {nT/M}Mn=0, where T/M = ∆t. We denote the paths of the discrete
approximation as Xπ and generate a large number of paths of Xπ starting from a desired initial condition
x0. We later use these paths as training data for the neural networks. At this point, we do not impose a
specific approximation scheme, but require that the in-time convergence be of at least strong order 0.5 for
convergence of the neural network value function in theorem 1 and of strong order 1.0 to achieve an auxiliary
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result regarding the performance of the neural network-generated strategies given in theorem 2. We describe
the approximation schemes used in our specific examples within the expository portions of section 4.1 and
section 4.2. In-depth discussion of weak- and strong-order approximations of jump-diffusion processes can
be found in [28].

We also discretize the switching times, introducing a grid R where the grid spacing is of size T/
√
M ,

meaning that |R| ∼ O(M−1/2). The process is able to switch modes at time tn where tn ∈ R, while evolving
as an uncontrolled jump-diffusion process when tn /∈ R.

The continuation values between time steps of the grid π will be learned by the neural network on a
mode-by-mode basis. We denote the neural network that learns the continuation value at tn in mode i
as Yi

n(X
π
n , θ

i
1), the neural network that learns the derivative of the value function at the same stage as

Zi
n(X

π
n , θ

i
2), and the neural network that learns the jump sizes for Y as ∆Yi

n(X
π
n , θ

i
3). In practice, these

neural networks are treated as one larger network with combined parameter vector θi = (θi1, θ
i
2, θ

i
3) ∈ Θ = Θδ

for some δ corresponding to the chosen architecture of the neural network. The functions generated by the
optimal choice of θi are defined as

(3.1)


Ỹi
n(X

π
n ) := Yi

n(X
π
n , θ

∗,i
n,1),

Ẑi
n(X

π
n ) := Zi

n(X
π
n , θ

∗,i
n,2),

∆̂Y
i

n(X
π
n ) := ∆Yi

n(X
π
n , θ

∗,i
n,3).

The continuation values Ỹi
n(·) are then used to calculate the value functions

(3.2) Ŷi
n(X

π
n ) := 1tn∈R max

{
Ỹi
n(X

π
n ),max

j ̸=i
(Ỹj

n(X
π
n )− Ci,j(X

π
n ))
}
+ 1tn /∈RỸi

n(X
π
n )

The algorithm in its entirety is described in algorithm 1.

Algorithm 1 OSJ Algorithm

1: Generate paths of the stochastic process {Xπ
n}Mn=0 as well as ∆Wn := Wtn+1

− Wtn and ∆Ñn :=∫ tn+1

tn

∫
Rd Ñ (de, ds) for each sample path. Store as training data.

2: Train Ŷi
M ≡ gi(x), ∀i ∈ I.

3: for n = M − 1, . . . , 2, 1, 0 do
4: for all i ∈ I do
5: Train a neural network to find θ∗,in = (θ∗,in,1, θ

∗,i
n,2, θ

∗,i
n,3) ∈ Θ which minimizes

Li
n(θ) = E

∣∣∣Ŷi
n+1(X

π
n+1)− Yi

n(X
π
n , θ1)

+ fi(tn, X
π
n )∆t−Zi

n(X
π
n , θ2)∆Wn −∆Yi

n(X
π
n , θ3)∆Ñn

∣∣∣2.(3.3)

6: Define Ỹi
n(·), Ẑi

n(·), and ∆̂Y
i

n(·) as in eq. (3.1).
7: end for
8: for all i ∈ I do
9: Calculate Ŷi

n(·) as in eq. (3.2).
10: end for
11: The value function of interest is V (0, x0, i) = Ŷi

0(x) where X0 = x and α−1 = i.
12: end for

The switching strategy arising from this algorithm is denoted aNN,M when the number of steps is chosen
to be M . This strategy is a function of the value of the state variable and starting mode, such that the
optimal mode at time tn is

αNN
n := argmax

j∈I

(
Ỹj
n(·)− CαNN

n−1,j
(·)
)
,

where the optimal mode at time tn−1 is αNN
n−1 ∈ I and αNN

−1 = α−1 = i, the starting mode.

Remark 2. For theorem 2 we require that the discrete approximation of (Xt)t∈[0,T ] is of strong order 1.0
(instead of strong order 0.5 which is sufficient for theorem 1). This excludes the standard Euler–Maryama
discretization strategy, but there are a variety of other options. One good choice is a jump-adapted strong
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order 1.0 discretization scheme, first described in [34], and other efficient schemes are described in [30] and
[31]. A survey of strong approximations of jump-diffusions is given in [10] and expanded upon in chapters 6
and 8 of [11]. Since the path generation is done at the start of the algorithm and the paths can be stored for
re-use, the downside of increased complexity is outweighed by the benefit of improved convergence rates. In
addition, if paths can be simulated exactly (as is the case of the example in section 4.1), the discretization
error in X can be avoided altogether, though there remains discretization error from the discrete switching
grid.

3.3. Convergence. The natural questions are (1) whether this algorithm will train a neural network that
converges to the correct value function of interest, and (2) how the switching strategy generated by this
algorithm performs in comparison to the true optimal switching strategy. We first focus on the former
question.
The mode-wise maximum of the errors between the FBSDE system (Y i

t , Z
i
t ,∆Y i

t ) and the functions learned

by the neural network (Ŷi
n, Ẑi

n, ∆̂Y
i

n), can be represented by

E [(Ŷ, Ẑ, ∆̂Y)), (Y, Z,∆Y )] := max
n=0,1,...,M

E
[
max
i∈I

|Y i
tn − Ŷi

n(X
π
n )|2

]
+

M−1∑
n=0

∫ tn+1

tn

max
i∈I

E||Zi
t − Ẑi

n(X
π
n )||2dt

+

M−1∑
n=0

∫ tn+1

tn

max
i∈I

E
∣∣∣∣∫

Rd

∆Y i
t (e)ν(de)− ∆̂Y

i

n(X
π
n )

∣∣∣∣2 dt.
(3.4)

We also define auxiliary functions which are integral to the upcoming error definition and to the proofs of
convergence themselves. These functions are formulated in a similar manner to that of the discretization of
the FBSDEs presented in [8] and are defined as

ŷin(X
π
n ) := E

[
Ŷi
n+1(X

π
n+1)|Fn

]
+ fi(tn, X

π
n )∆t,(3.5)

ẑin(X
π
n ) :=

1

∆t
E
[
Ŷi
n+1(X

π
n+1)∆Wn|Fn

]
,(3.6)

ûi
n(X

π
n ) :=

1

λ∆t
E
[
Ŷi
n+1(X

π
n+1)∆Ñn|Fn

]
,(3.7)

where Fn := Ftn for convenience. According to the martingale representation theorem of [37], there exist
processes (zis)tn<s≤tn+1 and (ui

s)tn<s≤tn+1 such that

(3.8) Ŷi
n+1(X

π
n+1) = ŷin(X

π
n )− fi(tn, X

π
n )∆t+

∫ tn+1

tn

zisdWs +

∫ tn+1

tn

∫
Rd

ui
s(e)Ñ (de, ds).

Using the Markov property of the processes and Itô isometry, we can also see that the following relationships
hold:

ẑin(X
π
n ) =

1

∆t
E
[∫ tn+1

tn

zisds|Fn

]
,(3.9)

ûi
n(X

π
n ) =

1

λ∆t
E
[∫ tn+1

tn

∫
Rd

ui
s(e)ν(de) ds|Fn

]
.(3.10)

Using these quantities, we define the set of neural network approximation errors as

εyn :=
∑
i∈I

(
inf

θ1∈Θ
E|ŷin(Xπ

n )− Yi
n(X

π
n , θ1)|2

)
,

εzn :=
∑
i∈I

(
inf

θ2∈Θ
E||ẑin(Xπ

n )−Zi
n(X

π
n , θ2)||2

)
,

εun :=
∑
i∈I

(
inf

θ3∈Θ
E|ûi

n(X
π
n )−∆Yi

n(X
π
n , θ3)|2

)
.

(3.11)

These errors converge to 0 as the number of parameters in the neural network increases to infinity. More
precisely, we can say that as δ → ∞ and correspondingly |Θδ| → ∞, then εyn, ε

z
n, ε

y
n converge to 0. This
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follows from the Universal Approximation Theorem of [25]. Therefore, we can use eq. (3.11) to express our
convergence results as a function of the neural network approximation errors and the time discretization M .

