
mathematics

Article

A Neural Network-Based Approach for Approximating
Arbitrary Roots of Polynomials †

Diogo Freitas 1,*, Luiz Guerreiro Lopes 2 and Fernando Morgado-Dias 1,2

����������
�������

Citation: Freitas, D.; Guerreiro

Lopes, L.; Morgado-Dias, F. A Neural

Network-Based Approach for

Approximating Arbitrary Roots of

Polynomials. Mathematics 2021, 9,

317. https://doi.org/10.3390/

math9040317

Academic Editor: clemente cesarano

Received: 6 January 2021

Accepted: 1 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Madeira Interactive Technologies Institute (ITI/LARSyS/M-ITI), 9020-105 Funchal, Portugal;
morgado@uma.pt

2 Faculty of Exact Sciences and Engineering, University of Madeira, Penteada Campus,
9020-105 Funchal, Portugal; lopes@uma.pt

* Correspondence: diogo.freitas@m-iti.org; Tel.: +351-291-721-006
† This paper is an extended version of our paper published in the Proceedings of the 2018 International

Conference on Mathematical Applications (ICMA18), Funchal, Portugal, 9–12 July 2018; pp. 44–47.

Abstract: Finding arbitrary roots of polynomials is a fundamental problem in various areas of
science and engineering. A myriad of methods was suggested to address this problem, such as the
sequential Newton’s method and the Durand–Kerner (D–K) simultaneous iterative method. The
sequential iterative methods, on the one hand, need to use a deflation procedure in order to compute
approximations to all the roots of a given polynomial, which can produce inaccurate results due to
the accumulation of rounding errors. On the other hand, the simultaneous iterative methods require
good initial guesses to converge. However, Artificial Neural Networks (ANNs) are widely known by
their capacity to find complex mappings between the dependent and independent variables. In view
of this, this paper aims to determine, based on comparative results, whether ANNs can be used to
compute approximations to the real and complex roots of a given polynomial, as an alternative to
simultaneous iterative algorithms like the D–K method. Although the results are very encouraging
and demonstrate the viability and potentiality of the suggested approach, the ANNs were not able
to surpass the accuracy of the D–K method. The results indicated, however, that the use of the
approximations computed by the ANNs as the initial guesses for the D–K method can be beneficial
to the accuracy of this method.

Keywords: polynomial roots; artificial neural networks; particle swarm optimization; Durand–
Kerner method; performance analysis

1. Introduction

Finding arbitrary (real or complex) roots of a given polynomial is a fundamental
problem in different areas of science and engineering. Applications of root-finding emerge
from, e.g., control and communication systems, filter design, signal and image processing,
and codification and decodification of information.

Although many iterative methods for finding all the roots of a given polynomial
already exist, e.g., the Newton’s method and the Durand–Kerner (D–K) method [1,2], they
usually require: (a) repeated deflations, which may cause very inaccurate results because of
the accumulation of floating point rounding errors, (b) good initial approximations to the
roots for the algorithm converge, or (c) the computation of first or second order derivatives,
which, besides being computationally intensive, it is not always possible.

Due to those drawbacks, and since traditional Artificial Neural Networks (ANNs) are
generally known for their capability to discover complex nonlinear input–output mappings,
and consequently find good approximations for complex problems, this paper suggests and
tests a neural network-based approach for finding real and complex roots of polynomials,
aiming to assess its potential and limitations regarding efficiency and accuracy. (It is
important to note that this approach uses inductive inference in order to find the roots of a

Mathematics 2021, 9, 317. https://doi.org/10.3390/math9040317 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6145-8520
https://orcid.org/0000-0001-7334-3993
https://doi.org/10.3390/math9040317
https://doi.org/10.3390/math9040317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040317
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/317?type=check_update&version=2

Mathematics 2021, 9, 317 2 of 14

given polynomial simultaneously.) The ANN-based approach is then compared with the
D–K method, one of the most traditional simultaneous iterative methods for finding all the
roots of a given polynomial. Finally, the approximations computed by the ANNs are used
as an initialization scheme for the D–K method.

The first works about finding the roots of a given polynomial with ANN-based ap-
proaches started in 1995, when Hormis and colleagues [3] presented the ∑−∏ ANN with
the objective of separating a two-dimensional polynomial into two one-dimensional poly-
nomials (with the same degree). In 2001, Huang and Chi [4,5] used that ANN architecture
and added a priori knowledge about the relationships between the roots and coefficients
in the training algorithm aiming to find the real and complex roots of a given polynomial.
(This is considered by the authors to be the first work that addressed the root-finding
problem using ANNs directly.)

In 2003, a dilatation method for finding close arbitrary roots of polynomials was sug-
gested [6] and had the objective of magnifying the distance between close roots, allowing
them to be found more easily by ANNs. On the other hand, Huang et al. [7,8] integrated
the root moment method and the Newton identities into the ANN training algorithm.

Mourrain and colleagues [9] then investigated the determination of the number of real
roots of polynomials using a Feedforward Artificial Neural Network (FNN) and concluded
that the ANNs were capable of performing such task with high accuracy. Zhang et al. [10]
suggested using a discrimination system in order to compute the number of distinct real or
complex roots or, in other words, the roots’ multiplicities. They used the ANN structure
proposed by Huang and Chi [4,5].