Theorem 1 (Convergence of OSJ Value Function). The error between the machine learning-generated func-

tions (Ŷi, Ẑi, ∆̂Y
i
), and the functions associated with the true optimal switching problem (Y i, Zi,∆Y i) (as

defined in eq. (3.4)), is bounded by

(3.12) E [(Ŷ, Ẑ, ∆̂Y)), (Y,Z,∆Y )] ≤ C

M−1∑
n=0

(
Mεyn + εzn + εun

)
+ Cε

(
M−1/2+ε

)
,

where εyn, ε
z
n, ε

u
n are defined in eq. (3.11). In addition, ε > 0 is chosen to be arbitrarily small and Cε has an

inverse relationship with ε. The formulation of this error term is further discussed in section 5.1.

Remark 3. In general, we write f(x) = O(g(x)) if there exists some C > 0, dependent only on the specific
formulation of the problem and not on the size of the discretized grid, such that f(x) ≤ Cg(x) as x → 0.

Remark 4. Note that our convergence scheme recovers a similar error to Theorem 4.1 of [26] which we
extended, with the caveat that the discrete approximation of the multidimensional reflected BSDE eq. (2.3)
has size CεM−1/2−ε instead of O(M−1) for their one-dimensional BSDE.

Remark 5. The quantity Mεyn + εzn + εun will reappear multiple times as we proceed through the paper. In
the future, for convenience we will define

εMn := Mεyn + εzn + εun,

and at times we will use this simpler quantity in place of the sum of the neural network errors.

We also wish to evaluate the performance of aNN,M (the switching strategy generated by the machine-
learning algorithm) as M increases to infinity by looking at J(0, x0, i,a

NN,M ) as defined in eq. (2.2). To
do this, we introduce some additional conditions which are not necessary for the results given in theorem 1.

Theorem 2 (Convergence of OSJ Switching Strategy). Assume that the discrete approximation of (Xt)t∈[0,T ]

is of strong order 1.0 at minimum. Then, the mode-wise maximum of the errors between the neural network
switching strategy’s expected payoff J(0, x0, i,a

NN,M ) and the true value function V (0, x0, i) is bounded by

max
i∈I

|V (0, x0, i)− J(0, x0, i,a
NN,M )| ≤Cε(M−1/2+ε) + C2

M−1∑
n=0

[
εMn
M

+ εMn

]

+O

(
1

M2

)√√√√O(1) + C5

M−1∑
n=0

[(
εMn /M

)1/2
+ εMn

]
.

(3.13)

Remark 6. From [25] it is known that εyn, ε
z
n, ε

u
n → 0 as |Θδ| → ∞. Therefore, for every M there exists a

neural network configuration such that all of these errors can be made arbitrarily small. This implies that
for each choice of M , εMn can also be made arbitrarily small. Specifically, for any ζ > 0, there exists a
neural network configuration such that εMn is on the order of O(M−1−ζ) for all n ∈ {0, . . . ,M − 1}. This
will ensure the convergence of the results shown in this section.

Remark 7. We wish to make a small comment on the use of the expectation in our convergence results
despite calculating an empirical mean in our algorithm. We choose the number of simulated paths to be on
the order of M2 to ensure that the error between the empirical mean and analytical expectation is reasonably
small. Furthermore, if exact simulations can be used, this error does not depend on the time discretization.
We refer to Theorem 6.2 of [9] for further reading on this distinction, but omit this error elsewhere in our
paper for simplicity.

The full proofs of theorem 1 and theorem 2 are provided in Section 5.

4. Numerical Examples

4.1. Optimal Asset Scheduling (Carmona and Ludkovski) [12]. We first numerically evaluate the
OSJ algorithm by implementing an optimal switching problem first discussed in [12]. The problem models a
power plant that converts natural gas to electricity, where investors are able to purchase three-month lease
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contracts. We wish to know how to price these contracts, which is equivalent to calculating the expected
maximum profit of the plant over the time horizon under no-arbitrage assumptions.
The price process informing the power plant scheduling decisions has the form of an exponential Ornstein-

Uhlenbeck process with jumps given by

dXt = Xt

[
κ(µ− log(Xt))dt+ΣdWt +

∫
Rd

(exp(e)− 1)N (de, dt)e1

]
where κ, µ, dWt ∈ Rd and Σ ∈ Rd×d. The jumps are driven by N (de, dt), a Poisson random measure with
intensity measure ν(de) = λµ(e)de, where λ is a constant and µ(e) is the probability density function of
e. The standard basis vector e1 = (1, 0, . . . , 0)T is used to denote that only the first dimension (electricity
price) experiences a jump.
We use a jump-adapted exact scheme to model the process, where jump times are simulated and added

to π to form a new grid, π′, with time steps {τm}M ′

m=0 where M ′ ≥ M . If we define X̃t = log(Xt), then in
between grid points in the jump-adapted scheme, the process evolves as a pure diffusion according to

dX̃t =

[
κ(µ− X̃t)−

1

2
Tr(ΣΣT )

]
dt+ΣdWt, t ∈ (τm, τm+1),

and the exact solution of this Ornstein-Uhlenbeck process is well-known. The sizes of the randomly-occurring
jumps is simulated according to the distribution of the exponential random variable e.

4.1.1. Two-dimensional Example. The price processes for the electricity sold by the plant and the natural
gas bought by the plant are given by the following stochastic processes:

dPt = Pt

{
5(log(50)− logPt)dt+ 0.5dW 1

t +

∫
R
(exp(e)− 1)N (de, dt)

}
,

dGt = Gt{2(log(6)− logGt)dt+ 0.4(0.8dW 1
t + 0.6dW 2

t )},

where e follow an exponential distribution where the mean jump size is 1/10 = 10% (and µ is set acccordingly),
and the Poisson random measure has λ = 8, meaning that the average number of jumps is 8 per year. These
values are chosen to be consistent with those in [12]. As previously discussed, the power plant can be leased
for three-month intervals. Decisions regarding production capacity can be made twice daily, so there are 180
operational decisions to be made over the lifetime of the contract. As in [12], the switching costs are purely
dependent on the price of natural gas, as we assume that a certain amount of fuel is burned when altering
the operating state of the plant. In this situation, we define

(4.1) Ci,j =

{
0, i = j,∀i, j ∈ I,
0.01Gt + 0.001, i ̸= j,∀i, j ∈ I,

which satisfies the assumptions in assumption 2. For our example, the power plant is assumed to begin the
contract period in a dormant state, after which the controller may choose whether to run the plant at full
capacity (mode 3), half capacity (mode 2), or turn it off temporarily (mode 1). Each mode has an associated
running profit, described by

f1(Pt, Gt) = −1,

f2(Pt, Gt) = 0.438(Pt − 7.5Gt)− 1.1,

f3(Pt, Gt) = 0.876(Pt − 10Gt)− 1.2,

(4.2)

where the total capacity of the plant is 876 MW and the heat rates are 7.5 MMBtu/MWh when running at
half capacity and 10 MMBtu/MWh when running at full capacity.
While this example is only two-dimensional, we implement it to verify the accuracy of our OSJ algorithm

on an example that is numerically tractable using previous probabilistic methods. We have made some
changes to both the operational setup and the price process evolution in comparison to [12], so we cannot
directly compare with the results obtained in that paper. However, we are able to compare the results of our
implementation with the results of our implementation of their Longstaff-Schwartz probabilistic algorithm,
and find that the discrepancy is very low between the methods. The results of our numerical experiments are
displayed in table 1. The visualizations of the switching strategies can be found in fig. 1, and examination
shows that the strategies make sense in the context of the problem. For higher natural gas costs and lower



A NEURAL NETWORK APPROACH TO HIGH-DIMENSIONAL OPTIMAL SWITCHING PROBLEMS WITH JUMPS IN ENERGY MARKETS59

x0 = [50, 6] OSJ LS Difference

V (0, x0, 1) 0.633266 0.63232 0.01%

V (0, x0, 2) 0.69657 0.69683 0.0004%

V (0, x0, 3) 0.621001 0.62914 1.29%

Table 1. This table compares the results of the proposed OSJ algorithm with our implementation
of the Longstaff-Schwarz (LS) algorithm presented in [12] to verify the accuracy of the results.
100,000 paths of {Xπ

n}180n=0 were generated. The neural networks were trained with a learning rate
of 0.001 over 20 epochs, and had a runtime of of 13.73 minutes.

x0 = [50, 6] OSJ LS Difference

V (0, x0, 1) 1.14020 1.14641 0.5%

V (0, x0, 2) 1.19858 1.20930 0.8%

V (0, x0, 3) 1.13858 1.13399 0.4%

Table 2. This extends the results of table 1 to a scenario where λ = 16 instead of λ = 8. Similarly,
100,000 paths of {Xπ

n}180n=0 were generated and the networks were trained with a learning rate of
0.001 over 20 epochs, and had a runtime of 13.96 minutes.

electricity prices, the plant will have less incentive to produce large amounts of electricity, since the profits
of selling electricity will not fully cover the input costs.
Readers may wonder about the performance for higher value of λ. If we double λ from 8 to 16, we obtain

similar error estimates, as detailed in table 2, and runtimes are unaffected.