Das and Seal [11] proposed a completely different approach using a set of divisors
of the polynomial coefficients, denoted here as D. In this view, if r is a divisor of D and a
divisor of the coefficient of the lowest degree term, then r is a potential root of the specific
polynomial. The coefficients of the considered polynomial are fed into an ANN by the
input neurons, and then the first hidden neuron in the first hidden layer separates the
coefficients list into two other lists. Each list serves as input for the two hidden neurons in
the second hidden layer. These two nodes compute the divisor of its coefficients in parallel,
and those that are also divisors of the coefficient of the highest degree term are passed to
the next two hidden neurons of the next hidden layer, who are responsible for improving
the candidate roots using a learning algorithm.

Nevertheless, the approaches mentioned above do not make use of the inductive infer-
ence capacity of ANNs to compute an approximation for each root of a given polynomial.
This is the focus of this study. This paper is organized as follows: after the introduction,
Section 2 describes the methodology followed to find the approximations for arbitrary
roots of a polynomial using ANNs and the D–K method. Section 3, in turn, presents the
comparative results between the ANN-based approach trained with two optimization al-
gorithms and the D–K method. In addition, in the same section, the ANN-based approach
is tested as an initialization scheme for the D–K method. This paper ends with a section
dedicated to conclusions.

The work presented in this paper is an extended version of the work by the authors
presented at the International Conference on Mathematical Applications [12], in which the
study was focused on the use of ANNs for finding the real roots of a given polynomial.
Here, however, the main aim is to find both real and complex polynomial roots.

2. Materials and Methods

The generation of the training and test data sets is described in this section, together
with the way ANNs were trained in order to compute approximations to arbitrary (real or
complex) roots of polynomials. The main focus of this study is to compute approximations
of the roots αi (i = 1, . . . , n) of an n-th degree real univariate polynomial P(x) = anxn +
an−1xn−1 + . . . + a1x + a0 with real and complex roots, given its real coefficients. In this
study, only the values 5, 10, 15, 20 and 25 for n were considered.

Mathematics 2021, 9, 317 3 of 14

The block diagram of this approach is presented in Figure 1, and it shows that the
coefficients of a given polynomial are used as the inputs for the ANNs that are then
processed by the network and used to output an approximation for each root. It is important
to note that, according to the Fundamental Theorem of Algebra [13], an n-th degree
polynomial has n real or complex roots. Thus, a priori, the number of output nodes
is known.

P(x)

a0

a1

...

an

ANN n

α1

α2

...

αn

Inputs Outputs

Figure 1. Block diagram showing the coefficients of a polynomial being feed as inputs to the ANN,
which in turn outputs an approximation for each root.

The results were then compared in terms of accuracy and in terms of execution time
with the D–K method described below.

2.1. Durand–Kerner Algorithm

The D–K method [1,2], also known in the literature as Weierstrass’ or Weierstrass–
Dochev’s method [14], is a traditional iterative method for computing approximations
to all real or complex roots of a polynomial simultaneously. Although the application
of this method does not involve the calculation of derivatives, it requires a good initial
approximation to each of the roots (which must be generated using another iterative
method) for the convergence of the algorithm.

Let P(x) = anxn + an−1xn−1 + · · ·+ a1x + a0 (an 6= 0) be a real polynomial of degree
n. The D–K method for this generic polynomial is given by [15]:

x(k+1)
i = x(k)i −

P(x(k)i)

an

n

∏
j=1
j 6=i

(x(k)i − x(k)j)

, (1)

where i = 1, . . . , n is the root index and k is the current iteration number.
The convergence order of the D–K method in the general case is known to be quadratic

for simple roots, but is only linear for multiple roots [16].
It is also important to note that the formulation of the D–K iterative process allows the

method to compute both the real and complex roots of a given polynomial. Therefore, if the
imaginary part of a root is lower than a predefined threshold, then the root is considered a
real root.

For computing the initial approximations for the D–K method, the simple and well-
known Cauchy’s bound [17] was used, since it provides an upper bound (ub) for the
modulus of the polynomial roots, which, in the case of a real polynomial P(x), is given by:

ub = 1 + max
{∣∣∣ a0

an

∣∣∣, · · · ,
∣∣∣ an−2

an

∣∣∣, ∣∣∣ an−1

an

∣∣∣}. (2)

Mathematics 2021, 9, 317 4 of 14

In other words, the Cauchy’s upper bound defines a disk of radius ub centred at the
origin of the complex plane that includes all real and complex roots of the polynomial. In
this view, the initial root values for an n-th degree real univariate polynomial, here denoted
by α

(0)
i (i = 1, . . . , n), will be set randomly inside a circle with radius equal to ub, i.e.:

α
(0)
i = cos(θ)× ub + sin(θ)j× ub, (3)

where j =
√
−1 and θ given by:

θ = r× π × 2, (4)

with r being a random number between 0 and 1.
Later in this paper, the approximations computed by the ANNs were also used as an

initialization scheme for the D–K method.

2.2. Artificial Neural Networks

In this study, five neural networks (one for each polynomial degree chosen) composed
by three layers (input, hidden, and output layer) were trained employing the well-known
Levenberg–Marquardt Algorithm (LMA) and Particle Swarm Optimization (PSO). The
inputs for the networks were the real coefficients of a set of polynomials of degrees 5, 10,
15, 20, and 25, and the outputs were the polynomial roots, as can be seen in Figure 1. In
this figure, ANN n denotes the neural network that can output approximations to the roots
of a real n-th degree polynomial.