4.1.2. Higher-dimensional Performance. We can also consider a high-dimensional example where optimiza-
tion is done over the price of electricity X0

t = Pt (a jump-diffusion process as in the previous example), as

well as F possible fuels (X1
t , . . . , X

F
t ), leading to a problem with d = 1+F . The fuel prices Xϕ

t , ϕ = 1, . . . , F
follow an Ornstein–Uhlenbeck-type stochastic evolution given by

dXϕ
t = Xϕ

t {2(log(6)− logXϕ
t )dt+ 0.4(0.8dW 1

t + 0.6dWϕ
t )}.

The modes remain the same (mode 1: shut down, mode 2: half capacity, mode 3: full capacity) and the
switching costs use the average over all the input fuels. The profit functions are given by fi(Pt, X̄t), defined
as in eq. (4.2), where X̄t is the geometric mean of the fuel prices X1

t , . . . , X
F
t and has the same distribution

as Gt. Therefore, analytically this problem can be simplified to the two-dimensional example, and the output
can be compared to that of section 4.1.1. However, the neural network does not “know” that the problems
are equivalent, and simply trains the optimal weights for a higher-dimensional input vector and a larger
neural network (recall there are d + 10 nodes in each layer of the network). So, we can use this example
to examine the numerical accuracy and computational performance in higher dimensions. Our results are
displayed in table 3, where we demonstrate both consistent accuracy and a linear (rather than exponential)
increase in running time in problems of up to 70 dimensions. The increase in running time can also be
observed visually in fig. 2.

4.2. Optimal Capacity Decisions (Aid, Campi, Langrene, Pham [1]). We now consider a high-
dimensional example adapted from the paper [1]. In their paper, they investigated the question of when and
how many power plants of various types to build over a forty-year time horizon. Specifically, they considered
an agent who is able to build power plants which rely on a cheaper fuel or a more expensive one. The
optimal construction schedule was able to decrease electricity prices while also maximizing profits. We seek
to answer a related question on a shorter time horizon, where the investor owns multiple preexisting power
generation facilities that produce electricity using different fuels and sources. The operator must determine
the optimal configuration of these facilities to bring online at any given time in order to optimize the profits
made by the operator of the facilities. However, electricity prices are also stochastic, and changes in plant
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Figure 1. Switching strategies starting from mode i = 1, 2, 3 for a selection of time steps, where
N = 180, corresponding to two electricity production decisions being made per day. The first plot
of each subfigure shows the optimal mode to switch to when starting in mode 1 at the given time.
The second plot corresponds to starting in mode 2 at the given time, and the third plot corresponds
to starting in mode 3 at the given time. Each group of three plots corresponds to a different point
in the 90-day scheduling problem.
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Dimension (d) Running time (min) Average Difference

2 13.73 0.433%

10 19.52 1.004%

20 36.26 1.966%

30 40.05 1.120%

40 51.02 1.231%

50 51.89 1.275%

60 65.82 1.188%

70 71.95 1.617%

Table 3. This table contains the running times and errors for a series of high-dimensional examples
which are analytically equivalent to the two-dimensional example solvable by the Longstaff-Schwartz
algorithm. By average difference, we refer to the average over the three modes of the differences
between the value functions produced by the OSJ and LS algorithms.

Figure 2. A linear regression of the performance of the algorithm as the dimension of the problem
increases.

operations incur switching costs. These changes are made because we would like to investigate strategies
on shorter time horizons with more frequent operating decisions, where bringing plants on- and offline in
response to demand is not a trivial process. Additionally, the neural network structure of our algorithm
will allow us to consider higher-dimensional problems, and so we take advantage of that to model stochastic
electricity prices as electricity producers do not always have full control over electricity prices.
One feature of this example is a stochastic “realized availability rate” for each facility, which can be

explained as an indicator of fluctuations in realized electricity production due to exogenous factors affecting
plant efficiency, despite each facility having a constant “official” output capacity. Additionally, a carbon
dioxide emission penalty is included in the price of each input fuel, where the price of carbon dioxide is also
stochastic. If we consider F fuel sources (for example, natural gas and oil), the state variables are their
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prices (Sϕ
t ), ϕ = 1, . . . , F , their stochastic availability (Aϕ

t ), ϕ = 1, . . . , F , the price of carbon dioxide (S0
t ),

the demand for electricity (Dt), and the price of electricity (Pt). Therefore, the total dimension of the state
variable is d = 2F + 3 where F is the number of different fuels (or more generally, energy sources) being
considered. The “modes” we consider are the output levels for each of these fuel sources at the given decision
period. We will now proceed to describe the evolution of each of these components of the state variable.
Electricity demand Dt is represented by an Ornstein–Uhlenback process Z0

T that is shifted using a cosine
function H to incorporate seasonal demand fluctuations, so that

dZ0
t = α0Z0

t dt+ β0dW 0
t ,

Dt = Z0
t +H(t).

Realized availability (Aϕ
t , ϕ = 1, . . . , F ) also fluctuates according to an Ornstein–Uhlenback process, and

is transformed by a quantile function T : R → [0, 1] to a percentage of the “official” capacity of each power
generation facility, as described by

Aϕ
t = T (Zϕ

t ),

dZϕ
t = αϕZϕ

t dt+ βϕdWϕ
t .

The remaining inputs to the optimal switching problem are the costs of the fuels and the electricity spot
prices. In reality, spot prices are set through electricity markets involving complicated interactions between
multiple players, but here we model them as stochastic and independent of the operator’s switching decision.
Fuel costs and electricity prices are correlated through the cointegration matrix µ and covariance matrix Σ,

where µ is a matrix with rank r such that 1 < r < F + 2. The raw fuel prices Sϕ
t , ϕ = 0, 1, . . . , F and

electricity spot prices Pt are jointly referred to as St = (S0
t , ..., S

F
t , Pt) ∈ [0,∞)F+2, the dynamics of which

are given by

dSt = µStdt+ diag(St)

(
ΣdWS

t +

∫
RF

St(exp(e)− 1)N (de, dt)

)
.

This price process can also be simulated exactly. The electricity price process (the first dimension of the
vector) experience jumps of size St(exp(e)−1) where N (de, dt) is a Poisson random measure with intensity λ
and e follows an exponential distribution. The total cost of each fuel is the raw cost of the fuel times its heat

rate, hϕS
ϕ
t , plus a carbon dioxide emission charge h0

ϕS
0
t , and we denote this price as S̃ϕ

t = h0
ϕS

0
t +hϕS

ϕ
t . The

specific values of these parameters are given in table 5. All these factors combine with the current available

capacities for each fuel type, given by Kϕ
t = Aϕ

t ×Mϕ,i
t , where Mϕ,i

t is the operating level for the plant that

uses fuel ϕ in mode i. We denote the total production capacity at time t by K̄t =
∑F

ϕ=1 K
ϕ
t .

We consider a time horizon T = 0.25 years (3 months), where production decisions can be made once
per day (N = 90). The electricity spot prices, along with the cost of altering the capacity of each type
of power generation facility and the current demand, determine the total profit made by the owner of the
facilities. The associated running cost is defined as total revenue minus the costs of operating the plants for
each technology at the chosen capacities. This can be represented as

f(t,Xt,Kt) = Pt min{Dt, K̄t}+ 0.5Pt(K̄t −Dt)
+ − 2Pt(Dt − K̄t)

+ −
F∑

ϕ=1

Kϕ
t S̃

ϕ
t ,

where Xt = (Dt, A
1
t , . . . , A

F
t , S

0
t , S̃

1
t , . . . , S̃

F
t ) and Kt = (K1

t , . . . ,K
F
t ). The basic intuitions behind this profit

function are

• Electrical demand must be met.
• The power plant can sell electricity in excess of demand at a steep discount, and can buy additional
electricity to satisfy demand at a steep premium.

• The total operational capacity is constant across all modes, but the cost and flexibility of production
differs depending on the configuration of the three plants.