2.2.1. Data Sets

Tables A1 and A2 in Appendix A show the head of the data sets (with 100,000 records)
that were used with ANN 5 to compute approximations for the real and complex roots.
In the second data set, corresponding to the roots, the odd and even columns represent
respectively the real and the complex parts of the root values, i.e.:

αi = {Re(αi), Im(αi)}, i = 1, . . . , n. (5)

To generate the data sets, the coefficients of the polynomials were first generated
randomly in the interval [0, 1], and from these the exact (real or complex) roots were
calculated using a symbolic computation package. Thus, the ANN does not know a priori
which roots are real or complex. It is important to note here that double-precision values
were used to generate these data sets although coefficients and roots are shown with only
four decimal places.

From these data sets, 70 % of the samples were used to train the ANNs. The remain-
ing 30 % was used to test the generalization capabilities of the ANNs by computing a
performance measure on samples that were not used to train the ANNs.

2.2.2. Architecture

For this study, shallow FNNs were used and, after several tests performed according to
some “rule of thumb” methods available in the literature for obtaining the optimal number
of hidden neurons and hidden layers [18–20], it was found that the resulting network
architectures did not vary significantly in terms of accuracy. Taking this into account, in
this experimental study, the hidden layer was always composed by ten neurons for all the
final tests.

Besides that, the hyperbolic tangent sigmoid (tansig) activation function [21] was
applied only in the hidden layer, and it was chosen to guarantee that values remain
within a relatively small range (in this case [−1, 1]) and, through the application of an anti-
symmetric sigmoid (S-shaped) transfer function, to allow the network to learn nonlinear
relationships between coefficients and roots. In the output layer, no activation function
was embedded, since the final rescaled output is still a linear function of the original data,

Mathematics 2021, 9, 317 5 of 14

allowing the ANNs to output values that are not circumscribed to the range of values of
the activation function.

It is important to note that a min-max normalization method [22] was used to rescale
data to the range [−1, 1] in order to improve the convergence properties of the training
algorithm [23].

The architecture of the ANN is represented in Figure 2. However, it is important to
emphasize that two output units were used for each root: one for the real part and the other
for the imaginary part. In other words, ANN 5 has ten outputs—five for the real part and
five for the imaginary part—ANN 10 has 20 outputs, and so on.

a0

a1

...

an ... 5

α1

α2

...

αn

Hidden
layer

Polynomial
coefficients

Complex
roots

Figure 2. Architecture of the ANN n for root-finding, consisting of (n + 1) input nodes, ten hidden
nodes and n output nodes.

2.2.3. Training Algorithms

The well-known LMA [24,25] was used for the ANNs training. The LMA is known
due to its efficacy and convergence speed, being therefore one of the fastest methods for
training FNNs, particularly medium-sized ones. A more detailed description on the use of
LMA for training ANNs is presented, e.g., in [26,27], since its details go beyond the scope
of this work.

Moreover, LMA is a hybrid algorithm that combines two optimization algorithms,
which are the Gauss–Newton method (because of its efficacy) and the gradient descent
method (due to its robustness). At each minimization step, the Levenberg–Marquardt
algorithm makes one of these methods more or less dominant by means of a non-negative
algorithmic parameter (λ) that is adjusted at each iteration [28].

The weights of the synaptic connections are then updated according to the difference
between the predicted and the observed value, backpropagating that error according to:

w(k+1) = w(k) −
(
(J(k))T · J(k) + λ(k) I

)−1
·
(
(J(k))T · e(k)

)
, (6)

where I is the identity matrix and e is the squared error vector between the target values

and the estimated values. Finally, J is a Jacobian matrix given by Ji,j =
∂ei

∂wj·
.

The LMA was used following a batch learning strategy, meaning that the network’s
weights and biases are updated after all the samples in the training set are presented to
the network.

This training algorithm is known for being a successful algorithm even if it starts in a
zone far from the optimal one. However, the calculation of the Jacobian matrix may cause
some performance issues in the algorithm, especially in deep ANNs, ANNs with many
hidden neuron units, or big data sets [29].

Mathematics 2021, 9, 317 6 of 14

The PSO algorithm [30,31] was also used as a training algorithm, since it has a good
ability to explore the search space. In addition, the calculations needed for the algorithm’s
execution are far more simple and expected to be less computationally demanding when
compared to the LMA.

The LMA is considered an exact method since it uses the derivative information
to optimize the weights of the ANN in order to minimize the error between the exact
target values and the estimated target values. The PSO algorithm, on the other hand, uses
particles that explore stochastically the search space with (10 + 32n) dimensions, each one
corresponding to each synaptic connection between the neuron units in an ANN with one
hidden layer. For example, for the ANN 25, 260 weights are needed to connect the input
layer to the hidden layer—26 coefficient neurons × 10 hidden neurons. On the other hand,
550 synaptic connections are required in order to connect the hidden neurons and one bias
neuron to the nodes in the output layer, i.e., (10 + 1) hidden neurons with bias × 25 × 2
neurons for the real and imaginary parts of a complex root. This defines a search space
with 810 dimensions to optimize using PSO.