• Once mode i is chosen, the power plant must make Kϕ
t = Aϕ

t × Mϕ,i
t units of electricity using

technology ϕ.
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To demonstrate the expanded capabilities of our algorithm, we consider three different types of power
plants: natural gas (ϕ = 1), coal (ϕ = 2), and nuclear (ϕ = 3) plants. Switching costs are given by

Ci,j(Xt) =

F∑
ϕ=1

cϕSϕ
t 1{Mϕ,i

t ̸=Mϕ,j
t } + ϵ,

where cϕ imposes a scale factor on the cost of fuel ϕ, and there is an additional small fixed switching cost ϵ
to satisfy assumption 2. The natural gas-based electricity production facility can be “scaled up” slightly, at
the expense of efficiency (conveyed through heat rate), and the “switching cost” of this change is determined
accordingly. The coal-based and nuclear production facilities are supplementary facilities that can be turned
on or off. Nuclear energy is an interesting addition to the problem described in [1] as it has lower and more
consistent running costs than fossil fuels. In addition, nuclear energy production is not subject to a carbon
dioxide emissions charge and the cost of uranium is assumed to be only very weakly correlated with fossil
fuel pricing. However, the nuclear plant faces high friction when starting up or shutting down the nuclear
reactor, as this is a slow and complicated process if done safely. Therefore, we can model this type of plant
and its associated security concerns with a higher “switching” cost, quantifying the time and energy required
to turn the plant on and off. Finally, the coal plant also takes time and fuel to turn on and off, which is
reflected by “switching” cost associated with bringing the plant online or taking it offline. The possible
electricity production configurations (modes) that we consider and their switching costs are listed in table 4.
Notice that capacity levels are the same for all modes, but the mix of energy sources varies from mode to
mode. This allows us to examine the optimal electricity production configuration based on our parameter
choices, listed in table 5.

Fuel Mϕ,1 Mϕ,2 Mϕ,3 Mϕ,4 Switching cost

Natural Gas (ϕ = 1) 50 60 60 70 0.1S1
t

Coal (ϕ = 2) 10 0 10 0 0.1S2
t

Nuclear (ϕ = 3) 10 10 0 0 0.5S3
t

Table 4. The modes considered in this example involve natural gas (ϕ = 1), coal (ϕ = 2), and
nuclear (ϕ = 3) energy sources. Mϕ,i is the baseline production capacity of a plant which uses fuel
ϕ, when operating in mode i for i = 1, . . . , 4.

The strategies associated with this model are investigated in Figures 3 and 4, which display the relation-
ships between fuel prices and optimal strategies. In each heatmap, fuel prices for one of the three fuels are
held constant at their average level, and prices and strategies for the remaining two fuels are visualized.
The heatmaps are presented in groups of four to illustrate how the optimal switching strategy is dependent
on the current mode at time tn, and each subfigure shows the optimal strategies (given by the colors in
the heatmap) for different values of the state variables at a given time and current mode. This allows us
to isolate how prices of natural gas, coal, and uranium individually affect optimal strategies and also to
examine how switching costs contribute to switching decisions.
Overall, our parameters defined coal as the least efficient of the three sources, and is also the most expensive

once the carbon dioxide emissions charge is incorporated into the pricing. Nuclear energy is the most cost-
effective on average, but natural gas is the most efficient when comparing heat rates. Therefore, modes 1 and
3, which utilize the coal plant, are generally less preferred than the others. Additionally, the “cost” of turning
on and off the nuclear reactor is quite high, as this cost encompasses the safety considerations associated
operating a nuclear reactor. However, the beneficial qualities of nuclear power are seen to outweigh the
drawbacks of the increased switching cost when compared to the lower efficiency of a coal plant.
We first discuss 3, which displays the optimal switching strategies for a given current mode at day eighty-

five of the ninety-day optimization period. Note that in general, it is not profitable to incur a loss in revenue
by changing the operating mode of the plant, so most of the region remains the color which corresponds
to the current mode. However, if switches do occur, they favor mode 2, where electricity is produced by a
combination of nuclear and gas, and occur in regions where either the cost of nuclear is very low or the cost
of the other fuels is very high. This occurrence is in line with the formulation of the problem, where nuclear
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and gas power perform better than coal power. Empirically, therefore, the switching strategies provided by
the algorithm appear reasonable.
Furthermore, as n decreases (meaning that there is more time left for the operator to make switching

decisions before the end of the operational period at n = N = 90), switching costs make up a smaller
proportion of total costs. We look at 4, which shows the optimal switching strategies at day thirty –
much earlier in the process. At this point, there is also more uncertainty regarding the evolution of the
state process, and this appears to correlate with the algorithm favoring the mode with the best “average”
performance, which is mode 2, where electricity is produced by a combination of natural gas and nuclear
power. Overwhelmingly, the region for which it is optimal to switch to mode 2 increases as n decreases, as
shown in fig. 4.
Note that in fig. 4 the algorithm does not prescribe a switch when gas prices are high and when operating

fully using gas. This may seem counterintuitive, as higher gas prices in comparison to other fuel prices make
gas less attractive at first glance. However, these higher gas prices also result in much higher switching
costs for the plant, as the switching costs are also directly proportional to the fuel costs in our model. This
introduces an element of reluctance if the profit to be made from switching is small enough in comparison to
expensive switching costs. In addition, the mean reversion of the gas prices implies downward pressure on
high gas prices (in expectation). It can be seen that as the time horizon becomes longer this effect is weaker,
but it still has some impact in fig. 4.

Figure 3. Switching strategies at n = 85, where n is the number of days that has elapsed since
the start of the period and the period has length N = 90 days.
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Figure 4. Switching strategies at n = 30, where n is the number of days that has elapsed since
the start of the period and the period has length N = 90 days.

5. Convergence Analysis

Recall that we wish to prove that the error of the OSJ algorithm will converge to zero as the neural network
approximation errors of the architecture converge to zero and as the size of the time steps, ∆t = T/M ,
decreases to zero. The error in both theorem 1 and theorem 2 can be split into two parts: a discretization error
for the stochastic processes and an algorithm-associated error. Once we have established the discretization
error, we will be able to calculate the error of the neural network approximation by working with only
discrete processes.

5.1. Discretization Error. As stated in remark 2, the result of theorem 1 follows when the discretization
scheme used for simulating paths of Xt is of at least strong order 0.5 and the result of theorem 2 follows when
the discretization scheme is of at least strong order 1.0 (the choice of scheme is arbitrary). For consistency,
we explicitly define the discretization error as(

E

[
max

n=1,...,N−1
|Xtn+1 −Xπ

n+1|2 + sup
t∈[tn,tn+1]

|Xt −Xπ
n |2
])1/2

≤ CX(∆t)γ = O(M−γ)

when the discretization scheme is strong order γ. For our purposes, γ = 0.5 in section 5.2.1 and section 5.2.2
and γ = 1.0 in section 5.3.
Let us now move on to the error between Y i

t = V (t,Xt, i) and the discrete approximation of this process,
Y π,i
n , which approximates Y i

t at time tn starting in mode i. At the terminal time T , the terminal condition
dictates that

Y π,i
M ≡ gi(Xπ

M ).

Earlier values of Y π,i
n for n ∈ {0, . . . ,M − 1} can now be defined recursively in terms of the discrete approx-

imation of the continuation values at each time step, represented by Ỹ π,i
n , following the relationship

(5.1) Y π,i
n := 1tn∈R max

{
Ỹ π,i
n , max

j ̸=i

(
− Ci,j(X

π
n ) + Ỹ π,j

n

)}
+ 1tn /∈RỸ π,i

n ,∀i ∈ I,∀n ∈ {0, . . . ,M − 1}.
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Recall that R is the switching grid, and the grid size is of order O(M−1/2). This representation is driven
by the dynamic programming principle. Therefore, we are able to solve for Y π,i

n by comparing the contin-

uations values Ỹ π,i
n at each step n. In turn, the continuation values at time tn rely on the approximated

value functions Y π,i
n+1 from the previous step. The exact formulation of the discrete approximation of these

continuation values, as well as discrete approximations of Zi
t and ∆Y i

t , follows the method laid out in [8].
We set

Ỹ π,i
n := E[Y π,i

n+1|Fn] + f(tn, X
π
n )∆t,(5.2)

Zπ,i
n :=

1

∆t
E[Y π,i

n+1∆Wn|Fn],(5.3)

∆Y π,i
n :=

1

λ∆t
E[Y π,i

n+1∆Ñn|Fn].(5.4)

The strong order γ approximation of Xt where γ ≥ 0.5 and the conditions in assumption 1 ensure that the
discrete-time approximation scheme described in eq. (5.2)-eq. (5.4) is of strong order at least 0.5, as stated
in Theorem 2.1 of [8], when considering the un-reflected BSDEs with jumps. Theorem 5.4 of the reference
[13] presents the convergence rate for a similar discretization scheme for a multidimensional reflected BSDE
without jumps. By following a similar path to these two papers, one which handles a BSDE with jumps and
one which handles a BSDE with reflections which arise from switching, we can obtain a convergence rate for
the above discretization scheme. For all modes i in I and for ε arbitrarily small, we have

max
n∈0,1,...,M

E[Ỹ i
tn − Ỹ π,i

n |2 + |Y i
tn − Y π,i

n |2] ≤ CεM−1+ε,

E

[
M−1∑
n=0

∫ tn+1

tn

|Zi
t − Zπ,i

n |2dt

]
≤ CεM−1/2+ε,

E

[
M−1∑
n=0

∫ tn+1

tn

∣∣∣∣∫
Rd

∆Y i
t (e)ν(de)−∆Y π,i

n

∣∣∣∣2 ds
]
≤ CεM−1/2+ε.