In order to explore the search space, PSO uses particles, which correspond to candidate
solutions. Each particle has a velocity and a position, and is able to exchange information
about the best positions found (according to a cost function) during the search process with
all particles in the swarm (which is known as a gbest model), or with a set of neighboring
particles (a model that is known as lbest). In this optimization technique, each particle has
a memory mechanism that enables it to store two types of information: the best position
found by the other particles (social information), and also the best position found by
the particle itself (cognitive information). In this way, a usual strategy for defining the
equations of motion of each particle i in the swarm at every iteration k is given by [32,33]:

~V(k+1)
i = K

[
~V(k)

i + ϕ1R1
(k)
i

(
~p (k)

i −~x (k)
i

)
+ ϕ2R2

(k)
i

(
~g (k) −~x (k)

i

)]
,

~x (k+1)
i = ~x (k)

i + ~V(k+1)
i ,

(7)

where ϕ1 and ϕ2 are respectively the cognitive and the social weights, controlling how much
the particle’s own experience and the swarm’s experience should influence the particle’s
movement, whereas R1 and R2 are uniformly distributed random vectors between the
search space boundaries, being responsible for adding diversity to the swarm and thus
they try to lessen the premature converge of the algorithm to a local optimum point.

Lastly, ~p (k)
i and ~g (k) denote the personal best position of the particle i and the current

global best position of the swarm at iteration k, respectively. Finally, K is a constriction
term [32,33], given by:

K =
2∣∣∣2− ϕ−
√

ϕ2 − 4ϕ
∣∣∣ , (8)

where ϕ = ϕ1 + ϕ2 and ϕ > 4. Typically, ϕ = 4.1, and thus K ≈ 0.7298.
For optimizing the ANN’s weights, and thus minimizing the cost function defined for

both training algorithms as being the Mean Squared Error (MSE), each particle corresponds
to an ANN with a configuration of weights different from the configuration of each of the
other particles in the swarm. The PSO then proceeds normally until a stopping criterion is
met. In this case, the algorithm stops when it reaches the maximum number of iterations
(5000 iterations) or when the MSE derived from the training data set is lower than a
predefined ε (in this case, ε = 10−12).

3. Results and Discussion

In this section, the results obtained with the adopted approach are presented, along
with comparisons with the numerical approximations provided by the D–K method, in
terms of accuracy and execution time, when the polynomials have real and complex roots.

Mathematics 2021, 9, 317 7 of 14

As a measure of accuracy, the authors opted to use the MSE. The MSE is computed
as follows:

MSE =
1
n

n

∑
i=1

(Di − Ni)
2, (9)

where Di denotes the actual i-th root value (i = 1, . . . , n) in the test data set, and Ni
is the corresponding approximation obtained with the D–K method or the proposed
ANN approach.

Since the proposed approach computes the real and the imaginary parts separately,
the results produced by the D–K method were also split into its real and imaginary parts,
in order to allow for comparing the results obtained in both ways.

It is important to note that the D–K method and the ANNs training used the same
stopping criteria, i.e., a maximum number of iterations equal to 5000 and ε = 10−12 (which
means that the value of the polynomial, when evaluated on the position of the root found,
is less than or equal to 10−12).

As already mentioned, in order to compute the MSE, 30 % of the original data set
entries were reserved, and the new data set thus produced contains entries randomly
chosen that were not employed to train the networks. It should be also pointed out that
all the ANNs were trained 20 times and, based on the lowest MSE on the test data set,
only one was chosen to be compared to the numerical approximations produced by the
D–K method.

The results on the execution time for both methods were obtained using a personal
computer equipped with a 7th generation Intel Core i7 processor and 16 GB of RAM.

3.1. Levenberg–Marquardt Algorithm

Table 1 shows the MSE for each of the five polynomial degrees, and these error values
indicate that the ANN approach does not yet surpass the accuracy of the D–K method that
always finds the roots with an accuracy greater than 1× 10−8. It is also possible to depict
that, when the ANNs are trained with the LMA, the method failed to converge, in all the
trials, to reasonably accurate results. In addition, the MSE is not related to the degree of
the polynomial, since polynomials of degree 10 had a worse MSE when compared to the
results for polynomials of the 15th degree.

Table 1. Comparison between the ANN approach and the D–K method in terms of MSE for polyno-
mials with real and complex roots.

Degree ANN MSE D–K MSE

5 36.5387 4.9290× 10−09

10 386.7120 3.4800× 10−09

15 2.7157 2.6766× 10−09

20 146.2455 1.8608× 10−09

25 4.6057 9.7454× 10−10

Table 2, on the other hand, shows that the execution time with ANN remains almost
constant when the degree of the polynomial increases. The opposite happens with the D–K
method, with which an increase in the degree of the polynomial implies an increase in the
execution time. This result was already expected because computing polynomial roots
using the D–K method, unlike ANN, is a pure iterative procedure.

Mathematics 2021, 9, 317 8 of 14

Table 2. Comparison between the ANN approach and the D–K method in terms of the average
execution time (in seconds) for polynomials with real and complex roots.

Degree ANN D–K

5 0.018 0.0842
10 0.015 0.4098
15 0.027 1.2728
20 0.025 3.0516
25 0.028 5.4552

Considering that accurate results were not achieved when using the ANN-based ap-
proach for computing the real and complex polynomial roots using the real and imaginary
parts of the roots in the test data sets, the roots were transformed into polar coordinates, in
order to assess its impact on the accuracy of the approach, i.e.:

α′i =

{√
x2 + y2, tan−1

(y
x

)}
, (10)

where x and y correspond to the real and imaginary parts of αi, respectively.
However, and as can be seen in Table 3, the MSE obtained is even higher for most of

the polynomials’ degrees when compared to the previous approach.
Interestingly, in this approach, polynomials with a higher degree had a lower MSE.