(5.5)

Therefore, in following sections, we will focus on the error between the discrete approximations (Y π,i
n , Zπ,i

n ,∆Y π,i
n )

and the neural network approximations (Ŷi
n(X

π
n ), Ẑi

n(X
π
n ), ∆̂Y

i

n(X
π
n )).

Remark 8. Each Ỹ π,i
n can be represented as a conditional expectation with respect to Fn, so due to the

Markovian nature of the problem, it can be expressed as a function of Xπ,i
n . We abuse notation and denote

the value function by Ỹ π,i
n (Xπ,i

n ). The same can be done to represent Y π,i
n as Y π,i

n (Xπ
n ), Z

π,i
n as Zπ,i

n (Xπ
n ),

and ∆Y π,i
n as ∆Y π,i

n (Xπ
n ).

5.2. Proof of theorem 1.

5.2.1. Value Function Learning Error. We now want to bound the error between the function Ŷi
n(X

π
n ) learned

by the OSJ algorithm and the discrete value function approximation Y π,i
n (Xπ

n ), for any given starting mode
i. Using |max{a, b} −max{c, d}| ≤ max{|a− c|, |b− d|} we can rewrite

|Y π,i
n (Xπ

n )− Ŷi
n(X

π
n )| =|max{Ỹ π,i

n (Xπ
n ),max

j ̸=i
(−Ci,j(X

π
n ) + Ỹ π,j

n (Xπ
n ))}

−max{Ỹi
n(X

π
n ),max

j ̸=i
(−Ci,j(X

π
n ) + Ỹj

n(X
π
n ))}|

≤max{|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|,

|max
j ̸=i

(−Ci,j(X
π
n ) + Ỹ π,j

n (Xπ
n ) + Ci,j(X

π
n )− Ỹj

n(X
π
n ))|}

=max{|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|, |max

j ̸=i
(Ỹ π,j

n (Xπ
n )− Ỹj

n(X
π
n ))|}

≤max
j∈I

|Ỹ π,j
n (Xπ

n )− Ỹj
n(X

π
n )|.

Therefore, we conclude that

(5.6) E
[
max
i∈I

|Y π,i
n (Xπ

n )− Ŷi
n(X

π
n )|2

]
≤ E

[
max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|2

]
.
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In light of this, let us focus on the mode-wise maximum of the difference in the continuation values Ỹi
n

and Ỹ π,i
n by using eq. (3.5) and eq. (5.2) to find that

Ỹ π,i
n (Xπ

n )− ŷin(X
π
n ) = E

[
Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|Fn

]
.

Squaring and taking expectation over the mode-wise maximum, then applying Jensen’s inequality and tower
property,

E
[
max
i∈I

|Ỹ π,i
n (Xπ

n )− ŷin(X
π
n )|2

]
≤ E

[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
.(5.7)

We can get a lower bound on the left-hand side by using maxi∈I |ai − bi| ≥ |maxi∈I |ai| −maxi∈I |bi||, such
that

E
[
max
i∈I

∣∣Ỹ π,i
n (Xπ

n )− ŷin(X
π
n )|2

]
≥ E

[∣∣max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )| −max

i∈I
|Ỹj

n(X
π
n )− ŷjn(X

π
n )|
∣∣2].

Now, we apply Young’s inequality in the form (a− b)2 ≥ (1−∆t)a2 − 1
∆tb

2 to the right-hand side so that a
lower bound is obtained of the form

E
[
max
i∈I

|Ỹ π,i
n (Xπ

n )− ŷin(X
π
n )|2

]
≥(1−∆t)E

[
max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|2

]
− 1

∆t
E
[
max
i∈I

|Ỹi
n(X

π
n )− ŷin(X

π
n )|2

]
≥(1−∆t)E

[
max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|2

]
− 1

∆t
E
[∑

i∈I
|Ỹi

n(X
π
n )− ŷin(X

π
n )|2

]

By combining this with eq. (5.7) we can write

(1−∆t)E
[
max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|2

]
≤E
[
max
i∈I

|Ỹ π,i
n (Xπ

n )− ŷin(X
π
n )|2

]
+

1

∆t
E
[∑

i∈I
|Ỹi

n(X
π
n )− ŷin(X

π
n )|2

]
≤E
[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
+

1

∆t

∑
i∈I

E|Ỹi
n(X

π
n )− ŷin(X

π
n )|2.

For ∆t sufficiently small (less than 1), we have

E
[
max
i∈I

|Ỹ π,i
n (Xπ

n )− Ỹi
n(X

π
n )|2

]
≤(1 + C1∆t)E

[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
+ C1M

∑
i∈I

E|Ỹi
n(X

π
n )− ŷin(X

π
n )|2,

(5.8)

where C1 does not grow as M increases and is independent of structure of the neural networks.
At this point, we have established an upper bound on the error between the discretized continuation

values Ỹ π,i
n and the neural-network-generated continuation values Ỹi

n(X
π
n ). This upper bound is in terms of

E|Ỹi
n(X

π
n )− ŷin(X

π
n )|2 and E|Y π,i

n+1(X
π
n+1)−Ŷi

n+1(X
π
n+1)|2. However, theorem 1 states the convergence error

in terms of the neural network approximation errors εyn, ε
z
n, and εun. Therefore, our next course of action is

to determine a bound on E|Ỹi
n(X

π
n )− ŷin(X

π
n )|2 in terms of these neural network approximation errors.
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To do this, we must analyze the loss function described in eq. (3.3). Replace Ŷi
n+1(X

π
n+1) in eq. (3.3) with

its corresponding BSDE representation eq. (3.8) and use the relations eq. (3.9) and eq. (3.10) to write

Li
n(θ) = E

∣∣∣∣∣ŷin(Xπ
n )− Yi

n(X
π
n , θ) +

(
fi(tn, X

π
n )− fi(tn, X

π
n )
)
∆t

+

∫ tn+1

tn

∫
Rd

ui
s(e)Ñ (de, ds)−∆Yi

n(X
π
n , θ)∆Ñn +

∫ tn+1

tn

(zis)
T dWs −Zi

n(X
π
n , θ)

T∆Wn

∣∣∣∣∣
2

= E
∣∣ŷin(Xπ

n )− Yi
n(X

π
n , θ) +

(
ûi
n(X

π
n )−∆Yi

n(X
π
n , θ)

)
∆Ñn +

(
ẑin(X

π
n )−Zi

n(X
π
n , θ)

)T
∆Wn

∣∣2
+E

[∫ tn+1

tn

∫
Rd

|ui
s − ûi

n(X
π
n )|2N (de, ds)

]
+ E

[∫ tn+1

tn

||zis − ẑin(X
π
n )||2ds

]
= L̄i

n(θ) + Error(U,Z),

where we used Itô isometry and the definitions of ûi
n and ẑin, given in eq. (3.7) and eq. (3.6) respectively, to

split up the expectation. We introduce the notation

L̄i
n(θ) := E

∣∣ŷin(Xπ
n )− Yi

n(X
π
n , θ) +

(
ûi
n(X

π
n )−∆Yi

n(X
π
n , θ)

)
∆Ñn +

(
ẑin(X

π
n )−Zi

n(X
π
n , θ)

)T
∆Wn

∣∣2
and

Error(U,Z) := E
[∫ tn+1

tn

∫
Rd

|ui
s − ûi

n(X
π
n )|2N (de, ds)

]
+ E

[∫ tn+1

tn

||zis − ẑin(X
π
n )||2ds

]
.

Note that Error(U,Z) is independent of our choice of θ. In addition, this error scales with ∆t as stated in
[8], since ẑin and ûi

n are the L2 projections of zis and ui
s on [tn, tn+1). For the near future, we will focus on

L̄i
n(θ). By Itô isometry and E[∆Wn] = 0, E[∆Ñn] = 0, we obtain

L̄i
n(θ) =E|ŷin(Xn)− Yi

n(Xn, θ)|2

+∆tE||ẑin(Xn)−Zi
n(Xn, θ)||2 + λ∆tE|ûi

n(Xn)−∆Yi
n(Xn, θ)|2.

Extending this to the sum of the loss functions over all possible modes and choosing θ = (θ1, θ2, θ3) = θ∗,in ∈
argminθ∈Θ Li

n(θ), we conclude that∑
i∈I

L̄i
n(θ

∗,i
n ) =

∑
i∈I

E|ŷin(Xπ
n )− Ỹi

n(X
π
n )|2

+
∑
i∈I

∆t
(
E||ẑin(Xπ

n )− Ẑi
n(X

π
n )||2 + λE|ûi

n(X
π
n )− ∆̂Y

i

n(X
π
n )|2

)
≤
∑
i∈I

(
inf
θ1

E|ŷin(Xπ
n )− Yi

n(X
π
n , θ1)|2 +∆t inf

θ2
E||ẑin(Xπ

n )−Zi
n(X

π
n , θ2)||2

)
+
∑
i∈I

λ∆t
(
inf
θ3

E|ûi
n(X

π
n )−∆Yi

n(X
π
n , θ3)|2

)
=εyn +∆t(εzn + λεun).

(5.9)

We note that θ∗,in must minimize both Li
n(θ) and L̄i

n(θ) because Error(U,Z) does not depend on θ. This
facilitates the above inequality, where the final line follows from the definition of the neural network errors
given in eq. (3.11). From eq. (5.9), we also get the looser bound

(5.10)
∑
i∈I

E|ŷin(Xπ
n )− Ỹi

n(X
π
n )|2 ≤ C2(ε

y
n +∆t(εzn + εun)) = C2ε

M
n /M,

where C2 = max{λ, 1}. Applying this to eq. (5.8) and recalling eq. (5.6) yields

E
[
max
i∈I

|Y π,i
n (Xπ

n )− Ŷi
n(X

π
n )|2

]
≤(1 + C1∆t)E

[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
+ C1C2M(εMn /M).

(5.11)

This setup allows us to perform induction on the inequality, continuing until the right-hand side is expressed
in terms of E

[
maxi∈I |Y π,i

M (Xπ
M ) − Ŷi

M (Xπ
M )|2

]
= 0 and a sum of neural network errors at time steps from
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n to M . Then, we can conclude the maximum error over the M time steps is bounded as

(5.12) max
n=0,1,...,M−1

E
[
max
i∈I

|Y π,i
n (Xπ

n )− Ŷi
n(X

π
n )|2

]
≤ C3

M−1∑
n=0

εMn .

where C3 encompasses the coefficients C1 and C2, as well as coefficients arising from the inductive step.
This aggregate coefficient, C3, is independent of ∆t and the neural network structure. Recall we initialized
Ŷi
M (·) = gi(·), so E[maxi∈I |Y π,i

M (Xπ
M ) − Ŷi

M (Xπ
M )|2] = 0. However, the error in eq. (5.12) is only the error

between the discrete approximation of the value function and the trained neural network approximation of
the value function. The true error involves the continuous value function Y i

t when starting in mode i at
time t, and so the discrete approximation error given by eq. (5.5) must be incorporated into our final error
bound. Therefore, the overall value function error is given by

(5.13) max
n=0,1,...,M−1

E
[
max
i∈I

|Y i
tn − Ŷi

n(X
π
n )|2

]
≤ C3

M−1∑
n=0

εMn + CεM−1/2+ε.

5.2.2. Auxiliary Function Learning Errors. We must now verify that Zπ,i
n and ∆Y π,i

n are also approximated
well. Looking first at the error in Z, we use triangle inequality to split each element of the sums into two
parts and use eq. (5.9) on the summation to get

∆tmax
i∈I

E||Zπ,i
n − Ẑi

n(X
π
n )||2 ≤2∆t(max

i∈I
E||Zπ,i

n − ẑin(X
π
n )||2

]
+max

i∈I
E||ẑin(Xπ

n )− Ẑi
n(X

π
n )||2)

≤2∆t

(
max
i∈I

E||Zπ,i
n − ẑin(X

π
n )||2

]
+
∑
i∈I

E||ẑin(Xπ
n )− Ẑi

n(X
π
n )||2

)
≤2∆tmax

i∈I
E||Zπ,i

n − ẑin(X
π
n )||2 + C2

(
εyn +∆tεzn +∆tεun

)
.

Similarly for ∆Y , we find that

∆tmax
i∈I

E|∆Y π,i
n − ∆̂Y

i

n(X
π
n )|2 ≤2∆t(max

i∈I
E|∆Y π,i

n − ûi
n(X

π
n )|2 +max

i∈I
E|ûi

n(X
π
n )− ∆̂Y

i

n(X
π
n )|2)

≤2∆t

(
max
i∈I

E|∆Y π,i
n − ûi

n(X
π
n )|2 +

∑
i∈I

E|ûi
n(X

π
n )− ∆̂Y

i

n(X
π
n )|2

)
≤2∆tmax

i∈I
E|∆Y π,i

n − ûi
n(X

π
n )|2 + C2

(
εyn +∆tεzn +∆tεun

)
.

We now need to work with ∆tE||Zπ,i
n − ẑin(X

π
n )||2 and ∆tE|∆Y π,i

n − ûi
n(X

π
n )|2. From the definitions of ∆Y π,i

n

and ûi
n and Cauchy–Schwartz of form |E[XY |A]|2 ≤ E[X2|A]E[Y 2|A], we get

|∆Y π,i
n − ûi

n(X
π
n )|2 =

1

(λ∆t)2
∣∣E[(Y π,i

n+1(X
π
n+1)− Ŷi

n+1(X
π
n+1))∆Ñn|Fn]

∣∣2
≤ 1

(λ∆t)2
E[|Y π,i

n+1(X
π
n+1)− Ŷi

n+1(X
π
n+1)|2

∣∣Fn]E[(∆Ñn)
2|Fn]

=
1

λ∆t
E[|Y π,i

n+1(X
π
n+1)− Ŷi

n+1(X
π
n+1)|2

∣∣Fn].

Notice that again we used Itô isometry applied to E[(∆Ñn)
2|Fn]. Therefore, it can be seen that

∆tmax
i∈I

E|∆Y π,i
n (Xπ

n )− ûi
n(X

π
n )|2 ≤ 1

λ
max
i∈I

E
[
E[|Y π,i

n+1(X
π
n+1)− Ŷi

n+1(X
π
n+1)|2|Fn]

]
=
1

λ
max
i∈I

E|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

≤ 1

λ
E[max

i∈I
|Y π,i

n+1(X
π
n+1)− Ŷi

n+1(X
π
n+1)|2].

Using a similar methodology and recalling that ∆Wn is d-dimensional and so E[||∆Wn||2|Fn] = d∆t, we can
also derive

∆tmax
i∈I

E||Zπ,i
n (Xπ

n )− ẑin(X
π
n )||2 ≤ dE

[
max
i∈I

∣∣Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)

∣∣2].
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Let κ = d+ 1
λ , so we can write

∆tmax
i∈I

(
E||Zπ,i

n − ẑin(X
π
n )||2 + E|∆Y π,i

n − ûi
n(X

π
n )|2

)
≤κE

[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
.

Now sum over allM . We use Y π,i
M (x) ≡ Ŷi

M (x) ≡ gi(x) and induction on eq. (5.11) (similar to the calculations
done to yield eq. (5.12)) to yield

M−1∑
n=0

∆tmax
i∈I

(
E||Zπ,i

n (Xπ
n )− ẑin(X

π
n )||2 + E|∆Y π,i

n − ûi
n(X

π
n )|2

)
≤

M−1∑
n=0

κE
[
max
i∈I

|Y π,i
n+1(X

π
n+1)− Ŷi

n+1(X
π
n+1)|2

]
=

M−1∑
n=1

κE
[
max
i∈I

|Y π,i
n (Xπ

n )− Ŷi
n(X

π
n )|2

]
+ κE

[
max
i∈I

|Y π,i
M (Xπ

M )− Ŷi
M (Xπ

M )|2
]

≤C3κ

M−1∑
n=0

εMn .

Therefore,

M−1∑
n=0

∆tmax
i∈I

E||Zπ,i
n − Ẑi

n(X
π
n )||2 ≤C4

M−1∑
n=0

εMn ,

M−1∑
n=0

∆tmax
i∈I

E|∆Y π,i
n − ∆̂Y

i

n(X
π
n )|2 ≤C4

M−1∑
n=0

εMn ,

where C4 = 2C3κ + C2 and is independent of ∆t. Similarly to in the previous section, the error between
the continuous quantities Zi

t and ∆Y i
t and their neural network approximations is made up of the above

quantities and the discrete approximation error eq. (5.5), so the final error for these auxiliary processes is
given by

M−1∑
n=0

max
i∈I

∫ tn+1

tn

E||Zi
t − Ẑi

n(X
π
n )||2dt ≤C4

M−1∑
n=0

εMn + CεM−1/2+ε,

M−1∑
n=0

max
i∈I

∫ tn+1

tn

E|∆Y i
t − ∆̂Y

i

n(X
π
n )|2dt ≤C4

M−1∑
n=0

εMn + CεM−1/2+ε.