Nevertheless, for all the polynomial degrees, the LMA was not successful in updating the
ANNs’ weights in order to reduce the MSE.

Table 3. MSE for the ANN-based approach for polynomials with real and complex roots in
polar coordinates.

Degree MSE

5 678.9594
10 249.7066
15 210.9323
20 146.6783
25 114.6380

In conclusion, the ANNs trained with the LMA showed to have limitations in terms
of accuracy when compared to the D–K method. However, this approach surpassed the
efficiency of the D–K method, since the ANN-based approach required a lower execution
time in all the tests carried out when compared with the D–K method.

3.2. Particle Swarm Optimization

In this section, the results of the ANN approach trained with the PSO algorithm
are presented.

The structure, i.e., the number of neuron units in the hidden layer and the activation
functions of the ANN, as well as the data sets, were kept the same as in the previous sections
in order to enable a fair comparison between the two approaches: ANN trained with the
LMA and ANN trained with the PSO algorithm. Although it has not been investigated in
this work, it is important to note that the PSO algorithm could also be used to obtain the
optimal ANN architecture that best minimizes the difference between the observed and
the expected values.

The PSO algorithm was initialized with a swarm of 24 particles, organized in a star
topology, with the motion equation given by Equation (7) (with ϕ1 = ϕ2 = 2.05). In a
swarm with a star communication structure, particles are independent (i.e., isolated from
each other), except for a central particle (known in the literature as the focal point) that
intermediates the communication between the particles.

Mathematics 2021, 9, 317 9 of 14

As illustrated in Figure 3, the central particle knows the performance of every particle
in the swarm and changes its position according to the best particle’s position. If its
new position is better than the previous best global position, then the central particle is
responsible for spreading this discovery [34,35].

Figure 3. Graphical representation of a star communication structure, also known as wheel architec-
ture, with ten particles.

Thus, the star communication structure is centralized, since the central particle is
influenced and is the only particle that influences the remaining particles. This structure
was chosen because it has a lower converge speed when compared to other neighborhood
topologies (e.g., mesh, toroid, and ring), and consequently a higher probability of achieving
good results, since the algorithm will explore the search space better, and thus escape from
local minima.

For each ANN, 20 tests were executed and, for each experiment, the MSE was com-
puted as Equation (9). Nevertheless, only the ANN with the lowest MSE was kept for
comparison. The MSE results are presented in Table 4.

Table 4. MSE comparison for the D–K method and the ANN-based approach trained with LMA and
PSO for polynomials with real and complex roots.

Degree D–K MSE LMA MSE PSO MSE

5 4.9290× 10−09 36.5387 0.0036
10 3.4800× 10−09 386.7120 0.0069
15 2.6766× 10−09 2.7157 0.0083
20 1.8608× 10−09 146.2455 0.0121
25 9.7454× 10−10 4.6057 0.0111

When compared with the ANNs trained with the LMA, training the ANNs using PSO
represents a significant improvement in terms of accuracy, as can be depicted in Table 4.
Besides that, it is possible to observe that, as the degree of the polynomial increase, the
accuracy of the ANN trained using PSO is little affected, except for the case of polynomials
of degree 20 and 25. Nevertheless, polynomials of degree 20 and 25 showed a similar
MSE value.

Similarly, the accuracy of the results obtained with the ANN-based approach for
computing both real and complex roots in polar coordinates was also improved by training
the ANN with the PSO algorithm when compared to the LMA. The results of this approach,
presented in Table 5, show that the use of the PSO algorithm produced a stable MSE,
especially for higher degree polynomials.

It is noteworthy that converting the complex roots to polar coordinates resulted, for all
the polynomial degrees considered, in a loss of generalization capabilities. Thus, the real
and imaginary parts should be used, along with the ANN trained using the PSO algorithm,
in order to compute both real and complex roots of a given polynomial.

Mathematics 2021, 9, 317 10 of 14

Table 5. MSE comparison for the ANN-based approach trained with LMA and PSO for polynomials
with real and complex roots in polar coordinates.

Degree LMA MSE PSO MSE

5 678.9594 0.0159
10 249.7066 0.0253
15 210.9323 0.0343
20 146.6783 0.0344
25 114.6380 0.0397

This comparison allowed for concluding that the ANN trained with the PSO algorithm
seems to be a more effective alternative when compared to the training using the LMA,
since it was able to provide a better generalization (and, consequently, to produce lower
MSEs). As noted by Mendes et al. [36], one possible justification for the fact of the PSO
has surpassed the LMA generalization capabilities may be related to the number of local
minima present in the search space, since the PSO algorithm revealed to be the best training
algorithm when a high number of local minima exist.

Besides that, even for higher degree polynomials, the ANN trained with the PSO
algorithm revealed a modest MSE. It is worth mentioning that, since all the MSE values
presented in Table 1 are significantly less than one, it can be inferred that the networks
have a good capacity to generalize the space of results. Thus, with some confidence, it is
possible to conclude that the networks are able to solve any real univariate polynomial (at
least of the degrees considered) with real and complex roots.