5.3. Proof of theorem 2. We show that the expected payoff of the switching strategy generated by the
neural network converges to that of the true optimal strategy.

Remark 9. We introduce new notation for this subsection, which explicitly highlights the dependence of the
neural network output on the number of time steps, M . Specifically we redefine Ŷi

n(X
π
n ) as Ŷi

n,M (Xπ
n ) and

ŷin(X
π
n ) as ŷin,M (Xπ

n ).

Recall that aNN,M is the strategy produced by the OSJ algorithm when the number of time steps is given
by M . By definition, aNN,M is a discrete switching strategy where switches can only occur at times tn for
n = 0, . . . ,M and aNN,M takes on the value αNN,M,i

n (shortened hereafter to αn) on the interval [tn, tn+1).
If the system was in mode αn−1 right before time tn, then at time tn the neural network value function
satisfies the relationship

(5.14) Ŷαn−1

n,M (Xπ
n ) = Ỹαn

n,M (Xπ
n )− Cαn−1,αn

(Xπ
n ).

Remark 10. Note that it will often be the case that αn−1 = αn, in which case Cαn−1,αn
= 0 by assumption 2

and no switching cost is incurred. We investigate this further in lemma 3.
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The OSJ-generated strategy produces an expected payoff J(0, x0, i,a
NN,M ) when starting in initial mode

i and initial state x0. Let us now consider the error at some arbitrary time tn between the expected payoff
using the neural network strategy and the true value function. For any n = 0, 1, 2, . . . ,M , we can use the
triangle inequality to yield

|Y αn
tn − J(tn, Xtn , αn,a

NN,M )| ≤ |Y αn
tn − Ŷαn

n,M (Xπ
n )|+ |Ŷαn

n,M (Xπ
n )− J(tn, Xtn , αn,a

NN,M )|.

We can also apply eq. (5.14) to produce

Ŷαn

n,M − J(tn, Xtn , αn,a
NN,M ) =Ỹαn

n,M − Cαn−1,αn
(Xπ

n )− J(tn, Xtn , αn,a
NN,M )

=(Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n ))

+ (ŷαn

n,M (Xπ
n )− Cαn−1,αn

(Xπ
n )− J(tn, Xtn , αn,a

NN,M )).

We can use eq. (2.2) to express the expected payoff J(tn, Xtn , αn−1,a
NN,M ) recursively as

J(tn, Xtn , αn−1,a
NN,M ) = E

[ ∫ tn+1

tn

fαn
(s,Xs)ds− Cαn−1,αn

(Xtn)

+ J(tn+1, Xtn+1 , αn,a
NN,M )

∣∣∣Fn

]
.

Therefore, recalling the definition eq. (3.5) and taking the expectation of the absolute value of the difference

between Ŷαn−1

n,M and J(tn, Xtn , αn−1,a
NN,M ) yields

E|Ŷαn−1

n,M − J(tn, Xtn , αn−1,a
NN,M )| ≤E|Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n )|

+ E|Ŷαn

n+1,M (Xπ
n+1)− J(tn+1, Xtn+1 , αn,a

NN,M )|
+ E|Cαn−1,αn(Xtn)− Cαn−1,αn(X

π
n )|

+ E
[ ∫ tn+1

tn

|fαn
(tn, X

π
n )− fαn

(s,Xs)|ds
]
.

Taking the sum over n = 0, . . . ,M − 1 on both sides gives us

M−1∑
n=0

E|Ŷαn−1

n,M − J(tn, Xtn , αn−1,a
NN,M )| ≤

M−1∑
n=0

E|Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n )|

+

M−1∑
n=0

E|Ŷαn

n+1,M (Xπ
n+1)− J(tn+1, Xtn+1

, αn,a
NN,M )|

+

M−1∑
n=0

E|Cαn−1,αn
(Xtn)− Cαn−1,αn

(Xπ
n )|

+

M−1∑
n=0

E
[ ∫ tn+1

tn

|fαn(tn, X
π
n )− fαn(s,Xs)|ds

]
.

By subtracting
∑M−1

n=1 E|Ŷαn

n,M − J(tn, Xtn , αn,a
NN,M )| from both sides, we obtain

|Ŷi
0,M (x0)− J(0, x0, i,a

NN,M )| ≤
M−1∑
n=0

E|Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n )|

+ E|ŶαM−1

M,M (Xπ
M )− J(T,XT , αM−1,a

NN,M )|

+

M−1∑
n=0

E|Cαn−1,αn
(Xtn)− Cαn−1,αn

(Xπ
n )|

+

M−1∑
n=0

E
[ ∫ tn+1

tn

|fαn(tn, X
π
n )− fαn(s,Xs)|ds

]
.

We make a few comments at this stage. First, at the terminal time T = tM , Ŷi
M,M (x) ≡ J(T, x, i, ·) ≡

gi(x),∀x ∈ Rd, i ∈ I. In addition, gi is Lipschitz for all i ∈ I. Therefore, the error at the final step M has



22 ERHAN BAYRAKTAR, ASAF COHEN, AND APRIL NELLIS

error at most O(M−1) from the error between the discrete approximation Xπ
M and the true random variable

XT . Second, notice that |Cαn−1,αn(Xtn)−Cαn−1,αn(X
π
n )| ≠ 0 if and only if 1{αn−1 ̸=αn} = 1. This property,

along with the inequality ||x||1 ≤
√
M ||x||2,∀x ∈ RM , gives us

|Ŷi
0,M (x0)− J(0, x0, i,a

NN,M )| ≤
M−1∑
n=0

E|Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n )|+O(M−1)

+

M−1∑
n=0

E
[
|Cαn−1,αn(Xtn)− Cαn−1,αn(X

π
n )|1{αn−1 ̸=αn}

]
+

M−1∑
n=0

E
[ ∫ tn+1

tn

|fαn
(tn, X

π
n )− fαn

(s,Xs)|ds
]

≤
M−1∑
n=0

E|Ỹαn

n,M (Xπ
n )− ŷαn

n,M (Xπ
n )|+O(M−1)

+
[
M

M−1∑
n=0

(
E
[
|Cαn−1,αn(Xtn)− Cαn−1,αn(X

π
n )|1{αn−1 ̸=αn}

])2 ]1/2
+

M−1∑
n=0

E
[ ∫ tn+1

tn

|fαn
(tn, X

π
n )− fαn

(s,Xs)|ds
]
.

To proceed, we recall the Lipschitz assumption on the running cost f given by assumption 3 and the
assumption of a strong order 1.0 discrete approximation of Xt, as well as the result eq. (5.10). Then, the
inequality can be further simplified as

|Ŷi
0,M (x0)− J(0, x0, i,a

NN,M )| ≤
M−1∑
n=0

(
C2ε

M
n /M

)
+O(M−1)

+

[
M

M−1∑
n=0

(
E
[
|Cαn−1,αn

(Xtn)− Cαn−1,αn
(Xπ

n )|1{αn−1 ̸=αn}
])2]1/2

.

Focusing on the sum of the switching costs, we apply the Lipschitz assumption for the switching costs given
by assumption 2, Cauchy–Schwartz inequality, and remark 2 to yield

M−1∑
n=0

(
E
[
|Cαn−1,αn

(Xtn)− Cαn−1,αn
(Xπ

n )|1{αn−1 ̸=αn}
])2

≤[C]2l

M−1∑
n=0

(
E
[
||Xtn −Xπ

n ||1{αn−1 ̸=αn}
])2

≤[C]2l

M−1∑
n=0

E
[
||Xtn −Xπ

n ||2
]
E[(1{αn−1 ̸=αn})

2]

≤O(M−2)× E

[
M−1∑
n=0

1{αn−1 ̸=αn}

]
.(5.15)

We define a new random variable SM , representing the number of switches following from a given learned
strategy neural network strategy aNN,M . We define it as

SM :=

M−1∑
n=0

1{αn−1 ̸=αn},∀M ∈ N,

where {αn}M−1
n=0 are determined according to aNN,M and the choice of α−1 = i ∈ I.
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Lemma 3. The expected number of switches incurred by aNN,M is bounded by

E[SM ] ≤ O(1) + C5

M−1∑
n=0

[(
εMn /M

)1/2
+ εMn

]
,

where C5 = C2 + dC3.

Proof. From theorem 1 and specifically eq. (5.13), we have shown that Ŷi
0(x0) should converge to Y i

0 for all
i ∈ I as M → ∞. We will use this to prove that a bound exists for E[SM ]. Recall that

Ŷαn−1

n,M (Xπ
n ) = E

[
fαn

(Xπ
n )

1

M
− Cαn−1,αn

(Xπ
n ) + Ŷαn

n+1,M (Xπ
n+1) + Ỹαn

n,M (Xπ
n )− ŷin,M (Xπ

n )|Fn

]
.

Taking expectation with respect to F0, summing over n ∈ {0, . . . ,M − 1}, and rearranging yields

M−1∑
n=0

E[Cαn−1,αn
(Xπ

n )] =
1

M

M−1∑
n=0

E[fαn
(Xπ

n )]−
M−1∑
n=0

E[Ỹi
n,M (Xπ

n )− ŷin,M (Xπ
n )] + gi(Xπ

M )− Ŷi
0,M (x0).

Therefore, from triangle inequality,∣∣∣M−1∑
n=0

E[Cαn−1,αn
(Xπ

n )]
∣∣∣ ≤ M−1∑

n=0

E|fαn
(Xπ

n )|
M

+

M−1∑
n=0

E|Ỹi
n,M (Xπ

n )− ŷin,M (Xπ
n )|+ |Ŷi

0,M (x0)|+ |gi(Xπ
M )|.

Note that switching costs are always positive if i ̸= j, and specifically Ci,j(x) ≥ ϵ > 0,∀i ̸= j ∈ I from
assumption 2. This implies that∣∣∣M−1∑

n=0

E[Cαn−1,αn
(Xπ

n )]
∣∣∣ ≥ M−1∑

n=0

ϵE[1{αn−1 ̸=αn}] ≥ ϵE[SM ].

Now it remains to show that this quantity is bounded above by a quantity which converges to zero. Observe
|gi(Xπ

M )| < ∞. We first tackle the boundedness of |Ŷi
0,M (x0)|. The solution to the original optimization

problem, V (0, x0, i), always has a finite-valued expectation, meaning that E|Y i
t | < ∞ for all times t ∈ [0, T ]

(though we are only looking at t = 0 at the moment) and all modes i ∈ I. Therefore, using eq. (5.13),

E|Ŷi
0,M (x0)| ≤E|Ŷi

0,M (x0)− Y i
0 |+ E|Y i

0 | ≤ dE|Ŷi
0,M (x0)− Y i

0 |2 + E|Y i
0 |

≤dC3

M−1∑
n=0

εMn +O(M−1) + E|Y i
0 |.

We can directly use assumption 3 to bound E|fαn
(Xπ

n )|. We also note that E|X| ≤ (E[|X|2])1/2 and apply

eq. (5.10) to bound E|Ỹi
n,M (Xπ

n )− ŷin,M (Xπ
n )|2 ≤ C2ε

M
n /M , giving us

ϵE[SM ] ≤O(M−1/2) +

M−1∑
n=0

(
C2ε

M
n /M

)1/2
+ dC3

M−1∑
n=0

εMn +max
i∈I

E|Y i
0 |.

To obtain the bound stated in the lemma, we set C5 = (
√
C2 + dC3)/ϵ. We also note that O(1) dominates

O(M−1/2), and this concludes the proof. □

We can now use this bound to continue investigating the error accrued by the neural network-produced
switching strategy. We return to eq. (5.15) and, armed with lemma 3, conclude that the switching costs can
be bounded as

M−1∑
n=0

E
[
|Cαn−1,αn(Xtn)− Cαn−1,αn(X

π
n )|
]

≤M1/2

(
M−1∑
n=0

(
E
[
|Cαn−1,αn(Xtn)− Cαn−1,αn(X

π
n )|1{αn−1 ̸=αn}

])2)1/2

≤O(M−1/2)

(
O(1) + C5

M−1∑
n=0

[(
εMn /M

)1/2
+ εMn

])1/2

.
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Therefore, returning to our analysis of the error between the neural network value function and the expected
payoff, we incorporate the other error elements to yield

|Ŷi
0,M (x0)− J(0, x0, i,a

NN,M )| ≤ C2

M−1∑
n=0

εMn
M

+O

(
1

M2

)√√√√O(1) + C5

M−1∑
n=0

[(
εMn /M

)1/2
+ εMn

]
.

We now must add |Y i
0 − Ŷi

0,M (x0)| which is bounded by eq. (5.13) and take the mode-wise maximum over i
to achieve our final error bound

max
i∈I

|V (0, x0, i)− J(0, x0, i,a
NN,M )| ≤CεM−1/2+ε + C2

M−1∑
n=0

[
εMn
M

+ εMn

]

+O

(
1

M2

)√√√√O(1) + C5

M−1∑
n=0

[(
εMn /M

)1/2
+ εMn

]
.

which is consistent with eq. (3.13).

6. Conclusion

We have developed an algorithm which uses neural networks and the dynamic programming principle
to apply a backward-in-time approach to optimal switching problems in high dimensions. The algorithm
is also novel in its ability to accommodate high-dimensional state processes with a finite-variational jump
component. We have both applied our approach successfully to numerical examples and obtained analytical
convergence results. Our preliminary numerical results indicate that our algorithm is able to accommo-
date state processes with finite-variational jumps when solving optimal switching problems, and specifically
problems related to energy markets. The analytical results present the convergence in terms of the neural
network approximation errors of the networks, which have been previously proven to converge to zero.
Tests in lower dimensions where comparisons can be made against probabilistic methods have verified

the accuracy of the algorithm, and tests in higher dimensions that are intractable with more traditional
approaches have demonstrated that computation time decreases sub-linearly with dimension. Therefore,
this algorithm, while not as fast as other methods for low (i.e. two-dimensional) problems, is an excellent
candidate for solving high-dimensional optimal switching problems with jumps, as it is impressively robust
with respect to the typical slowdowns experienced as a result of the curse of dimensionality.
In future, we would like to apply our algorithm to a larger class of optimization problems. There are

many problems in energy markets and in other real-world applications in which the state variable is control-
dependent. If this is the case, then the chosen switching strategy will affect the evolution of other quantities.
For example, the price of electricity in one period (which depends on the chosen level of electricity production)
might affect demand in the next period. This would reflect consumer behavioral trends, but would introduce
new computational challenges. Namely, it would not be possible to simulate paths for the state process
before the optimization was calculated, and so the backward-in-time nature of the OSJ algorithm would not
be suited to such problems and a new approach would be necessary.
While renewable energy sources like wind and solar energy do not incur carbon dioxide emission penalties

and are technically free to obtain once installed, they still incur costs to bring online and take offline, and
experience much more volatility in their realized capacity. Therefore, adding these sources also adds an
increased risk of electricity underproduction. In the future, we could develop an algorithm which contains
a realistic method of penalizing unmet electricity demand, and therefore allows us to investigate interesting
problems involving “free”, renewable energy sources. Other potential new models could include more complex
scheduling options (essentially allowing the electricity producer to consider a greater number of modes when
scheduling).
Another direction could be investigating or improving the robustness of these algorithms. Robustness

is crucial in energy applications because electricity producers wish to avoid “worst-case” scenarios, such
as demand spikes or failures in the power grid. The solution to a given class of robust switching control
problems is characterized in [4], and expanded to infinite time-horizon ergodic problems in [3]. It could be
productive to expand this theoretical framework by designing a neural network-based algorithm for such
robust optimal switching problems.
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Finally, new convergence results for neural networks are being developed constantly. Another useful
extension could be to present convergence results in terms of concrete quantities such as the neural network
width, depth, or overall size. Such results have been calculated for specific classes of neural networks, as in
[41, 38]
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Appendix A. Parameters for Numerical Experiments

A.1. Parameters used in section 4.2. Below are the parameters used for the dynamics ofXt = [Dt, A
1
t , A

2
t , A

3
t , S

0
t , S

1
t , S

2
t , S

3
t , Pt]

T ∈
R9, as well as for the running costs f and switching costs Ci,j for section 4.2.

Parameter Value

α [4, 8, 8, 8]T

β


15 0.1 0.1 0

0.1 0.5 −0.1 0

0.1 −0.1 0.5 0

0 0 0 0.5


X0 [0, 0, 0, 0, 20, 40, 60, 20, 120]T

µ



−4 0 0 1 0

0 0 0 0 0

0 2 −1 0 1

0 0 0 0 0

0 1 1 1 −1



Σ 1
100



2.5 1.25 1.25 1.25 1.25

1.25 5 1.25 1.25 1.25

1.25 1.25 15 1.25 1.25

0.25 0.25 0.25 1.5 1.25

1.25 1.25 1.25 1.25 3


h0 [0.5, 2, 0]T

h [1, 1.5, 1.5]T

c [0.1, 0.1, 0.5]T

ϵ 0.001

Table 5. Parameters associated with section 4.2.
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