However, these results are again limited, especially when compared to that obtained
with the D–K method. With this in mind, the next section suggests making use of the
ANN-based approach trained with the PSO algorithm as an initialization scheme for the
D–K method.

3.3. Initialization Scheme for the Durand–Kerner Method

This section is intended to focus on the use of the ANN-based approach, trained with
the PSO algorithm, for computing the initial guesses for the roots to be used with the D–K
method. This section appears due to the fact that the results obtained from the ANN-based
approach were not superior to the ones computed by the D–K method. Taking this into
consideration, instead of competing, the ANN-based approach can help to leverage the
effectiveness and efficiency of the D–K method.

As already mentioned, the D–K method requires good initial approximations for all
roots in order to converge. Thus, the objective of this section is to compare the use of the
D–K method when it is initialized using the Cauchy’s upper bound or by using the ANNs
introduced in the previous section.

Results will be compared in terms of the MSE, execution time, number of iterations,
and effectiveness. In its turn, the effectiveness is computed by dividing the number of
times that the D–K method found the roots of a given polynomial by the total number of
tests. It is also important to note that all the presented results correspond to the average of
the different tests that were run.

Like in the previous sections, and, for the sake of comparison, only the test data set
containing the coefficients and polynomial roots will be used.

Table 6 presents a comparison between the Cauchy’s upper bound and the ANN-based
approach for the case when the polynomials have real and complex roots.

The comparison between the Cauchy’s upper bound and ANN-based approach leads
to the conclusion that the ANN-based approach can be used only to improve the accuracy
of the D–K method, surpassing the Cauchy’s upper bound in all tests. However, if one
is interested in enhancing the performance of the algorithm, then the use of the D–K
method with the initialization scheme based on the Cauchy’s upper bound should not be
discarded, taking into account that, for all polynomial degrees, this strategy required a
shorter execution time and a smaller number of iterations.

Mathematics 2021, 9, 317 11 of 14

Moreover, in terms of effectiveness, the Cauchy’s upper bound strategy was superior
to the ANN-based approach, especially for higher degree polynomials. Thus, it can be
concluded that the ANN-based approach can be used only to improve the accuracy of the
D–K method.

Table 6. Comparison between the Cauchy’s bound and the ANN-based approach in providing initial
approximations to the D–K method.

Degree MSE Exec. Time No.
Iterations Effectiveness

Cauchy’s
upper bound

5 4.9290× 10−09 0.0842 67.5155 99.82 %
10 3.4800× 10−09 0.4098 83.1480 99.77 %
15 2.6766× 10−09 1.2728 103.4006 99.72 %
20 1.8608× 10−09 3.0516 127.3676 99.68 %
25 9.7454× 10−10 5.4552 143.9964 99.58 %

ANN

5 4.5822× 10−09 0.1008 77.7170 99.84 %
10 2.7444× 10−09 0.6589 105.5521 99.67 %
15 1.4705× 10−09 2.3469 151.4759 99.43 %
20 9.2850× 10−10 4.3203 184.3320 99.33 %
25 4.8588× 10−10 8.6969 226.1478 99.01 %

Finally, this section shows that the ANN-based approach trained with PSO can be
used as an initialization scheme for the D–K method, since it found, on average, more
accurate roots when compared to the initialization scheme based on the Cauchy’s bound.
However, one should choose the Cauchy’s upper bound if the aim is to improve efficiency
of the D–K method.

4. Conclusions

This paper introduces an approach for computing approximations for the real and
complex roots of a given polynomial, based on the inductive inference capabilities of
the ANNs. Results were then compared in terms of effectiveness and efficacy to the
D–K method.

The authors started by training the ANNs using the LMA algorithm and as input the
coefficients of the polynomials considered. The weights of each ANN were then updated
based on the error between the true root values and the values produced by the ANN,
i.e., the approximations to the roots of the polynomials. Although the LMA was unable to
converge to an acceptable solution, the results were significantly improved to an acceptable
accuracy by using PSO as a training algorithm. Results, however, still showed that ANNs
were not able to surpass the accuracy of the D–K method. Nevertheless, the ANN approach
presented advantages in terms of performance.

As an example of the use of this approach, the authors tested the applicability of the
ANNs as an initialization scheme for the D–K method, and reached the conclusion that the
ANN-based approach is a viable alternative when compared to the initialization scheme
based on the Cauchy’s upper bound, especially in terms of accuracy.

Finally, it will be important that future research compare the proposed approach with
other simultaneous iterative methods for polynomial root-finding, such as the acceler-
ated D–K method [37,38], the well-known Ehrlich–Aberth method [39,40], the accelerated
Ehrlich method [37], or even more recent methods for the simultaneous determination
of polynomial roots. Besides that, it is also important to compare other approaches for
computing the initial approximations for the roots of a given polynomial based on its coef-
ficients [39,41–43], as well as considering some special classes of polynomials in addition
to randomly generated polynomials.

Mathematics 2021, 9, 317 12 of 14

Author Contributions: Investigation, writing—original draft, preparation and incorporation of
changes in the draft, D.F.; methodology, L.G.L.; supervision, validation and review/editing, L.G.L.
and F.M.-D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Project MITIExcell (Project—UIDB/50009/2020), co-
financed by Regional Development European Funds for the “Operational Program Madeira 14–20”—
Priority Axis 1 of the Autonomous Region of Madeira, number M1420-01-0145-FEDER-000002. In
addition, the funding from LARSyS – FCT Plurianual funding 2020–2023 is acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study were made available
by the authors. Requests should be placed at https://biesa.m-iti.org/.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
D–K Durand–Kerner
FNN Feedforward Artificial Neural Network
LMA Levenberg–Marquardt Algorithm
MSE Mean Squared Error
PSO Particle Swarm Optimization

Appendix A

Appendix A.1

Table A1. Head of the input data set for training the ANN 5 for computing both real and
complex roots.

a0a0a0 a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

0.6489 0.5608 0.0764 0.9170 0.6737 0.0856
0.1398 0.8675 0.6737 0.7915 0.6805 0.3244
0.8254 0.8206 0.5198 0.7785 0.8128 0.0229
0.1884 0.4211 0.5824 0.0200 0.9023 0.7577
0.4004 0.5791 0.8399 0.8190 0.9042 0.2391...

...
...

...
...

...

Appendix A.2

Table A2. Head of the output data set for training the ANN 5 for computing both real and
complex roots.

Re(α1α1α1) Im(α1α1α1) Re(α2α2α2) Im(α2α2α2) Re(α3α3α3) Im(α3α3α3) Re(α4α4α4) Im(α4α4α4) Re(α5α5α5) Im(α5α5α5)

−6.1207 0.0000 −1.8031 0.0000 −0.8277 0.0000 0.4406 −0.7973 0.4406 0.7973
−1.1952 −0.8191 −1.1952 0.8191 −0.1822 0.0000 0.2375 −1.0345 0.2375 1.0345
−34.5703 0.0000 −0.8836 −0.4828 −0.8836 0.4828 0.4004 −0.9324 0.4004 0.9324
−1.4203 0.0000 −0.3379 −0.3584 −0.3379 0.3584 0.4527 −0.7189 0.4527 0.7189
−2.9534 0.0000 −0.6260 −0.5992 −0.6260 0.5992 0.2114 −0.8430 0.2114 0.8430...

...
...

...
...

...
...

...
...

...

References
1. Durand, E. Solutions Numériques des Équations Algébriques; Masson: Paris, France, 1961; Volume 1.
2. Kerner, I.O. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen. Numer. Math. 1966, 8, 290–294.

[CrossRef]

https://biesa.m-iti.org/
http://doi.org/10.1007/BF02162564

Mathematics 2021, 9, 317 13 of 14

3. Hormis, R.; Antoniou, G.; Mentzelopoulou, S. Separation of two-dimensional polynomials via a sigma-pi neural net. In Proceed-
ings of the IASTED International Conference on Modelling, Simulation, and Optimization (MSO), Pittsburgh, PA, USA, 27–30
April 1995; pp. 304–306.

4. Huang, D.S.; Chi, Z. Finding complex roots of polynomials by feedforward neural networks. In Proceedings of the IEEE
International Joint Conference on Neural Network (IJCNN), Washington, WA, USA, 15–19 July 2001; pp. A13–A18.

5. Huang, D.S.; Chi, Z. Neural networks with problem decomposition for finding real roots of polynomials. In Proceedings of the
IEEE International Joint Conference on Neural Network (IJCNN), Washington, WA, USA, 15–19 July 2001; pp. A25–A30.

6. Huang, D.S.; Ip, H.H.S.; Chi, Z.; Wong, H.S. Dilation method for finding close roots of polynomials based on constrained learning
neural networks. Phys. Lett. A 2003, 309, 443–451. [CrossRef]

7. Huang, D.S. A constructive approach for finding arbitrary roots of polynomials by neural networks. IEEE Trans. Neural Netw.
2004, 15, 477–491. [CrossRef] [PubMed]

8. Huang, D.S.; Ip, H.H.; Chi, Z. A neural root finder of polynomials based on root moments. Neural Comput. 2004, 16, 1721–1762.
[CrossRef]

9. Mourrain, B.; Pavlidis, N.; Tasoulis, D.; Vrahatis, M. Determining the number of real roots of polynomials through neural
networks. Comput. Math. Appl. 2006, 51, 527–536. [CrossRef]

10. Zhang, X.; Zhu, D.; Hu, W. Finding multiple real roots by neural networks based on complete discrimination system of
polynomial. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems (CIS), Chengdu, China, 21–24
September 2008; pp. 236–241.

11. Das, M.; Seal, P. Polynomial real roots finding using feed forward neural network: A simple approach. In Proceedings of the IEEE
National Conference on Computing and Communication Systems (NCCCS), Durgapur, India, 21–22 November 2012; pp. 1–4.

12. Freitas, D.; Lopes, L.G.; Morgado-Dias, F. A neural network based approach for approximating real roots of polynomials.
In Proceedings of the International Conference on Mathematical Applications (ICMA), Funchal, Portugal, 9–12 July 2018;
pp. 44–47.

13. Cauchy, A.L. Cours d’Analyse de l’École Royale Polytechnique; Cambridge University Press: New York, NY, USA, 2009.
14. Petković, M. Point Estimation of Root Finding Methods; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2008;

Volume 1933.
15. Terui, A.; Sasaki, T. Durand–Kerner method for the real roots. Jpn. J. Ind. Appl. Math. 2002, 19, 19–38. [CrossRef]
16. Fraigniaud, P. The Durand–Kerner polynomials roots-finding method in case of multiple roots. BIT 1991, 31, 112–123. [CrossRef]
17. Cauchy, A.L. Exercices de Mathématiques; Kessinger Publishing: Whitefish, MT, USA, 2010.
18. Hecht-Nielsen, R. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the IEEE International Conference

on Neural Networks (ICNN), San Diego, CA, USA, 21–24 June 1987; pp. 11–14.
19. Heaton, J. Introduction to Neural Networks for Java, 2nd ed.; Heaton Research: Chesterfield, MO, USA, 2008.
20. Principe, J.C.; Euliano, N.R.; Lefebvre, W.C. Neural and Adaptive Systems: Fundamentals Through Simulations; Wiley: Hoboken, NJ,

USA, 1999.
21. Harrington, P.B. Sigmoid transfer functions in backpropagation neural networks. Anal. Chem. 1993, 65, 2167–2168. [CrossRef]
22. Priddy, K.L.; Keller, P.E. Artificial Neural Networks: An Introduction; Tutorial Texts in Optical Engineering, SPIE Press: Bellingham,

WA, USA, 2005.
23. Dias, F.M. Técnicas de Controlo Não-Linear Baseadas em Redes Neuronais: Do Algoritmo à Implementação. PhD Thesis,

Universidade de Aveiro, Aveiro, Portugal, 2005.
24. Levenberg, K. A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.

[CrossRef]
25. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[CrossRef]
26. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994,

5, 989–993. [CrossRef] [PubMed]
27. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O. Neural Network Design, 2nd ed.; Martin Hagan: Stillwater, OK, USA, 2014.
28. Heaton, J. Artificial Intelligence for Humans: Deep Learning and Neural Networks; Heaton Research: Chesterfield, MO, USA, 2015;

Volume 3.
29. Yu, H.; Wilamowski, B., Levenberg–Marquardt Training. In The Industrial Electronics Handbook, 2nd ed.; Intelligent Systems; CRC

Press: Boca Raton, FL, USA, 2011; Chapter 12, Volume 5, pp. 1–16.
30. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on

Micro Machine and Human Science (MHS), Nagoya, Japan, 4–6 October 1995; pp. 39–43.
31. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks

(ICNN), Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
32. Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation (CEC), Washington, WA, USA, 6–9 July 1999; pp. 1951–1957.
33. Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation (CEC), La Jolla, CA, USA, 16–19 July 2000; pp. 84–88.
34. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; Wiley: Chichester, UK, 2007.

http://dx.doi.org/10.1016/S0375-9601(03)00216-0
http://dx.doi.org/10.1109/TNN.2004.824424
http://www.ncbi.nlm.nih.gov/pubmed/15384540
http://dx.doi.org/10.1162/089976604774201668
http://dx.doi.org/10.1016/j.camwa.2005.07.012
http://dx.doi.org/10.1007/BF03167446
http://dx.doi.org/10.1007/BF01952788
http://dx.doi.org/10.1021/ac00063a042
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1109/72.329697
http://www.ncbi.nlm.nih.gov/pubmed/18267874

Mathematics 2021, 9, 317 14 of 14

35. Valle, Y.; Venayagamoorthy, G.; Mohagheghi, S.; Hernandez Mejia, J.; Harley, R.G. Particle swarm optimization: Basic concepts,
variants and applications in power systems. IEEE Trans. Evol. Comput. 2008, 12, 171–195. [CrossRef]

36. Mendes, R.; Cortez, P.; Rocha, M.; Neves, J. Particle swarms for feedforward neural network training. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Honolulu, HI, USA, 12–17 May 2002; pp. 1895–1899.

37. Alefeld, G.; Herzberger, J. On the convergence speed of some algorithms for the simultaneous approximation of polynomial
roots. SIAM J. Numer. Anal. 1974, 11, 237–243. [CrossRef]

38. Milovanović, G.V.; Petković, M.S. On computational efficiency of the iterative methods for the simultaneous approximation of
polynomial zeros. ACM Trans. Math. Softw. 1986, 12, 295–306. [CrossRef]

39. Aberth, O. Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comput. 1973, 27, 339–344. [CrossRef]
40. Ehrlich, L.W. A modified Newton method for polynomials. Commun. ACM 1967, 10, 107–108. [CrossRef]
41. Bini, D.A. Numerical computation of polynomial zeros by means of Aberth’s method. Numer. Alg. 1996, 13, 179–200. [CrossRef]
42. Fraigniaud, P. Analytic and Asynchronous Root Finding Methods on a Distributed Memory Multicomputer; Research Report LIP–IMAG;

École Normale Supérieure de: Lyon, France, 1989.
43. Guggenheimer, H. Initial approximations in Durand-Kerner’s root finding method. BIT 1986, 26, 537–539. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2007.896686
http://dx.doi.org/10.1137/0711023
http://dx.doi.org/10.1145/22721.8932
http://dx.doi.org/10.1090/S0025-5718-1973-0329236-7
http://dx.doi.org/10.1145/363067.363115
http://dx.doi.org/10.1007/BF02207694
http://dx.doi.org/10.1007/BF01935059

	Introduction
	Materials and Methods
	Durand–Kerner Algorithm
	Artificial Neural Networks
	Data Sets
	Architecture
	Training Algorithms

	Results and Discussion
	Levenberg–Marquardt Algorithm
	Particle Swarm Optimization
	Initialization Scheme for the Durand–Kerner Method

	Conclusions
	
	
	

	References

